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Abstract We consider a cosmological model with two

scalar fields minimally coupled to gravity which have a mixed

kinetic term. Hence, Chiral cosmology is included in our

analysis. The coupling function and the potential function,

which depend on one of the fields, characterize the model we

study. We prove the existence of exact solutions that are of

special interest for the cosmological evolution. Furthermore,

we provide with a methodology that relates the scale factor

behaviour to the free functions characterizing the scalar field

kinetic term coupling and potential. We derive the necessary

conditions that connect these two functions so that the rel-

ative cosmological solutions can be admitted. We find that

unified dark matter and dark energy solutions are allowed by

the theory in various scenarios involving the aforementioned

functions.

1 Introduction

From the detailed analysis of the recent cosmological data

[1–3] it has been made clear the necessity for the introduction

of an exotic fluid term with negative pressure in Einstein’s

General Relativity. The role of this exotic matter source is

to explain the acceleration phases of the universe. So far its

nature is unknown and it has only been observed indirectly; it

is thus referred in the literature as dark energy. The contribu-

tion of the dark energy in the observable universe is approx-

imately ∼ 70% while the rest ∼ 30% corresponds mostly

to dark matter (with a smaller contribution by baryonic mat-

ter and radiation). Dark matter is a pressureless fluid source

(dust) that also has not been observed directly and which was

introduced in order to explain the observed rotation curves

of the galaxies.
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Although the cosmological constant is the most simple

dark energy candidate, �-cosmology suffers by two major

drawbacks: (a) fine tuning and (b) the coincidence problem

[4,5]. A quite wide-known alternative approach on the cos-

mological constant is scalar field cosmology [6]. Scalar fields

can be introduced either minimally or nonminimally coupled

to gravity. In what regards the minimally coupled case, the

general solution for an arbitrary potential function has been

obtained for all types of Friedmann–Lemaître–Robertson–

Walker (FLRW) spacetimes: open, closed and spatially flat

[7]. Scalar fields can also be used to incorporate – in an equiv-

alent picture – the new degrees of freedom provided by the

higher-order derivatives in extended theories of gravity [8–

13]. Apart from the application of scalar fields in order to

account for the late-time acceleration of the universe, they

have been additionally used as unified dark energy models

[14–24].

With the term scalar field cosmology usually someone

refers to quintessence theories. However, there are many

alternatives like, phantom fields, Hordenski gravity [10],

or even multi-scalar field models. The latter have a broad

range of applications as they can provide alternative mod-

els of inflation, namely: hybrid inflation, α−attractors, dou-

ble inflation and many others [25–36]. Quintom scalar field

models consist of two scalar fields, a quintessence field and

a phantom field, for a review we refer the reader in [37].

The main characteristic of the quintom models is that in gen-

eral the two scalar fields are minimally coupled and only a

few models have been proposed where an interaction term

between the two fields is introduced in the potential [37].

While a quintom model with a mixed-kinetic term has been

introduced before [38], due to the fact that the geometry of

the space where the kinetic terms of the scalar field form is

flat there can always be defined new scalar fields so as to

neglect the mixed kinetic term.

Multi-scalar field models where interaction exists in the

kinetic term of the Lagrangian is where this work focuses. A
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specific family of these models, where the two scalar fields

defined into a two-dimensional space of constant nonvanish-

ing curvature, are the Chiral cosmological models [33,39,40]

which are directly related with the non-linear sigma cosmo-

logical model [41–43]. In this work we consider two-scalar

field cosmological model where the one field is quintessence

and the second field interact with the quintessence only in the

kinetic term. The model consists of two unknown functions,

the potential which drives the dynamics of the quintessence

and the interaction between the fields. For this cosmologi-

cal model we prove the existence of particular solutions of

great interest and determine the conditions that they impose

in the functions characterizing the theory. Among the solu-

tions we study are: scaling solutions, de Sitter solutions and

that of asymptotic de Sitter spacetimes with or without cos-

mological singularity. The last cosmological scenario is very

interesting since �CDM cosmology is recovered. What is

more, the determination of exact or analytical solutions is

important because the main properties of a given model can

be determined without suffering from the problem of select-

ing the initial conditions. Moreover, when we use numerical

methods to solve a given dynamical system, we know that the

numerical simulations describe real trajectories of the prob-

lem. Some results with exact and analytic solutions in multi

scalar field cosmology are given in [39,40,44–57].

In this work we study a two scalar field cosmological sys-

tem. We are mainly interested in presenting a method for

providing exact solutions together with the class of theories

to which they correspond. This is realized by deciding on a

specific scale factor behaviour and then providing algorith-

mically the relation between the theory’s free functions that

permit such a solution. Thus, we are able to derive – within

the type of model we study – which specific relation between

the kinetic coupling and the scalar field potential allows for

certain interesting cosmological solutions.

The outline of the paper is as follows: In Sect. 2 we briefly

present the cosmological model that we consider and derive

the gravitational field equations in the case of a spatially flat

FLRW spacetime. In Sect. 3 we prove the existence, under

conditions, of four important families of scale factor solution

of cosmological interest. More specifically, we determine

solutions for scaling solutions, de Sitter solution, asymp-

totically de Sitter spacetimes and exponentials of arbitrary

powers of time. There exists a case where the scalar field

potential and the interaction function are exponential with

different exponents, where the scalar factor is given by a

power-law function in which the acceleration of the universe

can be described, including the inflationary era. For that spe-

cific cosmological model in Sect. 4 we perform a detailed

analysis on the dynamics of field equations by studying the

existence and the stability of critical points. Finally, in Sect.

