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1. Introduction

Supergravity 1 combines Supersymmetry with General Relativity (GR). This brings

about scalar fields, some of which can play a natural role in the Early Universe.

Nowadays it is well established that inflationary Cosmology is accurately described

via the evolution of a single real scalar field, the inflaton, in a Friedmann, Lemâıtre,

Robertson, Walker (FLRW) geometry 2. A scalar field associated to the Higgs

particle was also recently discovered at LHC 3, confirming the interpretation of

the Standard Model as a spontaneously broken phase (BEH mechanism) of a non-

abelian Yang-Mills theory 4. There is thus some evidence that Nature is inclined

to favor, both in Cosmology and in Particle Physics, theories with scalar degrees of

freedom, albeit in diverse ranges of energy scales.

Interestingly, there is also a cosmological model where inflaton and Higgs fields

are identified: this is the Higgs inflation model of 5, which rests on a non-minimal

coupling h2R of the Higgs field h to gravity. Another well–known example rests on

an R+ R2 extension of General Relativity (GR). This is the Starobinsky model of

inflation 6,7, which is also conformally equivalent to GR coupled to a scalar field,

the scalaron 8, with the special scalar potential

V = V0

(

1 − e−
√

2

3
φ
)2

, V0 ∼ 10−9 in Planck units . (1)

These two models (and also a more general class) give identical predictions 9 for

the slow-roll parameters ǫ and η, which are determined by the potential according

to

ǫ =
M2

P

2

(

V ′

V

)2

, η = M2
P

V ′′

V
. (2)

The spectral index of scalar perturbations (scalar tilt) and the tensor-to-scalar ratio

turn out to be

ns = 1 − 6 ǫ + 2 η ≃ 1 − 2

N
, r = 16 ǫ ≃ 12

N2
, (3)

where

N =
1

M2
P

∫ φ

φend

V

V ′
dφ (4)

is the total number of e-folds of inflation.

An interesting modification of the Starobinsky potential, suggested by its em-

bedding in R+R2 Supergravity 10,11, involves a deformation parameter α and reads
11,12

Vα = V0

(

1 − e−
√

2

3α
φ
)2

. (5)

It gives the same result of eq. (3) for ns, but the tensor-to-scalar ratio is now

r ≃ 12α

N2
. (6)
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This family of models provides an interpolation between the Starobinsky model (for

α = 1) and Linde’s chaotic inflation model 13, with a quadratic potential (in the

limit α → ∞). The chaotic inflation model leads again to the scalar tilt (3), but

now the tensor-to-scalar ratio becomes

r ≃ 8

N
. (7)

The recent 2015 data analysis from Planck 14 and BICEP2 15 favors ns ≈ 0.97

and r < 0.1, and thus the Starobinsky model, which lies well within the allowed

parameter space due to the additional 1/N suppression factor r present in eq. (3)

as compared to eq. (7).

The form (5) for Vα can be further generalized, allowing for an arbitrary, mono-

tonically increasing function f
(

tanh ϕ√
6α

)

, such that

Vα = V0 f

(

tanh
ϕ√
6α

)2

, ϕ→ ∞ : f

(

tanh
ϕ√
6α

)

→ 1 − e−
√

2

3α
φ + . . . .(8)

These modifications led to the concept of α-attractors 12.

This contribution is organized as follows: In section 2 we describe the single-

field inflation in Supergravity, in section 3 we discuss inflation and supersymmetry

breaking and in section 4 we present some minimal Supergravity models of inflation.

Nilpotent superfields and sgoldstino-less models are reviewed in section 5, in sec-

tion 6 we discuss higher-curvature Supergravity and its dual standard Supergravity

description, in section 7 orthogonal nilpotent superfields are explored and section

8 contains our conclusions and outlooks. Finally in appendix A we briefly review

constraint superfields which preserve N = 1 supersymmetry.

