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1 Introduction

Some very exciting discoveries have been made recently on the black hole information
paradox [1–3], unravelled via the study of entanglement and quantum extremal surfaces:
a qualitative review is [4]. Perhaps the central point is that the generalized entropy [5, 6]
obtained by incorporating the bulk entanglement entropy of matter to the classical area of
the entangling RT/HRT surface [7]–[10] makes a qualitative difference to the location of
the quantum extremal surfaces, with explicit calculation possible in effective 2-dimensional
models where the bulk entanglement entropy can be studied through 2-dim CFT techniques
(see also the early work [11]). A noteworthy point in these studies is that apparently
no information on the singularity inside the black hole and associated stringy/quantum
gravity effects is necessary: this is perhaps not surprising since the near horizon region
is adequately semiclassical but is striking. The interior singularity could be regarded as
a cosmological, spacelike Big-Crunch singularity. In this light, or indeed independently,
it is tempting to ask if quantum extremal surfaces might be used to probe cosmological,
Big-Crunch or -Bang, singularities: a priori it is not clear if this makes sense since the near
singularity region is expected to be rife with severe stringy/quantum gravity effects. But
what one might hope is to gain some insight into how these extremal surfaces either probe
or avoid such singularities, in the process learning more about entanglement and quantum
extremal surfaces in general. Some interesting recent work on quantum extremal surfaces
and cosmologies appears in [12, 13] and also e.g. [14–17].
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In this paper we investigate aspects of entanglement and quantum extremal surfaces in
certain classes of spacetimes exhibiting cosmological singularities studied first in [18]–[20].
These are time-dependent deformations of AdS/CFT [21]–[24] where the bulk develops
spacelike Big-Crunch singularities when the dual field theory is deformed to be on a time-
dependent space alongwith a time-dependent gauge coupling. Perhaps the simplest of these
is the AdS Kasner spacetime. There are no horizons in these spacetimes. In [25], certain
families of 2-dim cosmologies with cosmological singularities were studied in 2-dim dilaton
gravity with an extra scalar which drives the dynamics in these theories. Some of these can
be thought of as the dimensional reduction of the isotropic AdS Kasner and other, more
general, cosmologies with Big-Crunch singularities.

First we study aspects of classical extremal RT/HRT surfaces in the higher dimensional
backgrounds: due to the time dependence the surfaces also dip in the time direction (besides
the holographic radial direction). By a detailed study of the extremization equations in the
reliable semiclassical regime far from the singularity, we show that the classical entangling
surface has only mild time dependence and bends away from the singularity. Next we study
quantum extremal surfaces in the 2-dim cosmologies mentioned above, keeping in mind
the key quantitative feature that the 2-dim backgrounds here allow formulating the bulk
entanglement contribution in terms of well-known 2-dim CFT techniques. Assuming that
the bulk matter in the region far from the singularity is approximately in the ground state
is reasonable since the time variations are small there: then the bulk entanglement can be
approximated using these techniques. The time-dependence inherent in these backgrounds
then leads automatically to an extrapolation to the rest of the spacetime. Extremizing
the resulting generalized entropy then shows that the quantum extremal surfaces are also
driven to the semiclassical region far from the singularity. We discuss various features here
and implications.

In section 2, we review certain aspects of these cosmological singularities and in par-
ticular the 2-dim ones in [25]. In section 3, we discuss aspects of RT/HRT surfaces in
the higher dimensional cosmologies, with primary focus on the AdS Kasner case. In sec-
tion 4, we discuss quantum extremal surfaces: after various generalities, we discuss some
time-independent backgrounds which provide some intuition (section 4.1), and then 2-dim
cosmologies with the AdS Kasner singularity in section 4.2 and more general ones in sec-
tion 4.3. We close with a Discussion in section 5, and some technical details in appendices.

2 Cosmological singularities

Here we review some aspects of the cosmological spacetimes discussed in [25]. The
higher dimensional backgrounds were studied long back as time-dependent deformations
of AdS/CFT in [18]–[20] towards gaining insights via gauge/gravity duality into cosmo-
logical (Big-Bang or -Crunch) singularities: further investigations on some of these ap-
pear in e.g. [26]–[29]: some reviews of cosmological singularities in string theory appear in
e.g. [30, 31]. While the bulk spacetime develops a cosmological Big-Crunch (or -Bang) sin-
gularity and breaks down, the holographic dual field theory (in the AdS5 case), living on a
space that itself crunches, is subject to a severe time-dependent gauge coupling g2

YM = eΨ
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and may be hoped to provide insight into the dual dynamics. In this case the scalar Ψ con-
trols the gauge/string coupling. Generically it was found that the gauge theory response
also ends up being singular [20]. There is a large family of such backgrounds exhibiting
cosmological singularities, some of which we will review below. Various other references
are listed in [25].

Some of these backgrounds have the technical feature that the spatial directions are all
on the same footing: this isotropy allows studying these backgrounds from a possibly sim-
pler perspective. In [25] a dimensional reduction on the spatial part of these backgrounds
was carried out, which enables recasting these backgrounds from the point of view of 2-dim
dilaton gravity with a dilaton potential and an extra scalar that drives the dynamics in a
nontrivial manner. A prototypical example of this is the AdSD Kasner spacetime [18] and
the 2-dim cosmology obtained from its reduction [25]: see (2.9). More generally the higher
dimensional space and its reduction ansatz are of the form

ds2
D = g(2)

µν dx
µdxν + φ

2
di dσ2

di ; gµν = φ
di−1
di g(2)

µν , D = di + 2 . (2.1)

The Weyl transformation from g
(2)
µν to the 2-dim metric gµν ensures that the dilaton kinetic

energy vanishes and the action becomes

S = 1
16πG2

∫
d2x
√
−g

(
φR− U(φ,Ψ)− 1

2φ(∂Ψ)2
)
, (2.2)

The dilaton potential U(φ,Ψ) now possibly couples the dilaton φ to Ψ. Certain aspects of
generic dilaton gravity theories of this kind (and these 2-dim cosmological backgrounds),
dimensional reduction and holography are discussed in [32]. See e.g. [33] for early discus-
sions of 2-dim dilaton gravity in the context of 2-dim black holes as well as [34] in the
context of AdS2 holography. We obtain

gµν∇2φ−∇µ∇νφ+ gµν
2

(
φ

2 (∂Ψ)2 + U

)
− φ

2∂µΨ∂νΨ = 0 ,

R− ∂U

∂φ
− 1

2(∂Ψ)2 = 0 , 1√
−g

∂µ(
√
−g φ∂µΨ)− ∂U

∂Ψ = 0 , (2.3)

as the equations of motion. These give in conformal gauge gµν = efηµν :

(tr) ∂t∂rφ−
1
2f
′∂tφ−

1
2 ḟ∂rφ+ φ

2 Ψ̇Ψ′ = 0 ,

(rr + tt) −∂2
t φ− ∂2

rφ+ ḟ∂tφ+ f ′∂rφ−
φ

2 (Ψ̇)2 − φ

2 (Ψ′)2 = 0,

(rr − tt) −∂2
t φ+ ∂2

rφ+ efU = 0 , (2.4)

(φ)
(
f̈ − f ′′

)
− 1

2(−(Ψ̇)2 + (Ψ′)2)− ef ∂U
∂φ

= 0,

(Ψ) −∂t(φ∂tΨ) + ∂r(φ∂rΨ)− ef ∂U
∂Ψ = 0 .

There is nontrivial dynamics in the theory (2.2) driven by the extra scalar Ψ. In particular
there are nontrivial cosmological singularity solutions here, which were analysed in [25].
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The power-law scaling ansatze for the 2-dim fields and the higher dimensional spacetimes,
from which these can be thought of as arising from via reduction, are

φ = tkrm, ef = tarb, eΨ = tαrβ → ds2
D = ef

φ(di−1)/di

(
−dt2+dr2)+φ2/didx2

i . (2.5)

Note that r = 0 is the asymptotic (holographic) boundary. In the vicinity of the Big-
Crunch singularity, there is rapid time variation, approaching a divergence. Thus taking
the time derivative terms to be dominant (dropping all the other terms) gives the near
singularity behaviour described by

−∂2
t φ+ ḟ∂tφ−

φ

2 (Ψ̇)2 ∼ 0, −∂2
t φ ∼ 0, f̈+ 1

2(Ψ̇)2 ∼ 0, −∂t(φ∂tΨ) ∼ 0. (2.6)

This appears “universal”: the dilaton potential U governing the asymptotic behaviour of
the background has disappeared. Solving these shows a “universal” subsector

φ ∼ t, ef ∼ ta, eΨ ∼ tα; a = α2

2 , (2.7)

which governs the cosmological singularity. Using (2.5), various families of nontrivial 2-dim
cosmologies can be found as exact classical solutions: in the vicinity of the singularity they
vindicate this universal behaviour but far from this region exhibit various kinds of asymp-
totic data which is encoded by the dilaton potential U . Some noteworthy examples are:

• Flat space: U = 0. We obtain

φ = t, ds2 = tα
2/2(−dt2 + dr2), eΨ = tα , (2.8)

With t = T 1−p1 , these can be seen to be the reduction of “mostly isotropic” Kasner
singularities ds2 = −dt2 + t2p1dx2

1 + t2p2
∑
i dx

2
i .