5 we discuss our results and draw our conclusions.

2 Field equations

Let us consider the action integral

S =
∫

d4x
√

−gL
(

R
(

xμ
)

, φ
(

xμ
)

, ψ
(

xμ
)

,

×∇νφ
(

xμ
)

,∇νψ
(

xμ
))

(2.1)

characterized by the Lagrangian density

L =
1

2
R −

1

2
∇μφ∇μφ −

F(φ)

2
∇μψ∇μψ − V (φ), (2.2)

where we have adopted the geometric units 8πG = c = 1.

As usual, g is used to symbolize the determinant of the space-

time metric, while R is reserved for the scalar curvature.

From (2.2) it is obvious that we consider two scalar fields

φ (xμ) and ψ (xμ) as the matter content of the theory. At the

same time we assume an interacting function F
(

φ
(

xk
))

and

a potential V (φ (xμ)) that depend solely on the scalar field

φ (xμ).

The field equations produced in this setting, by variation

with respect to the metric gμν (xμ) and the scalars φ (xμ),

ψ (xμ) are respectively:

Rμν −
1

2
gμν R = Tμν (2.3a)

∇μ∇μφ − V ′(φ) −
1

2
F ′(φ)∇μψ∇μψ = 0 (2.3b)

∇μ

(

F(φ)∇μψ
)

= 0, (2.3c)

where Rμν is the Ricci tensor and the prime denotes a deriva-

tive with respect to φ. The energy momentum tensor that

appears in (2.3a) is given by

Tμν = ∇μφ∇νφ −
1

2

(

∇κφ∇κφ
)

gμν − V (φ)

+F(φ)∇μψ∇νψ −
F(φ)

2

(

∇κψ∇κψ
)

gμν . (2.4)

Due to the fact that we choose the functions F (φ (xμ)),

V (φ (xμ)) to depend only on φ (xμ), the action (2.1) is

bound to remain form invariant under the global transfor-

mation ψ (xμ) �→ ψ (xμ) + ε, in which ε is a constant. The

corresponding conservation law is already obvious from the

equation of motion (2.3) which implies

∂μ

[√
−gF(φ)∇μψ

]

= 0, (2.5)

where the term inside the bracket is the Noether current cor-

responding to the aforementioned symmetry transformation.

We consider a spatially flat FLRW spacetime with line

element

ds2 = gμνdxμdxν = −N 2(t)dt2 + a(t)2

×
(

dr2 + r2dθ2 + r2 sin2 θdϕ2
)

, (2.6)
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where a (t) is the scale factor of the universe and N (t) is

the lapse function. For the scalar fields we assume that they

inherit the symmetries of the spacetime which means φ =
φ(t) and ψ = ψ(t). Under this assumption the gravitational

plus matter field equations reduce to the following set of

ordinary differential equations

1

2N 2

[

F(φ)ψ̇2 + φ̇2 −
6ȧ2

a2

]

+ V (φ) = 0 (2.7a)

1

2N 2

[

−
4ä

a
+

4ȧ Ṅ

aN
−

2ȧ2

a2
− F(φ)ψ̇2 − φ̇2

]

+ V (φ) = 0

(2.7b)

1

2N 2

[

2φ̈ +
6ȧφ̇

a
− F ′(φ)ψ̇2 −

2Ṅ φ̇

N

]

+ V ′(φ) = 0

(2.7c)

d

dt

(

a3 F(φ)ψ̇

N

)

= 0, (2.7d)

where the dot signifies derivative with respect to the param-

eter t .

From the last equation the corresponding conserved quan-

tity of the reduced system becomes apparent since it implies

Q :=
a3 F(φ)ψ̇

N
= c1, (2.8)

with c1 being a constant of integration.

It is interesting to note that the same situation can be

reproduced in the context of a minisuperspace approxima-

tion through the Lagrangian function

L = −
1

2N

(

6aȧ2 − a3φ̇2 − a3 F(φ)ψ̇2
)

− Na3V (φ),

(2.9)

whose Euler-Lagrange equations are equivalent to (2.7) and

of course its symmetries lead to the same conserved charge

Q = ∂L

∂ψ̇
.

We now proceed with our analysis by investigating the

conditions under which certain interesting gravitational solu-

tions may emerge. In what follows we adopt the gauge choice

N = 1 so that the results are expressed directly in a cosmo-

logical time.

3 Exact solutions

The gravitational field equations form a constraint system of

nonlinear second-order differential equations for the three

dependent variables {a (t) , φ (t) , ψ (t)}. There are many

alternative ways to study the dynamics and the evolution

of the field equations. In this work we are interested in the

existence of exact solutions. More specifically, we assume

that the physical space is specified by particular functional

forms for the scalar factor a (t) which describe various eras

in the evolution of the universe. Such an analysis is important

because it provides information for the existence of various

cosmological eras for the specific cosmological model. In

addition to this, the cosmological validity of each model can

be studied directly from such an analysis.