2. Single–Field Inflation in Supergravity

We can now describe how N = 1 Supergravity can accommodate these “single–

field” inflationary models, explaining how to embed the inflaton ϕ in a general

Supergravity theory coupled to matter in an FLRW geometry and the role of its

superpartners. Under the assumption that no additional Supersymmetry (N ≥ 2) is

restored in the Early Universe, the most general N = 1 extension of GR is obtained

by coupling the graviton multiplet (2, 3/2) to a certain number of chiral multiplets

(1/2, 0, 0), whose complex scalar fields are denoted by zi, i = 1, . . . , Ns/2 and to

(gauge) vector multiplets (1, 1/2), whose vector fields are denoted by AΛ
µ (Λ =

1, . . . , NV ). These multiplets can acquire supersymmetric masses, and in this case

the massive vector multiplet becomes (1, 2(1/2), 0), eating a chiral multiplet in the

supersymmetric version of the BEH mechanism.

For Cosmology, the relevant part of the Lagrangian 16,17 is the sector that

couples the scalar fields to the Einstein–Hilbert action, described by

L = − R − ∂i∂KDµz
iDν z̄

 gµν − V (z, z) + . . . , (9)
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where K is the Kähler potential of the σ-model scalar geometry and the “dots” hide

fermionic terms and gauge interactions. The scalar covariant derivative is

Dµz
i = ∂µz

i + δΛz
iAΛ

µ , (10)

where the δΛz
i are Killing vectors. This term allows to write massive vector multi-

plets à la Stueckelberg. The scalar potential is

V (zi, zi) = eG
[

GiG (G
−1)i − 3

]

+
1

2
(RefΛΣ)

−1DΛDΣ , (11)

where, in terms of the superpotential W (zi),

G = K + log |W |2 , Gij = ∂i ∂j K . (12)

The first and third non–negative terms in eq. (11) are usually referred to as

“F” and “D” term contributions: together with the second, negative term, they

encode the option of attaining unbroken Supersymmetry in Anti-de Sitter space.

Alternatively, the potential can be recast in the more compact form

V (zi, zı) = FiF
i + DΛD

Λ − 3 |W |2 eK , (13)

where

Fi = e
K

2

(

WK,i + W,i

)

, DΛ = G,i δΛz
i . (14)

The D-term potential can endow a vector multiplet with a supersymmetric mass

term, and can also give rise to a de Sitter phase, thanks to its non–negative con-

tribution to the potential. Only F-breaking terms can thus give AdS phases. The

(field dependent) matrices RefΛΣ, ImfΛΣ provide the normalization of the terms

quadratic in Yang-Mills curvatures. Their role in Cosmology deserves to be investi-

gated further, since they give direct couplings of the inflaton to matter, which are

relevant for the epoch of reheating.

3. Inflation and Supersymmetry Breaking

In a given phase, unbroken Supersymmetry requires

Fi = DΛ = 0 , (15)

so that

V = − 3 |W |2 eK . (16)

These are Minkowski or AdS phases depending on whether or not W vanishes. On

the other hand, supersymmetry is broken if at least one of the Fi or D
Λ does not

vanish. In phases with broken Supersymmetry one can have maximally symmetric

AdS, dS or Minkowski vacua, so that one can accommodate both the inflationary

phase (dS) and the subsequent Particle Physics (Minkowski) phase. However, it is

not trivial to construct corresponding models, since the two scales are very different

if Supersymmetry is at least partly related to the Hierarchy problem.
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In view of the negative term present in the scalar potential (11) it might seem

impossible (or at least not natural) to retrieve a de Sitter phase for large values of

a scalar field to be identified with the inflaton. The supersymmetric versions of the

R+R2 (Starobinsky) model show how this puzzle is resolved: either the theory has

(with F-terms) a no-scale structure, which makes the potential positive along the

inflationary trajectory 18, or the potential is a pure D-term and is therefore positive
19.

These models contain two chiral superfields (T, S) 20,21, as in the old minimal

version of R +R2 Supergravity 18, or one massive vector multiplet 10,11, as in the

new minimal version, and attain unbroken Supersymmetry in a Minkowski vacuum

at the end of inflation.

