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Abstract. We review recent progress in the construction of modified gravity models

as alternatives to dark energy as well as the development of cosmological tests of

gravity. Einstein’s theory of General Relativity (GR) has been tested accurately within

the local universe i.e. the Solar System, but this leaves the possibility open that it is

not a good description of gravity at the largest scales in the Universe. This being said,

the standard model of cosmology assumes GR on all scales. In 1998, astronomers made

the surprising discovery that the expansion of the Universe is accelerating, not slowing

down. This late-time acceleration of the Universe has become the most challenging

problem in theoretical physics. Within the framework of GR, the acceleration would

originate from an unknown dark energy. Alternatively, it could be that there is no

dark energy and GR itself is in error on cosmological scales.

In this review, we first give an overview of recent developments in modified

gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and

massive/bigravity theory. We then focus on common properties these models share,

such as screening mechanisms they use to evade the stringent Solar System tests. Once

armed with a theoretical knowledge of modified gravity models, we move on to discuss

how we can test modifications of gravity on cosmological scales. We present tests

of gravity using linear cosmological perturbations and review the latest constraints on

deviations from the standard ΛCDM model. Since screening mechanisms leave distinct

signatures in the non-linear structure formation, we also review novel astrophysical

tests of gravity using clusters, dwarf galaxies and stars.

The last decade has seen a number of new constraints placed on gravity from astro-

physical to cosmological scales. Thanks to on-going and future surveys, cosmological

tests of gravity will enjoy another, possibly even more, exciting ten years.
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1. Introduction

Einstein’s theory of General Relativity (GR) has proven successful over many years of

experimental tests [1]. These tests range from millimetre scale tests in the laboratory to

Solar System tests and consistency with gravitational wave emission by binary pulsars.

The standard model of cosmology assumes GR as the theory to describe gravity

on all scales. In 1998, astronomers made the surprising discovery that the expansion

of the Universe is accelerating, not slowing down [2, 3]. This discovery was the subject

of the 2011 Nobel Prize in physics. This late-time acceleration of the Universe has

become the most challenging problem in theoretical physics. Within the framework

of GR, the acceleration would originate from an unknown dark energy. The simplest

option is the cosmological constant, first introduced by Einstein. However, in order

to explain the current acceleration of the Universe, the required value of this constant

must be incredibly small. Particle physics predicts the existence of vacuum energy which

provides a value for the cosmological constant, but this is typically more than 50 orders

of magnitude larger than the observed values that assume GR. Alternatively, there could

be no dark energy if GR itself is in error on cosmological scales.

The standard model of cosmology is based on a huge extrapolation of our

limited knowledge of gravity. GR has not been tested independently on galactic and

cosmological scales. This discovery of the late time acceleration of the Universe may

require us to revise the theory of gravity on cosmological scales and the standard model

of cosmology based on GR.

It is extremely timely to tackle this challenge now. Over the next five years,

a number of vast astronomical surveys of the galaxy distribution will be underway,

such as the Dark Energy Survey (DES, 2012-2017) [4], the extended Baryon Oscillation

Spectroscopic Survey (eBOSS, 2014-2018) [5], and the Mapping Nearby Galaxies at APO

(MaNGA, 2014-2018) [6]. These surveys will dramatically transform our measurements

of the cosmic expansion and the large scale structure of the Universe thus providing a

new opportunity to test gravity on astrophysical and cosmological scales. Future surveys

such as the Euclid mission (2020- )[7], the Dark Energy Spectroscopic Instrument (DESI,

2018-) [8] and the Subaru Measurements of Images and Redshifts (SuMIRe, 2018-) [9]

will provide an opportunity to perform ultimate tests of gravity on the largest scales in

our Universe.

Recently, there has been significant progress in developing modified gravity theories

that act as an alternative to dark energy (see a review [10]). Modified gravity models

provide interesting theoretical ideas to tackle the cosmological constant problem and

explain the late time acceleration of the Universe. One of the challenges for modified

gravity models is to satisfy the stringent Solar System constraints whilst modifying

gravity significantly on cosmological scales. Screening mechanisms have been developed

to hide modifications of gravity on small scales (see a review [11]). This research

has been further developed into tests of GR itself via cosmological observations (see

reviews [12, 13]). It is in principle possible to construct non-parametric consistency
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tests of GR on cosmological scales by combining various probes of large-scale structure,

because the Einstein equations enforce a particular relation between observables. Non-

linear structure formation is complicated by screening mechanisms and new techniques

are required to analyse it. Analytic methods and N-body simulation techniques have

been developed to study non-linear clustering of dark matter under their influence.

Furthermore, screening mechanisms have also opened up new possibilities to test gravity

using astrophysical objects.

We will review recent developments in models of modified gravity and explain

why the realisation of a screening mechanism is important in these models. We then

discuss how we test gravity on cosmological scales and emphasise the importance

of understanding the non-linear structure formation. Based on the latest N-body

simulations, we study the effects of screening mechanisms on the structures in our

Universe. Finally we summarise the novel approach to test gravity using astrophysical

objects.

This review is not meant to cover all theoretical models nor observational tests

of modified gravity models systematically. Rather, we focus on key ideas behind

cosmological tests of gravity whilst emphasising an interplay between theoretical physics,

numerical astrophysics, and cosmological and astrophysical observations. For more

thorough reviews, we recommend the reader to refer to excellent recent reviews on

the subject Refs. [10, 11, 12, 13].

This review is organised as follows. In section 2, we explain the motivation to

consider modifications of GR and why it is difficult to construct such models. Then

we introduce several examples of models of this type. In section 3, we explain why a

screening mechanism is important for the recently developed modified gravity models

and explain how it works to hide the modifications on small scales. In section 4, we

discuss cosmological tests of gravity. We explain how one can construct a consistency test

of the GR model with a cosmological constant, the Λ Cold Dark Matter (ΛCDM) model

and why it is important to develop model independent parametrisations of deviations

from ΛCDM for linear cosmological perturbations. We then explain the complexities

that arise from non-linear structure formation. We introduce analytic methods based

on perturbation theory to describe quasi non-linear perturbations and emphasise the

importance of non-linear physics in extracting information about modifications of gravity

on linear scales. We then discuss N-body simulations to study fully non-linear structures.

In section 5, we discuss how screening mechanisms operate in dark matter simulations

by using two representative screening mechanisms. Section 6 is devoted to novel

astrophysical tests of gravity using clusters, galaxies and stars. We discuss the future

outlook in section 7.
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2. Modified gravity models

2.1. Problems with the standard model of cosmology

The standard cosmology is highly successful at explaining a number of observations in

a simple framework. It is based on two main assumptions:

• Our universe is homogeneous and isotropic.

• Gravity is described by General Relativity (GR).

We use the first assumption to write down the metric for the background universe as

the Friedman-Robertson-Walker (FRW) metric

ds2 = −dt2 + a(t)2
( dr2

1−Kr2
+ r2dΩ2

)

, (1)

and from the Einstein equations we obtain the Friedman equation

H2 =

(

ȧ

a

)2

+
K

a2
=

8πG

3
ρm +

Λ

3
, (2)

where K is the curvature of the 3-space and Λ is the cosmological constant. By defining

the density parameters,

Ωm =
8πGρm0

3H2
0

, ΩK =
K

a20H
2
0

, ΩΛ =
Λ

3H2
0

, (3)

the Friedman equation today can be rewritten as

1 = Ωm + ΩK + ΩΛ. (4)

Here H0 is the present-day Hubble parameter. Many independent datasets intersect

on the Ωm and ΩΛ plane (see Fig. 1). However, ordinary matter occupies only 5% of

the energy density of the Universe. We need to assume that 27% of the energy density

of the Universe is made of dark matter and 68% of the energy density is made of the

cosmological constant. This surprising result comes from the fact that the expansion

of the Universe today is accelerating. The accelerating expansion of the Universe was

found by measuring the distance to supernovae (SNe). Due to the accelerated expansion

of the Universe, supernovae look dimmer than what we would expect in the Universe

without a positive cosmological constant. See Ref. [14, 15] for reviews.

The energy density associated with the cosmological constant is extremely small.

Using the fact that the present day Hubble parameter H0 is given by H0 = 2.13h×10−42

GeV, whereH0 = 100h(km/s)/Mpc, the energy density associated with the cosmological

constant is incredibly small

ρΛ =
Λ

8πG
∼
(

10−3eV
)4

. (5)

At the moment we do not have any compelling theory that allows such a small

cosmological constant. The cosmological constant problem is arguably the most

challenging problems in theoretical physics [20]. Quantum field theory predicts the

existence of vacuum energy. Without gravity, this is the zero-point energy and it
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Figure 1. Left: Constraints on Ωλ and Ωm from Supernovae (SNe), Cosmic Microwave

Background (CMB) and Baryon Acoustic Oscillations (BAO) [16]. From [16, 17]

(published on 10 February 2012 c©AAS. Reproduced with permission). Right: The

relative amounts of the different constituents of the Universe [18]. From [19] ( c©ESA

and the Planck Collaboration).

does not affect the dynamics. However, in GR, the vacuum energy gravitates and

therefore the value of this vacuum energy has an important meaning. The vacuum

energy is determined by the cut-off scale of the theory and this is typically many orders

of magnitude larger than the cosmological constant that we need to explain the late

time acceleration of the Universe (5). For example, for a massive particle with mass

m, we expect that the contribution to the vacuum energy is O(m4). Even the electron

me = 0.5 MeV gives a huge contribution to the vacuum energy. It is possible to add

a classical contribution to the cosmological constant in GR. By tuning this piece, it

is in principle possible to realise the small cosmological constant that is required for

the late time acceleration of the Universe. However, the problem is that this tuning is

unstable under quantum corrections. Any new additions to the matter sector or higher

order loop contributions spoil the tuning (see a recent review [21]). This cosmological

constant problem was already a serious problem before the discovery of the accelerated

expansion of the Universe, thus it is sometimes called the old cosmological constant

problem. The discovery of the accelerated expansion of the Universe has worsened the

problem. Now not only do we need to explain why we do not see a large cosmological

constant but also we require an explanation for why we observe such a tiny cosmological

constant.

Even if we could solve the old cosmological constant problem, we still need to

explain the origin of the accelerated expansion of the Universe. There are mainly

two approaches to this problem. One possibility is to abandon the assumption of
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homogeneity. Although the isotropy of the universe has been proven to high accuracy by

the Cosmic Microwave Background (CMB) anisotropies whose temperature is isotropic

to roughly one part in 100, 000, the homogeneity of the Universe has not been tested well.

If the accelerated expansion of the universe is connected to the inhomogeneity of the

Universe, this provides a compelling explanation for the problem known as “why now”.

If the accelerated expansion of the Universe is driven by the cosmological constant, it is

indeed quite a remarkable coincidence that Ωm and ΩΛ are roughly the same order today.

The ratio between Ωm and ΩΛ is nearly zero until recently and it approaches one rapidly

in the future. If the acceleration is driven by the inhomogeneity caused of the growth of

structure in our Universe, it can explain this coincidence between our existence and the

accelerated expansion of the Universe. Unfortunately, recent studies indicate that it is

not possible to explain the accelerated expansion of the Universe from the back-reaction

of the structure formation in the Universe. Although, it is still possible to explain the

acceleration by large inhomogeneities if they are not related to the structure growth. For

example if we are living in a large void, it is in principle possible to explain the observed

accelerated expansion of the Universe measured by SNe. However, the consensus is that

it is difficult to explain all the observations consistently in these void models. Also

this model requires us to abandon the Copernican principle which states that we are

not living in a special place in the Universe. It is still an open question whether more

sophisticated inhomogeneous models can explain the late time acceleration or not. (See

a review [22] and references therein).

The most popular approach is to introduce dark energy to explain the acceleration

within the framework of GR (see a review [23]). We can replace the cosmological

constant by dark energy with the energy density ρde and the pressure Pde. In order to

explain the accelerated expansion of the universe, the equation of state wde = Pde/ρde
of dark energy needs to be smaller than −1/3. The cosmological constant is a special

case where wde = −1. The most studied candidate for dark energy is a quintessence

model in which the scalar field plays the role of dark energy whose energy density and

pressure are given by

ρde =
1

2
φ̇2 + V (φ), Pde =

1

2
φ̇2 − V (φ), (6)

where φ is a scalar field. If the scalar field’s kinetic energy is sub-dominant compared

to its potential energy, we can realise the negative pressure that is required to explain

the accelerated expansion of the Universe. It is also possible to find a tracking solution

where the scalar field energy density follows that of matter ρde/ρm =const. for an

exponential potential V ∝ exp(−λφ). This means that the final density of the dark

energy is insensitive to the initial conditions, which could solve the why now problem.

However, for this simple example, the scalar field never dominates the Universe and

it cannot explain the accelerated expansion of the Universe. In order to achieve the

acceleration, we need to add another exponential potential and the time when dark

energy dominates over the matter energy density is controlled by the parameters in the

potential. This is exactly the same situation in the ΛCDM model and we can therefore
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no longer solve the why now problem. Another difficulty of the quintessence models

is that the parameters in the potential are unstable under radiative corrections. In

order for the scalar field to be a successful candidate for dark energy, the mass of the

scalar field needs to be of the order H0 and this mass is not protected under quantum

corrections. Due to these theoretical difficulties, dark energy is often treated as a fluid

with a given equation of state as a function of scale factor wde(a) without specifying its

physical origin.

2.2. Why modified gravity?

The cosmological constant problem is of fundamental origin thus it is important to

reconsider all the assumptions that we make in the standard model of cosmology. One of

the assumptions is that gravity is described by GR on all scales. However we should bear

in mind that we tested gravity only in our local universe. There is an interesting example

in history of where unexpected observations lead to a revolution in gravitational physics.

When the precession of perihelion of Mercury was found, a French mathematician,

Urbain Le Verrier hypothesised that there existed a planet called Vulcan between the

Sun and Mercury that caused the anomaly. In fact he succeeded in predicting the

existence of Neptune using the same technique. Vulcan was never found and we now

know that it was Newton’s gravity that needed to be revised by Einstein. This story

tells us that sometimes we need to be open-minded when we encounter unexpected

observations.

Fig. 2 summarises where we have tested gravity [24]. Gravity is parametrised by

the two quantities, the gravitation potential GM/r and the curvature of space GM/r3

for a spherical object with mass M and the radius r. GR is very well tested in the

Solar System and also by binary pulsars. However it is especially not well tested in the

low curvature regime. We need dark matter to explain the rotation curves of galaxies,

clusters of galaxies and the formation of large scale structure of the Universe. There

have been many attempts to explain dark matter by modifications of gravity (see [25]

for a review). In this review, we do not cover these developments. Given the myriad

of observations, it is becoming almost impossible to explain all the observed evidence

for dark matter by modifications of gravity. In the next decades, progress in direct and

indirect detection experiments will shed light on the origin of dark matter (see a review

[26]). In this review, we assume that dark matter is the dominant constituent of the

Universe at late times. At the lowest curvature, we require dark energy to explain the

accelerated expansion of the Universe. Here only cosmology provides a means to test

gravity.

Modifications to gravity could provide an interesting solution to the cosmological

constant problem. The first idea is to modify the way in which gravity responds to

the cosmological constant [27]. An example is provided by a braneworld model in 6D

(see [28, 29] for reviews). Braneworld theories postulate that we are living in a 4D

membrane embedded in a higher dimensional spacetime (see [30] for a review). In 6D,
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Figure 2. Left: A parameter space for gravitational fields. Right: The experimental

version of the parameter space. See Ref. [24] for details. The horizontal lines in the left

figure indicate the background curvature of the Universe at Big Bang Nucleosynthesis

(BBN) and Last scattering, and the curvature associated with Λ. Some of the

label abbreviations are: SS=planets of the Solar System MS=Main Sequence stars,

WD=white dwarfs, PRSs=binary pulsars, NS=Neutron stars, BH= stellar mass black

holes, MW=the Milky Way, SMBH=supermassive black holes. PPN= Parameterised

Post-Newtonian regime, Inv.Sq.=laboratory tests of the inverse square law of the

gravitational force, Atom=atom interferometry experiments, EHT=Event Horizon

Telescope, ELT=the Extremely Large Telescope, DEFT4=a hypothetical stage 4

experiment of dark energy, Facility=a futuristic large radio telescope such as the Square

Kilometer Array. From [24] (published on 20 March 2015 c©AAS. Reproduced with

permission).

there is an interesting property of gravity that causes the cosmological constant on a

brane not to gravitate but merely curve the extra two dimensions. Thus even if there is

a huge contribution to the cosmological constant in the 4D brane where standard model

particles live, the 4D spacetime remains flat. In this way we can avoid the cosmological

constant problem. Although it is difficult to find a concrete model that realises this idea

in practice, this provides an interesting insight into a possibility that modifications of

gravity might address the fundamental problem of the cosmological constant.

Modified gravity models also provide interesting ideas to explain the late time

acceleration of the Universe. One possibility to explain the acceleration is to add a

tiny mass to the graviton (see [31] for a review). The smallness of the mass can be

protected by the restoration of a symmetry. A mass term breaks the diffeomorphism

invariance that is present in GR in the massless limit. Due to this restoring of the

symmetry in the massless limit, it is technically natural to have a small mass. More

precisely if we compute the quantum loop corrections to the mass, the mass is shifted



Cosmological Tests of Modified Gravity 9

by m2 → m2 +O(1)m2 because the quantum corrections arise only from the mass term

that breaks the symmetry. Thus it is natural to tune the mass to be small to account

for the late time acceleration m2 ∼ H2
0 where H0 is the present day Hubble scale as this

tuning is not spoiled by the quantum corrections unlike the cosmological constant.

Another interesting idea is self-acceleration. Even without the cosmological

constant, the expansion of the Universe can accelerate due to the modification of gravity.

A typical example is again provided by a braneworld model. In this case, a 4D brane

is embedded in a 5D spacetime. Gravity in the 5D bulk spacetime is described by

the 5D Einstein gravity [32]. On the 4D brane there is an induced gravity described

by the 4D Einstein-Hilbert action. Moreover, there is a solution where the expansion

of the Universe is determined by the ratio between the 4D and 5D Newton constant

H ∝ G4/G5 without the cosmological constant [33].