From the conserved quantity (2.8) we easily deduce that

ψ̇ =
c1

a3 F(φ)
. (3.1)

By adding (2.7a) and (2.7b) the relation

V (φ) =
ä

a
+

2ȧ2

a2
(3.2)

is obtained (recall that we have set N = 1). At this point

we have acquired the potential V (φ) as a pure function of t .

We continue our analysis by considering several interesting

situations regarding the scale factor.

3.1 Power law solutions

In this case we are interesting in studying the conditions that

a solution of the form

a(t) = tσ , σ ∈ R, (3.3)

can set over the theory. The power-law solution (3.3) is impor-

tant, because it can describe the matter dominated era solu-

tion
(

σ = 2
3

)

, the radiation era solution
(

σ = 1
2

)

, or the early

accelerated phase of the universe when σ > 1.

For this choice of scale factor the space-time exhibits a

curvature singularity at t = 0 for any value of σ . With the

help of (3.3) relation (3.2) results in

V (φ) =
σ(3σ − 1)

t2
. (3.4)

This leads us to consider two distinct situations depending

on the value of σ .

3.1.1 Case σ 	= 1
3

We start by considering that the potential V (φ) cannot be

zero, which according to (3.4) corresponds to σ 	= 1
3
. By

inverting Eq. (3.4) we obtain t as a function of φ, i.e.

t = ±
√

σ
√

3σ − 1
√

V (φ)
. (3.5)
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If we additionally take the derivative of (3.4) with respect to

time, the relation

V ′(φ)φ̇ =
2(1 − 3σ)σ

t3
⇒ φ̇ =

2σ(1 − 3σ)

t3V ′(φ)
, (3.6)

emerges. Direct substitution of (3.1), (3.5) and (3.6) into the

constraint Eq. (2.7a) leads to the expression

F(φ) = c2
1σ

1−3σ (3σ − 1)1−3σ V (φ)3σ−1V ′(φ)2

2(σ V ′(φ)2 − 2V (φ)2)
,

(3.7)

which involves only the two functions of φ. This is how

F (φ) and V (φ) have to be related for a power law solution

of the form (3.3) with σ 	= 1
3

to be admitted by the system.

Any choice for the potential V (φ) leads to the corresponding

expression of the coupling F(φ) needed for such a solution.

Let us proceed with the study of two particular examples.

a. Example 1: Power law potential.

Let us set V (φ) = V0φ
κ , with V0 and κ constants. Then,

(3.7) implies

F(φ) = F0
φκ(3σ−1)

2(κ2σ − 2φ2)
, (3.8)

where with F0 we re-parametrized the constant of integra-

tion c1 corresponding to the conserved charge Q. The two

constants are related through the expression

c1 =
√

F0κ
−1σ

1
2 (3σ−1)(3σ − 1)

1
2 (3σ−1)V

1
2 (1−3σ)

0 . (3.9)

By setting (3.1), (3.3), (3.8) and V (φ) = V0φ
κ into the con-

straint Eq. (2.7a) we can solve the latter with respect to φ̇. In

particular, we obtain:

φ̇ = ±
[

2σ 3σ−1(3σ − 1)3σ−1V 1−3σ
0

κ2
t−6σ φκ(1−3σ)

(

2φ2 − κ2σ

)

+
6σ 2

t2
− 2V0φ

κ

]
1
2

.

(3.10)

Substitution of the φ̇ we derived and of all the rest of the

previous mentioned expressions into Eq. (2.7b) leads to an

algebraic solution for the scalar field φ:

φ(t) =
(

σ(3σ − 1)

V0

)
1
κ

t−
2
κ . (3.11)

Consequently, the scalar field ψ can be easily obtained now

from (3.1) with a simple integration. The solution reads:

ψ(t) = ψ0 + 2σ− 3σ
2 (3σ − 1)

1
2 − 3σ

2 V
− −3κσ+κ+4

2κ

0 t3σ−1

×
(

2(3σ − 1)2/κσ
2
κ
+ 1

2 t−4/κ

κ(1 − 3σ) + 4
+

κσ 3/2V
2/κ

0

3σ − 1

)

F
− 1

2

0 ,

(3.12)

where ψ0 is a constant of integration. One can easily verify

that the φ(t) and ψ(t) as given by (3.11) and (3.12), together

with the scale factor (3.3) satisfy the field Eq. (2.7) for the

power law potential under consideration and the coupling

function (3.8). We have thus obtained the solution for the

theory, which admits a power law solution for the scale factor

and for a power law potential V with respect to φ.

b. Example 2: Exponential potential.

We repeat the same procedure only this time we use a

potential of the form V (φ) = V0eλφ with λ a constant. The

compatible (for a power law a(t)) coupling function F(φ)

now becomes

F(φ) = F0eλ(3σ−1)φ, (3.13)

where F0 is connected to the c1 that we saw previously

through

c1 =
√

2
√

F0λ
−1σ

3σ
2 − 1

2 (3σ − 1)
3σ
2 − 1

2

√

λ2σ − 2V
1
2 − 3σ

2

0 .