In the framework of nilpotent superfield inflation 22, some progress was recently

made 23,24 on the problem of embedding two different supersymmetry breaking

scales in the inflationary potential. The multiplet S, which does not contain the

inflaton (T multiplet), is replaced by a nilpotent superfield satisfying

S2 = 0 . (17)

This condition eliminates the sgoldstino scalar from the theory, but its F-component

still drives inflation, or at least participates in it. This mechanism was first applied

to the Starobinsky model, replacing the S field by a Volkov-Akulov nilpotent field 22

and then to general F-term induced inflationary models 25. Although the exam-

ples are so far restricted to the N = 1 → N = 0 breaking in four–dimensional

supergravity, these types of construction are potentially very instructive for String

Theory, where one readily looses control of the vacuum in the presence of broken su-

persymmetry 26. Orientifold vacua 27 provide a natural and interesting entry point

into this intricate dynamics, via the phenomenon of “brane SUSY breaking 28. This

rests on non–BPS combinations of branes and orientifolds that are individually BPS,

and its simplest ten–dimensional setting was related to non–linear supersymmetry

in 29. Recent work, starting from ref. 25, linked it more clearly to the superHiggs

effect in Supergravity 16, and also to the KKLT scenario of 30. Let us conclude

this section, however, by recalling that a first attempt to make use of the nilpotent

Volkov-Akulov multiplet in Cosmology, identifying the inflaton with the sgoldstino,

was made in ref. 31.

4. Minimal Models for Inflation and Supergravity

This class includes models where the inflaton is identified with the sgoldstino and

only one chiral multiplet T is used. However, the f(R) Supergravity models 32 yield

potentials that either have no plateau or, when they do, lead to AdS rather than

to dS phases 34,35. This also reflects a no-go theorem 33

A way out of this situation was recently found with “α-scale Supergravity” 36:

adding two superpotentials W+ +W− which separately give a flat potential along

the inflaton (ReT ) direction can result in a de Sitter plateau for large ReT . The
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problem with these models is that the inflaton trajectory is unstable in the ImT

direction, but only for small inflaton field: modifications to the superpotential are

advocated to generate a satisfactory inflationary potential. For single-field models

and related problems, see also 37. R + R2 Supergravity, D-term inflation 11,38,

α-attractor scenarios 39, no-scale inflationary models 20, and α-scale models 36

have a nice SU(1, 1)/U(1) hyperbolic geometry for the inflaton superfield, with

Rα = − 2

3α
, ns ≃ 1 − 2

N
, r ≃ 12α

N2
, (18)

where Rα is the curvature of the scalar manifold.

4.1. D-term Inflation

An appealing and economical class of models allows to describe any potential of a

single scalar field which is the square of a real function 11:

V (ϕ) =
g2

2
P 2(ϕ) . (19)

These are the D-term models, which describe the self-interactions of a massive vector

multiplet whose scalar component is the inflaton. Up to an integration constant

(the Fayet-Iliopoulos term), the potential is fixed by the geometry, since the Kähler

metric is

ds2 = dϕ2 +
(

P ′(ϕ)
)2

da2 . (20)

After gauge fixing, the field a is absorbed by the vector, via da + gA, giving rise

to a mass term g2

2

(

P ′(ϕ)
)2

A2
µ (BEH mechanism). In particular, the Starobinsky

model corresponds to

P (ϕ) = 1 − e−
√

2

3
ϕ , (21)

but in all these examples there is no superpotential and only a de Sitter plateau is

possible. At the end of inflation ϕ = 0, D = 0 and Supersymmetry is recovered in

Minkowski space, since V = 0.

4.2. R + R
2 Supergravity

There are two distinct classes of models, depending on the choice of auxiliary

fields: old and new minimal models. The off-shell degrees of freedom contain the

6(= 10 − 4diff) degrees of freedom of the graviton gµν and the 12(= 16 − 4diff)

degrees of freedom of the gravitino ψµ. The nB = nF off-shell condition requires

six more bosons. There are two choices for the latter, which reflect the two minimal

supegravity multiplets of the N = 1 theory:

• old minimal: Aµ, S, P (6 DOF’s)

• new minimal: Aµ, Bµν (6 DOF’s due to gauge inv. δBµν = ∂µbν − ∂νbµ)

.