• AdS Kasner spacetimes: these are of the form

U = 2Λφ1/di , Λ = −1
2 di(di + 1) , p = 1

di
, α =

√
2(di − 1)

di
,

ds2 = R2

r2 (−dt2 + dr2) + t2pR2

r2 dx2
i , eΨ = tα , dip

2 = 1− 1
2α

2 , (2.9)

→ φ = tRdi

rdi
, ds2 = t(di−1)/di Rdi+1

rdi+1 (−dt2 + dr2) , eΨ = t
√

2(di−1)/di .

R is the AdS length scale. We are suppressing an implicit Kasner scale tK : e.g.
t2p → (t/tK)2p. We will reinstate this as required. The higher dimensional spacetimes
and their dual field theories were studied in [18]–[20].
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• Hyperscaling violating cosmologies: the 2-dim and higher dimensional backgrounds
are of the form (2.5) with exponents and parameters:

U(φ,Ψ) = 2Λφ
1
di eγΨ , Λ = −1

2(di + 1− θ)(di − θ), γ = −2θ√
2di(di − θ)(−θ)

,

m = −(di − θ) , b = m(1 + di)
di

, β = −mγ , (2.10)

k = 1, a = α2

2 , α = −γ ±
√
γ2 + 2(di − 1)

di
.

Here θ < 0, γ > 0. The higher dimensional backgrounds here can be obtained as cos-
mological deformations of reductions of nonconformal branes down to D dimensions.

There are also still more complicated hyperscaling violating Lifshitz cosmologies (with
nontrivial Lifshitz exponents z as well) and their reductions down to 2-dimensions
which were obtained in [25]: we will not discuss them here.

In what follows we will study these cosmological backgrounds and the 2-dim cosmologies
obtained from their reduction. In certain places we will find it convenient and instructive to
focus on the AdS Kasner singularities (2.9) above and the corresponding 2-dim cosmologies.
In the following it will be useful to note the general cosmological solutions in the form (2.5),
with the 2-dim fields on the left, and the higher dimensional spacetime on the right.

3 Classical extremal surfaces

We would like to study the behaviour of RT/HRT surfaces in these cosmological back-
grounds. The nontrivial time-dependence here in general complicates finding closed form
expressions for the extremal surfaces but nevertheless various scaling results and intuition
can be obtained from this study, as well as quantitative information in the semiclassical
regime far from the singularity.

In the higher dim isotropic spacetime (2.5), since all xi are equivalent, let us consider
a strip-shaped subsystem with width l along the x ∈ xi direction and wrapping all other xi
directions. The bulk extremal surface is anchored at its boundary and dips into the bulk
radial direction but also in time, essentially forced by the time-dependence of the bulk
cosmology. The surface will continue to be spacelike: this is a nontrivial statement in such
time-dependent backgrounds. The surface parametrisation and boundary conditions are

S ≡ (t(r), x(r)) ; ∆x = l ; t(r) r→0−−−→ t0 . (3.1)

For simplicity, we will consider the surface to be anchored on a t = const slice on the
boundary. The bulk surface can dip nontrivially in time so t(r) is potentially a nontrivial
function starting at t = t0 on the boundary, dipping into the bulk till some point then
turning back to the boundary again at t0 (as we will see). More generally one could
consider “tilted” subsystems (with tL(0) 6= tR(0)): we will not consider this. The area
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functional is (note j takes D − 3 = di − 1 values)

S = 1
4Gdi+2

∫ j∈(1...di−1)∏
xj 6=x

(
φ1/didxj

)√ ef

φ(di−1)/di

(
− dt2 + dr2)+ φ2/didx2

= Vdi−1
4Gdi+2

∫
dr φ

√
ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2 . (3.2)

There is no x-dependence so the momentum conjugate to ∂rx gives a conserved quantity
φ∂rx√

ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2

= const = A (3.3)

This gives

(∂rx)2 = A2
ef

φ(di+1)/di

(
1− (∂rt)2)

φ2 −A2 , S = Vdi−1
4Gdi+2

∫
dr

ef/2 φ(3−1/di)/2√
φ2 −A2

√
1− (∂rt)2 .

(3.4)
For the time variable, we will need to examine the second order equation of motion: this
is difficult in general, but we will discuss this later in the semiclassical regime.

To gain some intuition for the behaviour of the extremal surface, let us recall the simple
familiar subcase here, of pure AdS with no time-dependence: the minimal surface here lies
on a constant time slice. Then comparing with (2.5) with all t-exponents vanishing, we have

ds2 = R2

r2 (−dt2 +dr2 +dx2
i ) , (∂rx)2 =A2 e

f/φ(di+1)/di

φ2−A2 , S= Vdi−1
4Gdi+2

∫
dr
ef/2φ(3−1/di)/2√

φ2−A2 .

(3.5)
We have ef

φ(di−1)/di
= φ2/di = R2

r2 so this recovers the familiar Ryu-Takayanagi AdS expres-

sions (∂rx)2 = A2

φ2−A2 = A2r2di
R2di−A2r2di and S ∼ Vdi−1

Gdi+2

∫ dr φ2√
φ2−A2

∼ Rdi Vdi−1
Gdi+2

∫ dr/rdi√
1−A2r2di/R2di

.
This shows the turning point r∗ (the deepest location till which the surface dips into the
bulk) at

(∂rx)2 →∞ → A = φ∗ = Rdi

rdi∗
; l ∼ r∗ ∼

R

A1/di
. (3.6)

The last scaling relation (upto numerical factors) between the width l and the parameter
A arises from using the above expressions in the width boundary condition in (3.1). We
see that as the strip width l increases, r∗ increases so the surface is dipping deeper into
the bulk interior (and correspondingly A decreases).

In the present cosmological background, for a strip with some fixed width, the surface
begins to dip into the bulk radial direction, which stops at the turning point r∗ where
(∂rx)2 →∞. From (3.4), we have

(∂rx)2 →∞ ⇒
(

ef

φ(di+1)/di

(
1− (∂rt)2)
φ2 −A2

) ∣∣∣
r∗
→∞ . (3.7)

In this case, φ, ef also have time-dependence besides r-dependence. However we gain some
intuition from looking at the limit of small strip subsystems in a region far from strong

– 6 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
0

singularity t=0

surface with larger
boundary width

boundary slice
where surfaces

are anchored

Figure 1. Cartoon of extremal surfaces in AdS Kasner, anchored on a boundary time slice (black
curve). For small width (blue), the surface stays close to the boundary, while for large size (red),
the surface dips deeper into the bulk. These bend away from the singularity (dotted line).

time-dependence. In this case the extremal surface can be expected to behave somewhat
similar to the AdS case so the turning point will be at φ∗ = A. More pertinently φ is
nonvanishing and ∂rt � 1, so the only solution to the turning point equation (3.7) is
φ∗ = A. As we now increase the strip subsystem size, the surface becomes “bigger” and
dips further into the bulk, but continues to exist since φ is continuous. Thus this branch of
extremal surfaces that is continuously connected to the AdS-like branch has turning point

(∂rx)2 →∞ → A = φ∗ = t∗

r
|m|
∗

, t∗ ≡ t(r∗) . (3.8)

We have suppressed the AdS-like lengthscale and used the scaling form φ = tkrm in (2.5)
alongwith the universal relation k = 1 (2.7), as well as the fact that m = −|m| < 0 for
the generic cosmological background, as noted in [25]. m < 0 reflects the transverse area
(which is the dilaton in the 2-dim description) growing towards the boundary r → 0. For
instance the examples (2.8), (2.9), (2.10), reviewed earlier exhibit these features explicitly.

