
COSMOS: THREE-DIMENSIONAL WEAK LENSING AND THE GROWTH OF STRUCTURE1

Richard Massey,
2
Jason Rhodes,

2,3
Alexie Leauthaud,

4
Peter Capak,

2
Richard Ellis,

2
Anton Koekemoer,

5

Alexandre Réfrégier,
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ABSTRACT

We present a three-dimensional cosmic shear analysis of theHubble Space TelescopeCOSMOS survey, the largest
ever optical imaging program performed in space.We have measured the shapes of galaxies for the telltale distortions
caused by weak gravitational lensing and traced the growth of that signal as a function of redshift. Using both 2D and
3D analyses, we measure cosmological parameters �m, the density of matter in the universe, and �8, the normali-
zation of the matter power spectrum. The introduction of redshift information tightens the constraints by a factor of
3 and also reduces the relative sampling (or ‘‘cosmic’’) variance compared to recent surveys that may be larger but
are only two-dimensional. From the 3D analysis, we find that �8(�m /0:3)

0:44 ¼ 0:866þ0:085
�0:068 at 68% confidence limits,

including both statistical and potential systematic sources of error in the total budget. Indeed, the absolute calibration
of shear measurement methods is now the dominant source of uncertainty. Assuming instead a baseline cosmology to
fix the geometry of the universe, we have measured the growth of structure on both linear and nonlinear physical
scales. Our results thus demonstrate a proof of concept for tomographic analysis techniques that have been proposed
for future weak-lensing surveys by a dedicated wide-field telescope in space.

Subject headinggs: cosmology: observations — gravitational lensing — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

The observed shapes of distant galaxies become slightly
distorted as light from them passes through foreground mass
structures. Such ‘‘cosmic shear’’ is induced by the (differential)
gravitational deflection of a light bundle, and happens regardless
of the nature and state of the foreground mass. It is therefore a

uniquely powerful probe of the dark matter distribution, directly
and simply linked to theories of structure formation that may be
ill-equipped to predict the distribution of light (for reviews, see
Bartelmann & Schneider 2001; Wittman 2002; Refregier 2003).
Furthermore, the main difficulties in this technique lie within the
optics of a telescope that has been built on Earth and can be thor-
oughly tested. It is not limited by systematic biases from un-
known physics such as astrophysical bias (Dekel & Lahav 1999;
Hoekstra et al. 2002; Smith et al. 2003a; Weinberg et al. 2004) or
the mass-temperature relation for X-ray-selected galaxy clusters
(Huterer &White 2002; Pierpaoli et al. 2001; Viana et al. 2002).

The study of cosmic shear has rapidly progressed since the
simultaneous detection of a coherent signal by four independent
groups (Bacon et al. 2000; Kaiser et al. 2000; Wittman et al.
2000; Van Waerbeke et al. 2000). Large, dedicated surveys with
ground-based telescopes have recently measured the projected
two-dimensional power spectrum of the large-scale mass distri-
bution and drawn competitive constraints on cosmological param-
eters (Brown et al. 2003; Bacon et al. 2003; Hamana et al. 2003;
Jarvis et al. 2003; VanWaerbeke et al. 2005; Massey et al. 2005;
Hoekstra et al. 2006). The addition of photometric redshift esti-
mation for large numbers of galaxies has led to the first measure-
ments of a changing lensing signal as a function of redshift (Bacon
et al. 2004; Wittman 2005; Semboloni et al. 2006).

The shear measurement methods used for these ground-based
surveys have been precisely calibrated on simulated images con-
taining a known shear signal by the Shear Testing Program (STEP;
Heymans et al. 2006; Massey et al. 2007). This program has also
sped the development of a next generation of even more accu-
rate shear measurement methods (Bridle et al. 2002; Refregier
& Bacon 2003; Bernstein & Jarvis 2002; Massey & Refregier
2005; Mandelbaum et al. 2005; Kuijken 2006; Nakajima &
Bernstein 2007;Massey et al. 2006).With several ambitious plans
for dedicated telescopes both on the ground (e.g., the CTIO Dark
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Energy Survey [CTIO-DES], the Panoramic Survey Telescope
and Rapid Response System [Pan-STARRS], the VISTA/VLA
Survey Telescope Kilo-Degree Survey [VISTA/VST-KIDS], the
Large Synoptic Survey Telescope [LSST]) and in space (e.g., the
Dark Universe Explorer [DUNE], the Supernova/Acceleration
Probe [SNAP], and other possible Joint Dark Energy Mission
[JDEM] incarnations), the importance of weak lensing in future
cosmological and astrophysical contexts seems assured.