(3.14)

We notice that unlike the power law potential case, here,

an exponential potential needs also an exponential cou-

pling function to produce a scale factor of the form (3.3).

As previously done, we substitute (3.1), (3.3), (3.13) and

V (φ) = V0eλφ into the constraint Eq. (2.7a). From the latter

we obtain the expression for φ̇. Subsequently, we substitute

the latter into Eq. (2.7b) and we get an algebraic solution for

φ(t) which this time reads

φ(t) =
1

λ
ln

(

σ(3σ − 1)

t2V0

)

. (3.15)

The direct integration of (3.1) leads to

ψ(t) = ψ0

+
σ

1
2 − 3σ

2 (3σ − 1)−
3σ
2 − 1

2

√
2λ2σ − 4V

3σ
2 − 1

2

0√
F0λ

t3σ−1.

(3.16)

Again, it is easy to check that the above expressions satisfy

the field equations for the choice of potential and the corre-

sponding coupling function (3.13). After these two examples
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we can proceed with the case that we excluded from the power

law solution of the scale factor.

3.1.2 Case σ = 1
3

This means that a(t) = t
1
3 , which corresponds to a potential

V (φ) = 0. The function F(φ) remains arbitrary with the

solution being described by the equations

ψ̇ =
c1

t F(φ)
(3.17)

φ̇ = ±
1

t

(

2

3
−

c2
1

F(φ)

)
1
2

. (3.18)

The latter set implies that the following relation exists

between the two scalar fields

ψ(φ) = ψ0 ±
∫

√
3c1

√
F(φ)

√

2F(φ) − 3c2
1

dφ, (3.19)

with ψ0 being a constant. The function F(φ) can be chosen

arbitrary and the solution can be obtained through a simple

integration since (3.17) yields

t = exp

⎛

⎝±
∫

(

2

3
−

c2
1

F(φ)

)− 1
2

dφ

⎞

⎠ . (3.20)

3.2 De Sitter universe

In this case we introduce a scale factor of the form a(t) = eλt ,

where λ is a constant. Later in our analysis we shall treat

the more general case a(t) = eλtμ , but here we want to

distinguish the particular solution corresponding to μ = 1

due to its importance in cosmology. The choice a(t) = eλt

for the scale factor leads (3.2) to become

V (φ) = 3λ2, (3.21)

Hence, the potential plays the role of a pure cosmological

constant.

The constraint equation with the use of (3.1), which now

reads

ψ̇ =
c1e−3λt

F(φ)
(3.22)

yields

φ̇ = ±
c1e−3λt

√
−F(φ)

(3.23)

where F(φ) can be any arbitrary function of φ. As in the

special case of the previous section, we can deduce a relation

between ψ and φ since

ψ̇

φ̇
= ±

1
√

−F(φ)
⇒ ψ = ψ0 ±

∫

1
√

−F(φ)
dφ. (3.24)

Equation (3.23) can serve to obtain t as a function of φ and

it results in

t =
1

3λ
ln

(

∓c1

3λ
∫√

−F(φ) dφ

)

. (3.25)

We notice that the previous expressions for ψ̇ and φ̇ from

(3.23) and (3.22) are such so that the sum of the kinetic terms

corresponding to the matter content of the Lagrangian (2.9)

is zero, i.e.

a3 F(φ)ψ̇2

2N
+

a3φ̇2

2N
=

1

2
e3λt
(

F(φ)ψ̇2 + φ̇2
)

= 0. (3.26)

Thus, it is necessary for one of the kinetic terms to change its

sign. This was expected from the moment that we noticed that

the choice a(t) = eλt led to a potential that is a constant. We

already know that such a space-time is a pure cosmological

constant solution, hence any other contributions should in

principle cancel each other in the Lagrangian. The only other

possibility in the theory under consideration would the trivial

solution of φ and ψ being constants.

In the particular case where F(φ) =const. We have the

typical quintessense – phantom pair that is usually encoun-

tered in quintom scenarios. In their generality quintom cos-

mological models are constructed so that the boundary w =
−1 is crossed [58,59], where w is the usual equation of state

parameter. In this paradigm we are trivially on this bound-

ary with the kinetic energies being cancelling each other for

every t .

3.3 Asymptotically de Sitter space-time

In this section we examine a couple of cases where the space-

time can be considered as being asymptotically de Sitter in

the sense that, locally, the metric becomes that of a positive

cosmological constant solution in the limit t → ±∞.

3.3.1 Space-time without singularity

We adopt for the scale factor the choice a(t) = (cosh(t))α .

The resulting spacetime has its curvature scalars regular both

at t → 0 and t → ±∞. We can distinguish two cases

depending on whether the constant α takes the value 1
3

or

not. We start from the generic case, so we assume a 	= 1
3

.
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Under this assumption (3.2) becomes

V (φ) = α + α(3α − 1) tanh2(t), (3.27)

which can be inverted to

t = ±arctanh

(
√

V (φ) − α
√

α(3α − 1)

)

. (3.28)

For large values of t , the potential (3.27) becomes V (φ) ≃
3α2 from where the de Sitter solution a (t) ≃ eαt is recov-

ered.