On the face of it, the factor ef

φ(di+1)/di
in (3.7) contains a factor of t−# and so appears

to lead to a distinct turning point localized at the singularity t∗ = 0 as well. However
this branch of extremal surfaces appears disconnected from the branch that is continuously
connected to the AdS-like branch in the region far from the singularity. If such a branch
with t∗ = 0 exists it can only exist in the limit of infinite strip width, i.e. the IR limit, with
no way to move away from t∗ = 0 locus (since there is no parameter like A that allows
deforming): this implies it is inaccessible from the classical region far from the singularity.
However the region near the singularity at t = 0 is a region where quantum gravity effects
must be strong: a classical RT/HRT extremal surface localized there with no way to deform
away to a well-defined classical region is unreliable. For this reason, we discard this branch
of possible extremal surfaces. Finally for (∂rx)2 > 0 to be well-defined, we must have
(∂rt)2 < 1 so |∂rt| is bounded. For small strip width, the extremal surface lies on an almost-
constant time slice i.e. (∂rt)2 � 1. These suggest that there cannot arise any divergence
in (3.7) from the (1− (∂rt)2) term. The condition (∂rt)2 < 1 is consistent with the surface
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being spacelike everywhere for our boundary conditions (3.1) (unlike e.g. [35] where the
anisotropy induced by the energy flux implied that for the strip orthogonal to the flux there
is a phase transition in the surfaces). Overall these arguments pin down the condition (3.8)
as the relevant one for the turning point of the extremal surface (3.4) of interest.

Going with the reasonable assumption that the time direction is not doing anything
singular, as described above, we will now examine the scaling of the width with t∗, r∗, A. It
is instructive to focus on the AdS Kasner spacetime (2.9) for this purpose: (3.4) then gives

(∂rx)2 = A2
( 1
t2/di

) 1− (∂rt)2

t2

r2di −A2
, S = Vdi−1

4Gdi+2

∫
dr

(
t2−1/di

r2di

)√1− (∂rt)2√
t2

r2di −A2
. (3.9)

These expressions can be used to explicitly see our general statements earlier. The spatial
width condition (3.1) in this case gives

l

2 =
∫ r∗

0
dr (∂rx) = A

∫ r∗

0
dr

ef/2

φ(di+1)/2di

√
1− (∂rt)2

φ2 −A2 = r∗

∫ 1

0

du

t1/di

√
1− (∂rt)2√

(φ/φ∗)2 − 1
,

(3.10)
where φ = tr−di and using (3.8). Now the integral has no nontrivial scale dependence: it
has been absorbed into the r∗ factor outside. This gives the scaling, using (3.8),

l ∼ r∗ ; A = t∗

rdi∗
∼ t∗
ldi

. (3.11)

This fits the expectation that as the width l increases, the surface dips deeper into the
bulk so the radial turning point r∗ increases. The dip in the time direction is mild at least
when the surface is anchored on a time slice far from the singularity at t = 0: in this case
the surface almost lies entirely on a constant time slice t ∼ t0 � 0 so t∗ ∼ t0 as well (as we
discuss later). In this regime, A ∼ 1

ldi
. The u-integral in (3.11), with each term positive,

gives a positive numerical factor. The scaling t∗ ∼ Ardi∗ suggests that increasing r∗ implies
increasing t∗. Since in this entire discussion, we restrict to one side of the singularity (the
past), the range of the time variable t is t ≡ |t| ≥ 0, so increasing t∗ means bending away
from the singularity at t = 0. Similar observations were noted in [36] in a different context.

All the above arguments are reasonable as long as we are in the semiclassical regime far
from the singularity: but they do not pin down t∗. More information on the time behaviour,
i.e. the t(r) function, is obtained by analysing the equation obtained from extremizing (3.2)
with respect to the t-variable: this gives the t-equation of motion

d

dr

{
φ ef (∂rt)

φ(di+1)/di
√

ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2

}
+ φ̇

√
ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2

+
φ (1− (∂rt)2) ef

{
ḟ − (di+1)

di
φ̇
φ

}
2φ(di+1)/di

√
ef

φ(di+1)/di

(
1− (∂rt)2)+ (∂rx)2

= 0 , (3.12)
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Figure 2. Cartoon of the local geometry of the extremal surface near the turning point (r∗, t∗).
The surface is anchored on a time slice t0 far from the singularity at t = 0 (not shown). It dips in
the direction away from the singularity.

with φ̇ = ∂φ
∂t etc. Using the conserved quantity (3.4) for the x-variable, this simplifies.

Then specialising to the AdS Kasner case, we obtain

d

dr

{
∂rt√

1− (∂rt)2
t−1/di

rdi

√
t2 − r2diA2

}
+ t(di−1)/di

rdi

√
1− (∂rt)2

t2 − r2diA2

− 1
di

1
t(di+1)/di rdi

√
(1− (∂rt)2)(t2 − r2diA2) = 0 . (3.13)

This gives, with t′ ≡ ∂rt,

(1− t′2)
(
d2
i t
′ + r(t2 −A2r2di)

t3
− dir

t

)
− (t2 −A2r2di)dirt′′

t3
= 0 . (3.14)

We have suppressed the Kasner scale tK mentioned after (2.9): reinstating this shows
that A appearing above is really AtK , so that each term above is dimensionless (we have
suppressed the AdS scale R: reinstating that we can rescale t, r by R, and then the above
statement on each term being dimensionless continues to hold). Now note that we have
written (3.14) to emphasise that in the region far from the singularity at t = 0, we have
large t so we can analyse this equation in detail. Here, as stated before, we expect that
the surface will have only mild time dependence, lying almost on a constant time slice, so
∂rt � 1. At the turning point, from (3.7), (3.8), we have φ∗ = t∗

r
di
∗

= A and (∂rx)2 → ∞.
Then the nonzero terms in (3.14) give

t′∗ = r∗
di t∗

> 0 → dr

dx

∣∣∣
∗

= 0 , dt

dx

∣∣∣
∗

= t′∗
(∂rx)∗

= 0 . (3.15)

Thus the extremal surface is at a t-maximum at the turning point (r∗, t∗). Further in its
neighbourhood, we have

r < r∗ , t′∗ > 0 → t(r) ∼ t∗ + t′∗ (r − r∗) < t∗ , (3.16)

verifying that t∗ is a local maximum (we recall that the range of t ≡ |t| > 0 so t increasing is
going away from t = 0). This suggests the global condition t∗ > t0 at least for sufficiently
small size (sufficiently small r), although strictly speaking that is not implied. To gain
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insight into this, we can employ perturbation theory in (3.14) to study the t(r) function
in the region far from the singularity. Since the time dependence there is expected to be
small, we can take t′ � 1 and therefore approximate the equation (3.14) by

d2
i t

3t′ + r(t2 −A2r2di)− dirt2 − (t2 −A2r2di)dirt′′ = 0 , (3.17)

dropping t′2 in the first (1− t′2) factor. Now a power series ansatz for t(r) gives

t(r) = t0 +
∑
n∈Z+

cnr
n → cn ∼

1
t#0

. (3.18)

We have t(0) = t0 as a boundary condition for anchoring the surface at the boundary.
Sticking this series in (3.17) can be done numerically in Mathematica, and the cn can be
solved for iteratively: they scale inversely with t0. This shows for r ≤ r∗ . t0 that t(r) is
indeed almost constant, with only mild variation. For example in AdS5 Kasner (di = 3),
we find (see appendix A for more details, specifically (A.1))

t(r) = t0 + 1
12t0

r2 − 1
432t30

r4 + 1
7776t50

r6 +
(

A2

160t30
− 17

7776 · 240t70

)
r8 + . . . (3.19)

with higher order terms further suppressed. The first few terms scale as 1
tn−1
0

so they are
manifestly subleading in the regime r∗ . t0. The higher terms beginning with r8 contain
A in their coefficients. Recall now that A here is really AtK , reinstating the Kasner scale
tK as mentioned after (3.14). Thus AtK = tk

t∗/tK
r3
∗
∼ t0

r3
∗
since t∗ ∼ t0. This means the term

containing A2 in the r8-term is of the form t2∗ r
8

160r6
∗ t

3
0
∼ r2

∗
160t0

r8

r8
∗
� t0 since t∗ ∼ t0 and r ≤ r∗ .

t0 : so this term is also suppressed compared with the leading t0 term. Now between the two
terms in the r8 coefficient, we see that A2

t30
∼ t2∗

r6
∗ t

3
0
∼ 1

r6
∗ t0

dominates over 1
t70
. This is also true

at higher orders where there are further terms containing A2k

t#0
. Analysing this further and

retaining only the dominant terms in each rk-coefficient leads to a new series (see appendix
A). Evaluating this at the turning point r∗ gives (A.3): thus we manifestly see that

t∗ = t(r∗) > t0 , r∗ . t0 , (3.20)

In other words, the surface bends away from the singularity at t = 0, at least if anchored in
the reliable far-region with t0 � 0. Using this it can be seen that t′2 � 1 indeed so our ap-
proximation of using (3.17) instead of (3.14) is justified in this regime. Similar power series
and results arise in AdS4- and AdS7-Kasner. Thus overall, the surface function t(r) starts
at t = t0 at the boundary r = 0 and then grows, reaching a maximum value at the turning
point t = t∗ bending away from the singularity. Then the surface turns around and returns
to the boundary (joining the other end of the strip subsystem). This is depicted in figure 2.