Unfortunately, we still do not have a model that realises these new ideas in a

consistent way. However, clearly it is worthwhile challenging GR in order to address

the fundamental problems in theoretical physics. Modified gravity models also provided

motivation for developing cosmological tests of gravity (see reviews [12, 13, 11]). It is the

right time to challenge GR on cosmological scales. As mentioned in the introduction,

there will be a number of astronomical surveys aiming to reveal the nature of dark

energy. Although it is possible to construct model independent tests of gravity on large

scales, it is important to study theoretical models to know what kind of deviations from

GR one should search for. Also in order to exploit the vast information available on

non-linear scales, we need concrete theoretical models.

2.3. Why is it difficult to modify GR?

We immediately face many problems when we modify GR. There is a powerful theorem

known as Lovelock’s theorem. Lovelock’s theorem proves that Einstein’s equations are

the only second-order local equations of motion for a metric derivable from the action

in 4D. This indicates that if we modify GR, we need to have one or more of these:

• Extra degrees of freedom

• Higher derivatives

• Higher dimensional spacetime

• Non-locality

Once we introduce these additional ingredients into the theory beyond GR, we need to

check the theoretical consistency of the model. First we need to check that the solutions

are stable. There are several kinds of instabilities which can be illustrated by a simple

scalar field example described by the action

S =

∫

dtd3x(Ktφ̇
2 −Kx(∂iφ)(∂

iφ)−m2φ2). (7)

The tachyonic instability arises when the scalar field has a negative mass squaredm2 < 0.

This instability is not necessarily catastrophic if the instability time scale |m|−1 is long
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enough. Another instability arises when the gradient term has a wrong sign Kx < 0.

This instability is more severe than the tachyonic instability as the instability time scale

is determined by the wavenumber of the mode that we are interested in, so the time scale

becomes shorter and shorter on small scales. On the other hand, the ghost instability,

which arises when the time kinetic term of the scalar field has a wrong sign Kt < 0, is

more severe. At the quantum level, the vacuum is unstable and decays instantaneously.

To avoid the instability, it is required to introduce a non-Lorentz-invariant cut-off in the

theory (see [34] for a review).

Another common problem is known as the strong coupling problem. In addition to

the kinetic term, the scalar field can have non-linear interaction terms. An example of

the non-linear term that appears later is

Snon−linear =

∫

d4x
1

Λ3
3

2φ(∂φ)2. (8)

This non-linear interaction becomes important at energy scale higher than Λ3 and

quantum corrections generate terms that are suppressed by Λ3. Then in general we

loose control of the theory beyond Λ3. This strong coupling scale is often associated

with the energy scale related to the accelerated expansion of the Universe, H0, which is

extremely small compared with the scale of gravity MPl. Thus we will often find that

the strong coupling scale is rather low in modified gravity models. This means that we

need to treat these theories as an effective theory, which is valid only at energy scales

lower than Λ3.

Once the theory satisfies the requirements for theoretical consistency, it also needs

to pass observational tests. First of all, the theory needs to satisfy the stringent Solar

System constraints. The deflection angle θ of stars due to the Sun is observed to be [35]

θ = (0.99992± 0.00023)× 1.75′′, (9)

where 1.75′′ is the prediction of GR. Another prediction of GR is time delation due to

the effect of the Sun’s gravitational field. This was measured very accurately using the

Cassini satellite as [36]

∆t = (1.00001± 0.00001)∆tGR. (10)

Any modified theory of gravity needs to satisfy these stringent constraints on deviations

from GR in the Solar System. On cosmological scales, observations become better

and better and at the moment, the standard ΛCDM model survives all these improved

measurements. In the background, the expansion of the Universe should look very

similar to that of the ΛCDM model. The equation of state for dark energy is constrained

to be [37]

wde = −1.006± 0.045. (11)

Modified gravity models need to pass all these observational tests.
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2.4. Examples of models

In this section, we discuss several representative modified gravity models that have been

studied recently. As we mentioned in the introduction, the purpose of this review is not

to cover all possible modified gravity models in a systematic way. We only review models

that are relevant for later discussions. For a more complete review of various modified

gravity models, see Ref [10].

2.4.1. Brans-Dicke gravity Let’s first start from the simplest modified gravity model,

Brans-Dicke gravity [38]. This theory includes a scalar field non-minimally coupled to

gravity

S =

∫

d4x
√−g

(

ψR− ωBD

ψ
(∂ψ)2

)

+

∫

d4x
√−gLm. (12)

We consider a non-relativistic source T 0
0 = −ρ. Using the quasi-static approximation

to ignore time derivatives of perturbations compared with spatial derivatives, the

perturbations of the metric

ds2 = −(1 + 2Ψ)dt2 + (1− 2Φ)δijdx
idxj, (13)

and the scalar field perturbation ψ = ψ0 + ϕ obey the following equations

∇2Ψ = 4πGρ− 1

2
∇2ϕ, (14)

(3 + 2ωBD)∇2ϕ = −8πGρ, (15)

Φ−Ψ = ϕ. (16)

Note that the scalar field that is non-minimally coupled to gravity gives an effective

anisotropic stress through its perturbations, modifying the relation between Φ and Ψ.

These equations can be rewritten as

∇2Ψ = 4πGµρ, Ψ = η−1Φ, (17)

where

µ =
4 + 2ωBD

3 + 2ωBD

, η =
1 + ωBD

2 + ωBD

. (18)

We recover GR in the large ωBD limit. Indeed, imposing the Solar System constraints

Eqs. (9) and (10), we obtain |η− 1| = (2.1± 2.3)× 10−5. Then the constraint on ωBD is

given by ωBD > 40, 000. Once we impose this constraint on the parameter of the model

ωBD, the theory is basically indistinguishable from GR on all scales. This is one of the

main problems of modified gravity models. The Solar System tests are so stringent that

if they are imposed on the parameters of the model, there is virtually no room to modify

gravity on cosmological scales.

2.4.2. f(R) gravity Another popular model is f(R) gravity where the Einstein-Hilbert

action is generalised to be a function of the Ricci curvature [39, 40]

S =

∫

d4x
√−gf(R) +

∫

d4x
√−gLm. (19)
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See [41, 42, 43] for a review. The equation of motion for the metric is fourth order thus

this model can be classified as a higher derivative theory. However, it is possible to

introduce a scalar field and make the equation of motion second order. The action is

equivalent to

S =

∫

d4x
√−g (f(φ) + (R− φ)f ′(φ)) . (20)

By taking a variation with respect to φ, we obtain (R − φ)f ′′(φ) = 0. As long as

f ′′(φ) 6= 0, and R = φ, we recover the original action. By defining ψ = f ′(φ) and

V = f(φ) − φf ′(φ), the action can be written the same as the one for Brans-Dicke

gravity with a potential

S =

∫

d4x
√−g

(

ψR− V (ψ)
)

. (21)

Comparing this with the action (12), we notice that the BD parameter is given by

ωBD = 0. As such, if we ignore the potential, this model is already excluded by the

Solar System constraints. However, by choosing the potential, i.e. the form of the f(R)

function appropriately, it is possible to incorporate a screening mechanism known as

the chameleon mechanism to evade the Solar System constraint as we will see later

[44, 45, 46, 47].

In general, the scalar tensor theory is described by the following action

S =

∫

d4x
√−g

(

ψR− ωBD(ψ)

ψ
(∂ψ)2 − V (ψ)

)

+

∫

d4x
√−gLm(gµν).(22)

By a conformal transformation gµν = A(φ)2ḡµν and a redefinition of the scalar field, we

can transform the action to the Einstein frame

S =

∫

d4x
√−ḡ

(

R− 1

2
(∂φ)2 − V̄ (φ)

)

+

∫

d4x
√−gLm

(

A(φ)2ḡµν

)

. (23)

In this frame, the scalar field is directly coupled to matter.

Like the quintessence models, a choice of the function f(R) leads to many models

but the successful models for the late time cosmology share the same features [46, 48, 49].

In the high curvature limit, the function looks like

f(R) = R− 2Λ + |fR0|
R̄n+1

Rn
, (24)

where R̄ is the curvature today. This model requires an effective cosmological constant

to explain the observed accelerated expansion of the universe. However, it is possible

to find a function f(R) so that this constant disappears in the low curvature limit. The

correction to the ΛCDM disappears in the high curvature limit R ≫ R̄. As we will see

later, the Solar System constraint imposes the condition |fR0| < 10−6. The background

cosmology is indistinguishable from ΛCDM if |fR0| is small. In the Einstein frame, the

potential and the coupling function take the following form

V̄ = Λ−M4

(

φ

MPl

)
n

1+n

, A(φ)2 = e
√

2/3φ/MPl , (25)



Cosmological Tests of Modified Gravity 13

and the scalar field in the original Jordan frame ψ = fR ≡ df/dR is related to φ as

φ = −
√

3

2
MPl log(1 + fR). (26)

Cosmology of f(R) models have been studied intensively. See references in [42, 43].

2.4.3. Braneworld gravity The idea of braneworld was inspired by the discovery of

D-branes in string theory (see [30] for a review). In this model, we are living on a

4D membrane (brane) in a higher dimensional spacetime (bulk). The standard model

particles are confined to the brane while gravity can propagate throughout the whole

spacetime. The simplest model known as the Dvali-Gabadadze-Porrati (DGP) model is

a 5D model described by the action [32]

S =
M3

5

2

∫

d5x
√

−(5)g(5)R +
M2

4

2

∫

d4x
√−g

(

(4)R + Lm

)

, (27)

where (5)R and (4)R are 5D and 4D Ricci curvature respectively. The ratio between

the 5D and 4D Newton constant rc =M2
4/2M

3
5 is called the cross-over scale and it is a

parameter of the model. This model provides an interesting example of self-acceleration.

The Friedman equation in this model is given by [33]

H2 = ±H
rc

+
8πG

3
ρ. (28)

At early times Hrc ≫ 1, we recover the usual 4D Friedmann equation. On the other

hand, at late times, the Hubble parameter approaches a constant H → 1/rc in the

upper branch of the solution. Thus the expansion of the Universe accelerates without

the cosmological constant. This is known as the self-accelerating branch. On the other

hand, the lower branch solution, often called the normal branch solution requires the

cosmological constant to realise the accelerated expansion of the Universe. In order to

recover the standard cosmology at early times, the cross-over scale needs to be tuned as

rc ∼ H−1
0 so that the modification of gravity appears only at late times. See references

in [30] for cosmological studies of the model.

If we study the perturbations around this background under the quasi-static

approximations, we find that gravity is described by the BD theory with an additional

non-linear interaction term [50, 51, 52]

∇2Ψ = 4πGa2ρ− 1

2
∇2ϕ, (29)

(3 + 2ωBD(a))∇2ϕ+
r2c
a2

[

(∇2ϕ)2 − (∇i∇jϕ)
2
]

= −8πGa2ρ, (30)

Φ−Ψ = ϕ, (31)

where the BD parameter ωBD(a) is given by

ωBD =
3

2
(β(a)− 1), β(a) = 1− 2rcH

(

1 +
Ḣ

3H2

)

. (32)

The scalar field originates from the bending of the brane in the 5D bulk spacetime.

Note that the BD parameter is always negative in the self-accelerated branch and the
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scalar field is mediating a repulsive force. This is the manifestation of the problem that

this solution suffers from a ghost instability [53, 54, 55, 56, 57, 58]. In addition, at late

times ωBD ∼ O(1) thus by linearising the equation, we again find that this theory would

be excluded by the Solar System constraints. However, the coefficient of the non-linear

interaction term is very large, r2c ∼ H−2
0 . This non-linear term becomes important

even if gravity is weak. This is responsible for the screening mechanism known as the

Vainshtein mechanism as we will see later. Interestingly, the Solar System constraints

impose the constraint rc > 0.1H−1
0 . This constraint is independent of the requirement

to recover standard cosmology at early times rc ∼ H−1
0 . Thus any improvement on this

constraint will give severe constraints on the model as we will see in section 3.5.

An interesting extension of the DGP model is provided by 6D models. As we

explained in section 2.2, 6D spacetime has the property that the cosmological constant

on a 4D brane does not gravitate. However, the singular structure of the brane is far

more complicated compared with the 5D case. There have been many attempts to

extend the 5D DGP to 6D [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71].

2.5. Galileons, Horndeski theory and beyond

The non-linear interaction that appears in the DGP braneworld model has a very special

property [53, 72]. The equation of motion in the flat spacetime can be derived from the

action (8). It looks like this action leads to an equation of motion that contains higher

order derivatives, but this is not the case as can been seen from the fact that the equation

of motion (30) contains only second order derivatives. Furthermore,this action has the

following symmetry in field space

∂µφ→ ∂µφ+ cµ, (33)

where cµ is a constant vector. Due to its similarity with the Galilean symmetry in

Newtonian gravity, the scalar field described by this action is called the galileon [54].

Interestingly, in 4D spacetime, there are only three Lagrangians, in addition to the

canonical kinetic term, that lead to second order equations of motion with the galileon

symmetry;

Lgal
3 = −1

2
(∂φ)22φ, (34)

Lgal
4 = −1

2
(∂φ)2

[

(2φ)2 − (∂µ∂νφ)
2
]

, (35)

Lgal
5 = −1

4
(∂φ)2[(2φ)3 − 32φ(∂µ∂νφ)

2 + 2(∂µ∂νφ)
3]. (36)

There are many other expressions for the same action that are related by integrations

by parts. The most convenient form to understand why the equation of motion contains

only second derivatives can be constructed by making use of the Levi − Civita epsilon

tensor to write the Lagrangian for the galileons in a compact form. Using the following

property:

εγ1...γ4−nα1...αn
εγ1...γ4−nβ1...βn = −(4− n)!n! δ[β1...βn]

α1...αn
, (37)
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where the square brackets represent normalised anti-symmetric permutations, we can

write the galileon Lagrangians as:

L̄gal
3 =

1

2!
εµ1µ3νλεµ2µ4

νλφµ1
φµ2

(φµ3µ4
) := E(4)φ1φ2(φ34),

L̄gal
4 = εµ1µ3µ5νεµ2µ4µ6

νφµ1
φµ2

(φµ3µ4
φµ5µ6

) := E(6)φ1φ2(φ34φ56),

L̄gal
5 = εµ1µ3µ5µ7εµ2µ4µ6µ8φµ1

φµ2
(φµ3µ4

φµ5µ6
φµ7µ8

) := E(8)φ1φ2(φ34φ56φ78),

(38)

Where we have defined E1234...
2n = 1

(4−n)!
ε135...ν1ν2...ν4−nε246... ν1ν2...ν4−n

which has been

written in short hand as E(2n) and the numbers are short hand for labeled indices:

{µ1µ2 . . .}. Furthermore, we have that φµ1...µn
≡ ∂µn

. . . ∂µ1
φ.

With this notation it is very easy to see that the variation of these Lagrangians would

never have higher than two derivatives. For instance, taking the variation of L5 gives

us:

0 = δS5 =

∫

d4x δL̄gal
5

=

∫

d4x E(8)
[

2δφ1φ2(φ34φ56φ78) + 3φ1φ2(δφ34φ56φ78)
]

=

∫

d4x E(8)
[

− 2∂1(φ2φ34φ56φ78)− 3∂3∂4(φφ12φ56φ78)
]

δφ

= − 5

∫

d4x E(8)(φ12φ34φ56φ78). (39)

Where we have integrated by parts and found that the only term to survive the

summation with the totally antisymmetric tensor E(8) has, indeed, only derivatives of

second order.

As shown by Ref. [54], these galileon interactions can be constructed as the short-

distance limit of a conformally invariant scalar field Lagrangian. Due to the conformal

invariance, we generally expect that the maximally symmetric solutions including the

self-accelerating de Sitter solution to describe the vacuum. These conformal invariant

theories can be written in terms of a particular combination of the curvature invariants

built out of an effective metric gµν = e2φηµν [54, 73]. These galileon interaction terms

can be also constructed from the action of a probe brane floating in a higher dimensional

spacetime in the limit in which only a scalar field degree of freedom remains [74]. If

we consider a probe brane in a 5D Anti-de Sitter spacetime, the resultant galileon

action was shown to be equivalent to the conformal invariant theories constructed from

gµν = e2φηµν [73]. Also it is possible to construct galileon interactions for multiple scalar

fields. See [75, 76, 77] for reviews and references therein. The galileon interactions can

be also extended to vectors [78, 79, 80].

In curved space, if we covariantise the action naively by replacing the partial

derivatives by covariant derivatives, the equation of motion now contains the third

derivative of the metric for the quartic (L4) and quintic (L5) galileons [81]. In general,

higher derivative theories lead to the so-called Ostragradsky ghost. f(R) gravity avoids

this instability as the equation of motion can be rewritten in the second order form
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by introducing a scalar field. In fact, it has been claimed that in the case of a naive

covariantisation of Eq. (38), the equations of motion can be written in the second order

form despite the appearance of the higher derivative terms due to a hidden constraint

[82] (see also [83, 84]). Here we first discuss a way to remove the third derivatives

by introducing a counter term. The covariant action that leads to the second order

equations of motion for metric and the scalar field is given by [85]

L3 = −1

2
(∇φ)22φ, (40)

L4 =
1

8
(∇φ)4R− 1

2
(∇φ)2

[

(2φ)2 − (∇µ∇νφ)
2
]

, (41)

L5 = −3

8
(∇φ)4Gµν∇µ∇νφ

−1

4
(∇φ)2[(2φ)3 − 32φ(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3]. (42)

The non-minimal coupling terms for L4 and L5 are the counter terms that are necessary

to remove higher derivatives in the equations of motion.

These actions can be generalised further, leading to the Horndeski action [81]:

L2 = K(φ,X), (43)

L3 = −G3(φ,X)2φ, (44)

L4 = G4(φ,X)R +G4X(φ,X)
[

(2φ)2 − (∇µ∇νφ)
2
]

, (45)

L5 = G5(φ,X)Gµν∇µ∇νφ

−1

6
G5X(φ,X)[(2φ)3 − 32φ(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3], (46)

where X = −∂µ∂µφ/2 and K,G3, G4 and G5 are free function of the scalar field and X.

This action was originally found by Horndeski in 1974 [86]. The Horndeski action was

revisited by Ref. [87] and it was shown to be equivalent to the action (46) by Ref. [88].

Expanding the metric and scalar field around the Minkowski background, we obtain

the galileon interactions. In addition, there appear additional couplings between tensors

and scalars due the non-minimal coupling [89, 90]. We consider a Minkowski background

with a constant scalar field φ = φ0 and study the deviations around it, namely

φ = φ0 + π, gµν = ηµν + hµν . (47)

Notice that for the background to be a solution, one needs K = dK/dφ = 0 at φ = φ0.