In this paper, we present statistical results from the first space-
based survey comparable to those from dedicated ground-based
observations. The Cosmic Evolution Survey (COSMOS; Scoville
et al. 2007a) combines the largest contiguous expanse of deep
imaging from space with extensive, multicolor follow-up from
the ground. High-resolution imaging is particularly needed for
weak lensing because the shapes of galaxies that would also be
detected from the ground are much less affected by the telescope’s
point-spread function (PSF), and a much higher density of new
galaxy shapes are resolved. This allows the signal to be measured
on smaller physical scales for the first time. Parameter constraints
from our survey still carry a fair deal of statistical uncertainty due
to cosmic variance in the finite survey size, but to a far lesser ex-
tent than previous space-based surveys (Rhodes et al. 2001, 2004;
Refregier et al. 2002; Heymans et al. 2005).More importantly, the
potential level of observational systematics is much lower from
space than from the ground, where the presence of the atmosphere
fundamentally limits all weak-lensing measurements.

Extensive ground-based follow-up in multiple filters has also
provided photometric redshift estimates for each galaxy. Lensing
requires a purely geometric measurement, so knowledge of the
distances in a lens system as well as the angles through which
light has been deflected are essential. We have extended cosmic
shear analysis into the information-rich three-dimensional shear
field. Our constraints on cosmological parameters are tightened
by observing independent galaxies at multiple redshifts, and the
separate volume in each redshift slice reduces the cosmic vari-
ance. Furthermore, we can directly trace the growth of large-scale
structure on both linear and nonlinear physical scales. Although
these results are still limited by the finite size of the COSMOS
survey, they provide a ‘‘proof of concept’’ for tomographic tech-
niques suggested (by e.g., Taylor 2002; Bernstein & Jain 2004;
Heavens 2006; Taylor et al. 2006) for future missions dedicated
to weak lensing. Throughout this paper, we have assumed a flat
universe, with Hubble parameter h ¼ 0:7.

This paper is organized as follows. In x 2, we describe the
data and analysis techniques. In x 3, we present a traditional 2D
‘‘cosmic shear’’ analysis of the two-point correlation functions,
demonstrating the level to which systematic effects have been
eliminated from the COSMOS data. In x 4, we extend the anal-
ysis into three dimensions via redshift tomography. We show
how the signal grows as a function of redshift, and directly trace
the growth of structure over cosmic time, on a range of physical
scales. In x 5, we use the measured statistics from both the 2D
and 3D analyses to derive constraints on cosmological parame-
ters. We conclude in x 6.

2. DATA ANALYSIS METHODS

2.1. Image Acquisition

The COSMOS field is a contiguous square, covering 1.64 deg2

and centered at R:A: ¼ 10h00m28:6s, decl: ¼ þ02�12021:000

(J2000.0) (Scoville et al. 2007b;Koekemoer et al. 2007). Between
2003 October and 2005 June, the region was completely tiled
by 575 slightly overlapping pointings of the Advanced Camera
for Surveys (ACS) Wide Field Camera (WFC) with the F814W

(approximately I-band) filter. Four slightly dithered, 507 s expo-
sures were taken at each pointing. Compact objects can be de-
tected on the stacked images in a 0.1500 diameter aperture at 5 �
down to F814WAB ¼ 26:6 (Scoville et al. 2007a).
The individual images were reduced using the standard STScI

ACS pipeline and combined using the program MultiDrizzle
(Fruchter & Hook 2002; Koekemoer et al. 2007). We took care
to optimize various MultiDrizzle parameters for precise galaxy-
shape measurement in the stacked images (Rhodes et al. 2007).
We use a finer pixel scale of 0.0300 for the stacked images. Pixel-
ization acts as a convolution, followed by a resampling and, al-
though current algorithms can successfully correct for convolution,
the formalism to properly treat resampling is still under devel-
opment for the next generation of methods.
We use a Gaussian drizzle kernel that is isotropic and with

pixfrac = 0.8, small enough to avoid smearing the object un-
necessarily while large enough to guarantee that the convolution
dominates the resampling. This process is then properly cor-
rected by existing shear measurement methods.