The IR limit where the strip width is large (using (3.11)) is t∗
r
di
∗

= A ∼ 1
ldi
→ 0. In this

limit, (3.17) becomes d2
i t

3t′ + rt2 − dirt2 − t2dirt′′ = 0. Again analysing via a power series
in Mathematica gives in AdS5 Kasner (di = 3), we find

t(r) = t0 + 1
12 t0

r2− 1
432 t30

r4 + 1
7776 t50

r6− 17
1866240 t70

r8 + 247
335923200 t90

r10 + . . . (3.21)
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The series here is more delicate since the surface really has r∗ →∞ (dipping into the bulk
fully) so the entire r-series is important. The limit A→ 0 requires A . 1

t20
comparing with

the scale t0: this requires t0
r∗

. 1 . Thus the IR limit here is

r∗ →∞ , t0 →∞ ,
t0
r∗

. 1 , (3.22)

which is the reliable semiclassical regime far from the singularity. In this regime the series
defining the time behaviour of the surface continues to be well-defined, albeit delicate:
the surface is anchored on a slice far from t = 0 so although it dips deep into the bulk,
its time dependence is mild with t′2 � 1 everywhere. This then shows that t∗ > t0 for
t0
r∗
∼ 1 : numerically it can be checked that for r∗

t0
. 3 the t(r) series above continues to

satisfy t∗ > t0, i.e. the extremal surface bends in the direction away from the singularity.
As r∗

t0
increases further (keeping the limit (3.22), t0 becomes smaller and it can be seen

numerically that the series above violates t∗ > t0: however in this regime, it can also be seen
that t′ is increasing so the analysis is breaking down: this occurs as we move the anchoring
surface in the direction of the singularity, which becomes unreliable (not surprisingly).

The conditions (3.15), (3.16), on the local geometry in the neighbourhood of the turning
point do not depend on A, so in particular they also apply in this IR limit. This is consis-
tent with the spacelike condition being preserved here for generic strip size. Overall we see
that such classical RT/HRT extremal surfaces exist for generic strip size. It is interesting
that such a power series analysis works, since (3.17) and its A = 0 limit are still complicated
nonlinear equations: as we depart from the large t0 semiclassical regime and move the an-
choring surface toward the singularity, it is unclear if this can be analysed meaningfully. We
have mainly analysed the AdS Kasner spacetime here for the time behaviour: however the
techniques should be applicable to more general cosmologies of the kind described earlier.

The IR limit of large size l can be probed in greater detail by quantum extremal
surfaces as we will see in the next section. The findings there are consistent with the
classical RT/HRT analysis here, but constrain t∗, r∗ further, owing to the bulk matter
entropy contribution.

Finally, we now make some general statements based on energy conditions. Firstly
for (3.14) as well as (3.9) and (3.10) to be well-behaved, we have seen that (∂rt)2 < 1
which follows from requiring reality, and also φ ≥ φ∗ = A. The first condition is expected
intuitively as we have seen. The second condition implies φ = t

rdi
decreases till it becomes

φ∗, i.e.

φ ≥ φ∗ →
t(r)
rdi
≥ t∗

r2di∗
→ ∂r

(
t(r)
rdi

)
≤ 0 ⇒ ∂rt ≤

dit

r
. (3.23)

The derivative condition follows from assuming monotonicity (with r = 0 the boundary).
This constrains the behaviour of the t(r) function. More generally, this is reminiscent of
null energy conditions, and the dilatonic c-function in [37]. Using the equations (2.3) in
the 2-dim background, the NEC gives −nµnν∇µ∇νφ = gtt∇t∇tφ − grr∇r∇rφ ≥ 0, i.e.
−ef (∂2

t φ − ∂tf∂tφ + ∂2
rφ − ∂rf∂rφ) ≥ 0 which simplifies to −(φ′′ − f ′φ′ − (di−1)/di

t rdi
) ≥ 0

using (2.9). Restricting to the extremal surface we have φ = t(r)
rdi

and f = di−1
di

log t(r) −
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(di + 1) log r which gives t′′ ≤ di−1
di

1+t′2
t . These general conditions appear consistent with

the earlier discussions: although we have not used these much these considerations may
provide interesting information in general cosmologies.

4 Quantum extremal surfaces

We will now study quantum extremal surfaces (QES) in the 2-dim cosmologies in [25]
obtained by dimensional reduction from various higher dimensional theories, towards un-
derstanding the cosmological, Big-Crunch, singularities present here, in part inspired by
the exciting findings in [1, 2]. The relevant 2-dim fields here are the dilaton φ, the 2-dim
metric ef and the extra scalar Ψ. The scalar Ψ is essential for nontrivial dynamics and
essentially drives the singularity: however since the spacetime already contains the effects
of the scalar we will assume that the scalar excitations are on the same footing as other
bulk matter. This is equivalent to assuming that the effects of Ψ have been subsumed into
their backreaction on the geometry so using the background spacetime is adequate. Thus
the bulk matter entropy Sbulk will be assumed to contain contributions from the scalar Ψ
as well, which will not be treated separately. Towards putting this on firmer footing, it
is important to understand the bulk entanglement entropy for scalars such as Ψ with a
dilaton coupling in the action (2.2): we will leave this for the future.

Consider an observer O at some location (t0, r0) moving in time in the spacetime
background. In the time-dependent case, if he/she is far away from regions such as the
Big-Crunch singularity, the time dependence is slow and it is reasonable to imagine that
the ambient matter in the observer’s neighbouring patch is in its ground state. Now we
ask what entanglement he/she sees: say the QES is at some location (t, r). We will use
(t∗, r∗) to refer to the QES solution to extremization of the generalized entropy,

Sgen = φ

4G2
+ Sbulk

= φ

4G2
+ c

12 log
(
∆2 ef

∣∣
(t,r)

)
+ . . . (4.1)

This is the classical area (dilaton) piece along with the subleading entropy of bulk matter.
∆2 is the flat spacetime interval between the observer O and the QES,

∆2 = r2 − (t− t0)2 . (4.2)

We focus on the observer O located at the boundary r = 0 since all the backgrounds we
discuss have a holographic dual interpretation. We have written the expression (4.1) along
the lines of the discussions in [2]: in particular the effects of the curved spacetime appear
entirely through the conformal factor ef at the QES endpoint of the interval (see appendix
B for a very brief recap). Above, we have only explicitly retained terms that are relevant
for the QES extremization. So we have omitted terms containing the ultraviolet cutoffs
and the warp factor ef |tc,rc at the boundary: the latter can be partially absorbed into the
UV cutoffs. A useful resource for these QES calculations in time-independent cases is [38].
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Several comments are in order on the generalized entropy (4.1) in our description and
use: while some of these are also features of previous applications of the generalized entropy,
some are specific to our context as will be clear in what follows.

1. The only boundary subregions that make sense in these reduced 2-dim bulk theories
are the whole space from the higher dimensional point of view. So the leading term
is the transverse area of the full space in the higher dimensional theory, which is the
2-dim dilaton (in Planck units). From the expression (3.2) for the RT/HRT surface
in the higher dimensional theory, this leading classical term can be seen to arise as

Sclgen ∼
Vdi−1

4Gdi+2

∫
dr φ

√
(∂rx)2 ∼ Vdi−1

4Gdi+2

∫
dxφ ∼ φ

4G2
. (4.3)

using 1
G2
∼ Vdi

Gdi+2
. In the 2-dim theory, the extremal surface is just a point in the 2-

dim spacetime, the entire transverse part of the higher dim extremal surface wrapped.
The QES location (t∗, r∗) after extremization of the generalized entropy (4.1) is
roughly speaking analogous to the turning point in the classical RT/HRT analysis,
and the 2-dim discussion pertains to the IR limit there.

In time-independent situations, the boundary subregion can be taken to be a point
on the boundary r = rc on some constant time slice, and then the extremal surface
is a point lying at some spatial location r = r∗ on that slice. We will describe some
examples of this below.