We expand the Horndeski action (46) in terms of the fluctuations (47), using the

following assumptions: the fields π and hµν are small, hence we neglect higher order

interactions containing the tensor perturbations hµν , as well as terms containing higher

order powers of the scalar fluctuation π and its first derivatives only. On the other

hand, we keep all terms with second order derivatives of π that preserve the galileon

symmetry (33). The kinetic term for metric perturbations is contained in G4(φ, x)R.

Thus we introduce the Planck scale as G4 = M2
Pl/2 and canonically normalise hµν as

h̄µν = MPlhµν . We further introduce a new mass dimension Λ3 so that terms involving

second order derivatives of π have the appropriate dimensions. By explicitly expanding
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the Horndeski action (46) under these prescriptions, we find [90]

Leff = − 1

4
h̄µνEαβ

µν h̄αβ +
η

2
π2π +

µ

Λ3
3

Lgal
3 +

ν

Λ6
3

Lgal
4 +

̟

Λ9
Lgal

5

− ξh̄µνX(1)
µν − 1

Λ3
αh̄µνX(2)

µν +
1

2Λ6
βh̄µνX(3)

µν +
1

2MPl

h̄µνTµν , (48)

where Lgal are the galileon terms (36) and the tensor-scalar couplings X
(i)
µν are given by

X(1)
µν = ηµν [Π]− Πµν ,

X(2)
µν = Π2

µν − [Π]Πµν +
1

2
ηµν([Π]

2 − [Π2]),

X(3)
µν = 6Π3

µν − 6Π2
µν [Π] + 3Πµν([Π]

2 − [Π2])

− ηµν([Π]
3 − 3[Π][Π2] + 2[Π3]), (49)

where the shorthand notations Πµν = ∂µ∂νπ, Π
n
µν = ΠµαΠ

αβ...Πλν and [Πn] = Πn µ
µ are

introduced and Eαβ
µν h̄αβ is the linearised Einstein tensor. We define seven dimensionless

parameters ξ, η, µ, ν,̟, α, β as follows [89]

G4φ =MPlξ, KX − 2G3φ = η,−G3X + 3G4φX =
µ

Λ3
3

,

G4X −G5φ =
MPl

Λ3
3

α, G4XX − 2

3
G5φX =

ν

Λ6
3

,

G5X = −3MPl

Λ6
3

β,G5XX = −3̟

Λ9
3

, (50)

where all functions are evaluated at the background, φ = φ0 and X = 0, and

G3φ = dG3/dφ,G3X = dG3/dX etc.

The above action respects the galileon symmetry (33). The coupling between the

metric and scalar perturbations h̄µνX
(1)
µν and h̄µνX

(2)
µν can be eliminated by the local field

redefinition [91]

h̄µν = ĥµν − 2ξπηµν +
2α

Λ3
3

∂µπ∂νπ, (51)

so that the action (48) now becomes

Leff = −1

4
ĥµνEαβ

µν ĥαβ +
η + 6ξ2

2
π2π

+
µ+ 6αξ

Λ3
3

Lgal
3 +

ν + 2α2 + 4βξ

Λ6
3

Lgal
4 +

̟ + 10αβ

Λ9
3

Lgal
5

+
1

2Λ6
3

βĥµνX(3)
µν +

1

2MPl

ĥµνTµν −
2ξ

MPl

πT +
2α

MPlΛ3
3

∂µπ∂νπT
µν . (52)

However, the coupling ĥµνX
(3)
µν cannot be removed by a local field redefinition [91].

The transformation (51) introduces a coupling between π and Tµν via the de-mixing of

scalar from gravity. This provides the effective action that describes the scalar-tensor

interactions that satisfies the galileon symmetry.

Although we started from the Horndeski action, the non-linear completion of this

effective action is not necessarily the Horndeski action. As we have already seen, the
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cubic galileon term appears in the decoupling limit of the 5D braneworld model. Massive

gravity is another example with a decoupling limit described by this effective action,

as we will see later. Another simple example is given by an extension of the Horndeski

action called beyond Horndeski [82].

In order to introduce beyond Horndeski gravity, first we formulate the Horndeski

theory in the unitary gauge [82, 92]. In the unitary gauge, the scalar field is only the

function of time φ = φ(t). We perform the 3+1 ADM decomposition of space-time

described by the line element

ds2 = gµνdx
µdxν = −N2dt2 + hij(dx

i +N idt)(dxj +N jdt) , (53)

We introduce the extrinsic curvature defined by

Kµν = hλµnν;λ, (54)

where nµ = (−N, 0, 0, 0) is a unit vector orthogonal to the constant t hyper-surfaces

Σt and a semicolon represents a covariant derivative. We also introduce the three-

dimensional Ricci tensor Rµν = (3)Rµν on Σt Then we can construct a number of

geometric scalar quantities:

K ≡ Kµ
µ, S ≡ KµνK

µν , R ≡ Rµ
µ, Rµν , U ≡ RµνK

µν . (55)

The Lagrangian that leads to second order equations of motion can be expressed in

terms of the geometric scalars introduced above as [82, 92]

L = A2(N, t) + A3(N, t)K + A4(N, t)(K
2 − S) + B4(N, t)R

+A5(N, t)K3 +B5(N, t) (U −KR/2) , (56)

where K3 ≡ K3 − 3KKµνK
µν + 2KµνK

µλKν
λ.

By expressing the Horndeski action using the geometric scalars in the unitary gauge,

we can find the relation between the coefficients Gi in Eq. (46) and Ai, Bi in Eq. (56)

A2 = G2 −XF3,φ , A3 = 2(−X)3/2F3,X − 2
√
−XG4,φ ,

A4 = −G4 + 2XG4,X +XG5,φ/2 , B4 = G4 +X(G5,φ − F5,φ)/2 ,

A5 = −(−X)3/2G5,X/3 , B5 = −
√
−XF5 , (57)

where F3 and F5 are auxiliary functions obeying the relations G3 = F3 + 2XF3,X

and G5,X = F5/(2X) + F5,X . Since X = −φ̇2(t)/N2 in unitary gauge, the functional

dependence of φ and X can translate to that of t and N .

The Horndeski theories satisfy the following two conditions

A4 = 2XB4,X − B4 , A5 = −1

3
XB5,X . (58)

It is possible to go beyond the Horndeski theory without imposing the two conditions

(58) [82]. This generally gives rise to derivatives higher than second order, but it does

not necessarily mean that an extra propagating degree of freedom is present [93, 94].

Interesting, if we naively covariantise the galileon action of the form given by Eq. (38),

this is included in the beyond Horndeski theory.
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The Horndeski theory does not specify how matter couples to gravity. Another

possibility for beyond Horndeski theories is to consider a metric

ḡµν = Ω2(φ,X)gµν + Γ(φ,X)∂µφ∂νφ, (59)

and couple matter to gravity using ḡµν [95, 83, 84]. The disformal coupling without the

kinetic term dependence Γ(φ) has attracted a lot of interest recently (see for example

[96] and references therein) whereas the kinetically dependent disformal coupling has

been used to show the connection between beyond Horndeski theories given by Eq. (56)

and the Horndeski theory [92].

Given the number of free functions in these theories it is difficult to discuss

cosmology in a general way. One interesting feature of this model is that it is possible

to explain the accelerated expansion of the Universe without introducing a potential. A

simple example is given by the Horndeski theory with [97, 98]

K(X) = −X, G3(X) =

(

r2c
M2

Pl

X

)n

. (60)

Note that the sign for the kinetic term is opposite to the normal scalar field. However,

this does not imply that the perturbations are ghostly when expanding around the non-

trivial cosmological background. This theory admits the tracker solution for the scalar

field given by

φ̇ =
1

3GXH
, (61)

and this leads to the Friedmann equation of the form
(

H

H0

)2

= (1− Ωm)

(

H

H0

)− 2
2n−1

+ Ωma
−3. (62)

This Friedman equation is similar to the one that we found in the DGP braneworld

which realised self-acceleration. The covariant galileon model described by Eq. (40)

corresponds to n = 1. The perturbations around this solution is stable despite the

wrong sign for the kinetic term thanks to the cubic galileon term. See Refs. [99, 100,

101, 102, 103, 104, 105, 106, 107, 108, 109, 97, 110, 111, 112, 113, 114, 115, 116, 117,

118, 119, 120, 121] for an incomplete list of studies of cosmology in this class of models.

Galileons have also been used to construct general models of inflation. See references in

[11, 77, 122].

2.6. Massive gravity/bigravity

Another theory that is closely related to galileons is massive gravity (see [31] for a

review). This section is based largely on a review Ref. [123]. Can the graviton have

a mass? Attempts to answer this question date back to the work by Fierz and Pauli

(FP) in 1939 [124]. They considered a mass term for linear gravitational perturbations,

which is uniquely determined by requiring the absence of ghost degrees of freedom. The

mass term breaks the gauge invariance of GR, leading to a graviton with five degrees

of freedom instead of the two found in GR. There have been intensive studies into
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what happens beyond the linearised theory of FP. In 1972, Boulware and Deser found

a scalar ghost mode at the non-linear level, the so called sixth degree of freedom in

the FP theory [125]. This issue has been re-examined using an effective field theory

approach [126]. They introduced scalar fields known as Stückelberg fields to restore

gauge invariance so that the theory is manifestly convariant. In this formulation, the

Stückelberg fields describe the additional degrees of freedom in massive graviton. They

acquire non-linear interactions containing more than two time derivatives, signalling the

existence of a ghost. In order to construct a consistent theory, non-linear terms should

be added to the FP model, which are tuned so that they remove the ghost order by

order in perturbation theory.

Interestingly, this approach sheds light on another famous problem with FP massive

gravity; due to contributions from the scalar degree of freedom, solutions in the FP

model do not continuously connect to solutions in GR, even in the limit of zero graviton

mass. This is known as the van Dam, Veltman, and Zakharov (vDVZ) discontinuity

[127, 128]. Observations such as light bending in the Solar System would exclude the FP

theory, no matter how small the graviton mass is. In 1972, Vainshtein [129] proposed

a mechanism to avoid this conclusion; in the small mass limit, the scalar degree of

freedom becomes strongly coupled and the linearised FP theory is no longer reliable. In

this regime, higher order interactions, which are introduced to remove the ghost degree

of freedom, should shield the scalar interaction and recover GR on sufficiently small

scales realising the Vainshtein mechanism.

In order to avoid the presence of a ghost, interactions have to be chosen in such a

way that the equations of motion for the scalar degrees of freedom contain no more than

two time derivatives, i.e the galileon terms. Therefore, one expects that any consistent

non-linear completion of FP contains these galileon terms in the limit in which the scalar

mode decouples from the tensor modes, the so-called decoupling limit. This turns out to

be a powerful criteria for building higher order interactions with the desired properties.

Indeed, following this route, de Rham and Gabadadze constructed a family of ghost-free

extensions to the FP theory, which reduce to the galileon terms in the decoupling limit

[130]. Adopting an effective field theory approach, the basic building block is a tensor

Hµν , corresponding to the covariantization of metric perturbations, namely:

gµν = ηµν + hµν ≡ Hµν + Σµν , Σµν ≡ ∂µφ
α∂νφ

βηαβ. (63)

The Stückelberg fields φα are introduced to restore reparameterisation invariance, hence

transforming as scalar from the point of view of the physical metric [126]. The internal

metric ηαβ corresponds to a non-dynamical reference metric, usually assumed to be

Minkowski space-time. Therefore, around flat space, we can rewrite Hµν as

Hµν = hµν + ηβν∂µπ
β + ηαµ∂νπ

α − ηαβ∂µπ
α∂νπ

β. (64)

From now on, indices are raised/lowered with the dynamical metric gµν , unless otherwise

stated. For example, Hµ
ν = gµρHρν . Moreover, the Lagrangian constructed from Hµν

is invariant under coordinate transformations xµ → xµ + ξµ, provided πµ transforms as

πµ → πµ + ξµ. (65)
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The dynamics of the Stückelberg fields φα are at the origin of the two features:

the BD ghost excitation and the vDVZ discontinuity. With respect to the first issue,

as noticed by Fierz and Pauli, one can remove the ghost excitation, to linear order in

perturbations, by choosing the quadratic structureHµνH
µν−H2. When expressed in the

Stückelberg field language, one of the four Stückelberg fields becomes non-dynamical.

However, when going beyond linear order, this constraint disappears, signalling the

emergence of an additional ghost mode [126]. Remarkably, Ref. [130] has shown how to

construct a potential, tuned at each order in powers of Hµν , to hold the constraint and

remove one of the Stückelberg fields. Even though the potential is expressed in terms

of an infinite series of terms for Hµν , it can be re-summed into the following finite form

[131]

U = −m2 [U2 + α3 U3 + α4 U4] , (66)

where αn are free dimensionless parameters, Un = n! detn(K) and the tensor K ν
µ is

defined as

K ν
µ ≡ δ ν

µ −
(

√

g−1Σ
) ν

µ
. (67)

The square root is formally understood as
√
K α

µ

√
K ν

α = K ν
µ . The determinant can be

written in terms of traces as

det
2
(K) = (trK)2 − tr (K2),

det
3
(K) = (trK)3 − 3(trK)(trK2) + 2trK3,

det
4
(K) = (trK)4 − 6(trK)2(trK2) + 8(trK)(trK3) + 3(trK2)2 − 6trK4 .

All terms detn(K) with n > 4 vanish in four dimensions. Therefore, the massive gravity

theory can be written as

L =
M2

P l

2

√−g
(

R−m2U
)

, (68)

where U is given by (66).

The theory defined by (68) has Minkowski spacetime as a trivial solution, hence

one can rewrite the metric gµν and the scalars φµ as deviations from flat space, namely

gµν = ηµν + hµν , φα = xα − πα, (69)

where xα are the usual cartesian coordinates spanning ηαβ.

We focus on a convenient limit of Lagrangian (68) which captures most of the

dynamics of the helicity-0 mode, but keeps the linear behaviour of the helicity-2 (tensor)

mode [126]. The limit, called the decoupling limit, is defined as

m→ 0 , MP l → ∞ , Λ3 ≡ m2MP l = fixed. (70)

In order to obtain canonically normalized kinetic terms for the helicity 2 and helicity 1

modes, together with the relevant couplings for the helicity 0 modes, when this limit is

taken one needs to canonically normalise the fields in the following way

hµν → MP l hµν , Aµ → mMP lAµ , π → m2MP l π, (71)
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where we have split the Stückelberg fields πµ into a scalar component π and a

divergenceless vector Aµ, namely

πµ = ηµν(∂νπ + Aν). (72)

The resulting Lagrangian in the decoupling limit is [130]

L = − 1

2
hµνEαβ

µν hαβ + hµν
(

X(1)
µν +X(2)

µν +X(3)
µν

)

, (73)

where we have ignored the vector. This decoupling limit theory is a special case of

the effective theory derived from the Horndeski theory Eq. (52). Thus in this limit the

theory shares the same properties as the Horndeski theory.

Cosmology in this massive gravity theory is rather peculiar. If we assume that the

fiducial metric Σµ
ν obeys the FRW symmetry only the open FRW solution is allowed

[132, 133]. We can allow an inhomogeneous fiducial metric by choosing the Stückelberg

fields of the form [134, 135, 136, 137, 138]

φ0 = f(t, r), φi = g(t, r)
xi

r
. (74)

Then there exists a class of solution characterised by

g(t, r) = c−1
0 a(t, r)r, c0 =

1 + 6α3 + 12α4 ±
√

1 + 3α3 + 9α2
3 − 12α4

3(1 + 3α3 + 4α4)
. (75)

The Einstein equations are given by

Gµ
ν = −3H2δµν , H2 =

1 + 3α3 ± 2α5

3(1 + 3α3 ± α5)2
m2, (76)

where

α2
5 ≡ 1 + 3α3 + 9α2

3 − 12α4 . (77)

The graviton mass plays the role of an effective cosmological constant. This model

could realise the idea of technical naturalness. Since the massless limit has more

symmetry (i.e. GR), the small mass is natural in the sense that the quantum corrections

only renormalise the mass as m2 → m2 + O(1)m2 [139]. Unfortunately, however,

perturbations around these solutions are found to be unstable [140, 141, 142, 143].

A natural extension of massive gravity is realised by promoting the fiducial metric,

Σµ
ν , to a dynamical metric described by another Einstein-Hilbert action. This is known

as bigravity. The action for the massive gravity model (68) can be extended to the

bigravity model without introducing a ghost [144]. In this case, it is possible to find FRW

solutions for both of the metrics [145, 146, 147]. Unfortunately, again these solutions

are found to be unstable under linear perturbations [148, 149, 150, 151, 152, 153, 154]

unless we tune the Planck scale for the second metric to decouple the massive graviton

from matter [155]. It is also possible to modify the coupling to matter by introducing

an effective metric that is made of two metrics. Generally this brings back the BD

ghost [156]. There is a coupling which removes the BD ghost in the decoupling limit

[157, 158]. However, linear perturbations around the cosmological solutions are again

unstable [159, 160, 161, 162]. These massive/bi-gravity theories can be formulated
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elegantly using the tetrad formalism [163]. It has been suggested that there is a matter

coupling that does not introduce the BD ghost in the full theory although it is not easy

to find a corresponding metric formulation [164] (see also [165, 166]). See Ref. [31] for

other extensions of the model and a more complete list of references. It remains to be

seen whether there exist stable solutions where the acceleration is driven by the mass

and are also distinguishable from ΛCDM observationally.

2.7. Outlook

Although there has been significant progress in developing modified gravity models and

many interesting new ideas have been explored to tackle the cosmological constant and

the late time acceleration problem, we still do not have a consistent theory that is a

true alternative to ΛCDM. Our quest for modified gravity models as an alternative to

ΛCDM still continues.

However, many different models that have been reviewed so far have common

properties. There are usually three regimes of gravity:

• There is a length scale above which gravity is modified. This can be simply

determined by the cosmological constant, or the Compton wavelength of a massive

graviton, or the cross-over scale in a braneworld model.

• Even below the modification scale, gravity is still modified due to the extra scalar

degree of freedom. In this regime, gravity is described by scalar tensor gravity with

a O(1) Brans-Dicke parameter.

• On small scales there appears a scale below which GR is restored due to the non-

linear interaction of the scalar field. This is often called the screening mechanism.

This is essential to ensure that the theory passes the stringent Solar System

constraints.