2.2. Shear Measurement

The detection of objects and measurement of their shapes is
fully described in Leauthaud et al. (2007). Modeling of the ACS
PSF is discussed in Rhodes et al. (2007). Here we provide only a
brief summary of the important results.
Objects were detected in the reduced ACS images using

SExtractor (Bertin &Arnouts 1996). To avoid biasing our result,
the detection threshold was set intentionally low, far beneath the
final thresholds that we adopt. The catalog was finally separated
into stars and galaxies by noting their positions on the magnitude
versus peak surface brightness plane. Objects near bright stars or
any saturated pixels were masked using an automatic algorithm,
to avoid shape biases due to any background gradient. The im-
ages were then all visually inspected, to mask other defects by
hand (including ghosting, reflected light, and asteroid /satellite
trails).
The size and the ellipticity of the ACS PSF varies over time,

due to the thermal ‘‘breathing’’ of the spacecraft. The long period
of time during which the COSMOS data were collected forces us
to consider this effect. Although other strategies have been dem-
onstrated successfully for observations conducted on a shorter
time span, itwould be inappropriate for us to assume, likeLombardi
et al. (2005), that the PSF is constant or even, like Heymans et al.
(2005), that the focus is piecewise constant. Fortunately, most of
the PSF variations can be ascribed to a single physical parame-
ter: the distance between the primary and secondary mirrors, or
‘‘effective focus.’’ Variations of order 10 �m create ellipticity
variations of up to 5% at the edges of the field, which is over-
whelming in terms of a weak-lensing signal. Jee et al. (2005) built
a PSF model for individual exposures by linearly interpolating
between two PSF patterns, observed above and below nominal
focus. We have used the TinyTim (Krist 2003) ray-tracing pack-
age to continuouslymodel the PSF as a function of effective focus
andCCDposition. Bymatching the dozen or so stars brighter than
F814WAB ¼ 23 on each typical COSMOS image (Leauthaud
et al. 2007) to TinyTim models, we can robustly estimate the
offset from nominal focus with an rms error of less than 1 �m
(Rhodes et al. 2007). We then return to the entire observational
data set, and fit a 3 ; 2 ; 2 order polynomial for each parameter
of the PSFmodel, as a function of x, y, and focus. Using the entire
COSMOS data set strengthens the fit, especially at the extremes
of focus values used, where few stars have been observed. The
final PSF model for each exposure is then extracted from the 3D
fit, at the appropriate focus value.
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We use the shear measurement method developed for space-
based imaging by Rhodes et al. (2000, hereafter RRG). It is a
‘‘passive’’ method that measures the Gaussian-weighted second
ordermoments Iij ¼

P
wIxixj /

P
wI of each galaxy and corrects

them using the Gaussian-weighted moments of the PSF model.
The RRG method is well suited to the small, diffraction-limited
PSF obtained from space, because it corrects each moment in-
dividually and only divides them to form an ellipticity at the final
stage.

In an advance from previous implementations of the Kaiser-
Squires-Broadhurst method, and spurred by the findings of STEP
(Massey et al. 2007), we allow the shear responsivity factor G
to vary as a function of magnitude. The shear responsivity is the
conversion factor between measured galaxy ellipticity ei and the
cosmologically interesting quantity shear �i. As described in
Leauthaud et al. (2007), we have tested our pipeline on simulated
images created with the same Massey et al. (2004a) package
used for STEP, but tailored specifically to the image character-
istics of the COSMOS data. We found it necessary to multiply
our shears by amean calibration factor of (0:86)�1, but then found
the shear calibration hmi accurate to 0.3%, with a residual shear
offset of hci ¼ 0:2� 4 ; 10�4, with no significant variation as a
function of simulated galaxy size or flux. This is particularly
important in the measurement of a shear signal as a function of
redshift. See Heymans et al. (2006) orMassey et al. (2007) for the
definitions of the multiplicative hmi and additive hci shear errors.