2. In general we will assume that the bulk matter is a 2-dim conformal field theory. Then
the bulk entanglement entropy [5, 6] of quantum matter fields in the bulk subregion
enclosed by the extremal surface and the boundary subregion can be described by
the Calabrese-Cardy expression [39, 40] for a 2-dim CFT in flat space, along with
the modifications from the conformal transformation to the curved 2-dim space [2].
The interval has endpoints defined by the extremal surface at (t, r) and the boundary
(t0, rc) ∼ (t0, 0): thus Sbulk has been obtained using the rules of boundary CFT, with
a single twist operator at the QES endpoint (some details appear in appendix B).
For the cosmological spacetimes, nontrivial time dependence arises from the interval
but mainly from the conformal transformation, which as we will see is nontrivial.

We have also assumed in writing this expression that

1� c� 1
G
, (4.4)

i.e. the matter CFT central charge is sufficiently large to give nontrivial subleading
contributions to the generalized entropy, but not too large that it backreacts and
wrecks the classical geometry (and thereby the classical entanglement term).

In the higher dimensional theory, the bulk entropy contribution [5, 6] is in general
difficult to calculate: we resort to the effective 2-dim theories where Sbulk can be
approximated by 2-dim CFT entanglement entropy.
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3. In writing Sbulk we have assumed that the quantum matter fields are in a pure state,
and for simplicity we have assumed the ground state of the CFT for most of our
analysis. This is reasonable if the background is time-independent, or has slow time
variation. In the cosmological cases we discuss, this form of Sbulk is reasonable in the
semiclassical spacetime region far from the singularity where the time variations are
not significant. Since the warp factor ef contains time-dependence, Sbulk contains
effects of time evolution: we expect this to be reasonable for mild time dependence.

However in the cosmological spacetimes we discuss, there are global Big-Crunch sin-
gularities where the entire spacetime becomes vanishingly small with the conformal
factor ef going to zero: this suggests a singularity arising from log ef . Physically one
might imagine that the severe time-dependence would lead to the bulk matter going
to some excited state, perhaps severely excited near the singularity. This suggests a
breakdown of Sbulk, and in fact the entire semiclassical approach in these techniques
which are unceremoniously being extrapolated to a region with large quantum grav-
ity effects. As it turns out, our analysis appears self-consistent in the sense that
the quantum extremal surfaces end up being localized in the semiclassical spacetime
region far from the singularity. We will comment on these further after we discuss
the analysis.

4.1 Some time-independent backgrounds

Before studying the cosmological backgrounds, we will first study some time-independent
backgrounds to gain some intuition and experience for the above generalized entropy (4.1)
and the resulting quantum extremal surfaces. With no time-dependence, all time slices are
equivalent so we can set t = t0, i.e. the QES lies on the same time slice as the observer.
This is of course borne out in our experience with entangling surfaces in time-independent
backgrounds in higher dimensional holography.

AdS2. Here we have ds2 = 1
r2 (−dt2 +dr2) with φ = φr

r and the generalized entropy (4.1)
setting t = t0 becomes

Sgen = φr
4G

1
r

+ c

6 log
(
r

1
r

)
; ∂rSgen ∼ −

φr
r2 → 0 . (4.5)

We have retained only terms relevant for the extremization. We see that the warp factor
at the r-endpoint cancels the r-dependence of the interval entanglement, giving just the
classical piece. Thus the extremization gives the second expression above so the solution to
extremization is r∗ →∞. Thus the entanglement wedge [41–43] defined as the bulk domain
of dependence of the QES (the part of the spacetime causally connected to the QES at
r∗ →∞) is the entire Poincare wedge as expected. See also [38] for discussions on this.

AdSD reduction. The higher dim AdSD space with D = di+2 is ds2
AdSdi+2

= 1
r2 (−dt2 +

dr2) + 1
r2dx

2
i and under reduction (2.1) we obtain the 2-dim background (suppressing the

AdS scale)
φ = 1

rdi
, ds2 = 1

rdi+1 (−dt2 + dr2) . (4.6)
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Some aspects of such generic 2-dim dilaton gravity theories have been discussed in [32].
Now (4.1) gives

Sgen = φr
4G

1
rdi

+ c

6 log
(

r

r(di+1)/2

)
⇒ ∂rSgen = − diφr

4Grdi+1 −
c

6

(
di − 1

2

) 1
r

= 0 . (4.7)

We see that both terms are of the same sign since c > 0 and di > 1. Thus the solution
is again r∗ → ∞ for the location of the QES: this again leads to the entire Poincare
wedge which is the expected answer (also in the higher dimensional point AdSD when the
subsystem becomes the whole space). Note that we are using the 2-dim metric as the Weyl
transformed one (2.1) in (4.6) above: this was found to be consistent in [32] in holographic
discussions (e.g. the stress tensor).

It is to be noted that we have written Sbulk using the rules of boundary CFT since
the effective space is the half-line with one end of the interval at the boundary r = 0.
It is instructive to compare this with the discussion of islands in e.g. [44], where a flat
region was appended beyond the boundary r = 0 of an AdS2 region: in this case, the
generalized entropy takes the form Sgen ∼ φr

4G
1
r + c

6 log((r+r′)2 1
r ). The interval in question

has endpoints r ∈ AdS2 and r′ in the flat space region beyond the boundary: the warp
factor at the r′ end does not contribute since it is trivial in that flat region. Both r, r′ > 0
in this parametrization: the space is not a half-line now. Let us set r′ ∼ 0 for simplicity.
Then extremizing gives − φr

4G
1
r2 + c

6
1
r = 0 : the competition between the two terms leads to a

finite value r∗ ∼ φr
Gc for the QES location. In the case (4.7) above we see that the argument

of the logarithm in the bulk entropy arises differently and r∗ →∞ with no island.
One way to understand this is in terms of the violation of the Bekenstein bound, as

discussed in [13]: if the classical dilatonic term is overpowered by the subleading bulk
entropy contribution, we may expect islands. To see this, note that (4.7) can be recast as

Sgen = φ

4G + c

6
di − 1
di

log φ , (4.8)

with a relative plus sign in the two contributions, again retaining only terms relevant for ex-
tremization (in greater detail, putting the AdS scale and the UV cutoff scales back, the bulk
entropy term is log(φ(di−1)/di R2

ε1ε2
) : the argument becomes O(1) when φ is sufficiently small,

at large r). As long as φ is not too small, log φ will always be subdominant to the classical
area term φ and the Bekenstein bound will not be violated: thus the extremization leads
to ∂rφ = 0 giving r∗ →∞ which is the entire Poincare wedge, with no islands. If one could
somehow entangle the bulk matter on the interval with some other region, this may lead
to Sbulk increasing and overpowering the classical area contribution: this is what appears
to be happening in the example above from [44], as well as various cases discussed in [13].

4.2 2-dim cosmologies and quantum extremal surfaces

Now we will study quantum extremal surfaces in the 2-dim cosmological backgrounds
reviewed earlier. We focus first on the 2-dim cosmology obtained by reduction of the
AdSD Kasner spacetime (2.9). With the observer at the boundary and the interval ∆2
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Figure 3. Cartoon of the 2-dim geometry, the holographic boundary at r = 0 and the QES at
(t∗, r∗). The solid blue line is the spatial interval between the boundary observer and the QES. The
singularity is at t = 0 far up (not shown). The extremization drives the QES location to t∗ → ∞
(far from the singularity) and r∗ →∞ (which is the left vertical line).

between the observer and the QES location as in (4.2), we obtain

Sgen = φr
4G

t

rdi
+ c

12 log
[(
r2 − (t− t0)2) ef ∣∣(t,r)]+ . . . (4.9)

∂rSgen = − φr4G
di t

rdi+1 + c

6
r

r2 − (t− t0)2 −
c

12
di + 1
r

= 0 ,

∂tSgen = φr
4G

1
rdi
− c

6
t− t0

r2 − (t− t0)2 + c

12
di − 1
di t

= 0 . (4.10)

We are again only retaining terms relevant for extremization. Some general comments can
be made here: assuming as is usually the case in AdS/CFT , the entanglement wedge lies
outside the causal wedge (deeper in the interior) [41–43], we have ∆2 > 0. For the usual
parametrization of the bulk, we have r > 0: this also implies ∆2 > 0 for a real solution
(independent of the argument above). Rearranging (4.10) gives
c

6
r

r2 − (t− t0)2 = φr
4G

di t

rdi+1 + c

12
di + 1
r

,
c

6
t− t0

r2 − (t− t0)2 = φr
4G

1
rdi

+ c

12
di − 1
di t

.