This general picture is useful to develop a strategy to construct cosmological

and astrophysical tests of gravity even though the examples that we have seen suffer

from various theoretical problems [167]. One of the major developments of modified

gravity is the screening mechanism, which enables us to modify gravity significantly

on cosmological scales yet to satisfy the Solar System constraints. We will review the

screening mechanisms in the next section.

3. Screening mechanism

3.1. Why do we need a screening mechanism?

As we learnt from several examples of modified gravity models, one of the difficulties in

explaining the accelerated expansion of the Universe by modifying gravity is that GR

is tested to high accuracy in the Solar System. In the simplest example of Brans-Dicke

gravity, once we impose the Solar System constraints, there is essentially no room to

modify gravity on cosmological scales. One possibility to avoid this problem is to break
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the equivalence principle. The stringent constraints in the Solar System are obtained

using objects made of baryons. If the additional degree of freedom only couples to dark

matter not to baryons, we can evade these stringent constraints while it is possible to

modify gravity significantly on cosmological scales. This is known as interacting dark

energy models in the Einstein frame where the scalar field is coupled only to dark matter

[168].

If we keep the equivalence principle, we need to have a mechanism to suppress the

modification of gravity on small scales. We loosely call this mechanism the screening

mechanism. The screening mechanism is realised by the fact that the additional degree of

freedom, which is often represented by a scalar field, obeys a non-linear equation driven

by the density. The density varies over many orders of magnitude in our Universe. The

critical density of the universe is given by ρcrit = 10−29 g cm−3. The typical density

inside galaxies is ρgal = 10−24 g cm−3. The density in the Sun is given by ρsun = 10 g

cm−3. Thus if we expand the density around the cosmological background, the density

contrast in the environments where we perform conventional tests of gravity is much

larger than one. The screening mechanism utilises the non-linearity of the scalar field

driven by the non-linear density contrast to change the behaviour of the scalar field

from cosmology to the Solar System.

3.2. Screening mechanisms

In this section we follow Ref. [11] and classify the screening mechanisms. A general

Lagrangian for a scalar field can be written schematically as

L = −1

2
Zµν(φ, ∂φ, ∂2φ)∂µφ∂νφ− V (φ) + β(φ)T µ

µ , (78)

where Zµν represents derivative self-interactions of the scalar field, V (φ) is a potential,

β(φ) is a coupling function and T µ
µ is the trace of the matter energy-momentum tensor.

In order to avoid the Ostrogradsky ghost associated with higher time derivatives, Zµν

contains up to the second derivative of the field. In the presence of non-relativistic

matter T µ
µ = −ρ, the scalar field’s dynamics depends on the local density of the system.

Let’s consider the background field φ̄ which depends on the local density. Around this

background, the dynamics of fluctuations is determined by three parameters: the mass

m(φ̄), the coupling β(φ̄) and the kinetic function Zµν(φ̄). Screening can be realised

mainly in three different ways utilising these three parameters:

• Large mass

If the mass of fluctuations m2(φ̄) is large in dense environments, the scalar field

does not propagate above the Compton wavelength m(φ̄)−1 and the additional

force mediated by the scalar field is suppressed. On the other hand, in low density

environments such as cosmological background, the mass can be light and the scalar

field mediates the fifth force modifying gravity significantly. This idea is realised in

the chameleon type screening mechanism [44, 45].
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• Small coupling

If the coupling to matter β(φ̄) is small in the region of high density, the strength of

the fifth force generated by the scalar field is weak and modifications of gravity is

suppressed. On the other hand, in low density environments, the fifth force strength

can be of the same order of gravity. This idea is realised in the dilaton [169] and

symmetron mechanism [170].

• Large kinetic term

If we make the kinetic function Zµν(φ̄) large in dense environments, the coupling

to matter is effectively suppressed. There are two possibilities to make the kinetic

term large. One is to assume that the first derivative of the field becomes large.

This idea is realised in the k-mouflage type mechanism [171]. On the other hand,

in the Vainshtein mechanism [129], the second derivative of the field becomes large

in the region of high density.

In the next section, we look at examples of models that accommodate these screening

mechanisms.

3.3. Examples

3.3.1. Chamleon/Symmetron/Dilaton mechanism This class of model is represented

by an action (23) in the Einstein frame

S =

∫

d4x
√−g

[

1

16πG
R− 1

2
(∇φ)2 − V (φ)

]

+ Sm(A
2(φ)gµν). (79)

The matter fields couple to a metric A2(φ)gµν . Due to this coupling, a test particle feels

the fifth force ∇ lnA(φ) generated by the scalar field. In these models, the dynamics of

the scalar field is determined by the local density dependent effective potential

Veff = V (φ)− [A(φ)− 1]T µ
µ . (80)

The dynamics of the scalar field is characterised by the mass of the scalar field around

the minimum of the potential φ = φ̄ and the coupling function

m2 = V ′′
eff(φ̄) β =MPl

d lnA

dφ

∣

∣

∣

∣

φ=φ̄

. (81)

Below we show typical choices of the potential and the coupling function to realise

the screening mechanisms:

A(φ) = 1 + ξ
φ

Mpl

, V (φ) =
M4+n

φn
chamaleon, (82)

A(φ) = 1 +
1

2M
(φ− φ̄)2, V (φ) = V0e

−φ/Mpl dilaton, (83)

A(φ) = 1 +
1

2M2
φ2, V (φ) = −µ

2

2
φ2 +

λ

4
φ4 symmetron, (84)

where the mass scale M is a parameter of these models. In the chameleon mechanism,

the mass m2 becomes large in the region of high densities while in the dilaton and
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symmetron models, the coupling β becomes small in high dense environments. Note

that the second derivative of the effective potential does not depend on the enegy density

explicitly in chameleon models as A(φ) is lienar in φ. The density dependence of the

mass comes from the fact that the minimum of the potential φ̄ depends on the density.

In all these models, if we consider an object with the gravitational potential |ΨN |,
the screening of the fifth force happens when the gravitational potential |ΨN| exceeds
some critical value |ΨN | > ψc. We will show this in the case of the chameleon mechanism

below.

3.3.2. K-moflouge/Vainshtein mechanism The other class of the model utilises the

non-linear derivative interactions to screen the fifth force. Typical choices of the

functions in the Horndeski action (46)

S =

∫

d4x
√−g

[

1

16πG
R +K(φ,X)−G3(φ,X)2φ

]

+ Sm(gµν). (85)

to realise the screening mechanisms are given below:

K(φ,X) = X +
α

4Λ4
X2, k-mouflage, (86)

K(φ,X) = X, G3(φ,X) =
1

Λ3
X Vainshtein. (87)

The screening condition for a spherically symmetric object with M and radius R

is determined by the solution for the scalar field φ. Again let us consider an object

with the gravitational potential |ΨN | = GM/R. In the k-mouflage mechanism, the

screening of the fifth force happens when the first derivative of the potential, i.e. the

gravitational acceleration exceeds some critical value |∂ΨN | > Λc. On the other hand,

in the Vainshtein mechanism the screening operates when the second derivative of the

potential, i.e. the spatial curvature, exceeds some critical value |∂2ΨN | > Λ2
c . We

will show this explicitly for the Vainshtein mechanism below by solving the scalar field

equation.

3.4. Chameleon screening

Using a simple example, we show how the chameleon mechanism suppresses the scalar

field [45]. Let’s consider a scalar field with massm that is coupled to matter. We assume

that the function A(φ) can be approximated as A(φ) = 1 + βφ/MPl. In the case of BD

gravity

β2 =
1

2(3 + 2ωBD)
, (88)

which gives β2 = 1/6 for f(R) gravity. In the Einstein frame, the geodesic equation of a

test particle is modified due to the coupling between the scalar field and matter. From

the geodesic equation, the acceleration of the particle is obtained as

a = −∇Ψ− d logA

dφ
∇φ = −∇Ψ− β∇φ, (89)
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and the equation of motion for the scalar field is given by

∇2φ−m2φ = 8πGβρ, (90)

where we assume φ does not depend on time. A spherically symmetric solution outside

the matter source is given by

φ(r) = −2βGM

r
e−mr, (91)

where M is the mass of the object. For scales smaller than the Compton wavelength,

we can ignore the Yukawa suppression in Eq. (91). The acceleration of the particle can

be obtained by substituting Eq. (91) into Eq. (89) as a = −GeffM/r2 where

Geff = G
(

1 + 2β2
)

= G
(4 + 2ωBD

3 + 2ωBD

)

. (92)

Thus the test particle feels the modified Newton constant as in BD gravity without

potential (see Eqs. (17) and (18)). On the other hand, due to the Yukawa suppression

at length scales larger than the Compton wavelength m−1, the scalar field does not

propagate and the test particle feels normal gravity. The idea of chameleon screening is

to make the mass dependent on the density so that the scalar field does not propagate

in the dense environment.

To realise this idea, we need to introduce a potential to the scalar field. The

equation of motion is generalised to

∇2ϕ = V ′
eff(ϕ) = V ′(φ) + 8πGβρ. (93)

By choosing the potential V (φ) appropriately, we can realise the situation where the

mass of the scalar field is large for larger densities.

flog flog

-V-V -V

r < rscr r   <rscr

Figure 3. The effective potential −Veff inside and outside the matter source. We

can understand the spherically symmetric solution as a dynamically time dependent

field governed by −Veff . The red curve is the bare potential −V and the blue curve

represents the density dependent contribution. The back curve is the total effective

potential −Veff .

Let’s consider a spherically symmetric matter source with a constant density within

the radius r = R. Inside the source, the scalar field is trapped at the minimum of the
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effective potential V ′
eff = 0, φ = φs. Outside the source, we assume that we have the

background density ρ∞ ≪ ρs and the scalar field is again trapped by the minimum

φ = φ∞ with mass m∞. The dynamics of the scalar field is governed by the equation

φ(r)′′ +
2

r
φ′(r) = V ′(φ) + 8πGβρ. (94)

By identifying r as time t, this is equivalent to the time evolution of the scalar field with

a potential −Veff (Fig. 3). The scalar field starts from the “maximum” of the potential

φ = φs and then rolls to another “maximum” φ = φ∞. The solution for the scalar field

outside the matter source is obtained as φ(r) = −(C/r)e−m∞r + φ∞. From the radius

r = R until the scalar field settles down to φ = φs at radius r = rscr, the scalar field

dynamics is driven by the change of the density so we can ignore the contribution from

the potential. Then the equation of motion for the scalar in this regime is given by

φ(r)′′ +
2

r
φ′(r) = 8πGβρ, (95)

which admits the solution φ = (αρc/3MPl)r
2/2 + A/r + B. The integration constants

A,B and C, and the radius rscr are determined by matching the field and its first

derivative at r = R and r = rscr. We obtain the solution outside the source as

φ(r) = −
(

3∆R

R

)

2GMβ

r
e−m∞r + φ∞, (96)

where
∆R

R
=

φ∞ − φs

6βMPl|ΨN |
∼ R− rscr

R
, (97)

and ΨN is the gravitational potential of the object |ΨN | = GM/R. If 3∆R/R > 1 this

solution is not valid and the solution becomes Eq. (96) with 3∆R/R = 1. The condition

∆R/R ≪ 1 is called the thin shell condition. If this condition is satisfied only the mass

within the thin-shell of size ∆R contributes to the force because in the interior of the

source the scalar field is heavy and the scalar force is Yukawa suppressed. Note that we

naively say that the scalar field is screened in dense environments. This is in fact not a

very accurate statement. What matters is the gravitational potential of the object not

the density. See Fig. 4 for a schematic picture of the thin shell solution.

Although we derived the solutions in the Einstein frame where the dynamics of

the scalar field is easier to understand, it is straightforward to translate the solutions

into those found in the original (Jordan) frame where the scalar field is not coupled to

matter directly while it couples to gravity non-minimally (see Eq. (12)). The solutions

for the metric and scalar field perturbation are given by

∇2Ψ = 4πGµρ, Ψ = η−1Φ, (98)

µ = 1 + 2β2
eff , η =

1− 2β2
eff

1 + 2β2
eff

, β2
eff = β23∆R

R
, (99)

when the thin shell condition is satisfied. The scalar field in the Jordan frame ψ is

related to φ as ψ = −2βφ/MPl for ψ ≪ 1. In particular, for f(R) gravity we have,

ψ = fR = −
√

2/3(φ/MPl) (see Eq. (26)) and the thin shell condition can be written as

|fR∞ − fRs| <
2

3
|ΨN |. (100)
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Figure 4. A schematic picture of the thin shell profile of the scalar field.

Let’s consider the Solar System constraint [46]. In the Sun, the density is ρ = 10

g cm−3 while the density of the Milky way galaxy is typically 10−24 g cm−3. Thus the

scalar field in the Solar System is well suppressed compared with the one in the Milky

way galaxy φsolar ≪ φgal. If the thin shell condition is satisfied, β2
eff is small so we can

approximate η as η − 1 = −4β2
eff . The constraints |η − 1| = (2.1 ± 2.3) × 10−5 gives a

constraint on the galaxy field

βφgal

MPl

< 10−11, (101)

where we used the fact that the Milky Way’s potential is approximately given by

ΨNgal ∼ 10−6. This is a model independent constraint but in order to translate this

constraint to the mode parameters, we need to interpolate this constraint to the scalar

field in the cosmological background φcos. For this, we need to specify the potential. We

consider a potential of the form

V = Λ−M4

(

φ

MPl

)
n

1+n

, (102)

as in the f(R) gravity given by Eq. (24) (see Eq. (25)). We assume that the scalar field

is at the minimum of the potential
(

φ

MPl

)

=

(

(n+ 1)βρ

nM4

)−(1+n)

. (103)

Given that the ratio of the cosmological background and the Milky way galaxy is

ρgal/ρcos ∼ 105, the ratio of the scalar field is given by

φcos

φgal

=

(

ρcos
ρgal

)−(1+n)

= 105(1+n). (104)

Using this relation between φgal and φcos, we obtain the constraint on the cosmological

field φcos

To derive the constraint, we assumed that the galaxy field is at the minimum of the

potential. In fact, if the Milky way is not screened the dynamics of stars are disrupted.
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Imposing the thin shell condition for the Milky Way galaxy, we obtain the constraint

βφcos/MPl < 10−6 where we again have used ΨNgal ∼ 10−6 and φgal ≪ φcos. This

constraint is much more stringent than Eq. (101) for n > 0. Note that to derive the

constraint that the Milky Way galaxy is screened, we assumed that the Milky way is an

isolated system in the cosmological background. There is a possibility that the Milky

Way galaxy is screened by the Local Group with a potential |ΨN | ∼ 10−4. In this case

the constraint is relaxed to be βφ∞/MPl ∼ 10−4.

For the potential given by (102), laboratory tests give much weaker constraints

compared with the cosmological constraints [13]. See [13, 11] for laboratory tests of the

chameleon models.

The constraint that the Milky Way with the potential |ΨN | = 10−6 is screened

has important implications. Firstly, this unfortunately excludes the possibility of self-

acceleration [172]. The change of φ between the cosmological density and the galactic

density ρgal = 105ρcos is suppressed by the thin shell condition β(φcos−φgal)/MPl < 10−6.

If we translate this to the cosmological evolution of the scalar field, this implies that

the scalar field barely moves between 0 < z < 1 where z is the redshift (see [173] for

caveats). Thus the scalar field cannot be responsible for the acceleration. This also

excludes the possibility to modify gravity on cosmological scales. The mass of the scalar

field around the minimum in the cosmological background is given by [172, 174]

m2
cos ∼

ρcos
MPl

(

MPl

βφcos

)

< 10−6H2
0 . (105)

Thus there is no modification of gravity on scales larger than 1 h−1Mpc. Another

implication is that GR is modified only with objects with a shallower potential |ΨN | <
10−6. We will discuss how we test models with the Chameleon mechanism using these

objects later.

Finally we discuss briefly about the quantum corrections. The one-loop Coleman-

Weinberg correction to the potential grows as m4
eff . Imposing the condition that the

quantum corrections are under control at laboratory density ρlab ∼ 10 g cm−3, the

constraint on the mass of the chameleon is given by [175]

mlab <

(

48π2β2ρ2lab
MPl

)1/6

= 7.3× 10−3

(

βρlab
10 g cm−3

)1/3

eV. (106)

This upper bound is already in tension with the laboratory constraints on the fifth force.

This also means that the cut-off scale of this theory is rather low ΛUV ∼ 10−3eV ∼ ρ
1/4
Λ .

The coupling to matter also generates corrections to the potential but this contribution

is suppressed by the cut-off scale of the theory ΛUV as ∆m/m = ΛUV/M
2
Pl so this is

totally negligible.

3.5. Vainshtein mechanism

We consider the simplest cubic galileon model to understand how the Vainshtein

mechanism operates. We use the equation of motion for the scalar field in the DGP
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model, Eq. (30):

3β∇2φ+ r2c

[

(∇2φ)2 − (∇i∇jφ)(∇i∇jφ)
]

= 8πGδρ. (107)

For the spherically symmetric case, it is possible to integrate the equation once. Outside

the matter source, the solution obtained is [52]

dφ

dr
=

2rg
3βr2

(

r

rV

)3
(

√

1 +
(rV
r

)3

− 1

)

, rV =

(

8r2crg
9β2

)1/3

, (108)

where rg = 2GM . Below the Vainshtein radius rV , the non-linear interaction suppresses

the fifth force and we recover GR solutions with small corrections [51, 50]. The solutions

for the metric perturbations can be obtained by subsituting the scalar field solution (108)

in the limit r ≪ rV into Eqs. (14) and (16) as

Φ =
GM

r
±
√

rgr

2r2c
, Ψ = −GM

r
±
√

rgr

2r2c
. (109)

where the upper (lower) sign corresponds to a positive (negative) β, i.e the normal

(self-accelerating) branch. On the other hand, outside the Vainshtein radius, the linear

solution is recovered [51, 50, 176]

Φ =
GM

r

(

1− 1

3β

)

, Ψ = −GM
r

(

1 +
1

3β

)

. (110)

See Fig. 5 for a schematic picture of the Vainshtein solution. Note that the condition to

Figure 5. A schematic picture of the Vainshtein solution (107). The Vainshtein radius

rV at which the non-linear interaction of the scalar field becomes important is much

larger than the gravitational radius rg at which the spin-2 graviton becomes non-linear.