If we take the total derivative with respect to time, equation

(3.27) leads to

φ̇ =
2α(3α − 1) tanh(t)

cosh(t)2V ′(φ)
. (3.29)

Substitution of (3.28), (3.29) and (3.1) into the constraint Eq.

(2.7a) provides us with a relation between the two functions

of φ

F(φ) =
c2

1α
1−3α(1 − 3α)1−3α

(

V (φ) − 3α2
)3α−1

V ′(φ)2

2
(

6α3 − αV ′(φ)2 − 2(3α + 1)αV (φ) + 2V (φ)2
) .

(3.30)

For completeness, we need to also consider the case

α = 1
3
. When this value for the power of cosh(t) is adopted,

relation (3.2) results in a constant potential V (φ) = 1
3
. The

constraint Eq. (2.7a) and the first integral Q yield:

ψ̇ =
c1

F(φ) cosh(t)
(3.31)

φ̇ = ±
1

cosh(t)

√

−
c2

1

F(φ)
−

2

3
. (3.32)

From the above we extract easily the relation

ψ̇

φ̇
= ±

c1
√

− 1
3

F(φ)
(

3c2
1 + 2F(φ)

)

⇒ ψ

= ψ0 ±
∫

c1
√

− 1
3

F(φ)
(

3c2
1 + 2F(φ)

)

dφ. (3.33)

What is more, Eq. (3.31) is separable and we can easily derive

t in terms of φ for any (admissible) function F(φ),

t = 2 tanh−1

⎡

⎢

⎢

⎣

tan

⎛

⎜

⎜

⎝

±
1

2

∫

1
√

− c2
1

F(φ)
− 2

3

dφ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

. (3.34)

3.3.2 Space-time with a curvature singularity

If we consider a scale factor of the form a(t) = (sinh(t))α

we obtain a space-time that possesses a curvature singularity

at t → 0, as is evident by the Ricci scalar that reads

R =
6α(α + α cosh(2t) − 1)

sinh2(t)
. (3.35)

Once more we have to distinguish cases depending on the

parameter α. We start by considering α 	= 1
3
. The same anal-

ysis that we followed previously results in the potential

V (φ) = α + α(3α − 1) coth2(t), (3.36)

which in its turn leads to

t = ±arccoth

(
√

V (φ) − α
√

α(3α − 1)

)

. (3.37)

and

φ̇ =
2α(1 − 3α) coth(t)

sinh(t)2V ′(φ)
. (3.38)

With the help of the above the constraint Eq. (2.7a) gives

rise to

F(φ) = −
c2

1α1−3α(3α − 1)1−3α
(

V (φ) − 3α2
)3α−1

V ′(φ)2

2
(

6α3 − αV ′(φ)2 − 2(3α + 1)αV (φ) + 2V (φ)2
) ,

(3.39)

which for integer values of α can be either equal to (3.30) or

opposite of it. In particular, if α is an odd number (3.39) is the

opposite of (3.30). On the other hand, if it is even, then the

two expressions yield the same result. An interesting value

for the parameter α is that of α = 2
3

, where the model mimics

the �-cosmology.

Finally, we conclude this section by considering the α = 1
3

case. Once more the potential assumes the constant value

V (φ) = 1
3

, while for the two scalar fields we have

ψ̇ =
c1

F(φ) sinh(t)
(3.40)

φ̇ = ±
1

sinh(t)

√

2

3
−

c2
1

F(φ)
. (3.41)

By combining the last two relations we get

ψ̇

φ̇
= ±

√

3c2
1

F(φ)
(

2F(φ) − 3c2
1

) ⇒ ψ

= ψ0 ±
∫

√

3c2
1

F(φ)
(

2F(φ) − 3c2
1

)dφ, (3.42)
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while (3.41) implies

t = 2 tanh−1

⎡

⎢

⎢

⎣

exp

⎛

⎜

⎜

⎝

±
∫

1
√

2
3

− c2
1

F(φ)

dφ

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(3.43)

3.4 The a(t) = eλtμ case

In this section we examine the effect of a scale factor of the

form a(t) = eλtμ with μ 	= 1 (remember that the μ = 1

case was studied separately in Sect. 3.2). For λ < 0 the

scale factor can be said that follows a generalized normal

distribution (the particular constant factor needed to multiply

the exponent can be provided by scaling appropriately the

spatial distance r in the metric). With this specific example

we want to demonstrate that the method we propose can

lead to analytic solution even under the assumption of more

complicated scale factors. In what regards the singularities of

the space-time, it can be observed from the scalar curvature

R = 6λμtμ−2
(

μ − 1 + 2λμtμ
)

, (3.44)

that the latter diverges at t → ∞ when μ > 1 and at t = 0

when μ ∈ (−∞, 2) − {1}. With this choice of a scale factor

equation (3.2) is written as

3λ2μ2

V (φ)
t2μ +

λ(μ − 1)μ

V (φ)
tμ = t2. (3.45)

We need to distinguish two cases depending on whether μ =
2 or not, something that is going to become obvious in the

subsequent analysis.

3.4.1 Case μ 	= 1, 2

In this setting it is interesting to observe that the above equa-

tion can be solved algebraically with respect to t even for

an arbitrary power μ. The solution can be given in terms of

nested radicals in a manner similar that the solution of the

more general equation of the form [60]

αt2μ + βtμ + γ = tν .