(4.11)
Since di > 1, the right side is positive always, so we have

∆2 > 0 i.e. (t− t0)2 < r2, r > 0, t ≥ t0 . (4.12)

t ≥ t0 > 0 means the QES lies on the same time slice as or beyond the observer, further
away from the singularity.

If we assume that the QES lies on the same time slice as the observer i.e. t = t0,
equivalently that the QES is maximally spacelike separated from the observer, we obtain
from (4.9)

t = t0 : Sgen = φ

4G + c

6
di − 1
di

log φ , φ = φr
4G

t

rdi
,

∂rSgen ∼ −
(
φr
4G

di t

rdi+1 + c

12
di − 1
r

)
= 0, ∂tSgen ∼

φr
4G

1
rdi

+ c

12
di − 1
di t

= 0 . (4.13)
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Since c > 0 and di > 1, both contributions in both derivative expressions appear with the
same sign. Note also that in this entire discussion, as described after (3.11), we are on one
side (the past) of the singularity at t = 0, so the range of the time variable is t ≡ |t| ≥ 0.
Then it is clear that the only solution (t∗, r∗) to extremization is

r ≡ r∗ →∞ , t ≡ t∗ →∞ ; t∗ . r∗ . (4.14)

This condition is somewhat analogous to (3.22). Since we have assumed t = t0, this
is consistent only if t0 → ∞ also, i.e. the observer lies far from the singularity in the
semiclassical spacetime region. It is useful to note that the first expression ∂rSgen can be
regarded as a spatial minimization on a fixed Cauchy t-slice, which is solved by r∗ → ∞
for any t-value (not growing faster than r): we see that ∂2

rSgen > 0+. Then the second
expression ∂tSgen, which is a maximization, forces t∗ → ∞ : we have ∂2

t Sgen ∼ − c
t2 → 0+.

It is also interesting to note from (4.13) that

∂rSgen ∼ −
dit

r
∂tSgen . (4.15)

This is a nontrivial relation, which is true only because the t- and r-exponents in φ, ef are
related in a nontrivial manner. This also explains the last condition on t∗, r∗ in (4.14): if this
were violated, then the extremization could be violated particularly in ∂rSgen. Roughly this
is consistent with preserving the spacelike condition in some sense, in particular (4.12). We
will expand further on the relation (4.15) when we discuss more general cosmologies later.

In the form (4.13) for Sgen, it is clear that there is no Bekenstein bound violating
region since the Sbulk term is always subleading to the classical area term as long as φ is
not small. Thus the spatial extremization in r is expected to lead to φ → 0 or r∗ → ∞.
However it is instructive to note that the t-extremization can be written as

∂tφ

4G + c

6
di − 1
di

∂tφ

φ
= 0 . (4.16)

The fact that φ ∼ t
rdi

with the Big-Crunch singularity at t = 0 and noting that both terms
here contribute with the same sign implies that the only solution to extremization is at
r∗ → ∞ from the first term and t∗ → ∞ from the second. These automatically solve the
r-extremization as well, as long as t∗ . r∗ . Another way to see this condition arising is
to note that Sbulk positivity implies φ is not too small. To see this in more detail, let us
reinstate lengthscales back: these are the AdS scale R and the Kasner scale tK implicit in
the AdSD Kasner spacetime (2.9), although tK does not play a crucial role. This gives

Sbulk ∼ c log

 r2

ε1ε2

(t/tK)
di−1
di Rdi+1

rdi+1

 ∼ c log
(
φ
di−1
di

R2

ε1ε2

)
(4.17)

Thus Sbulk becomes negative as φ→ 0, strictly when φ becomes smaller than R2

ε1ε2
. From the

higher dimensional point of view, the area of the transverse space must become sufficiently
small in units of the AdS scale and the ultraviolet cutoff scales. It is simplest to interpret
this as a breakdown of these expressions in the near singularity region.
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It is also interesting to compare this analysis of the generalized entropy with the
classical area term extremization: we have

∂rφ = − t

rdi+1 = 0 , ∂tφ = 1
rdi

= 0 (4.18)

both of which are solved by r∗ →∞, as long as t∗ . r∗. This classical area term does not
force the extremal surface to be driven to t∗ →∞: in particular we see that t∗ = 0 also ap-
pears formally consistent with these classical extremization equations. However this entire
formulation is unreliable in the vicinity of t = 0. The situation is perhaps best appreciated
in light of the higher dimensional RT/HRT analysis earlier: from (3.8), (3.11), we see that

φ∗ = t∗

rdi∗
∼ 1
ldi
→ 0 (4.19)

in the IR limit l→∞ (see the discussion towards the end of section3) which is the regime
probed by the quantum extremal surface in this 2-dimensional analysis here. From the
higher dimensional perspective, the surface dips deep into the bulk so r∗ increases: but in
the semiclassical regime as we saw analysing (3.17), the dip in time is mild, with t∗ & t0.

Looking more closely, we see that what necessitates driving the quantum extremal
surface to t∗ → ∞ is the 1

t term in (4.11), (4.13). This stems from the power-law Big-
Crunch ef ∼ t# factor in (4.1) which gives a log t term. If there is no complete Big-Crunch
(for instance as in a bouncing cosmology1), such a term would perhaps not arise, allowing
finite t∗ values.

So far we have been discussing this taking the quantum extremal surface to be maxi-
mally spacelike separated from the observer so t = t0. This is consistent, as we have seen,
with the observer located far from the singularity since the QES is located far from the
singularity. Now going back to the more general case (4.11), it is instructive to note the
following. The first equation in (4.11) is satisfied for r = Rc ∼ ∞, regulating r∗ → ∞ to
r∗ ∼ Rc. Then the second equation can be approximated as

t− t0
R2
c

∼ di − 1
2di

1
t
⇒ t∗ ∼

t0 +
√
t20 + 4AR2

c

2 (4.20)

which shows t∗ ∼ Rc as the QES location in (4.11) regulated from infinity to Rc � 1. This
arises entirely from the c-dependent quantum (bulk) entanglement term.

Now consider the case where the observer is very close to the singularity, i.e. t0 ∼ 0:
this is a bad approximation and we expect a breakdown but it is instructive to analyse
this. Then (4.11) with t0 ∼ 0 become

c

6
r

r2 − t2
∼ φr

4G
di t

rdi+1 + c

12
di + 1
r

,
c

6
t

r2 − t2
∼ φr

4G
1
rdi

+ c

12
di − 1
di t

. (4.21)

1For instance a warp factor ef ∼ (t2 + δ)
di−1
2di exhibits a bounce at t = 0 without crunching to zero

entirely, δ being a regulator. However usually bounces of this kind require violating energy conditions or
other nonstandard physics. In any case with this form of ef it appears that t = 0 is also a solution to the
extremization: it would seem that this is very unreliable since we expect severe quantum gravity effects here.
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One might wonder if the QES lies in the vicinity of the singularity also, i.e. t = δ ∼ 0.
The first equation is satisfied if r∗ → ∞ but the second is not satisfied due to the last
term which diverges as δ → 0. This last term suggests that in fact the QES perhaps lies at
t∗ →∞ again. Rather than attempting to look for exact solutions, we will look for a scaling
solution: this will point to the QES again lying far from t = 0. Since ∆2 = r2 − t2 > 0,
consider a trajectory r = λt as an ansatz for identifying if the QES lies at infinity or at
zero (near the singularity): this is consistent since for both infinity and zero, the scaling
ansatz might be expected to confirm or rule out if the QES lies at zero, i.e. in the vicinity
of the singularity. This gives

c

12

( 2λ
λ2 − 1 −

di + 1
λ

) 1
t

= φr
4Gλdi+1

di
tdi

,
c

12

( 2
λ2 − 1 −

di − 1
di

) 1
t

= φr
4Gλdi

1
tdi

.

(4.22)
In general, the coefficients of the 1

t and 1
tdi

terms are different:2 so each term must vanish
independently: thus the only solution is t∗ →∞ and thereby r∗ →∞.

Thus this formulation of the generalized entropy appears to self-consistently exclude
the near singularity region. In a sense the fact that the quantum extremal surfaces are
driven far from the singular region is reassuring with regard to the Page curve findings [1–3]
which appear to not require any information from the near singularity region.