The cut-off scale of the theory Λ−1
3 is typically very large.

realise the Vainshtein mechanism r ≪ rV can be written as |∂2ΨN | > r−2
c , confirming

that the Vainstein mechanism operates when the spatial curvature exceeds a critical

value.

The Vainshtein radius rV is much larger than the gravitational length for rc ∼ H0.

For the Sun, rg = 2.95km while the Vainshtein radius is rV = 130 pc. Thus inside the
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Solar System, the solutions for the metric are well approximated by Eqs. (109). The

perihelion precession per orbit ∆φ is calculated as [51]

∆φ = 2π +
3πrg
r

± 3π

2

(

r3

2r2crg

)1/2

, (111)

where the second term is the usual Einstein precession and the last term is due to the

fifth force. The angle of perihelion advance due to the fifth force during one orbital

period is then given by

∆φ

P
=

3

8rc
= 5× 10−4

(

rc
5Gpc

)−1

arcseccond per century. (112)

The interesting feature of this prediction is that the precession rate is independent

of mass so it is universal. Combining the observed precession of planets in the Solar

System, the constraint was obtained as ∆φ/P < 0.02 arcsecond per century, which

gives the constraint rc > 130 Mpc [177]. Another constraint comes from Lunar Laser

Ranging experiments. These experiments put constraints on the correction to the

Newton potential δΨ/Ψ < 2.4 × 10−11. Using Eq. (109), rg = 0.886 cm for the Earth

and r = 3.84 × 1010 cm for the Earth-Moon distance we obtain rc > 162 Mpc [178].

This constraint will be improved by a factor of 10 by the Apache Point Observatory

Lunar Laser-ranging Operation (APOLLO). See Ref. [179] for a review. These results

are obtained by treating the planets or the Moon as a test body. This assumption is

not necessarily valid. For example for the Earth-Moon system, it was shown that there

is a correction to the universal precession rate (112) due to the non-superimposability

of the field that depends on the mass ratio of the two bodies, (although the effect is

small (4%) for the Earth-Moon system) [180]. See Ref. [181] for the constraints from

laboratory tests.

The most general action describing the Vainshtein mechanism can be obtained from

the Horndeski action as we described in section 2.5. From the effective action (52), it

is easy to find static spherically symmetric solutions [90, 89]. We consider the following

configuration

ĥtt = −2Φ, ĥij = −2Ψδij, φ = φ0 + π(r). (113)

The field equations yield

P (x,A) ≡ ξA(r) +
(η

2
+ 3ξ2

)

x+
(

µ+ 6αξ − 3βA(r)
)

x2

+
(

ν + 2α2 + 4βξ
)

x3 − 3β2x5 = 0, (114)

y(r) = βx3 + A(r), (115)

where we define

x(r) =
1

Λ3
3

π′

r
, y(r) =

MPl

Λ3
3

Φ′

r
=
MPl

Λ3
3

Ψ′

r
, (116)

A(r) =
1

MPlΛ3
3

M(< r)

8πr3
. (117)
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The function M(< r) represents the mass of a spherically symmetric, pressure-less

matter source, up to a radius r. Outside the surface rs of the matter source, A(r) can

be written as

A(r) =
(rV
r

)3

, rV =
( M

8πMPlΛ3
3

)1/3

, (118)

where rV is the Vainshtein radius depending on the total mass M of the source.

Stability of these solutions can be studied by considering small perturbations around

the background π = π0(r) + ϕ(t, r,Ω),Φ = Φ(r) + δΦ(t, r,Ω),Ψ = Ψ(r) + δΨ(t, r,Ω)

where Ω represents angular coordinates. By expanding the effective action up to the

second order in these small perturbations we find [90]

Sϕ =
1

2

∫

d4x
[

Kt(r)(∂tϕ)
2 −Kr(r)(∂rϕ)−KΩ(r)(∂Ωϕ)

2
]

, (119)

where

Kr(r) = 2∂xP (x, r)|x=x0
, (120)

Kt(r) =
1

3r2
d

dr

[

r3
{

η + 6ξ2 + 6(µ+ 6αξ)x+ 12αA

+18(ν + 2α2 + 4ξ)x2 + 12(10αβ +̟)x3 + 36βxy
}]

, (121)

KΩ(r) =
1

2r

d

dr

[

r2
{

η + 6ξ2 + 4(µ+ 6αξ)x

+6(ν + 2α2 + 4ξ)x2 − 12βxy
}]

. (122)

In addition to the quadratic action for scalar perturbations, there is also a coupling

between metric perturbations and the scalar perturbations. The stability of fluctuations

depend strongly on the presence of two particular couplings in the Lagrangian (52), one

given by ∂µπ∂νπT
µν and the other by ĥµνX

(3)
µν , which have α and β as coefficients,

respectively. We will consider their consequences in what follows, by analysing each

relevant case separately [90].

• α = β = 0.

In this case the action (52) reduces to the galileon action introduced by Ref. [54].

Interestingly, it was found that the stability conditions force the the speed of sound

for fluctuations propagating radially to be greater than one. On the other hand,

if the fourth order galileon term Lgal
4 is included, then KΩ ≪ Kt, Kr and the

propagation of angular fluctuations is extremely subluminal, invalidating a quasi-

static approximation.

• α 6= 0 and β=0.

A new feature of this class of models is the disformal coupling between matter

and the scalar, namely ∂µπ∂νπT
µν . As pointed out in Ref. [182], this coupling has

deep implications for the stability. Inside a matter source, the coupling introduces

a kinetic term proportional to αρ(∂tϕ)
2. If α < 0, the fluctuations behave as

ghosts, forcing us to choose α > 0. In the case of massive gravity, there is only one
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dimensionless parameter, α ≡ 1 + 3α3 (in the theory where β ≡ α3 + 4α4 = 0),

leading to the so-called restricted galileon [182]. In this case, there is no Vainshtein

solution that can be connected to the asymptotically flat solution. Around the

non-flat asymptotic solution, the radial propagation is subluminal, even though the

extreme subluminality of the angular propagation persists [182].

• α 6= 0, β 6= 0

In this case, the coupling between the metric and the scalar ĥµνX
(3)
µν gives a different

picture from the previous cases. Inside the Vainshtein radius the solution that

reduces to GR near a matter source only exists if β > 0, and the solution is given

by [183, 184]

x0 = ±
√

ξ

3β
. (123)

Since x is constant and A(r) ≫ 1 inside the Vainshtein radius, all functions Ki

in (120) are dominated by the y ∼ A(r) ≫ 1 contribution in the limit r ≪ rV ,

as shown from its definition (116). In the limit A(r) ≫ 1, we can also ignore

the coupling between the scalar and metric perturbations. By taking into account

only the contributions depending on A = (rV /r)
3 outside the surface of the source

r > rs, we find in this limit

Kt = 0, Kr = −12βA(r)x0, KΩ = 6βA(r)x0. (124)

Thus inside the Vainshtein radius r ≪ rV , but outside the source surface, the speed

of the fluctuations are always superluminal, for both radial and angular directions.

Moreover, given the fact that KΩ and Kr have opposite sign, all solutions are

unstable.

These results indicate that it is not always possible to have a successful Vainshtein

mechanism. For example, there is no stable Vainshtein solution that connects to the

asymptotically flat spacetime in massive gravity theory discussed in section 2.6. See

Refs [185, 186, 187, 187, 188, 189, 190] for the studies of the Vainshtein mechanism in

the Horndeski, beyond Horndeski and bigraviy theories.

Away from the decoupling limit, numerical methods are required to examine the

solutions. Refs. [191, 192] found solutions featuring the Vainshtein mechanism in the

complete theory in the framework of a non-linear extension of Fierz-Pauli massive

gravity. See [193] and references therein. There have been several studies of the

Vainshtein mechanism away from the spherically symmetric case (see for example

[194, 195]) and weak gravity [196, 197].

There are also various theoretical problems associated with the non-linear

interaction terms. The first problem is the superluminality. As we discussed earlier,

if we consider perturbations around spherically symmetric solutions, the radial speed

of propagation is larger than the speed of light in galileon models. This is a generic

feature of galileons as the derivative interactions change the structure of light-cone for

perturbations. The consequence of this superluminality is still debated [198, 199, 200]
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(see [31] for a summary of discussions). Another problem is the strong coupling problem.

The quantum corrections become important at energy scales larger than Λ3. In the

DGP case, Λ−1
3 = (MPlr

−2
c )−1/3 ∼ 1000km to satisfy the Solar System constraint. This

strong coupling scale depends on the background as seen from Eq. (119). Around the

Vainshtein solution, the strong coupling scale is renormalised [72]

Λeff
3 =

(rV
r

)3/4

Λ3, (125)

which reduces the strong coupling scale to 1cm around the Earth. This low cut-off

scale is a generic problem in theories with galileon interactions such as massive gravity

[201]. Although quantum corrections are not under control above Λ3, the galileon terms

themselves do not get renormalised upon loop corrections so that their classical values

can be trusted quantum mechanically [202]. Galileons also enjoy self-duality, i.e. various

galileon terms are remapped to other galileon terms by a field dependent coordinate

transformation and a field redefinition [203]. It is even possible to find galileon terms

that can be mapped to a free theory. Galileon duality was used to argue that the

strong coupling and the superluminality problem are not fundamental [204] while it was

also argued that the Ultra Violet (UV) completion influences the low energy theory

significantly [205]. Clearly more work seems to be warranted to understand the UV

properties of galileon models.

4. Cosmological tests of gravity

4.1. Consistency test

Armed with the theoretical knowledge of modified gravity models, we now discuss how

we test gravity on cosmological scales. The first approach is to test specific modified

gravity models using observations. The models discussed in section 2 have been tested

intensively by observations (see [43] for f(R) gravity, [30] for the DGP models and

[206, 207, 208] for covariant galileons). We will not attempt to review observational

tests of individual models.

At the background level, the Friedman equation in modified gravity models can

always be recast into the Friedman equation in GR with dark energy

H2 =
8πG

3
(ρ+ ρde). (126)

By tuning the equation of state for dark energy wde = Pde/ρde it is always possible to

mimic the background expansion of the Universe in modified gravity models by dark

energy. The equation of state is commonly parametrised as [209]

wde(a) = w0 + wa(1− a). (127)

This degeneracy is broken if we include observables determined by the structure

formation assuming that dark energy is smooth. The most commonly used

parametrisation of the structure growth is to parametrise the growth rate, the
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logarithmic derivative of the dark matter density perturbation with respect to the scale

factor, [210]

f =
d log δm
d log a

= Ωm(a)
γ (128)

where δm is the density fluctuation of dark matter. In ΛCDM, γ is approximately given

by γ ∼ 0.55. In dark energy models γ is completely determined by the equation of

state wde. However, in modified gravity models, γ is not related to the equation of

state. Thus if our universe were described by a modified gravity model but we tried

to fit various observations including those measuring the background expansion of the

Universe and the growth of the structure, we would find inconsistencies [211, 210]. Fig. 6

demonstrates this fact [212].

Figure 6. Left: Forecasted 1 σ constraints on the dark energy equation of state (127)

for the Dark Energy Survey [4]. From the largest to the smallest ellipse, the probes

considered here are Baryon Acoustic Oscillations (black), Supernovae (green), cluster

counts (magenta) and weak lensing (blue). The true model is assumed to be ΛCDM.

Right: Same as the left figure but the true model is assumed to be a modified gravity

model with γ = 0.68. Due to the incorrect attempt to fit a GR + dark energy model

to the data, the centres of the weak lensing and cluster counts ellipses have moved.

From [212].

We can formulate the consistency test of ΛCDM formally using linear cosmological

perturbation theory [213, 214]. In ΛCDM the basic equations that govern the expansion

of the universe and the growth of structure are given by

H2 =
8πG

3
ρT , (129)

k2

a2
Ψ = 4πGρT δT , (130)

where ρT is the total energy density and δT is its fluctuation in the comoving gauge. Here

we are working in the Fourier space for perturbations. These equations are supplemented
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by the conservation of energy momentum tensor. Let’s assume that the dominant

component of the energy density in the late-time universe is dark matter, ρT = ρm,

δT = δm. The continuity and Euler equations give

δ̇m +
1

a
θm − 3Φ̇ = 0, (131)

θ̇m +Hθm − k2

a
Ψ = 0, (132)

where θm is the velocity divergence θm = ∇ · vm. Under horizon scales, we can neglect

Φ̇ in the continuity equation and we find a second order equation describing the growth

of δm

δ̈m + 2Hδ̇m = −k
2

a2
Ψ. (133)

This equation describes how the density perturbation grows due to the effect of the

Newtonian potential Ψ. Thus the modification of gravity predicts a different growth

rate.

There are a number of cosmological observations that measure different geometrical

quantities (see [11, 15, 14] for reviews). The Cosmic Microwave Background (CMB),

Supernovae (SNe) and the Baryon acoustic oscillations (BAO) measure the distances

in the background universe, hence the expansion history of the Universe H(z). Weak

gravitational Lensing (WL) measures the distortion of galaxies due to the deflection of

light, which is determined by the lensing potential Φ + Ψ. The time variation of the

lensing potential changes the temperature of the CMB photons through the Integrated

Sach-Wolfe (ISW) effects. Peculiar velocities of galaxies follow the velocity of dark

matter θm, which changes the distribution of galaxies in the redshift space. This Redshift

Space Distortion (RSD) can be used to measure the velocity of dark matter. The galaxy

distribution is a biased tracer of the underlying dark matter distribution. Although it

is very difficult, in principle, we can reconstruct the dark matter density perturbation

δm from the distribution of galaxies.

By combining the Friedman equation and the Poission equation, we obtain the

following equation [214, 215]

α(k, t) =
2k2

3a2H2

(Φ + Ψ)−Ψ

δm
= 1. (134)

This is the identity in ΛCDM. Let’s examine each term in this expression. First (k/a) is

the physical wave number of the perturbations that we are interested in. The background

expansion H can be measured from CMB, SNe and BAO. We split Φ into Ψ + Φ and

−Ψ. Ψ + Φ is the lensing potential which can be measured from WL and ISW. On the

other hand, the Newton potential Ψ governs the dynamics of galaxies. The peculiar

velocities of the galaxies are determined by the Newtonian potential k2Ψ = d(aθm)/dt

(Eq. (132)) thus using RSD, we can reconstruct Ψ. Finally, from the galaxy distribution

δg we can in principle reconstruct δm if we know bias b = δg/δm. This means that we

have just enough observables to check the identity (134). This a very strong consistency
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condition of ΛCDM: α(k, t) is unity at any time and space in ΛCDM. Any modifications

to ΛCDM lead to deviations of α(k, t) from unity.

The problem with this consistency relation is that it requires the measurement of

the dark matter density perturbation δm. This is difficult due to the uncertainties in

galaxy bias. A less ambitious test is to combine weak lensing and peculiar velocity

measurements only. The Eg parameter is introduced as follows [216]

EG =
∇2(Φ + Ψ)

−3H2
0a

−1θm
(135)

In ΛCDM, EG = Ωm/f . This estimator can be constructed directly from observations

for example using the lensing-galaxy cross power spectrum and the velocity-galaxy power

spectrum [217].

4.2. Parametrisations

The degeneracy between dark energy models and modified gravity models exist in

principle for perturbations. One can find GR models with dark energy that have

anisotropic stress and variable sound speed, which can in principle mimic modified

gravity models [218]. Mathematically, this is always the case as we can define an effective

energy momentum tensor to absorb any effects of modification of gravity

Gµν = 8πG(Tµν + Eµν). (136)

At the background it is enough to specify the equation of state wE = PE/ρE for the

fluid whose energy-momentum tensor is given by Eµν . For linear perturbations, we need

to specify the sound speed c2E and the anisotropic stress πE. Once we find deviations

from ΛCDM, we need theoretical models which predict these unknown quantities to

distinguish between dark energy models in GR and modified gravity models. For

example, modified gravity models generally predict a large anisotropic stress πE ∼ ρEδE,

which is difficult to find in physical fluid models. Thus it is important to go beyond the

consistency test of ΛCDM and find precisely how the deviations from ΛCDM appear.

In general, deviations from ΛCDM can be parametrised by two functions of

space (wavenumber k) and time (redshift z) that characterise the relation between

the geometry and matter. For linear perturbations, one can parametrise the relation

between the Newton potential to the density perturbations and the relation between

the two metric perturbations [219, 220]

k2Ψ = 4πGµ(k, z)a2ρmδm, (137)

Φ

Ψ
= η(k, z). (138)

Another useful parametrisation which can be constructed from µ and η is to parametrise

the relation between the lensing potential and the density perturbation

κ2(Ψ + Φ) = 8πGΣ(k, z)a2ρmδm. (139)

where Σ = µ(1 + η)/2.
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These functions are unity µ(k, z) = η(k, z) = Σ(k, z) = 1 in ΛCDM. If we modify

gravity they deviate from one. For example, in the BD gravity with a mass term, these

functions are given by

Σ(k, a) = 1, µ(k, a) =
2(2 + ωBD) +m2a2/k2

3 + 2ωBD +m2a2/k2
, (140)

under horizon scales. Even in dark energy models, if dark energy clusters but if we

do not know their existence, this looks like a modification of gravity for dark matter.

Assuming that dark energy has no anisotropic stress, we predict

µ(k, a) = Σ(k, a) = 1 +
ρDEδDE

ρm
, (141)

where δDE is the density perturbation of dark energy. In this way, theories beyond the

standard ΛCDM model predict distinct paths in the (µ, Σ) plane [221].

The question is how well we can constrain these two functions of time and space

from observations. There are many attempts to put constraints on µ and Σ (or η)

[222, 223, 224, 225, 226, 227, 228, 229]. Given the accuracy of current observations, we

are forced to assume particular time and space dependences of these functions. One

parametrisation is to assume that these functions are scale invariant and their time

dependence is determined by the density parameter associated with the cosmological

constant [228]

µ(a, k) = µ0ΩL(a), Σ(a, k) = Σ0ΩL(a), (142)

The Planck 2015 paper [230] gave constraints on µ0 and Σ0 as shown in Fig. 7 by

combining Planck CMB observations with various external data (BAO, WL, RSD). The

Figure 7. 68% and 95% contour plots for the two parameters Σ0 and µ0 obtained

from Planck CMB measurements combined with WL, BAO and RSD. From [230].

ΛCDM model is in tension with the data at 3σ level if the Planck data is combined with

WL and RSD/BAO. This tension is reduced to 1.7σ level if we include the CMB lensing.