May 17, 2016 2:4 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in ws-procs-FKS-4 page 7

7

These 12B + 12F degrees of freedom must fill massive multiplets like

Weyl2 : (2, 2(3/2), 1), R2
old : 2(1/2, 0, 0), R2

new : (1, 2(1/2), 0). (22)

After superconformal manipulations, these two theories can be turned into stan-

dard Supergravity coupled to matter. The new minimal gives D-term inflation as

described before, while the old minimal gives F-term inflation with the two chiral

superfields T (inflaton multiplet) and S (sgoldstino multiplet). The T submanifold

is SU(1, 1)/U(1) with scalar curvature R = −2/3, and the no-scale structure of the

Kähler potential is responsible for the universal expression

V = M2M2
Pl

(

1 − e−
√

2

3
ϕ

)2

, (23)

along the inflationary trajectory where FS 6= 0, FT = 0, which identifies S with the

sgoldstino.

4.3. Other Models

Several examples exist with two chiral multiplets of the same sort, for which FS

leads to a de Sitter plateau with FT = 0, while at the end of inflation FS = FT = 0

and Supersymmetry is recovered. A class of models (α attractors) modify the

superpotential but not the Kähler geometry of the original R + R2 theory, which

now reads 12:

W (S, T ) = S f(T ) , (24)

with scalar curvature Rα = − 2
3α . Along the inflationary trajectory the potential is

positive since

V ∼ |f |2 ≥ 0 . (25)

An alternative class of models with opposite role for Kähler potential and super-

potential rest on the choice of eq. (24), combined however with the trivial Kähler

geometry corresponding to

K =
1

2

(

Φ+ Φ
)2

+ S S . (26)

The inflaton is now identified with ϕ = ImΦ, thus avoiding the dangerous exponen-

tial factor eK in the supersymmetric potential. Along the inflationary trajectory

V (ϕ) ∼ |f(ϕ)|2 , (27)

so that the inflaton potential is fully encoded in the superpotential shape.
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5. Nilpotent Superfields and Sgoldstino–less Models

In all the models reviewed so far it is difficult to exit inflation with Supersymme-

try broken at a scale much lower than the de Sitter plateau (Hubble scale during

inflation). A way to solve this problem is to introduce a nilpotent (Volkov–Akulov)

multiplet S satisfying 40–43 the constraint of eq. (17), so that the goldstino lacks its

scalar partner, which is commonly called the sgoldstino. This solves the stabilization

problem and gives rise to a de Sitter plateau.

The first cosmological model with a nilpotent sgoldstino multiplet was a gener-

alization of the Volkov-Akulov-Starobinsky supergravity22, where

W (S, T ) = S f(T ) , V = eK(T ) K−1

SS
|f(T )|2 . (28)

Two classes of models which incorporate separate scales of Supersymmetry breaking

during and at the exit of inflation were then proposed. They rest on a trivial (flat)

Kähler geometry

K(Φ, S) =
1

2

(

Φ + Φ
)2

+ S S , (29)

but differ in their supersymmetry breaking patterns during and after inflation.

• In the first class of models 23

W (Φ, S) = M2 S
(

1 + g2(Φ)
)

+ W0 , (30)

where g(Φ) vanishes at Φ = 0 and the inflaton ϕ is identified with its

imaginary part. Along the inflaton trajectory ReΦ = 0, and the potential

reduces to

V = M4 |g(Φ)|2
(

2 + |g(Φ)|2
)

+ V0 , V0 = M4 − 3W 2
0 . (31)

Assuming V0 ≃ 0, one finds

m3/2 =
H√
3
, ESB = |FS |

1

2 =
√

HMPl > H , V = FSF
S − 3W 2

0 , (32)

while FΦ = 0 during inflation (Re Φ = 0).