4.3 More general 2-dim cosmologies

We now make a few comments on the generalized entropy and quantum extremal surfaces
in more general 2-dim cosmologies with the general scaling form (2.5), defined by various t-
and r-exponents used in [25]. We will also assume for simplicity that the QES is maximally
spacelike separated from the observer, thus setting t = t0 in the general expression (4.1).
Finally since all these cosmologies have a boundary at r = 0 we will restrict attention to
such boundary observers. This gives

Sgen = φ

4G + c

12 log
(
r2 ef |(t,r)

)
= trm

4G + c

12 log
(
tarb+2

)
(4.23)

retaining only terms relevant for the extremization as before. From the various examples
in section 2, we know that m, b < 0: this is in accord with the transverse space, i.e. dilaton,
expanding towards the boundary r ∼ 0. Further we have also used the universality of the
time exponent of the dilaton. Firstly, this can be recast in the schematic form (4.13) only if
the argument of the logarithm is related to the dilaton exponents appropriately: this gives

Sgen ≡
φ

4G + c a

12 log φ ⇔ a = 2 + b

m
. (4.24)

2For instance, as we “dial” λ from λ� 1 to λ = 1 + ε, we have

c

12
1− di
λ

1
t
∼ φr

4Gλdi+1
di
tdi

,
c

12
1− di
di

1
t
∼ φr

4Gλdi

1
tdi

; c

12
1
ε

1
t
∼ φr

4G
di
tdi

,
c

12
1
ε

1
t
∼ φr

4G
1
tdi

,

vindicating the t∗ →∞ solution.
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It is interesting to note that this relates the t- and r-exponents which were otherwise
independent in general in [25]. Extremization of (4.23) gives

∂rSgen = mtrm−1

4G + c

12
2 + b

r
= 0 , ∂tSgen = rm

4G + c

12
a

t
= 0 , (4.25)

⇒ ∂rSgen ∼
mt

r
∂tSgen ⇔ a = 2 + b

m
. (4.26)

From the time extremization ∂tSgen = 0 and noting m < 0 we see that the solution to the
QES location is r∗ →∞, t∗ →∞, with t∗ . r∗. This structure is similar to (4.14) for the
2-dim cosmology obtained from the AdS Kasner reduction that we discussed earlier. Now
looking at just the classical area term, with a scaling form φ = tkrm, extremizing gives

∂rφ = mtkrm−1 = 0 , ∂tφ = ktk−1rm = 0 . (4.27)

Since the dilaton grows towards the boundary r → 0, we must have m < 0. Then for k > 0,
these equations are similar to (4.18), with both satisfied if r∗ →∞ as long as t∗ . r∗. With
the universality (2.7), taking k = 1 so φ = trm, a general bulk matter entropy Sbulk gives

Sgen = t rm

4G2
+ Sb ; ∂rSgen = mt rm−1

4G2
+ ∂rSb = 0 , ∂tSgen = rm

4G2
+ ∂tSb = 0 . (4.28)

For Sb being the ground state entanglement, we obtain (4.25), (4.26) above, for the
scaling form. More generally, a relation of the form (4.26) arises for Sgen if Sbulk satisfies
∂rSb = mt

r ∂tSb. For instance an extensive bulk entropy Sbulk of the form below gives

Sbulk = Λ r ef/2|(t,r) = Λ ta/2 r(2+b)/2 →

∂rSgen = mt rm−1

4G2
+ Λ ta/2 rb/2 = 0 , ∂tSgen = rm

4G2
+ Λ t(a−2)/2 r(2+b)/2 = 0 , (4.29)

thus satisfying the relation (4.26) if a = 2+b
m . In particular this is true for the AdS Kasner

reduction earlier. However this generalized entropy can be seen to vanish at the location
t = 0 of the singularity: it is unclear if this is reasonable. It would be interesting to explore
good models for near singularity physics and the resulting quantum extremal surfaces.

5 Discussion

We have studied aspects of entanglement and extremal surfaces in various families of space-
times exhibiting cosmological, Big-Crunch, singularities, in particular the isotropic AdS
Kasner spacetime. The classical RT/HRT extremal surface dips into the bulk radial and
time directions, with turning points (3.8), (3.11), satisfying l ∼ r∗ and φ∗ = A = t∗

r
di
∗
, for

AdSdi+2 Kasner. By analysing the time extremization equation in the reliable semiclassi-
cal region far from the singularity via (3.17), we have seen explicitly that the surface lies
mostly on a constant time slice and bends in the direction away from the singularity at
t = 0. At the turning point, the surface exhibits time-maximization. As we have seen, the
IR limit where A → 0 continues to exhibit such behaviour, but also shows indications of
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the analysis breaking down. In the 2-dim cosmologies obtained by dimensional reduction
of these and other singularities [25], we have studied quantum extremal surfaces. The
generalized entropy (4.1) comprises the classical area (dilaton) term and a bulk matter
entropy obtained by using the formulation of [1, 2] with the effects of the curved space
incorporated via the conformal transformation, taking the matter in the ground state in
flat space (in the region far from the singularity at t = 0). The resulting extremization
shows the quantum extremal surfaces exhibit a maximin structure: they are always driven
to the semiclassical region far from the singularity (e.g. (4.9), (4.13) for the isotropic AdS
Kasner reduction). Technically this follows from the Crunching term in the warp factor.
We do not find islands in this analysis: this appears consistent with previous investigations
on closed universes, and can be interpreted in terms of the Bekenstein bound not being
violated [13], so that there is no competition for the area (dilaton) term. It would be
interesting to consider extra regions elsewhere (e.g. flat space regions beyond the boundary
r = 0 or in the far past) that are entangled with these universes: these may exhibit islands.

In the discussion of quantum extremal surfaces, we have used 2-dim CFT techniques:
these are technically reasonable in the 2-dim theories assuming that the bulk matter is
described by a CFT. These 2-dim backgrounds are consistent intrinsically as solutions to
the 2-dim dilaton-gravity-scalar theories (2.2), so the formulation of generalized entropy
here is consistent in the semiclassical regime. These would seem to faithfully capture
qualitative features of quantum extremal surfaces in the higher dimensional cosmologies
that give rise to the 2-dim backgrounds upon dimensional reduction, at least considering
that the surfaces are driven to the semiclassical region. In some “effective holography”
sense, the 2-dim backgrounds faithfully reflect the higher dimensional description (see [32]
for more discussions in this regard). However it would seem that this would break down had
the vicinity of the singularity entered: happily the quantum extremal surfaces avoid this.

In a sense these are reminiscent of similar features noted in the study of the Hartman-
Maldacena extremal surfaces [45] in the AdS black hole where the extremal surface ap-
proached a limiting surface some distance from the singularity in the interior (similar lim-
iting surfaces were found in [46] in de Sitter: it would be interesting to understand quantum
extremal surfaces in that context); similar observations were noted also in the AdS Kasner
soliton [36], and other cases. We offer some comments and speculations on these results.
Perhaps the simplest understanding hinges on the fact that the near singularity region is
necessarily a place where quantum gravity effects are severe and the formulation of quantum
extremal surfaces, such as it is, is simply not adequate. A more detailed model of the near
singularity region incorporating perhaps “stringy entanglement” may be necessary. Our
studies here seem consistent with the recent excitement on black holes and the Page curve:
all the action there remained well separated from the near singularity region in the deep
interior of the black hole (this singularity is anisotropic Kasner). In a sense the study here
is reassuring since the quantum extremal surfaces self-consistently avoid the near singular-
ity region rife with quantum gravity effects, remaining in semiclassical regimes far away.
Turning this around, one might speculate if such Big-Crunch singularities are perhaps dis-
allowed in string theory and holography, based on the (naive) diagnostic that entanglement
via extremal surfaces is strictly incapable of probing the vicinity of such singularities. It
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is worth noting that the models we have studied pertain to AdS-cosmologies and related
backgrounds (the universality (2.7) found in [25] suggests that the singularity nature of all
such backgrounds is similar). These have a timelike boundary at r = 0 with a holographic
dual field theory interpretation: the extremal surfaces we have discussed thus encode entan-
glement observables in the dual field theories. It may be interesting to understand if more
general cosmologies without such holographic restrictions exhibit similar features. It is also
important to note that other holographic cosmologies may not exhibit this sort of repul-
sive behaviour: an example is anisotropic AdS Kasner with some directions expanding and
some Crunching, but this lies outside the reduction to the 2-dim space we have employed.