The WL and RSD measurements will be dramatically improved in the next five years.

It is very interesting to see whether this tension remains with improved measurements.
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In order to improve the constraints, it is important to combine RSD and WL. RSD

is determined by the peculiar velocity of galaxies thus it is sensitive only to µ(k, z). On

the other hand, the weak lensing is determined by the lensing potential so it is sensitive

to Σ(k, z) and also µ(k, z) as the growth of the dark matter density is determined by

µ(k, z). Thus combining these two probes it is possible to break the degeneracy. Fig. 8

demonstrates this point where the time dependence of µ(a) and Σ(a) is assumed to be

µ(a) = µs(1 + as),Σ(a) = Σs(1 + as) (they are assumed to be scale invariant) [225].

This figure also demonstrates that the accuracy of the constraint strongly depends on

the assumed time dependence.

Figure 8. Constraints on µ(a) and Σ(a). In the left (right) panel, the time dependence

is assumed to be s = 1 (s = 3). The constraints are obtained using WL (CFHTLS)

and RSD (SDSS DR7 LRG). From [225].

If we do not wish to assume any theory, i.e. the functional forms of these functions,

the best strategy is to simply make bins in terms of redshifts and wave-numbers and treat

µ and η as free parameters in each bin. The problem is that errors on these functions are

highly correlated. Principal Component Analysis (PCA) provides a way to de-correlate

the errors by creating linear combinations of these parameters [231, 232, 233]. Let’s

consider m z-bins and n k-bins. There are 2 × m × n parameters for µ and γ. The

covariant matrix is given by

Cij = 〈(p− p̄i)(p− p̄j)〉, (143)

where p̄i is the best fit values. The covariant matrix will be non-diagonal as the

individual pixels of µ and η are highly correlated. We can diagonalise the covariant

matrix

C = W TΛW, Λij = λiδij. (144)

Using the matrix W, we can construct the linear combinations of pi:

αi =
∑

Wij(pj − p̄j). (145)
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The error on αi is given by λi and they are uncorrelated. The parameter pi is formally

expanded by the eigenvectors Wj(k, z)

pi(k, z) = p̄i +
∑

i

αjWj(k, z). (146)

Fig. 9 shows the number of PCA eigenmodes and their uncertainties for an Euclid-

like survey, which combines imaging (2D, WL) and spectroscopic (3D, RSD) surveys

[234]. We can clearly see that by adding the information from RSD to WL, the

constraints on the eigenmodes are significantly improved.

Figure 9. The number of PCA eigenmodes and their uncertainties for an Euclid-like

survey. Here γ = η. The lower panel shows the improvements of the errors when 3D

(RSD) information is added to 2D (WL) measurements. From [234] (published on 19

August 2013 c©SISSA Medialab Srl. Reproduced by permission of IOP Publishing.

All rights reserved).

4.3. Effective field theory approach

Although the parameterisations Eq. (138) are the most general form for the linear

perturbations, there is still a gap between the constraints on µ and Σ and the predictions

of theoretical models. Firstly, these are the parameterisations of the solutions for metric

perturbations and the density perturbation. In principle we need to solve a complete

set of equations for linear cosmological perturbations in a given theory to find solutions

for µ and Σ. Thus these functions depend not only on the parameters of theories but

also initial conditions. Secondly, in general, the modified linearised Einstein equations

do not have the form given by Eq. (138) except for the case in which the quasi-static

approximation holds.
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Several approaches have been developed to make the connection to theories more

transparent. One approach is to parametrise the linearised modified Einstein equations

directly [235, 236, 237, 238, 239, 240, 241, 242]. Another approach is to build the

effective action [243, 244, 245, 246, 247, 248, 249, 250, 251] following the effective field

theory approach developed for inflationary models [252, 253]. Here we follow the latter

approach. We consider a single scalar field φ(t) on the FRW background. The presence

of the scalar field breaks the time diffeomorphism. We can use φ(t) to define a preferred

time slicing φ =const. We construct the action using the invariant quantities under the

spatial diffeomorphisms xi → xi+ξi. It is natural to use the intrinsic curvature (3)R and

the extrinsic curvature Kµν of the φ =const. hypersurface. The extrinsic curvature is

defined as Kµν = hσµ∇σnν where nµ is the unit vector perpendicular to the hypersurface

nµ = − ∂µφ
√

−(∂φ)2
, (147)

and hµν = gµν −nνnµ is the projection tensor. In addition, g00 is invariant under spatial

diffeomorphisms. If we demand that the equations of motion are at most second order,

the most general action up to quadratic order can be written as [245, 246]

S =

∫

d4
√−g

[M2
∗

2
f(t)R− Λ(t)− c(t)g00 +

M2(t)
4

2
(δg00)2

−m3(t)
3

2
δKδg00 −m2

4(t)(δK
2 − δKµ

ν δK
νKµ) +

m̃4(t)
2

2
(3)Rδg00

]

, (148)

where f(t),Λ(t), c(t),M2(t),m3(t),m4(t) and m̃4(t) are free functions of time. From this

action, it is possible to derive the modified linearised Einstein equation. These equations

have been implemented to the linear Einstein-Boltzmann code [254, 255, 256].

Based on the effective field theory, it was found that there exists a large model

space that mimics ΛCDM on all linear quasistatic subhorizon scales as well as in the

background evolution [257]. The effective field theory approach allows us to go beyond

the quasistatic approximations and test these models using the measurement of the

relativistic contributions to galaxy clustering [258].

It is clear that this approach has a strong connection to the ADM formulation of

the Horndeski theory discussed in section 2.5. In fact in the Horndeski theory, there

is a special relation between m4 and m̃4, m4 = m̃4. This relation is broken by beyond

Horndeski theories. In fact this was the way beyond Horndeski theories were discovered

[82].

Under the quasi-static approximations, it is possible to derive the form of µ and η

in the case of m4 = m̃4 [259, 260, 261]

η(k, a) =

(

p1(a) + p2(a)k
2

1 + p3(a)k2

)

µ(k, a) =

(

1 + p3(a)k
2

p4(a) + p5(a)k2

)

. (149)

where pi(a) are free functions of time determined by the six functions in the effective

action. See Refs. [262, 262] for related approaches.

Although the theoretical prior such as the requirement that equations of motion are

at most second order significantly simplified the form of the two functions µ(k, z) and
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η(k, z), there are still five free functions of time. The PCA analysis has been performed

for these functions. Due to the degeneracies, it was shown that these functions are not

constrained individually even by a future weak lensing survey. On the other hand, about

10 eigenmodes of the combination of all pα will be measured with uncertainty smaller

than 1% of the prior by the Large Synoptic Survey Telescope (LSST) project [263]. One

approach is to reconstruct µ(k, a) and γ(k, a) using eigenmodes of pi(a) following the

approach to reconstruct the equation of state w(a) using the smoothness prior on pi(a)

functions [264, 265].

4.4. Quasi non-linear scales

On linear scales, it is possible to develop model independent approaches as we described

in 4.3. However, once the non-linearity becomes important, it becomes difficult to

develop model independent parameterisations of the non-linear equations. On quasi

non-linear scales, it is still possible to develop a general framework based on perturbation

theory [266]. In models with a screening mechanism, the scalar field equation becomes

non-linear. Let’s consider, for example, BD gravity with non-linear interactions terms

(3 + 2ωBD)
1

a2
k2ϕ = −8πGρmδ − I(ϕ), (150)

in a Fourier space. Here the interaction term I can be expanded as

I(ϕ) =M1(k)ϕ+
1

2

∫

d3k1d
3k2

(2π)3
δD(k − k12)M2(k1,k2)ϕ(k1)ϕ(k2)

+
1

6

∫

d3k1d
3k2d

3k3

(2π)6
δD(k − k123)M3(k1,k2,k3)ϕ(k1)ϕ(k2)ϕ(k3), (151)

where kij = ki + kj and kijk = ki + kj + kk.

The potential Ψ is coupled to δ through the BD scalar ϕ in a fully non-linear way

due to the interaction term I. To derive the closed equations for δm and θm, we must

employ the perturbative approach to Eq. (150). By solving Eq. (150) perturbatively

assuming ϕ < 1, Ψ can be expressed in terms of δ as [266]

−
(

k

a

)2

Ψ =
1

2
κ2 ρm

[

1 +
1

3

(k/a)2

Π(k)

]

δm(k) +
1

2

(

k

a

)2

S(k), (152)

where

Π(k) =
1

3

(

(3 + 2ωBD)
k2

a2
+M1

)

, (153)

and κ2 = 8πG. The function S(k) is the non-linear source term which is obtained

perturbatively as

S(k) = − (κ2 ρm)
2

54Π(k)

∫

d3k1d
3k2

(2π)3
δD(k − k12)M2(k1,k2)

δm(k1) δm(k2)

Π(k1)Π(k2)

− (κ2 ρm)
3

486Π(k)

∫

d3k1d
3k2d

3k3

(2π)6
δD(k − k123)

{

M3(k1,k2,k3)

− M2(k1,k2 + k3)M2(k2,k3)

Π(k23)

}δm(k1) δm(k2)δm(k3)

Π(k1)Π(k2)Π(k3)
. (154)
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The expression (154) is valid up to the third-order in δm. Combining this with energy-

momentum conservation, it is possible to calculate the density perturbation and the

velocity divergence perturbatively and compute the non-linear corrections to the linear

power spectrum (Fig. 10) [266, 267, 268].

Figure 10. The dark matter density-density, density-velocity, velocity-velocity power

spectrum in ΛCDM (left) and f(R) gravity model with |fR0| = 10−4 (right). The

solid lines are the results from the standard perturbation theory at the 1-loop level

and symbols are results from simulations. From [267].

However, we cannot observe these power spectra directly. What we observe is the

power spectrum of the galaxy over-density in the redshift space [269, 270]. There has

been significant progress is developing non-linear models of the redshift space power

spectrum (see for example [271] and references therein). In order to demonstrate the

importance of modelling the non-linear effect in the redshift space power spectrum

accurately, we consider the perturbation theory based template for the redshift power

spectrum [272]

P (S)(k, µ) = DFoG[kµ σv]×
{

PKaiser(k, µ) + A(k, µ) + B(k, µ)
}

, (155)

where µ = kz/k and the observer’s line-of-sight direction is taken to be the z-axis. The

quantities PKaiser, A, and B are explicitly written as

PKaiser(k, µ) = Pδδ(k)− 2µ2 Pδθ(k) + µ4 Pθθ(k), (156)

A(k, µ) = −kµ
∫

d3p

(2π)3
pz
p2

{Bσ(p,k − p,−k)− Bσ(p,k,−k − p)} ,(157)
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B(k, µ) = (kµ)2
∫

d3p

(2π)3
F (p)F (k − p) ; (158)

F (p) =
pz
p2

{

Pδθ(p)−
p2z
p2
Pθθ(p)

}

,

where Pδδ, Pθθ, and Pδθ respectively denote the auto-power spectra of the density and

velocity divergence, and their cross power spectrum. The function Bσ is the cross

bispectra defined by
〈

θ(k1)

{

δ(k2)−
k22z
k22
θ(k2)

}{

δ(k3)−
k23z
k23
θ(k3)

}〉

= (2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3). (159)

DFoG describes the damping of power due to non-linear velocity dispersions known as

the Finger of God effect

DFoG(kµ σv) = exp
[

−(kµ σv)
2
]

. (160)

We treat σv as a free parameter and marginalise over it when obtaining the constraint

on model parameters.

Fig. 11 demonstrates the importance of the non-linear corrections for an f(R)

gravity model described by (24) [267]. We use the measured dark matter power spectrum

in the redshift space at z = 1 from N-body simulations for f(R) gravity [273] as a mock

observation. We now extract the model parameter |fR0| by fitting the redshift space

power spectrum. We decompose the redshift power spectrum into the multipole power

spectra

P
(S)
ℓ (k) =

2ℓ+ 1

2

∫ 1

−1

dµP (S)(k, µ)Pℓ(µ). (161)

Fitting the measured monopole P
(S)
1 and the dipole P

(S)
2 power spectra in simulations

by the template (155) assuming that |fR0| and σv are free parameters, we study how well

we can recover the input parameter |fR0| in the simulation (in this case |fR0| = 10−4). If

we do not include the A and B terms in (155), the recovered fR0 is biased. If we include

A and B but use the ΛCDM results, again the recovered fR0 is biased unless we cut off

the power spectrum at low maximum wavenumber kmax < 0.1hMpc−1. Only the correct

template reproduces the input parameter in an unbiased way up to kmax = 0.15hMpc−1.

This implies that we need to specify the non-linear interactions in order to constrain the

modified gravity parameters accurately or it is required to use a very conservative cut-off

in the wavenumber to remove the non-linear corrections. This is the major obstruction

for model independent tests of gravity on linear scales.

The same limitation applies to WL [274]. If we use a conservative cut-off in the

analysis to remove the non-linear scales, the discriminatory power of weak lensing

is significantly reduced. However, in order to include non-linear scales, we need to

accurately model the non-linear power spectrum. For weak lensing, the perturbation

theory is not adequate and N-body simulations are required.
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Figure 11. Best-fit values of fR0 as a function of the maximum wavenumber kmax. We

assume the cosmic variance limited survey of the volume V = 10h−3Gpc3, we fit the

PT template to the N-body simulation with |fR0| = 10−4 at z = 1. Filled circles are

the results based on (155) in f(R) gravity, while filled triangles are the cases ignoring

A and B terms. Open circles represents the results using A and B terms calculated in

GR while crosses are the results ignoring the A and B terms and the damping term

DFoG. From [267].

4.5. Non-linear scales

In order to find fully non-linear clustering of dark matter, it is required to perform N-

body simulations even in the standard ΛCDM model. In GR, the Poission equation is

linear so it is possible to superpose the forces. This was used to speed up the calculations

by separating the long-range and short-range forces. In modified gravity theories, the

scalar field satisfies the non-linear equation. Thus it is no longer possible to superpose

the forces. The non-linear scalar field equation needs to be solved directly.

There have been significant progress in developing N-body simulations [275, 276,

277, 278, 279, 280, 281, 282, 283, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,

294, 295, 296, 297, 298]. Particularly, ECOSMOG [284], ISIS [291] and MG-GADET [296] solve

a non-linear scalar field equation on a mesh in N-body simulations using the adaptive

mesh technique (see Ref. [299] for a comparison between these codes). The ECOSMOG

code for example has the following properties

(i) It solves the scalar field on a mesh using the Newton-Gauß-Seidal nonlinear
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relaxation, which has good convergence properties. The density field on the mesh

is obtained by assigning particles following the triangular-shaped-cloud scheme.

(ii) The mesh can be adaptively refined in high-density regions to achieve higher

resolution and accuracy there, without affecting the overall performance. In order

to speed up the convergence, a multigrid technique is used.

(iii) It is efficiently parallelised, which makes the simulations fast.

Figure 12. The relative difference of the power spectra of f(R) and ΛCDM models

at z = 0. See the text for details. From [300]

Fig.12 shows the power spectrum deviations from ΛCDM in the f(R) gravity model

(24) with three different fR0 (F4: |fR0| = 10−4, F5: |fR0| = 10−5, F6: |fR0| = 10−6 )

using various box sizes and resolutions obtained by ECOSMOG [300]. The chameleon

mechanism works better for small |fR0| thus the power spectrum deviation from ΛCDM

is more suppressed in F6. The dotted line is the linear theory prediction and the

solid line is the prediction obtained by using the mapping formula (halofit [301]). The

halofit model provides an accurate fitting formula for the non-linear matter power

spectrum obtained from a suite of N-body simulations in the ΛCDM model. It provides

a prediction for the non-linear power spectrum for a given linear power spectrum. The

halofit works better in F4 but as soon as the screening becomes important it fails to

predict the the power spectrum deviation at high wavenumber (on small scales). This is

not surprising as the halofit is calibrated in the ΛCDMmodel and it does not capture the

effect of the screening mechanism suppressing the deviation from ΛCDM on small scales.

See Ref. [302] for a modification of halofit to account for the screening mechanism. This

suppression of the power spectrum deviation from ΛCDM by the screening mechanism

limits observational constraints. An interesting method has been proposed to enhance

modified gravity effects by suppressing the contribution of the screened high-density

regions in the matter power spectrum [303].

On small scales, the effects from baryons become important. Hydrodynamical

simulations have been developed for f(R) gravity and symmetron models Ref. [296,

298, 293] but the degeneracy between modified gravity effects and baryonic physics

remains to be understood.
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N-body simulations enable us to understand how the screening mechanisms studied

in section 3 work in the large scale structure of the universe. In the next section, we

will look at the effect of the screening mechanisms on the structure formation in the

Universe based on N-body simulations.

5. Screening mechanisms in large scale structure

In this section, we consider two screening mechanisms, the chameleon and Vainshtein

mechanism that we discussed in section 3 and study how GR is recovered in the

large scale structure of the Universe and how we can distinguish between the different

screening mechanisms. This section is based largely on Ref. [304].

The screening mechanisms are distinguished by how screened bodies fall in external

fields [305]. As a consequence of universal coupling, all un-self-screened test bodies

fall in the same way and obey a microscopic equivalence principle. In the chameleon

and symmetron models, screened bodies do not respond to external fields while in the

Vainshtein mechanism they do, as long as those fields have wavelengths long compared to

the Vainshtein radius [306]. These differences arise because of the non-superimposability

of field solutions. Also, the peculiar structure of the non-linear interactions in the

Vainshtein mechanism implies that the screening depends on the dimensionality of

the system. For example, it does not work at all in one-dimensional systems. As a

representative model for screening mechanism, we use the f(R) gravity model (24) that

includes the chameleon model and the normal branch DGP model (27) that exhibits the

Vainshtein mechanism.

5.1. Screening of dark matter halos

It is useful to construct analytic approximations for the scalar field solution inside dark

matter halos. See Refs. [277, 307, 308, 309, 310, 311, 312, 313, 314, 315, 304] for analytic

studies of dark matter halos in models with the above screening mechanisms. Here we

mainly follow Refs. [308, 315, 304].