In our case we have ν = 2 and γ = 0. This value for γ

leads us to a small modification of the process of deriving

the solution in comparison to what is presented in [60]. We

first notice that (3.45) can be written as

tμ = −
μ − 1

3λμ
+

V (φ)

3λ2μ2
t2−μ ⇒

t = μ

√

−
μ − 1

3λμ
+

V (φ)

3λ2μ2
t2−μ. (3.46)

We raise this last relation to the power 2−μ (we remind that

we assume μ 	= 2) and we obtain

t2−μ = μ/(2−μ)

√

−
μ − 1

3λμ
+

V (φ)

3λ2μ2
t2−μ. (3.47)

This means that the t in (3.46) may now be given in terms of an

infinite number of radicals through successive substitutions

of (3.47). In particular we get:

t =
μ

√

√

√

√

√−
μ − 1

3λμ
+

V (φ)

3λ2μ2

μ/(2−μ)

√

√

√

√−
μ − 1

3λμ
+

V (φ)

3λ2μ2

μ/(2−μ)

√

−
μ − 1

3λμ
+

V (φ)

3λ2μ2
. . .. (3.48)

By obtaining the expression for φ̇ from the time derivative

of (3.45) and by using Eq. (3.1) into the constraint (2.7a) we

are led to

F(φ) = −
c2

1e−6λt2
V ′(φ)2

λ2(μ − 1)2μ2t2(μ−3) (6λμtμ + μ − 2)2 +
(

2V (φ) − 24λ2t2
)

V ′(φ)2
, (3.49)

where t is understood to be given in terms of V (φ) from

(3.48). So F(φ) and V (φ) need to also be related with an

expression involving nested radicals in order to acquire a

solution of the form a(t) = eλtμ with μ 	= 2. We now pro-

ceed to complete this section with the study of the system

when μ = 2.

3.4.2 The μ = 2 case

This situation corresponds to a normal distribution scale fac-

tor whenever λ < 0. However, in what follows we make no

particular assumption over the sign of λ. By setting μ = 2
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Table 1 Relation between

functions F(φ) and V (φ) for

specific functional forms of the

scale factor a(t)

a(t) F − V relation F arbitrary

tσ Equation (3.7) if σ 	= 1
3

V (φ) = 0 if σ = 1
3

coshα(t) Equation (3.30) if α 	= 1
3

V (φ) = 1
3

if α = 1
3

sinhα(t) Equation (3.39) if α 	= 1
3

V (φ) = 1
3

if α = 1
3

eλtμ (3.49) if μ 	= 1, 2 or (3.52) if μ = 2 V (φ) = 3λ2 if μ = 1

in (3.45) we immediately see that it results in

t = ±
√

V (φ) − 2λ

2
√

3λ
. (3.50)

At the same time from its time derivative we get

φ̇ =
24λ2t

V ′(φ)
. (3.51)

By following the exact same procedure as in the previous

cases, the above relations help us arrive at

F(φ) =
c2

1e1− V (φ)
2λ V ′2(φ)

96λ3 − 4λV ′2 − 48λ2V (φ)
. (3.52)

We study a quick example that demonstrates the application

of relation (3.52).

a. Example: power Law potential.

We choose to set V (φ) = V0φ
κ+�, where � is a constant.

According to (3.52) the compatible F(φ) function, for the

scale factor we want, is

F(φ) =
c2

1κ
2V 2

0 e1− �+V0φκ

2λ φ2(κ−1)

96λ3 − 4κ2λV 2
0 φ2(κ−1) − 48λ2 (� + V0φκ)

.

(3.53)

As in the process of deriving the solutions in the previous

examples, we need to use (3.1) and (3.53) into the constraint

equation and solve algebraically with respect to φ̇. Substitu-

tion of this result into Eq. (2.7b) for the given form of the

potential V (φ) brings about the solution

φ(t) =
(

2λ − � + 12λ2t2

V0

)1/κ

. (3.54)

The above result leads (3.1) to yield

ψ(t) = ψ0 −
∫

4λe3λt2

c1

[

144λ3t2V
−2/κ

0

κ2

×
(

2λ

(

6λt2 + 1
)

− �

)
2
κ
−2

+ 1

]

dt. (3.55)

Thus, we derived the solution that allows for a(t) = eλt2

when a power law potential is present.

We summarise all the results obtained in this section,

involving the effect that the various scale factors have in the

relation between F(φ) and V (φ), in Table 1.

4 Stability of the scaling solutions for the exponential

potential

We now proceed by studying the stability of the scaling solu-

tions in the case where V (φ) and F (φ) are exponential

functions, i.e. V (φ) = V0eλφ and F (φ) = F0eμφ . In this

consideration the scalar field theory is reduced to the Chiral

cosmology.