2.3. Charge Transfer Effects

As discussed further in Rhodes et al. (2007), the ACS WFC
CCDs also suffer from imperfect charge transfer efficiency (CTE)
during readout. This causes flux to be trailed behind objects,
spuriously elongating them in a coherent direction that mimics
a lensing signal. Furthermore, since this effect is produced by a
fixed number of charge traps in the silicon substrate, it affects
faint sources (with a larger fraction of their flux being affected)
more than bright ones. Thus, it is an insidious effect that also
mimics an increase in shear signal as a function of redshift. CTE
trailing is a nonlinear transformation of the image, and prevents
traditional tests of a weak-lensing analysis that look at bright
stars. As such, it is the most significant hurdle to overcome in
weak-lensing analysis from space.

We are developing a method to remove CTE trailing at the
pixel level. Following the work of Bristow & Alexov (2002) on
the Space Telescope Imaging Spectrograph (STIS), this method
will push charge back to where it belongs, as the very first stage
in data reduction. Because an ACS version of this algorithm is
still under development, in this paper we correct most of the CTE
effect via a parametric model acting at the catalog level. We as-
sume that the spurious change in an object’s apparent ellipticity "
is an additive amount that depends only on the object’s flux, dis-
tance from the CCD readout register, and date of observation. In
fact, we also allowed variation with object size, although this had
little effect. As shown in Rhodes et al. (2007), this correction is
sufficient for the full catalog of more than 70 galaxies per arcmin2

when considering mass reconstruction or circularly averaged sta-
tistics on small scales, where the signal is strong. However, it is
not adequate for the faintest galaxies when considering statistics
on large scales, as we would like to do in this paper. Fortunately,
the galaxy flux level at which the CTE correction successfully
removes the CTE signal ( leaving a residual signal 1 order of
magnitude below the expected cosmological signal) appears to
coincide with that for which reliable photometric redshifts can
be obtained for almost all objects.

2.4. Photometric Redshifts

Reliable photometric redshift estimation is vital to the success
of our 3D shear measurement. For this reason, the COSMOS
field has been observed from the ground in a comprehensive range
of wavelengths (Capak et al. 2007). Deep imaging is currently
available in the Subaru BJ , VJ , g

þ, rþ, iþ, zþ, NB816, CFHT u�,
i�, CTIO/KPNO Ks, and SDSS u0, g0, r 0, i0, and z0 bands. The
COSMOS photometric redshift code was used as described in
Mobasher et al. (2007). This code contains a luminosity function
prior in order to maximize the global accuracy of photometric
redshifts for the faintest and most distant population. It returns
both a best-fit redshift and a full redshift probability distribution
for each galaxy. The size of 68% confidence limits for each es-
timated redshift are well modeled by 0:03(1þ z) out to z � 1:4
and down to magnitude IF814W ¼ 24 (Mobasher et al. 2007;
Leauthaud et al. 2007).

Before a large spectroscopic redshift sample becomes avail-
able to calibrate the galaxy redshift distribution, our 3D analysis
will be limited by the reliability of photometric redshifts. We do
not impose a strict magnitude cut in the single IF814W band, but
instead using color information from many bands, and select
those galaxies with accurately measured redshifts. This includes
96% of detected galaxies brighter than IF814W ¼ 24 and an in-
complete sample fainter than that (Leauthaud et al. 2007). The
selection function, and the final redshift distribution, thus depend
on the spectral energy distribution of individual galaxies. How-
ever, since the background galaxies are unrelated to the fore-
ground mass that is lensing them, such incompleteness has no
detrimental effect on our analysis.