We assume the dark matter density profile is described by the NFW profile [316]

with a mass M∆. The mass is defined as the mass contained within the radius r = r∆;

the density at r∆ is ρcrit∆, where ρcrit is the critical density of the Universe. The NFW

profile is given by

ρ(r) = ρsf

(

r

rs

)

, f(y) =
1

y(1 + y)2
, (162)

where ρs = ρ(rs) is fixed so that the mass within r∆ is M∆. The scale radius rs is

more conveniently parameterised by the concentration c∆ = r∆/rs. By integrating this

density profile, we obtain the enclosed mass within the radius r, M(< r), as

M(< r) =M∆
F (c∆r/r∆)

F (c∆)
, F (y) = − y

1 + y
+ ln(1 + y). (163)
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The scalar field equation in the nDGP model, Eq. (30), can be solved analytically

[308]

dϕ

dr
=
GM(< r)

r2
4

3β
g

(

r

r∗

)

, g(x) = x3
(√

1 + x−3 − 1
)

, (164)

where r∗ is the Vainshtein radius

r∗ =

(

16GM(< r)r2c
9β2

)1/3

. (165)

Inside the Vainshtein radius, the scalar force is suppressed compared with the Newtonian

potential due to the non-linear derivative interactions. Outside the Vainshtein radius,

the linear solution is realised where g(r/r∗) → 1/2. For a larger rc, the Vainshtein radius

is larger thus the region in which the fifth force is suppressed becomes larger and we

recover GR.

The scalar field in f(R) gravity can be approximated as [308]

dϕ

dr
=

1

3

G
(

M(< r)−M(< rscr)
)

r2
(166)

for r > rscr and dϕ/dr = 0 for r < rscr if the thin shell condition (100) is satisfied. The

screening radius for the NFW profile is obtained as [317]

rscr =
(2

3

|ΨN |(r∆)
|fR0|F (c∆)

− 1

c∆

)

r∆, (167)

where the Newtonian potential is given by |ΨN | = GM∆/r∆. The screening radius is

determined by the ratio between the Newtonian potential of the halo and |fR0|, thus it
is mass dependent.

We define the ratio between the fifth force and the Newton force as

∆M =
F5

FG

, F5 =
1

2

dϕ

dr
, FG =

dΨN

dr
. (168)

For linear solutions without screening, ∆M = 1/3β in nDGP and ∆M = 1/3 in f(R).

5.2. Simulations

We consider N -body simulations for nDGP and f(R) models performed by the

ECOSMOG code described in section 4.5 [304]. To highlight the difference in the

screening mechanisms, we simulate pairs of nDGP and f(R) models with the ΛCDM

background and identical σ8 at z = 0, which roughly removes the difference in screening

due to the difference in linear growth. Specifically, we simulate three f(R) models: F4

(|fR0| = 10−4), F5 (|fR0| = 10−5), and F6 (|fR0| = 10−6), and three corresponding

nDGP models whose parameters are listed in Table I.

The simulations are visualised in Fig 13, where the projected density field for ΛCDM

and two modified gravity models are shown at z = 0 [304]. As shown, the structures are

more clustered in nDGP and f(R) models due to the enhanced gravity, although the

enhancement of the clustering in these models are different. To quantify the difference in
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f(R) nDGP

F4: |fR0| = 10−4 nDGP1: H0rc = 0.57 σ8 = 0.946

F5: |fR0| = 10−5 nDGP2: H0rc = 1.20 σ8 = 0.891

F6: |fR0| = 10−6 nDGP3: H0rc = 5.65 σ8 = 0.854

Table 1. The parameters for f(R) and nDGP simulations. The baseline cosmology

was chosen to be the model favoured by recent Planck observations [18]: Ωbh
2 =

0.022161, Ωch
2 = 0.11889, ΩK = 0, h = 0.6777, ns = 0.9611, and σ8 = 0.841. The

simulations use 2563 particles in a L = 64h−1 Mpc box from the initial redshift z = 49

down to z = 0. Each set of models (f(R), nDGP, and ΛCDM) are simulated using the

same initial condition, which is generated using the Zeldovich approximation, and we

simulate three realisations for each model to reduce the sample variance. See [304] for

details.

LCDM nDGP F4

Figure 13. The snapshots (64h−1 Mpc× 64h−1 Mpc) showing the projected density

field at z = 0 for LCDM (left), nDGP1 (middle) and the F4 (right) models. From [304]

(published on 29 July 2015 c©SISSA Medialab Srl. Reproduced by permission of IOP

Publishing. All rights reserved).

clustering, we show the fractional difference of the power spectrum in f(R) and nDGP

models with respect to ΛCDM at z = 0 in Fig. 14 [304]. The dotted lines show the

linear prediction while the dash-dotted lines show the halofit prediction [301].

The agreement of the linear prediction with simulations is better for the nDGP

model. The excellent agreement with linear theory on large scales is one of the key

features of the Vainshtein mechanism. This is because when the Vainshtein screening

mechanism works, even if the fifth force is suppressed inside halos, these ‘screened’ halos

can still feel external scalar fields as long as those fields have wavelengths longer than

the Vainshtein radius [306]. We will confirm this picture later by studying the velocities

of dark matter particles inside halos. On small scales, the Vainshtein mechanism is very

effective and the power spectrum deviation approaches zero quickly at high k.

On the other hand, in the f(R) model with the chameleon screening mechanism,

once the fifth force is suppressed inside dark matter halos, these screened halos no

longer feel the external fifth force invalidating the use of the linear theory even on large
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Figure 14. The fractional difference in power spectrum for nDGP (left) and f(R)

(right) models with respect to the ΛCDM model. The data points with error bars

show the simulation result, and the dashed (dash-dotted) curves show the Halofit

(linear) predictions. From [304] (published on 29 July 2015 c©SISSA Medialab Srl.

Reproduced by permission of IOP Publishing. All rights reserved).

scales. The chameleon mechanism is not as efficient as the Vainshtein mechanism. Thus

the power spectrum deviation does not approach zero even though it is significantly

suppressed compared with the linear prediction.

5.3. Screening of dark matter particles

We first study how screening operates at the level of particles [315, 304]. The cosmic

web of large scale structure consists of an interconnected hierarchy of halos, filaments,

walls, and voids. Here we use ORIGAMI to determine the cosmic web morphology

of each dark matter particle in a simulation, which compares final positions to initial

Lagrangian positions to determine whether a particle has undergone shell-crossing along

a given set of axes (see Ref. [318] for details). Shell-crossing denotes the formation of

caustics within which the velocity field is multi-valued, called the multi-stream regime.

The number of orthogonal axes along which shell-crossing has occurred corresponds to

the particle’s cosmic web morphology and denoted by the morphology index M : halo

particles have crossed along three axes (M = 3), filaments along two (M = 2), walls

along one (M = 1), and void particles are in the single-stream regime (M = 0).

We quantify the screening by calculating the deviation of the fifth force to

gravitational force ratio from the linear relation (∆M = 1/3β in nDGP and ∆M = 1/3

in f(R))

∆F =
F5

∆MFG

− 1, (169)

which ranges between ∆F = −1 when screening is working to ∆F = 0 when it is not.

For some particles ∆F can be greater than 0 due to numerical noise, especially for low
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values of F5 and FG (see, e.g., [319]).

In Figure 15 we show histograms of ∆F split according to ORIGAMI morphology

for each modified gravity model [304]. Note that the histograms are normalised to

peak at unity so that the shape of each can be seen, so they do not reflect the relative

abundances of the particles according to their cosmic web morphology. It is clear that, as

for all 3 nDGP models the halo particles are screened while the filament, void, and wall

particles are unscreened. This reflects the dimensionality dependence of the Vainshtein

mechanism [181, 320, 315]. The non-linear term in Eq. (30), (∂2ϕ)2− (∂i∂jϕ)
2, vanishes

for a one-dimensional system. The distribution of ∆F for halo particles is still broad,

reflecting the fact that screening becomes weaker beyond the virial radius, so particles

in the halos’ outer edges can have larger values of ∆F .

Figure 15. Cosmic web morphology dependence of the Vainshtein (left) and

chameleon (right) screening mechanisms, given by histograms of ∆F , the deviation

from the linear relation of the fifth force to gravitational force ratio. In DGP models

with the Vainshtein mechanism, there is a clear difference between halo particles (solid,

red line) and filament, wall, and void particles, while no such distinction exists for f(R)

models with the chameleon screening mechanism. From [304] (published on 29 July

2015 c©SISSA Medialab Srl. Reproduced by permission of IOP Publishing. All rights

reserved).

On the other hand, there is no such morphology dependence of the screening

mechanism for the chameleon models on the right side of Figure 15. For the halos,
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screening is not very effective in F4 and most particles follow the linear relation; in F5 the

halo particles have a small peak at ∆F = −1 as the most massive halos become screened;

and in F6 most of the halo particles are in screened halos, while some remain unscreened.

Note that since the histograms are for halo particles and not halos themselves, massive

halos are weighted more heavily, resulting in many screened halo particles in F6, while

the smaller bump of unscreened halo particles is due to halos with low mass. We will look

at the screening of halos in the next section. The wall and void histograms notably do

not peak at ∆F = 0 in F4, and the fifth force is further suppressed in F5 and especially

F6. This is because the background Compton wavelength is quite short, ∼ 1Mpc in F6,

and the scalar field does not propagate beyond this length, providing a blanket screening

for particles that are sparsely distributed. The filament distribution develops a double

peak in F6: a narrow peak of unscreened filament particles, which have large forces and

are in relatively dense environments, and a broader peak of low ∆F filament particles

that are blanket screened.

5.4. Dark Matter Halos

We now turn to a comparison of the screening of halos in the Vainshtein and chameleon

mechanisms [304].

5.4.1. Screening - mass dependence As with the dark matter particles, to determine

whether screening is effective we calculate the ratio of the fifth force to gravitational

force, ∆M . The value of ∆M for each halo is given by the average ∆M of all the particles

in the halo within the halo’s virial radius, R200. This is plotted as a function of halo

mass, M200, for all nDGP and f(R) simulations in Figure 16 [304].

Figure 16. Ratio of the fifth force to gravitational force as a function of halo mass for

nDGP (left) and f(R) (right) models. From [304] (published on 29 July 2015 c©SISSA

Medialab Srl. Reproduced by permission of IOP Publishing. All rights reserved).

For the DGP models, the ∆M of the halos depends on the model parameter and is

independent of mass [308, 315]; as the model parameter changes to make the deviation

from ΛCDM stronger, ∆M increases. However, note that all halos are screened in the

Vainshtein mechanism: the linear values of ∆M for nDGP1, nDGP2, and nDGP3 are
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0.20, 0.11, and 0.03, respectively, well above the corresponding values in Figure 16. As

we will see in the next section, the Vainshtein suppression gradually reduces (and ∆M

increases) outside the virial radius, but even including these particles in the calculation

of ∆M only increases ∆M by ∼ 50− 70% and the halos remain screened overall.

In contrast to the Vainshtein mechanism, Figure 16 shows there is a clear

dependence on both mass and model parameter in the chameleon mechanism [308, 304].

When the deviation from ΛCDM is high, in F4, screening becomes ineffective for all

halos; in F5, screening is effective only for high mass halos; and in F6, there is a

population of unscreened small halos and a transition to screened large halos. Including

particles outside the virial radius in the calculation of ∆M has a very small effect,

increasing ∆M for some halos but not changing the overall trends; we will show in the

next section that the radius of transition from screened to unscreened parts of the halo

depends on the halo mass in the chameleon mechanism.

Figure 17. Profiles of ∆M in logarithmic bins of normalised radius, for nDGP2 (left

panel) and nDGP3 (right panel), with the analytic prediction for an NFW profile

plotted in red. Screening profiles are independent of halo mass, and Vainshtein

screening suppresses the fifth force within the virial radius. From [304] (published

on 29 July 2015 c©SISSA Medialab Srl. Reproduced by permission of IOP Publishing.

All rights reserved).

5.4.2. Screening profiles To determine the radial dependence of the screening within

the halos, here we calculate the ratio between the fifth force and Newtonian force

as a function of normalised radius R/R200 by averaging ∆M of the halo particles in

logarithmic radial bins. ∆M profiles are plotted in Figure 17 for nDGP2 and nDGP3

[304]. It is clear that regardless of halo mass, the Vainshtein screening profiles of dark

matter halos are roughly the same and correspond quite well to the spherically symmetric

analytic solution for an NFW profile (164) [315]. For both models, the fifth force is

mostly suppressed within the virial radius and ∆M increases outside the virial radius,

and the magnitude of this increase is greater for models with a stronger enhancement

to gravity, nDPG2 (and nDGP1, not shown).

In f(R), Figure 16 shows that chameleon screening does depend on mass, so in

Figure 18 we split up the ∆M profiles into four different mass bins for the F6 model



Cosmological Tests of Modified Gravity 55

Figure 18. Profiles of ∆M in logarithmic bins of normalised radius for the F6 model,

split into four bins of halo mass, with the analytic prediction calculated for each mass

bin plotted in red. Screening profiles in the chameleon mechanism depend on halo

mass. From [304] (published on 29 July 2015 c©SISSA Medialab Srl. Reproduced by

permission of IOP Publishing. All rights reserved).

[304]. There is a much sharper and less gradual transition from the chameleon screened

inner regions of the halo to the unscreened outer regions compared to the Vainshtein

mechanism, and the radius of this transition depends on the halo mass. There is again

quite a good agreement with the analytic predictions Eq. (166) [308, 304].

Both Figure 17 and Figure 18 highlight the importance of probing galactic halos in

unscreened regions beyond their virial radii in order to detect deviations from ΛCDM,

for all halo masses if the Vainshtein mechanism is operating and for high mass halos in

the chameleon mechanism. For example, Refs .[321, 322] proposed a method to measure

the velocity field by stacking redshifts of surround galaxies around galaxy clusters from

a spectroscopic sample. It was shown that order unity deviations from ΛCDM show

up both in f(R) gravity and the nDGP model. On the other hand, the effect on the

interior mass profile, which is measurable through stacked weak lensing is much less

affected by a modification of gravity (see also [323]). Ref. [324] proposed to use the

2D galaxy velocity distribution in the cluster infall region by applying the galaxy infall

kinetics model developed by Ref. [325].

5.5. Velocities

The non-linear derivative interaction that is responsible for the Vainshtein mechanism

enjoys the Galilean symmetry (33), ∂µφ → ∂µφ + cµ, which means that if the external
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fields have wavelengths that are long compared to the Vainshtein radius, Eq. (165), we

can regard the gradient of these external fields as constant gradients in the vicinity of

an object. We can always add these constant gradients to the internal field generated by

the object, and thus the internal field can superimpose with external fields. Even if the

internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth

force generated by the external fields [306]. On the other hand, in screening mechanisms

that rely on non-linearity in the potential or the coupling function to matter, such as

the chameleon and symmetron mechanisms, the internal field generated by an object

does not superimpose with an external field. Therefore, the field inside the object loses

knowledge of any exterior gradient and the fifth force generated by the external field,

and thus once the object is screened, it does not feel any fifth force [305, 167, 306].

Figure 19. Velocity dispersion (left) and peculiar velocity (right) ratios of nDGP (top)

and f(R) (bottom) models with respect to matched halos in the ΛCDM simulations, as

a function of halo mass. Lines indicate the average value in each mass bin, and error

bars indicate the scatter. From [304] (published on 29 July 2015 c©SISSA Medialab

Srl. Reproduced by permission of IOP Publishing. All rights reserved).

In Figure 19, we plot the velocity dispersion ratios and peculiar velocity ratios for

all DGP and f(R) models [304]. The velocity dispersion ratios are scaled by the virial

expectation, σ2 ∝ M2/3, to remove the standard mass dependence [308]. The lines are

the average values in bins of mass, and the error bars show the 1σ standard deviation.

Both the velocity dispersion and peculiar velocity ratios show no dependence on mass

for the Vainshtein mechanism [308, 315], but the peculiar velocity ratios deviate from

0, especially in the nDGP1 model, due to the effect of external fields.
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The f(R) models, on the other hand, do show a mass dependence in the velocity

dispersion ratios: in F4, where screening is not effective, the velocity dispersion is

enhanced; in F5, the velocity dispersion is only suppressed at high masses; and in F6,

the transition between enhanced and suppressed velocity dispersion occurs at an even

lower mass. These trends mimic the mass dependence of the screening ratio, ∆M , in

Figure 16. However, the peculiar velocity ratios do not show this mass dependence; they

are suppressed in F6, somewhat enhanced in F5, and further enhanced in F4. Since most

of the particles in a halo are located near the centre, the peculiar velocity effectively

probes the halo centre and is suppressed because the halo core is screened, as seen in

the ∆M profiles for F6 in Figure 18. Unlike in the Vainshtein mechanism, once screened

by the chameleon mechanism a halo does not feel the effect of external fields and so its

peculiar velocity is suppressed.

This casts doubt on the effectiveness of using redshift space distortions to detect

f(R) gravity at the level of F6. The Vainshtein mechanism is better suited to tests in

the linear regime, since even though halos are screened, they can still feel the effect of

external fields induced by large scale structure.

5.6. Screening - environment dependence

In the previous sections, we have shown that chameleon screening depends on both the

mass of the object and the model parameter, while Vainshtein screening is independent

of halo mass [308]. In Section 5.3 we showed that Vainshtein screening of dark matter

particles depends on their cosmic web morphology [315]; halo particles are screened while

filament, void, and wall particles are not, reflecting the dimensionality dependence of the

Vainshtein mechanism [181, 245]. However, it was found that the Vainshtein screening

of halos themselves does not depend on their large scale cosmic web environment [315],

and the chameleon mechanism has no cosmic web dependence for either particles or

halos, so here we use a different definition of halo environment.

We use a density-based definition of environment developed in Ref. [326],

DN,f ≡ dN,MN/M≥f

rN
. (170)

This is the distance dN to the Nth nearest neighbour having mass, MN , at least f

times as large as the halo mass, M , scaled by the virial radius of the neighbouring

halo, rN . D1,1 (hereafter just D) is almost uncorrelated with the halo mass [326], and

several studies have found that both chameleon and symmetron screening mechanisms

correlate with this environment parameter [327, 328, 329, 330, 319]. In particular,

while massive halos can be self-screened and in general smaller halos can be unscreened,

small halos that live in dense environments (where D is small) can be environmentally

screened. Subhalos, especially those within the virial radius of their host halo with

D < 1, are usually environmentally screened. We use the AHF halo finder [331] to

study the environmental dependence of chameleon and Vainshtein screening [304].