We introduce the new dimensionless variables [61] (where

for the lapse function we assume N = 1).

x =
φ̇

√
6H

, y =
√

V (φ)
√

3H
, z =

√
F (φ)ψ̇
√

6H
, (4.1)

where H = ȧ
a

. The field equations are written as the follow-

ing system

x2 + y2 + z2 − 1 = 0, (4.2)

dx

dτ
=

3

2
x
(

x2 + z2 − y2 − 1
)

+
√

6

2

(

μz2 − λy2
)

, (4.3)

dy

dτ
=

3

2
y
(

x2 + z2 − y2 + 1
)

+
√

6

2
xyλ, (4.4)

dz

dτ
=

3

2
z
(

x2 + z2 − y2 − 1
)

−
√

6

2
xzμ. (4.5)

in which the new independent variable τ is defined as τ =
ln (a (t)).

From (4.2) it is clear that the variables {x, y, z} evolve

on a three-dimensional sphere with y ≥ 0. Moreover, every

critical point of the latter system corresponds to a phase where

the scale factor a (t) is given by the expressions a (t) =
t

2
3(1+wtot ) when wtot 	= −1 or a (t) = eH0t when wtot =

−1 in which wtot is the equation of state parameter for the

effective fluid defined as

wtot (x, y, z) = x2 + z2 − y2. (4.6)
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The critical points of the system (4.2)–(4.5) are deter-

mined to be

P
(±)
A = (±1, 0, 0) , PB =

(

−
λ

√
6
,

√
6 − λ2

6
, 0

)

, (4.7)

P
(±)
C =

(

−
√

6

λ + μ
,

√

μ

λ + μ
,±
√

λ2 + λμ − 6

λ + μ

)

. (4.8)

Points P
(±)
A and PB correspond to the scaling solution

where the field ψ does not contribute to the evolution of the

universe. Points P
(±)
A and PB are defined in the surface z = 0

and are given in [61]. Points P
(±)
C are the new points that

emerge from our analysis. We continue with the discussion of

the physical quantities of the critical points as also with their

stability. In order to study the latter, we reduce the dynamical

system into a two-dimensional system given by the equations

(4.3) and (4.4), where from (4.2) it follows z2 = 1− x2 − y2.

As far as the points P
(±)
A are concerned, the universe is

dominated by the kinetic term of the scalar field φ, i.e. wtot =
1. The eigenvalues of the linearized system are determined

to be

e1

(

P
(±)
A

)

= 3, e2

(

P
(±)
A

)

= 3 ±
√

6

2
λ (4.9)

from where we infer that the points are always unstable

because e1

(

P
(±)
A

)

is always positive.

Point PB exists only when λ2 < 6 and describes a scal-

ing solution where wtot = −1 + λ2

3
. The eigenvalue of the

linearized system are determined to be

e1 (PB) = −3 + λ2, e2 (PB) = −3 +
λ2

2
, (4.10)

from where we conclude that the solution at point PB is stable

when λ2 < 3. The universe is accelerated when λ2 < 2.

In what regards the new points PC , attained from our

analysis, they describe a scaling solution with wtot =
−1 + 2λ

λ+μ
which corresponds to an accelerated universe

when
{

μ < 0,
μ
2

< λ < |μ|
}

or
{

μ > 0, − μ < λ <
μ
2

}

.

This is the solution we previously derived. It is impor-

tant to mention that the points exist when λ 	= −μ and
{

μ < 0, λ ≤ −
√

6
}

and
{

−
√

6 < λ < 0, μ < 6−λ2

λ

}

from

where we infer that wtot < − 1
3

when
{

λ ≤ −
√

3, μ < λ

}

or
{

−
√

3 < λ < 0, μ < 6−λ2

λ

}

. As far as the stability is

concerned, because of the nonlinearity dependence of the

eigenvalues e1 (PC ) , e2 (PC ) on the free parameters μ, and

λ, we solve numerically the conditions where e1 (PC ) <

0, e2 (PC ) < 0, and derive when the points are attractors.

The region in the space {λ,μ} where the points are attractors

are given in Fig. 1.

Fig. 1 Region plot in the space of variables {λ,μ} for the eigenvalues

e1 (PC ), e2 (PC ). With the solid line is the boundary where the points

exist. Dashed line describe the boundary where the points are attractors.

The ope gray area corresponds to the case where wtot > − 1
3

, while

the dark gray area describe the values of the parameters {λ,μ} in which

wtot < − 1
3

In Fig. 2 we present the phase space diagram in the vari-

ables {x, y, z} for the dynamical system of our consideration

for two set of the values λ and μ. More specifically, the plots

are for the set (λ, μ) = (−1, 2) where the only stable point

is PB and for (λ, μ) = (−3,−4) where points P
(±)
C are the

two attractors of the dynamical system.

We summarize the results of the critical point analysis in

Table 2.