We specifically select galaxies that are observed in the mul-
ticolor ground-based data and that have a 68% confidence limit
in their redshift probability distribution function smaller than
�z ¼ 0:5. The latter cut primarily removes galaxies with double
peaks in the photometric redshift PDF due to redshift degenera-
cies.Within the range of colors currently observed in the COSMOS
field, one particular degeneracy dominates: between 0:1 < z < 0:3
and 1:5 < z < 3:2, where the 40008 break can be confusedwith
coronal line absorption features. At z > 1:5, the 4000 8 break is
well into the IR, where sufficiently deep data are not yet available
for conclusive identification. To avoid catastrophic errors be-
tween these specific redshifts, we therefore also exclude galax-
ies with any finite probability below z ¼ 0:4 and above z ¼ 1:0.
After these cuts, we have redshift (and shear) measurements for
40 galaxies arcmin�2.

3. 2D SHEAR ANALYSIS

3.1. 2D Source Redshift Distribution

The distribution of galaxies with reliably measured shears and
redshifts is shown in Figure 1. The effects of cosmic variance are
quite apparent, with all the spikes below z � 1:2 corresponding
to known structures in the field. Beyond that, the photometric
redshifts are limited by the finite number of observed colors for
each galaxy, and the peaks at z ¼ 1:3, 1.5, and 2.2 arise artifi-
cially at locations where spectral features move between filters.
The median photometric redshift is zmed ¼ 1:26. To minimize the
impact of galaxy shape measurement noise, we downweight
the contribution to the measured signal from faint and therefore
noisier galaxies. We apply a weight

w ¼ 1

��(mag)þ 0:1
; ð1Þ
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where the rms dispersion of observed galaxy ellipticities is well
modeled by

��(mag) � 0:32þ 0:0014(mag� 20)3: ð2Þ

The error distribution of the shear estimators is discussed in more
detail in Leauthaud et al. (2007). After this weighting, the me-
dian photometric redshift is zmed ¼ 1:11. In most cosmic shear
analyses to date, an estimate of this value is all that was known
about the redshift distribution. The smooth, dotted curve shows
the distribution that would have been obtained from a Smail et al.
(1994) fitting function

P(z) / z� exp � 1:41z=zmedð Þ�
h i

; ð3Þ

with � ¼ 2, � ¼ 1:5, zmed ¼ 1:26, and an overall normalization
to ensure the correct projected number density of galaxies. This
would have been a better fit to the high-redshift tail apparent
in Figure 1, had the free parameter in the model, zmed, been
�1.17.

Figure 1 also shows the lensing sensitivity function

g(�) ¼ 2

Z �h

�

�(�0)
DA(�)DA(�

0 � �)

DA(�0)
a�1(�) d�0; ð4Þ

of the observed source redshift distribution, where � is a distance
in comoving coordinates (in which the power spectrum is mea-
sured), �h is the distance to the horizon,DA are angular diameter
distances, (with the extra factor of a�1 converting these into

comoving coordinates), and �(�) is the distribution function of
source galaxies in redshift space, normalized so thatZ �h

0

�(�) d� ¼ 1: ð5Þ

This represents the sensitivity of a projected lensing analysis to
mass overdensities as a function of their redshift, and peaks at
z � 0:4, about halfway to the peak of the source galaxy redshift
distribution in terms of angular diameter distance.

3.2. 2D Shear Correlation Functions

The 2D power spectrum of the projected shear field is given by

C
�
‘ ¼ 9

16

H0

c

� �4

�2
m

Z �h

0

g(�)

DA(�)

� �2

P k; �ð Þ d�; ð6Þ

where � is a comoving distance, �h is the horizon distance, g(�)
is the lensing weight function, and P(k; �) is the underlying 3D
distribution of mass in the universe. The two-point shear corre-
lation functions can be expressed (Schneider et al. 2002) in terms
of the projected power spectrum as

C1(	 ) ¼
1

4


Z 1

0

C
�
‘

�
J0(‘	 )þ J4(‘	 )

�
‘ d‘; ð7Þ

C2(	 ) ¼
1

4


Z 1

0

C
�
‘

�
J0(‘	 )� J4(‘	 )