• In the second class of models 24 the superpotential is

W (Φ, S) = f(Φ)
(

1 +
√
3S

)

, (33)

which combines nilpotency and no-scale structure. Here the function f(Φ)

satisfies the conditions

f(Φ ) = f(−Φ) , f ′(0) = 0 , f(0) 6= 0 . (34)

The scalar potential is of no-scale type, and letting Φ = (a+ iϕ)/
√
2,

FSF
S = 3ea

2 |f(Φ)|2 , V (a, ϕ) = FΦFΦ = e a2 |f ′(Φ) + a
√
2f(Φ)|2 . (35)
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The field a is stabilized at a = 0, since f is an even function of a. During

inflation a gets a mass O(H) without mixing with Φ and is rapidly driven

to a = 0, so that the inflationary potential reduces to

V (a = 0, ϕ) =
∣

∣

∣
f ′

(

iϕ√
2

)

∣

∣

∣

2

, V (0, 0) = 0 . (36)

These models lack the fine-tuning of the previous class (V0 = 0), and it

is interesting to compare the supersymmetry breaking patterns. Here FS

never vanishes, and at the end of inflation

FS FS = 3 eG(0,0) = 3m2
3/2 . (37)

In particular,

〈FS〉Φ=0 =
√
3 f(0) , m3/2 = |f(0)| . (38)

and the inflaton potential vanishes at the end of inflation. A choice that

reproduces the Starobinsky potential is

f(Φ) = λ − i µ1Φ + µ2 e
i 2√

3
Φ
. (39)

Interestingly, ma and m3/2 depend on the integration constant λ, but V is

independent of it, and hence the same is true for mϕ.

6. Higher-curvature Supergravity and standard Supergravity duals

Work in this direction started with the R + R2 Starobinsky model, whose super-

symmetric extension was derived in the late 80s 18,19 and was recently revived in

view of the new CMB data 10,11,20,34. Models dual to higher-derivative theories give

more restrictions than their bosonic counterparts or standard Supergravity duals.

Theories with unconstrained superfields also include the Supergravity embedding

of R2 duals, whose bosonic counterparts describe standard Einstein gravity coupled

to a massless scalar field in de Sitter space. These theories were recently resur-

rected in 44,45. The R2 higher curvature Supergravity was recently obtained in

both the old and new minimal formulations 46. In the old-minimal formulation, the

superspace Lagrangian is

αRR
∣

∣

∣

D
− βR2

∣

∣

∣

F
, (40)

where

R =
Σ(S0)

S0
, Dα̇R = 0 (41)

is the scalar curvature multiplet, with Weyl and chiral weights (w = 1, n = 1). The

dual standard Supergravity has Kähler potential and superpotential

K = − 3 log(T + T − αS S) , W = T S − β S3 , (42)
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and the Kählerian manifold is SU(2, 1)/U(2). Note the rigid scale invariance of the

action under

T → e2λ T , S → eλ S , S0 → e−λ S0 . (43)

If α = 0 S is not dynamical, and integrating it out gives an SU(1, 1)/U(1) σ-model

with Kähler potential and superpotential

K = − 3 log
(

T + T
)

, W =
2T

2

3

3
√
3 β

. (44)

Higher-curvature supergravities can be classified by the nilpotency properties of

the chiral curvature R . Such nilpotency constraints give rise to dual theories with

nilpotent chiral superfields 22. In particular, the constraint

R2 = 0 , (45)

in R+ R2 generates a dual theory where the inflaton chiral multiplet T (scalaron)

is coupled to the Volkov-Akulov multiplet S

S2 = 0 , Dα̇ S = 0 . (46)

For this theory (the V-A-S Supergravity), the Kähler potential and superpotential

are

K = − 3 log
(

T + T − S S
)

, W = M S T + f S + W0 , (47)

respectively, and due to its no-scale structure the scalar potential is semi-positive

definite

V =
|M T + f |2
3 (T + T )2

. (48)

In terms of the canonically normalized field

T = e
√

2

3
φ + i a

√

2

3
, (φ, a) ∈ SU(1, 1)

U(1)
, (49)

the potential eq. (48) becomes

V =
M2

12

(

1 − e−
√

2

3
φ

)2

+
M2

18
e− 2

√
2

3
φ a2 . (50)