In Figure 20 we show the results for chameleon screening [304]. In the left panel
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we plot ∆M vs. halo mass, Mvir, with a logarithmic scaling of ∆M instead of the

linear scaling of ORIGAMI values in Figure 16. The same trend in mass dependence

of screening is seen, except AHF halos can have much lower values of ∆M , which

is due to the presence of subhalos. In the right panel of Figure 20 we show the

environmental dependence of chameleon screening, after first removing halos with mass

above 1012 h−1 M⊙ that are self-screened. Halos in dense environments, and especially

those with D < 1, tend to be screened while those in under dense environments,

especially those with D > 10, are unscreened [327].

Figure 20. The ratio of the fifth force to gravitational force for AHF halos in f(R)

models as a function of mass (left panel) and environment D (right panel). Only halos

with mass below 1012 h−1 M⊙ are shown in the right panel to remove halos that are

massive enough to be self-screened. Chameleon screening displays both a mass and

environmental dependence. From [304] (published on 29 July 2015 c©SISSA Medialab

Srl. Reproduced by permission of IOP Publishing. All rights reserved).

We show the profile of the mass difference as a function of rescaled radius for the

|fR0| = 10−6 model in Fig 21 [327]. To see the environmental effect on the profile, we

show the result for the samples selected according to both their mass and D. As we can

see, the small halos in the under dense region are almost not screened at any radius,

while the halos with similar mass in the dense region are efficiently screened, and the

screening effect is stronger in the core of the halos. For the large halos, the innermost

part is well screened regardless of external environment due to the high matter density

there, but the part close to the edge shows a clear environmental dependence, and the

difference can be as large as 3 orders of magnitude in ∆M in different environments.

This is because in this region the external environment plays an important role.

The results for the Vainshtein screening mechanism are shown in Figure 22 [304].

The left panel shows the screening as a function of mass, with again no mass dependence,

though there is a lot of scatter in ∆M for low mass halos. The right panel shows ∆M

as a function of environment: in general there is no environmental dependence, but

halos within their host halo with D < 1 are screened even further by their host halo.

Note again that all halos are screened in the Vainshtein mechanism: the linear values

of ∆M for nDGP1, nDGP2, and nDGP3 are 0.20, 0.11, and 0.03, respectively, well
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Figure 21. The profile of log10∆M as a function of the rescaled halo radius r/r340
for the |fR0| = 10−6 model. We show the profile with 1 − σ error bars for the halos

divided into four categories as illustrated in the legend. The red dashed line shows

∆M (r340) = 1/3. From [327].

Figure 22. The ratio of the fifth force to gravitational force for AHF halos in nDGP

models as a function of mass (left panel) and environment D (right panel). There is

no mass or environmental dependence of screening in the Vainshtein mechanism, and

sub-halos within their host virial radius (with D < 1) have fifth forces that are even

further suppressed. From [304] (published on 29 July 2015 c©SISSA Medialab Srl.

Reproduced by permission of IOP Publishing. All rights reserved).

above the corresponding values in Figure 22. The Vainshtein mechanism is therefore

very efficient at screening halos: there is no dependence on mass [308, 315], cosmic web

morphology [315], or density of their local environment.
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6. Astrophysical tests of gravity

The character of the screening mechanism leaves distinct signatures in non-linear

structures as we discussed in the previous section. In this section we review novel

astrophysical tests of gravity that have been developed recently. These tests are model

dependent as opposed to the model independent tests of gravity on linear scales. We

need to specify the screening mechanism to discuss the tests.

6.1. Chameleon mechanisms

We first consider the chameleon mechanism. The chameleon screening of dark matter

halos depends on their mass and environment. Thus we need to carefully find the places

where gravity is modified. From Fig. 21, the places where gravity is modified are at

the outskirt of large dark matter halos and small dark matter halos in the under dense

environment.

6.1.1. Clusters The abundance of clusters already gives strong constraints on |fR0|
[332, 333, 334]. For large |fR0| > 10−5 the screening is ineffective and stronger gravity

creates much more massive dark matter halos as is seen in Fig. 23. On the other hand,

for |fR0| < 10−5 the screening is effective for massive halos and the relative enhancement

of the mass function disappears. The latest constraints on |fR0| from cluster abundance

is obtained as |fR0| < 2.6× 10−5 for n = 1 in Eq. (24) [334].

If the screening length is smaller than the radius of the dark matter halo, we will see

the transition from the screened and unscreened region through the difference between

the lensing and dynamical masses [317] . We assume that a cluster of galaxies satisfies

hydrostatic equilibrium

dPtehrmal

dr
= −GM(< r)

r
− β

MPl

dφ

dr
, (171)

where Pthermal is the thermal pressure of the gas. The enclosed mass M(< r) agrees

with the lensing mass as the scalar field does not affect the lensing. The last term in

Eq. (171) is the contribution from the fifth force. This changes the dynamical mass,

which can be inferred from the pressure gradient of the gas. Fig. 24 shows the enclosed

mass reconstructed from X-ray observations using the hydrostatic equilibrium equation

with the chameleon force for the Coma cluster [335]. It also shows the measurement

of the lensing mass for the Coma cluster [336]. Since the chameleon gravity adds an

additional contribution to the dynamical mass, the lensing mass estimated from the X-

ray observation decreases. In this way, we can put constraints on the chameleon gravity.

Using the Coma cluster [335] and the stacked 58 clusters between 0.1 < z < 1.2 using

X-ray data from XMM Cluster Survey and weak lensing data from the CFHTLenS [337],

the constraint on f(R) gravity was obtained |fR0| < 6× 10−5.

6.1.2. Dwarf galaxies As is clear from Fig. 20 and Fig. 23, for |fR0| < 10−6, cluster are

effectively screened and we need to find objects with a shallower potential. Another place
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Figure 23. The relative enhancement of the halo mass function in f(R) gravity

models compared with ΛCDM. The solid line and dashed line are analytic predictions

(see [312] for the detail). From [312].

where gravity is strongly modified is provided by dwarf galaxies in voids. Dwarf galaxies

have a potential |ΨN | ∼ 10−7 thus they are not self-screened even with |fR0| = 10−6.

We need to carefully identity dwarf galaxies that are not environmentally screened.

One way is to use the D parameter introduced in the previous section (Eq. (170)).

Another environmental measure is defined in terms of the sum of gravitation potentials

of neighbouring galaxies [328]

Φext =
∑

di<λc+ri

GMi

di
, (172)

where di is the 3D distance to the neighbouring galaxy with mass Mi and the virial

radius ri, λC is the background Compton wavelength of the scalar field. Using the thin

shell condition (100), we select the environmentally unscreened galaxies

Φext <
3

2
|fR0|. (173)

This parameter is more suited to identify the environment of galaxies when uncertainties

in the estimation of mass and distance and the incompleteness of the samples are

included compared with D [328]. Using this criteria a screening map has been created
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Figure 24. Radial mass profile of the Coma cluster. The shaded region is the

observationally allowed 1σ region of the WL observation. The blue solid curve is the

thermal mass component estimated from the X-ray observations. The red solid and

dashed curves are the combination of the termal and chameleon mass components.

From [335] (published on 14 April 2014 c©SISSA Medialab Srl. Reproduced by

permission of IOP Publishing. All rights reserved).

using SDSS galaxies within 200 h−1Mpc [328] (see Fig. 25 and 26). We also introduce

the self-unscreening condition

Φint <
3

2
|fR0|, (174)

where Φint = GM/R, M is the mass and R is the virial radius of a halo.

There are a number of effects that we expect to see in unscreened galaxies

summarised in [338].

• Offset between stellar and gaseous component.

In the presence of the external scalar field, unscreened components such as dark

matter or neutral hydrogen (HI) will fall faster along the external field than will

stars that are self-screened. This difference may cause an offset between the centroid

of the stellar disk and the gaseous disk.

• Warping of the stellar disk.

As the dark matter halo moves along the external potential gradient, the screened

stellar component lags behind the dark matter halo. If the potential gradient is

aligned with the axis of rotation, this may introduce a U-shaped warp in the stellar

disk. The warp is expected to align with the potential gradient.

• Asymmetry in stellar rotation curve.

The offsets between stellar and halos centres can perturb the stellar disk and cause
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Figure 25. Scatter plot for Φext vs. the dynamical mass Mdyn (equivalent to |Φint|),
coloured accordingly to the difference between the dynamical and lensing mass ∆M .

A simple cut in Φext and Mdyn given by Eqs. (173) and (174) seem to work to separate

screened from unscreened galaxies. From [328] (18 July 2012 c©SISSA Medialab Srl.

Reproduced by permission of IOP Publishing. All rights reserved).

Figure 26. The environmental screening map generated in the SDSS region at 210Mpc

for 10×10 degree of survey area, approximately 38 Mpc, with 2 arcmin resolution. The

external potential Φext is shown with the screening condition evaluated using Eq. (173)

for models with |fR0| = 10−5, 10−6 and 10−7 (left, middle and right panels). The cut

in screening classification 3/2|fR0| is shown in the map as a white contour line (regions

inside the contour are screened). From [328] (18 July 2012 c©SISSA Medialab Srl.

Reproduced by permission of IOP Publishing. All rights reserved).

an asymmetry in the stellar rotation curve as the dominant force on the stellar disk

is from the potential of dark matter halos.

• Mismatch of the rotation velocities of a gaseous and stellar disk

The rotation velocity of an unscreened gaseous disk is enhanced relative to the

screened stellar disk by a factor of
√

1 + ∆G/G. This test requires us to derive the

stellar rotation curves from stellar absorption lines instead of using Hα or the 21

cm line as these lines prove the unscreened gaseous components of the galaxies.
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All these tests have been carried out recently [338, 339]. The absence of these effects

give the strong constraint |fR0| < 10−6. These constraints can be improved by on-going

surveys such as Sloan Digital Sky Survey (SDSS)IV Mapping Nearby Galaxies at APO

(MaNGA) which will find many unscreened galaxies even if |fR0| = 10−6 [340].

There are also interesting implications for dwarf galaxies in the Milky way if the

screening radius rscr of the Milky way is 60 kpc [341].

6.1.3. Stars Another astrophysical object which has a shallow potential is a post main-

sequence star whose potential is |ΨN | ∼ 10−7. The stellar structure is again determined

by the hydrostatic equilibrium. The effect of the fifth force can be approximated by

Eq. (166). Due to the enhanced gravity, stars are expected be more luminous [342, 343].

This modified equation has been implemented in the stellar structure code MESA [344].

Assuming that a star is in an unscreened galaxy, the evolution of a 1 solar mass star

in the Hertzprung-Russell diagram is shown in Fig. 27 in the case of f(R) gravity. For

|fR0| = 0.67 × 10−7, the main-sequence stars are screened and the modified gravity

affects only red giants. For |fR0| = 0.67 × 10−6 and 3.35 × 10−6, main sequence stars

are also affected.

Figure 27. The Hertzprung-Russell diagram for stars of one solar mass with initial

metallicity Z = 0.02 in f(R) gravity. The black line shows the tracks for stars in GR

while the red, blue and green tracks correspond to stars in modified gravity models

with the chameleon mechanism with |fR0| = 0.67× 10−7, 0.67× 10−6 and 3.35× 10−6.

From [343].

This modification of the stellar structure was used to put a strong constraint on

the chameleon mechanism [345]. Cepheid variable stars with 5− 10M⊙ pulsate with a
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known period-luminosity relation once they go off the main sequence and situated in a

narrow temperature gap in the HR diagram. This property has been used to measure

the distance to the Cepheids. The period τ is determined by the strength of gravity

τ ∝ G−1/2. This relation is calibrated using local group stars that are screened. Hence

if one uses this relation to estimate the distance, then the derived distance will be

incorrect. If gravity is stronger than GR, the period of Cepheids becomes shorter. It is

found that the change in the distance is given by

∆d

d
= −0.3

∆G

G
. (175)

If we measure the distance using Cepheid assuming GR, the measured distance will

be shorter than the actual distance. In order to test this, we need another distance

indicator that is insensitive to gravity and measure the correct distance. The tip of the

red giant branch (TRGB) distance is such a distance indicator as the absolute magnitude

of red giants that go off the red giant branch after a helium flash is insensitive to

gravity. The comparison between the two distances has been performed and compared

against the prediction of the chameleon mechanisms. This led to the stringent constraint

|fR0| < 5× 10−7.

6.1.4. Summary of constraints Fig. 28 summarises the constraints on chameleon

gravity in the case of f(R) gravity. A detailed summary of constraints is available

in Ref [346].

Constraints from cosmological probes such as CMB and large scale structure are

relatively weak |fR0| < 10−2 − 10−4. Clusters give an order of magnitude stronger

constraint |fR0| < 10−5 which requires the understanding of non-linear structure

formation. In order to satisfy the Solar System constraints, the Milky Way needs to be

screened. This condition depends on whether the Local Group gives the environmental

screening and the constraint is given by |fR0| < 10−4 − 10−6. Constraints from dwarf

galaxies and Cepheid are much stronger |fR0| < 10−7. All the constraints except for the

Solar System constraint have been obtained in the last 10 years illustrating impressive

development of new tests of gravity on cosmological and astrophysical scales.

6.2. Vainshtein mechanism

Unlike the chameleon mechanism, it is very difficult to test models with the Vainshtein

mechanism on small scales. The screening of dark matter halos does not depend on

mass nor environment and all dark matter halos are screened inside the virial radius. In

order to find modifications of gravity, we need to go beyond the virial radius of halos.

An interesting test using black holes at the centre of galaxies has been proposed

[306]. As we have seen in section 5.5, even if a dark matter halo is “screened” and the

fifth force is suppressed within the dark matter halo, it still feels the external gradient

of the scalar field as it still carries a scalar charge. On the other hand, black holes do

not carry a scalar charge due to the no-hair theorem. Thus the central black hole will
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Figure 28. Astrophysical and cosmological limits on chameleon theories. The spatial

scale on the x-axis gives the range of the length scales probed by particular experiments.

The parameter on the y-axis is the background field |fR0| value or the range of the

interaction for an f(R) gravity model. The rectangular region gives the exclusion zone.

From [13].

lag behind the dark matter halos and there may be a displacement of the central black

holes. The magnitude of this effect depends on the external field and the strength of

the fifth force and it is estimated as [306]

r = 0.1 kpc× 2β2

( |∇Ψext|
20(km/s)2/kpc

)(

0.01Mpc−3

ρ0

)

, (176)

where ρ0 is the central density of the galaxies.

In beyond Horndeski theories discussed in section 2.5, the Vainshtein mechanism is

broken inside matter. The Poisson equation within the Vainshtein radius is given by

dΨ(r)

dr
=
GM(< r)

r2
+

Υ

4
G
d2M(< r)

dr2
, (177)

where Υ characterises the deviation from the Horndeski theory. The last term modifies

GR even within the Vainshtein radius. This for example changes the structure of stars,

rotation velocities of galaxies and lensing [347, 348].

Observational tests have not been carried out yet and there remains to be seen

if we can get tighter constraints on the model parameter such as rc compared with

cosmological observations and the Solar System constraint from these astrophysical

tests.



Cosmological Tests of Modified Gravity 67

7. Conclusion

The discovery of the accelerated expansion of the Universe has come relatively late in our

study of the cosmos, but in showing that gravity can act repulsively, it has opened up

many new questions about the nature of gravity and what the Universe might contain.

Is the acceleration being driven by dark energy? Or is general relativity itself in error,

requiring a modification at large scales to account for the late acceleration?

Modified gravity models have provided many interesting new ideas to solve the

cosmological constant problem by modifying the way in which the vacuum energy

gravitates. The expansion of the Universe can accelerate without the cosmological

constant due to the modification of gravity on cosmological scales. Gravitons may have

a mass and provide an effective cosmological constant realising the technical naturalness

of the smallness of the cosmological constant. Einstein equations are the only second-

order local equations of motion for metric derivable from the action in 4D. If we modify

GR, a new degree of freedom appears in the graviton, modifying gravity even in the Solar

System. One of the most important recent developments are the screening mechanisms

that enable us to modify gravity significantly on cosmological scales while satisfying the

stringent Solar System constraints. Despite extensive study of modified gravity models,

we still do not have a model that can be an alternative to the ΛCDM model. Our quest

to find modified gravity models still continue.

Structure formation in our Universe can be different even if the geometry of

the homogeneous and isotropic universe is the same in these two classes of models,

offering a possibility to distinguish between them observationally. It is in principle

possible to construct non-parametric consistency tests of GR on cosmological scales by

combining various probes of large-scale structure, because the Einstein equations enforce

a particular relation between observables. On large scales, there are two functions

of time and space that are required to describe these relations. One describes the

relation between the density perturbation and the Newton potential, which determines

the motion of non-relativistic objects such as galaxies; the other parametrises the

relation between the density perturbation and the lensing potential, which determines

the geodesics of photons. In the next five years, new surveys such as DES and eBOSS will

be able to constrain several parameters at the 5-10% level. This shows that upcoming

surveys will make cosmological tests of gravity a reality in the next five years. Surveys

such as Euclid will further make cosmological tests of gravity a precision test providing

constraints on these parameters at the 1% level.

It is possible to construct model independent tests on linear scales, but the

bulk of information is available on non-linear scales. Also in order to extract the

information of the linear growth rate of structure, it is required to model the non-

linear corrections accurately. The non-linear structure formation is complicated by the

screening mechanisms that restore GR on small scales. Perturbation theory and N-body

simulations have enabled us to understand how structure formation is affected by the

screening mechanisms. The screening mechanisms leave distinct signatures in the non-
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linear structure formation. This has led to the developments of novel astrophysical tests

of gravity. In the case of the chameleon mechanism, the astrophysical tests using dwarf

galaxies and stars provide stringent constraints on the model that are even stronger

than the Solar System constraints.

There are remaining issues in developing theoretical frameworks for probing

gravitational physics with upcoming cosmological surveys and exploiting the constraints

expected to be obtained. The questions that we need to address include:

• What theoretical models should we be looking at?

• Is there a better, more physically meaningful parameterisation of modifications to

GR on cosmological scales?

• How do we include non-linear physics either numerically or analytically?

• How do we combine various cosmological observations to test gravity?

• How limited are we to using linear scales?

• Can we develop novel tests of gravity on non-linear scales?

As we have seen in this review, we have started to answer these questions and

have already obtained a number of new constraints on gravity on astrophysical and

cosmological scales in the last ten years. The next ten years will be an exciting time

for cosmological tests of gravity thanks to the on-going and future surveys. We may be

able to detect the breakdown of GR that is responsible for the later acceleration of the

Universe or GR will be confirmed as the theory of gravity on cosmological scales.
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