Relatedly it may also be worth noting that perhaps assuming that bulk matter is
in its ground state far from the singularity in our models is a nontrivial assumption:3
generic initial Cauchy data might be expected to lead to black hole formation rather than
a Big-Crunch singularity (further discussions appear in [25]). From this point of view, it
is perhaps not surprising that the generalized entropy incorporating ground state matter
entanglement leads to quantum extremal surfaces that avoid the singularity. Perhaps
a better model might incorporate more nontrivial initial conditions for the bulk matter
and the associated entropy would then naturally lead to a Big-Crunch singularity that is
accessible via entanglement. It would be interesting to explore these issues further.
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A Further details on t(r) for classical extremal surfaces

We shall describe some relevant details of the behaviour of the extremal surface in the higher
dimensional case. In the AdS5 case, the t(r) function, as a power series solution to (3.17), is

t(r) = t0 + 1
12t0

r2− 1
432t30

r4 + 1
7776t50

r6 + (−17+11664A2t40)
1866240t70

r8 + (247−400464A2t40)
335923200t90

r10

+(−1819+5110128A2t40)
28217548800t11

0
r12 + (21277−90004284A2t40 +5555329920A4t80)

3555411148800t13
0

r14

+(−373318170624A4t80 +2088752184A2t40−355981)
614375046512640t15

0
r16

3This is in certain cases consistent with a Euclidean continuation which might lead to a natural initial
state (although generic time-dependent spacetimes become complex). For instance de Sitter space ds2 =
R2

dS
τ2 (−dτ2 + dx2

i ) under the analytic continuation τ → ir, RdS → iRAdS becomes Euclidean AdS with
corresponding continuations for fields and their boundary conditions; see also e.g. [15, 47] in other contexts.
Then we see that (2.9) naively admits a similar Euclidean continuation t → iτ, tK → iτK , if we also
analytically continue the Kasner scale tK : equivalently, on the t = tK time slice sufficiently far from the
singularity, we could consider gluing e.g. a flat region, in part along the lines of [12], which appears consistent
with taking matter in the ground state. We hope to study this in greater detail in future work towards
understanding initial conditions for spacetimes developing such Big-Crunch singularities.
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+(257320977209856A4t80−740910019032A2t40 +96110087)
1658812625584128000t17

0
r18

+(707587260600729600A6t12
0 −35768655789931008A4t80 +63403487354664A2t40−6506954915)

1094816332885524480000t19
0

r20

+ . . . (A.1)

One can compute higher order coefficients iteratively using Mathematica.
We shall now describe how the different terms in the above series behave under the

scaling argument described after eq. (3.19). As AtK is t∗/r3
∗ and since t∗ ∼ t0 ⇒ A ∼ t0/r3

∗.
Using this scaling of A, we can see how different terms in the above equation scale.

For instance, the A dependent term at r8, after multiplying and dividing by r2
∗ and

pluggin in the above scaling for A, is A2

t30
r8 ∼ (r2

∗/t0)(r/r∗)8. Similarly the A4 term at
r14 is A4

t50
r14 ∼ (r2

∗/t0)(r/r∗)14. Whereas the A2 dependent terms at r10, r12 and r14 go as
A2

t50
r10 ∼ (r4

∗/t
3
0)(r/r∗)10, A2

t70
r12 ∼ (r6

∗/t
5
0)(r/r∗)12 and A2

t90
r14 ∼ (r8

∗/t
7
0)(r/r∗)14, respectively.

There are a few points which are noteworthy about these A dependent terms which
we describe below.

First and most importantly, this scaling argument shows that all the A dependent terms
are also suppressed as compared to the leading term in the series which is the first term.

The second point is that the terms at a particular order of r can be compared with
each other and the A dependent terms are the ones which dominate within these terms,
e.g, there are two terms at r8 which are r8

t70
∼ (r8

∗/t
7
0)(r/r∗)8 and A2

t30
r8 ∼ (r2

∗/t0)(r/r∗)8.
Since the former term has a higher power of t0 in the denominator and since, t0 � 1, the
latter term is dominant.

The final point is that at each order of 2di, a A2k term appears where k = 1, 2 . . ..
This can be seen in the above case of AdS5 where A2, A4, A6 etc. appear at r8, r14, r20,
respectively. Keeping the dominant terms amongst each power of r gives

t(r) = t0 + 1
12t0

r2 − 1
432t30

r4 + 1
7776t50

r6 + A2

160t30
r8 − 103A2

160 · 540t50
r10 + 3943A2

160 · 540 · 252t70
r12

+ A4

160 · 4t50
r14 − 7A4

160 · 72t70
r16 + 15011A4

160 · 540 · 1120t90
r18 + 91A6

160 · 880 t70
r20

+ 8453A6

22302720 t90
r22 + 493338049A6

3653185536000 t11
0
r24 + 19A8

56320t90
r26 + . . . (A.2)

However at r∗ various terms become subleading using A = t∗
r3
∗
: e.g. we see that the r10

∗ and
r12
∗ terms are suppressed by powers of t0 and thus subleading compared with the r8

∗ term,
all scaling as A2. Now the r14

∗ term has scaling t4∗
r12
∗

r14
∗
t50
∼ r2

∗
t0

which is the same as the r8

term: the higher terms e.g. r20
∗ also has the same scaling, and so on. Thus the above series

is further approximated as

t(r) = t0 + r2
∗
t0

( 1
12 + 1

160 + 1
160 · 4 + 91

160 · 880 + 19
160 · 352 + . . .

)
(A.3)

Thus we recover (3.20), i.e. t∗ > t0 when r∗ . t0.
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All the arguments above hold for AdS4 and AdS7 Kasner as well. For AdS4, we obtain

t(r) = t0 + 1
12t0

r2 − 1
480t30

r4 + (13 + 1920A2t20)
120960t50

r6

−(125 + 44928A2t20)
17418240t70

r8 + (10543 + 6641280A2t20 + 82944000A4t40)
19160064000t90

r10 + . . . (A.4)

and for AdS7

t(r) = t0 + 1
15t0

r2 + 1
600t30

r4 + 11
135000t30

r6 − 1
200000t70

r8 + 491
1417500000t90

r10

+(−52891 + 3543750000A2t80)
128595600000000t13

0
r14 + . . . (A.5)

B Some details on calculating Sbulk

Since any 2-dim metric is conformally flat, we have ds2 = ef (−dt2 +dr2). If we now assume
that the bulk matter can be modelled by a 2-dim CFT, we can obtain its entropy as in [2]
by modifying the Calabrese-Cardy result [39, 40], in particular taking the ground state
entanglement in flat space and incorporating the effects of the Weyl transformation ef .
The twist operator 2-point function scales under a conformal transformation as

〈σ(x1)σ(x2)〉efg = e−∆n f |x1 e
−∆n f |x2 〈σ(x1)σ(x2)〉g , ∆n = c

12
n2 − 1
n

. (B.1)

Since the partition function in the presence of twist operators scales as the twist operator
2-point function, the entanglement entropy becomes

S12
efg = − lim

n→1
∂n〈σ(x1)σ(x2)〉efg = S12

g −
c

6 log ef |x1 −
c

6 log ef |x2 (B.2)

For the interval taken with one endpoint at the boundary, we essentially have a single twist
operator and its 1-point function, using the boundary CFT prescription: this essentially
restricts to just the single boundary in the bulk, say x1, and effectively c → c

2 above. We
consider the interval (r, rc) ∼ (r, 0) with endpoints being the extremal surface at r and the
boundary rc ∼ 0, the whole space being the half-line (∞, 0). We construct the replica space
(with w ≡ τ + ix) for this situation by gluing the n-sheets along the cut defined by the
interval with twist operators at the single endpoint. To analyse the replica theory, we first
map the half-line to a disc |z| ≤ 1 via the uniformization map z = (w−ilw+il )1/n which maps
the boundary w = 0 to z = 1 and the endpoint at x = l (so w = ix = il) to z = 0. There
is a single twist operator at the endpoint x = l (unlike two for a single interval in the full
line). Taking the z-plane to be the SL(2) vacuum so 〈T (z)〉 = 0, we find the expectation
value of the stress tensor 〈T (w)〉Rn via the Schwarzian for the z(w) map above: this gives
〈T (w)〉Rn = c

24(1 − 1
n2 ) (2l)2

(w−il)2(w+il)2 . Using BCFT Ward identities etc, this is equivalent
to 〈T (w)σn(il)〉

〈σn(il)〉 with 〈σn(il)〉 = 1
(2l)c(n−1/n)/12 . Then the replica partition function transforms

as TrρnA ∼ 〈σn(il)〉 and SA = − limn→1 ∂nTrρ
n
A = c

6 log 2l
ε . Roughly this is like half the

area (one endpoint rather than two for an interval in the full line space). So the expression
in (4.1) is written for the 2-dim space with the boundary at r = rc and the QES at (t, r).
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Since the conformal factor has nontrivial time-dependence, the conformal transforma-
tion above is nontrivial. In writing (4.1), we are making the nontrivial assumption that this
formulation can be applied: this appears reasonable in the semiclassical region far from
the singularity. However the presence of the Big-Crunch at t = 0 as ef → 0 is expected to
lead to a breakdown of this formulation, as we have stated in the text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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