Here a in the axion, which is much heavier than the inflaton during inflation

m2
φ ≃ M2

9
e− 2

√
2

3
φ0 ≪ m2

a =
M2

9
. (51)

There are then only two natural supersymmetric models with genuine single-field

φ inflation. One is the new-minimal R + R2 theory, where the inflaton has a mas-

sive vector as bosonic partner, and the V-A-S (sgoldstino-less) Supergravity just

described.
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Another interesting example is the sgoldstino-less version of the RR theory

described before. This is obtained imposing the same constraint R2 = 0 as for the

V-A-S Supergravity 47, and is dual to the latter with

f = W0 = 0 . (52)

The corresponding potential

V = M2 |T |2
3 (T + T )2

=
M2

12
+

M2

18
e− 2

√
2

3
φ a2 , (53)

is positive definite and scale invariant. This model results in a de Sitter vacuum

geometry with a positive vacuum energy

V (a = 0) =
M2

12
M4

Pl . (54)

On the other hand, the Volkov-Akulov model coupled to Supergravity involves

two parameters, and its vacuum energy has an arbitrary sign. The pure V-A theory

coupled to Supergravity has indeed a superfield action determined by 22

K = 3S S , W = f S + W0 , S2 = 0 . (55)

Moreover, the cosmological constant turns out to be

Λ =
1

3
|f |2 − 3 |W0|2 . (56)

The full-fledged component expression of the model, including all fermionic terms,

was recently worked out 48,49. The higher-curvature supergravity dual 50,51 is the

standard (anti-de Sitter) supergravity Lagrangian augmented with the nilpotency

constraint
(R
S0

− λ

)2

= 0 . (57)

This is equivalent to adding to the action the term

σ

(R
S0

− λ

)2

S3
0

∣

∣

∣

F
, (58)

where σ is a chiral Lagrange multiplier. A superfield Legendre transformation and

the superspace identity
[

(Λ + Λ)S0S0

]

D

=

[

ΛRS2
0

]

F

+ h.c , (59)

which holds up to a total derivative for any chiral superfield Λ, turn indeed the

action into the V-A superspace action coupled to standard Supergravity with

f = λ − 3W0 . (60)

Hence, supersymmetry is broken whenever

3W0 6= λ 6= 0 . (61)
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In the higher-derivative formulation, the goldstino G is encoded in the Rarita-

Schwinger field. At the linearized level around flat space

G = − 3

2λ

(

γµν ∂µ ψν − λ

2
γµ ψµ

)

, δG =
λ

2
ǫ . (62)

The linearized equation of motion for the gravitino reads

γµνρ ∂ν ψρ − λ

6
γµν ψν − 1

3

(

γµν ∂ν − λ

2
γµ

)

G = 0 , (63)

and is gauge invariant under

δψµ = ∂µǫ +
λ

6
γµ ǫ . (64)

Both the γ-trace and the divergence of the equation of motion yield

γµν ∂µ ψν − γµ ∂µG = 0 , (65)

so that gauging away the Goldstino G one recovers the standard formulation of a

massive gravitino.

Tables 1–3 summarize the various dualities linking higher-curvature supergravi-

ties in the old-minimal and new-minimal formulations with standard Supergravity.

Table 1. Old-Minimal Dualities

−ΦS0S0

∣

∣

∣

D
+WS3

0

∣

∣

∣

F
, Φ = exp

(

−
K
3

)

Higher Curvature Supergravity Standard Supergravity

ΦH = 1− h
(

R

S0

, R

S0

)

ΦS = 1 + T + T − h(S, S)

WH = W
(

R

S0

)

WS = TS −W (S)

ΦH = 1 ΦS = 1 + T + T

WH = W
(

R

S0

)

WS = −SW ′(S) +W (S)
∣

∣

∣

T=−W ′(S)

ΦH = −α R

S0

R

S0

ΦS = T + T − αSS

WH = −βR
3

S3

0

WS = TS − βS3

7. Orthogonal Nilpotent Superfields

We have seen so far that simple models of inflation, and in particular the super-

symmetric version of the Starobinsky model, rest on a pair of chiral multiplet, the
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Table 2. Nilpotent Old-Minimal Dualities