�
‘ d‘: ð8Þ

These can be measured by averaging over galaxy pairs, as

C1(a) ¼ �r1(r)�
r
1(rþ a)

� �
; ð9Þ

C2(a) ¼ �r2(r)�
r
2(rþ a)

� �
; ð10Þ

where 	 is the separation between the galaxies and the super-
script r denotes components of shear rotated so that ĝ r

1 (ĝ r
2 ) in

each galaxy points along (at 45� from) the vector between the
pair. In practice, we compute this measurement in discrete bins of
varying angular scale. However, they will need to be integrated
later, so to keep this task manageable, we use fine bins of 0.100

throughout the calculations, and only rebin for the sake of clarity
in the final plots.
A third shear-shear correlation function can be formed,

C3(a) ¼ � r
1 (r)�

r
2 (rþ a)

� �
þ � r

2 (r)�
r
1 (rþ a)

� �
; ð11Þ

for which parity invariance of the universe requires a zero signal.
The presence or absence of C3(a) can therefore be used as a first
test for the presence of systematic errors in our measurement, al-
though many systematics can still be imagined that would not show
up in this test.
The 2D shear correlation functions measured from the entire

COSMOS survey are shown in Figure 2. Note that the measure-
ments on scales smaller than�10 are new. For a given survey size,
these are obtained more easily from space than from the ground
because of the higher number density of resolved galaxies.
The additional, spurious signal that would have been obtained

without correction for CTE trailing is shown as roughly horizon-
tal solid lines in Figure 2. This was calculated by recomputing
the correlation functions, but rather than constructing a shear cat-
alog by subtracting the CTE contamination from each galaxy’s
raw shear measurement, the CTE contamination was used as a
direct replacement. An estimate of the residual CTE contamina-
tion for the galaxy population after correction, according to the

Fig. 1.—Thin solid line: Distribution of the best-fit redshifts returned by the
COSMOS photometric redshift code (Mobasher et al. 2007) with a luminosity
function prior. Thick solid line: Distribution after accounting for the different
weights given to galaxies. In both cases, the bin size is�z ¼ 0:02. Peaks below
z � 1:2 correspond to real structures in the field, but the artificial clustering at
higher redshift is due to limitations in the finite number of observed near-IR
colors. The dashed curve shows the redshift sensitivity function, assuming a
�CDM universe with WMAP parameters. The dotted line shows the redshift
distribution that would have been expected, with knowledge of only the median
photometric redshift and a Smail et al. (1994) fitting function.
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performance evaluation in Rhodes et al. (2007) is shown as dot-
ted lines. Although this is now below the signal, the uncorrected
level was more than an order of magnitude larger than the signal
on large scales. Minimizing CTE by careful hardware design to
avoid the need for this level of correction will be a vital aspect of
dedicated space-based weak-lensing missions in the future.

3.3. Error Estimation and Verification

The error bars in Figure 2 include statistical errors due to both
intrinsic galaxy shape noise within the survey and the effect of
sample (‘‘cosmic’’) variance due to the finite survey size. The
shape noise dominates on small angular scales, and the cosmic
variance on scales larger than �100. Surveys covering a simi-
lar area but in multiple lines of sight, such as ACS parallel data
(Schrabback et al. 2007; J. Rhodes et al. 2007, in preparation),
will suffer less from the latter effect.

The statistical shape noise is easy to measure from the galaxy
population. Tomeasure the sample variance, we split the COSMOS
field into four equally sized quadrants and recalculate the cor-
relation functions in each. Of course, large-scale correlations in
the mass distribution mean that the four adjacent quadrants are
not completely independent at large scales, and the measured
variance underestimates the true error. To correct for this effect,

we artificially increased the measured errors on 200Y400 scales
by 15%, in line with initial calculations.