Let us now discuss in some detail the new critical point

PC : The cosmological fluid source at this critical point has

an equation of state parameter wtot = −1 + 2λ
λ+μ

, therefore

we can easily calculate that

a (t) = t
1
3 (1+ μ

λ ), H (t) =
λ + μ

3λ

1

t
. (4.11)

Moreover, from (4.3)–(4.5) and (4.1) it follows that at the

critical point

dx

dτ
= 0,

dy

dτ
= 0,

dz

dτ
= 0 (4.12)

that is

φ̇ = x0

√
6H, V0eλφ = (y0)

2 H2, ψ̇ =
√

6z0e− 1
2 μφ H

which implies
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Fig. 2 Phase space diagram for the dynamical system (4.3)–(4.5) for two different set of the free parameters λ and μ. Left figure is for (λ, μ) =
(−1, 2) where point PB is the unique attractor while right figure is for (λ, μ) = (−3,−4) and points P±

C are the attractors of the dynamical system

Table 2 Critical points of the dynamical system

Point (x, y, z) Existence Stability Acceleration

P
(±)
A (±1, 0, 0) Always Unstable No

PB

(

− λ√
6
,

√
6−λ2

6
, 0
)

λ2 < 6 Stable: λ2 < 3 λ2 < 2

P
(±)
C

(

−
√

6
λ+μ

,
√

μ
λ+μ

,±
√

λ2+λμ−6

λ+μ

)

λ 	= −μ
{

μ < 0, λ ≤ −
√

6
} {

−
√

6 < λ < 0, μ < 6−λ2

λ

}

See Fig. 1 See Fig. 2

φ̇ =
√

6x0
λ + μ

3λ

1

t
, eλφ =

(

y0
λ + μ

3λ

)2
1

t2
, ψ̇

=
√

6z0
λ + μ

3λ
t−

√
6x0
6

μ
λ (λ+μ)−1 (4.13)

we finally find

φ (t) − φ0 =
√

2

3

x0 (λ + μ)

λ
ln t , ψ (t)

−ψ0 =
√

2

3

λ + μ

μ
z0e− μ

2 φ0 t
μ
λ

with the constants x0 and y0 being constrained as x0 =
−

√
6

λ+μ
, (y0)

2 = 9λ2V0

(λ+μ)2 eλφ0 . This is precisely the exact solu-

tion (3.15), (3.16) determined before.

As we discussed above, when 2λ
λ+μ

< 2
3

, the cosmo-

logical solution at point PC describes an accelerated uni-

verse, while the attractor where the two scalar fields sur-

vive has been used to describe the inflationary era. When

the field space is a hyperbolic plane [62], the model is

called hyperinflation. There are various differences between

hyperinflation and the slow-roll inflation [63], for an elab-

orate discussion see [62]. Remark that point PB describe

the slow-roll inflation era since only field φ contribute

to the cosmological evolution. On the other hand, PC

corresponds to the two field case and particularly to a

solution that emerges for a coupling function F(φ) =
F0eμφ , which makes the two dimensional field space hyper-

bolic.

Recently in [64] the dynamics of the later cosmolog-

ical model has been studied by using a different set of

variables. Our analysis can be directly compared with

that of [64] and shows that the use of a different set of

variables leaves the dynamics invariant. The critical point

PC corresponds to the point (x, y)hyper of [64] (corre-

sponding to the x , z of our analysis) where the spiralling

behaviour, as described in [64], is given by eigenvalues with

nonzero imaginary part; such a behaviour is presented in

Fig. 2.
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5 Conclusion

We considered a two-scalar field cosmological model with

a mixed kinetic term. More specifically, we assume that the

matter source of the Einstein’s General Relativity is described

by two scalar field which they have an interacting term in the

kinetic part of the scalar field Lagrangian. For this model,

we investigate the existence of some exact solutions for the

scale factor which describe different phases in the evolution

of the universe.

In particular, we proved the existence of power-law solu-

tions, de Sitter universe, asymptotic de Sitter universe with or

without initial singularity and for a scale factor that depends

on the exponential function of arbitrary powers of the time

variable. For each specific solution we found the constraining

condition between the two unknown functions of the theory

so that it would be admissible. These unknown functions are

the scalar field potential V (φ) and the one that provides the

interaction in kinetic term F(φ). A special case of the model

which we considered is the Chiral cosmology, which can be

seen as a unified dark energy and dark matter model. We also

demonstrated the validity of our result by providing several

examples in which we choose the potential function V (φ)

and derive the compatible F(φ) for which the space-time of

our choice is admissible.

For the Chiral cosmological model and for the exponen-

tial potential we apply the critical point analysis in order to

determine the stability of the scaling solutions. We found

that the dynamical system admits five critical points where

the three of them correspond to the quintessence model of

General Relativity. The two new critical points describe scal-

ing solutions and by our analysis we were able to study the

stability of the exact solutions.

Apart from the approach that we followed here in which,

when certain conditions are set over the scale factor, the

potential is related to the cosmological time through Eq. (3.2),

a different procedure can also be applied: It is known that,

in the case of a single scalar field, when the latter is utilized

as an effective time variable, you can express the potential

as a function of quantities containing only φ [63,65]. This is

made possible with the use of the equations of motion and is

called the Hamilton–Jacobi method. A similar methodology

has been put in use recently in [66,67] for the case of multi-

ple scalar fields where the potential is expressed in terms of

the fields and their first derivatives. Especially in [67] – and

for a two scalar field system – the adoption of the a shift-

symmetric orbital inflation condition leads to expressing the

potential as a pure function of the two fields while at the same

time providing with an exact solution. It is interesting to note

that also in this approach one obtains a relation between the

potential and the kinetic coupling function, although under a

different context since the potential is assumed to depend on

both fields.

In a future work we plan to investigate the case where the

two scalar fields are interacting also in the potential term, as

also when they are nonminimally coupled with the gravity

[68].
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