−ΦS0S0

∣

∣

∣

D
+WS3

0

∣

∣

∣

F
, Φ = exp

(

−
K
3

)

Higher Curvature Supergravity Standard Supergravity

ΦH = 1−
1

M2

R

S0

R

S0

ΦS = T + T − SS

WH = W0 + ξ R

S0

+ σR
2

S2

0

WS = MTS + fS +W0

(S2 = 0, f = ξ − 1
2
)

ΦH = −
1

M2

R

S0

R

S0

ΦS = T + T − SS

WH = σR
2

S2

0

WS = MTS

(S2 = 0)

ΦH = 1 ΦS = 1− SS

WH = W0 + σ
(

R

S0

− λ
)2

WS = fS +W0

(S2 = 0, f = λ− 3W0)

Table 3. New-Minimal Dualities

Φ = exp
(

−
K
3

)

Higher Curvature Supergravity Standard Supergravity

L log
(

L

S0S0

)
∣

∣

∣

D
ΦS = −U expU

Wα

(

L

S0S0

)

Wα
(

L

S0S0

)
∣

∣

∣

F
Wα(U)Wα(U)

ΦS = (T + T ) expV

Wα

(

L

S0S0

)

Wα
(

L

S0S0

)
∣

∣

∣

F
Wα(V )Wα(V )

sgoldstino multiplet S and the inflaton multiplet T . Sgoldstino-less models are ob-

tained by replacing S by a nilpotent superfield (S2
NL = 0), which is the local version

of the V-A multiplet. This setting should correspond to a linear model where the

scalar partners of the goldstino are infinitely heavy, so that the sgoldstino becomes

a non-dynamical composite field. Following 43,52, other types of constraints can be

imposed, which remove other degrees of freedom from the T multiplet. The most

interesting of them is the orthogonality constraint 53–55

SNL (TONL − TONL) = 0 , (S2
NL = 0) , (66)

which also implies
(

TONL − TONL

)3
= 0 . (67)

This constraint removes the inflatino (spin-1/2 partner of the inflaton), as well as the

sinflaton (spin-0 partner of the inflaton), so that this description should correspond

to a regime where the inflatino and the sinflaton are both infinitely heavy.
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The new aspect of these “non-chiral orthogonality constraints” is that the T -

auxiliary field FT becomes nilpotent, and therefore fails to contribute to the scalar

potential, which takes the form

V (ϕ = Re T ) = f2(ϕ) − 3 g2(ϕ) , (68)

for a quadratic Kähler potential and a superpotential of the form

W (SNL, TONL) = SNL f(TONL) + g(TONL) . (69)

The potential V in eq. (68) may or may not reproduce the inflaton trajectory

for models with a “linear T multiplet”. This setting presents an advantage with

respect to the linear T model, because it eliminates the sinflaton, thus bypassing the

problems related to its stabilization. It also avoids goldstino-inflatino mixing, which

makes matter creation in the Early Universe very complicated. In the unitary gauge,

the inflatino field simply vanishes, since it is proportional to the goldstino 53,56.

In Table 4 we collect the various orthogonality constraints. The supergravity

Table 4. Orthogonality constraints with SNL (S2
NL

= 0)

SNL(TONL − TONL) = 0 sgoldstino-less, inflatino-less, sinflaton-less

(implies (TONL − TONL)
3 = 0)

SNLT
′

ONL = chiral sgoldstino-less, inflatino-less

(implies SNLDȧT
′

ONL
= 0)

SNLT
′′

ONL
= 0 sgoldstino-less, scalar-less

(implies (T ′′

ONL
)3 = 0)

SNLWα(VONL = 0 sgoldstino-less, gaugino-less

model for a matter multiplet T corresponding to the constraint ST = 0 was derived

in56. This model has been recently shown57 to describe the effective dynamics of a

fermion, other than the N = 1 goldstino, which lives on a D3-brane world volume.

8. Conclusions and Outlook

The orthogonality constraints in eq. (66) and the resulting scalar potential in eq. (68)

allow the construction of MSIM (minimal supersymmetric inflationary models),

which accommodate, with appropriate fine tuning, dark energy (cosmological con-

stant Λ), the supersymmetry breaking scale m3/2, and the inflationary Hubble scale

H 54. A simplified class of models is obtained with (in MPl units)

g(ϕ) = g0 = m3/2 , f(ϕ) = H fI(ϕ) + f0 , (70)

where ϕ is the appropriate canonically normalized scalar field, whenever the Kähler

potential is not quadratic but has the more general form as in refs 53,54. Here, fI(ϕ)

is a function with the property fI(ϕ) → 1, (for ϕ large) while at the extremum of
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the potential ϕ = 0, fI(ϕ) = 0. Hence, the scalar potential satisfies V (ϕ = 0) =

f2
0 − 3m2

3/2 = Λ, while for large ϕ, V (ϕ) → H2 (as ϕ → ∞), for values of the

parameters such that Λ ≈ 10−120, m3/2 ≈ 10−16 and H = 10−5, where we took the

SUSY breaking scale at the end of inflation (approximate Minkowski spacetime)

to be at the TeV scale as a minimal value, which is inspired by the current LHC

results.

Finally, we would like to note that microscopic models which may yield in

suitable limits the non-linear realisations considered so far have been proposed in

refs 58–60 and matter couplings to the inflation sector, with and without non-linear

superfields, were considered in23,24,50,61,62.

This review reflects the lecture presented by SF at the 2016 Memorial Meeting

for Prof. Salam, and overlaps in part with63.
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Appendix A. Constrained Superfields and N = 1 Supersymmetry

Non-linear constraints involving a pair of chiral superfields (X,Wα), (X,Uȧ) can

have solutions that differ sharply from the V-A case. Here Wα, Uȧ are the chiral

superfields

Wα =
1

4
D̄2DαV , gauge field-strength multiplet , (A.1)

Uȧ = D̄ȧL , L linear (or tensor) multiplet, D2L = D̄2L = 0 . (A.2)

The (chiral) constraints in question are

1) X2 = 0 , XWα = 0 , (A.3)

2) X2 = 0 , XUȧ = 0 , (or XL = chiral) . (A.4)

N = 1 supersymmetry is broken solving X2 = 0, with the V-A solution

X = XNL = S =

(

G2

2F
,Gα, F

)

, (A.5)

and then solving the second portions of eqs (A.3,A.4),

XNLWα = 0 , XNLUȧ = 0 . (A.6)

Using the fact that Wα, Uȧ have components

Wα =

(

λα, L
β
α = δβαD − i

2
(σµσ̄ν)βαFµν , ∂αȧλ̄

ȧ

)

, (A.7)

Uȧ =
(

χ̄ȧ, Λȧβ = σµ
ȧβ(Hµ + i∂µφ), ∂αȧχ̄

a
)

, (A.8)
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where

Fµν = ∂µAν − ∂νAµ , Hµ =
1

3!
ǫµνρσ ∂

ν bρσ , (A.9)

the constraints leave free the bosonic fields but express the gaugino (and tensorino)

in terms of the V-A G goldstino 43 according to

λα = i Lαβ
Gβ

√
2F

+ O(G2) , (A.10)

χ̄ȧ = − iΛα̇β
Gβ

√
2F

+ O(G2) . (A.11)

The full solution can be obtained from the last component of the constraints by

iteration. The constraint on the linear multiplet was considered in 60, and has the

effect of leaving (φ, bµν) in the spectrum. However, there is another solution to the

constraints, where instead the chiral multiplet X is not the V-A multiplet but the

constraints in eqs. (A.3,A.4) can be used to express X in terms of Wα (or Uȧ). This

is the case of the supersymmetric Born–Infeld and the non–linear tensor multiplet

constraints of Bagger and Galperin63–66 where

1) X =
WαWα

m − D̄2X̄
, (A.12)

2) X =
U α̇ Uα̇

m − D̄2X̄
. (A.13)

The resulting Lagrangians, which are simply the F-components of X , describe a

non–linear theory with N = 2 spontaneously broken to N = 1.
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