After the fact, we compared our final error bars to independent
predictions from a full ray-tracing analysis through n-body sim-
ulations by Semboloni et al. (2007). Figure 3 shows the predicted
and observed 1 � errors on Cþ(	 ) � C1(	 )þ C2(	 ) (assuming
40 background galaxies per square arcminute in the simulations,
distributed in redshift with zmed ¼ 1:11 andwith �" ¼ 0:32). Av-
eraging across all thirteen angular bins with equal weight, the
mean ratio between our measured error and the predicted non-
Gaussian error is 0.994. Future work may therefore improve the
error estimation, but in the COSMOS field at least, our quadrant
technique reaches a level of precision sufficient for this paper.

We also use the quadrant technique to measure the full co-
variance matrix between each angular bin. As shown in Figure 4,
the off-diagonal elements are nonzero. This is expected even in
an ideal case, because the same source population of galaxies is
used to construct pairs separated by different amounts. Nor are
the upper-left and lower-right quadrants of Figure 4 expected to
be zero: the same pairs go into the calculation of both C1(	 ) and
C2(	 ), and after deconvolution from the PSF, �̂ r

1 and �̂ r
2 are no

longer formally independent. We will use the full, nondiagonal
covariance matrix during our measurement of cosmological pa-
rameters in x 5.

The final datum in the C3(	 ) panel of Figure 2 is significantly
(�5 �) nonzero. This may be real; a finite region may not be
parity invariant on scales comparable to the field size. But even if
this does indicate a systematic problem, it is not as troubling as it
appears, because on this scale the error bars are large for C1(	 )
and C2(	 ), so the point carries very little weight. For a possible
explanation, note that the spuriousC3 signal has the same sign as
the uncorrected CTE signal. On scales that span almost the entire
COSMOS survey, one of the galaxies in a pair must lie near the
edge of the survey field that was observed last and that suffers
most from CTE degradation. If the temporal dependence of the
CTE signal is not linear, as we have assumed, the spiral observing

Fig. 2.—Correlation functions of the 2D shear field. The open circles indi-
cate negative values. The inner error bars show statistical errors only; the outer
error bars, visible only on large scales, also include the contribution of cosmic
variance. The six parallel curves show theoretical predictions for a flat �CDM
cosmology with �m ¼ 0:3 and �8 varying from 0.7 (bottom) to 1.2 (top). The
roughly horizontal lines indicate the level of the spurious signal due to CTE
trailing before and after correction.

Fig. 3.—Comparison of the error bars that we measured from the data, to ad-
vance predictions from Semboloni et al. (2007) obtained by ray-tracing through
n-body simulations of large-scale structure. The two solid lines show the pre-
dictions assuming a Gaussianized mass distribution (bottom) and with the full,
non-Gaussian distribution (top).
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strategy to cover the field would produce a similar CTE pat-
tern (and a coherent residual signal) in all four quadrants. This
could create an additional C3(40

0) signal, with error bars under-
estimated by our quadrant method. Resolving this issue requires
CTE data from a longer time span, or more data separated by
200Y 400. Such analysis may be feasible with ACS parallel data
(Rhodes et al. in preparation), but is not possible here.

3.4. 2D Shear Variance

For historical reasons, cosmic shear results are often expressed
as the variance of the shear field in circular cells on the sky. For a
top-hat cell of radius 	, this measure is related to the shear cor-
relation functions by

�2
� � �̄j j2

D E
� 2

	 2

Z 	

0

C1(#)þ C2(#)½ � d#; ð12Þ

where we have used a small angle approximation. Note that the
signal is more strongly correlated on different angular scales in
this form than it is when expressed as correlation functions. The
results are shown in Figure 5.

3.5. 2D E-B Decomposition

The correlation functions can also be recast in terms of
nonlocal E (gradient) and B (curl) patterns in the shear field
(Crittenden et al. 2001; Pen et al. 2002). Gravitational lensing
is expected to produce only E modes, except for a very low
level of B modes due to lens-lens coupling along a line of sight
(Schneider et al. 2002). It is commonly assumed that systematic
effects would affect both E- and B-modes equally. The presence
of a nonzero B mode is therefore a useful indication of contam-
ination from other sources.

E- and B-modes correspond to patterns within an extended
region on the sky and cannot be separated locally. As a result, this
operation formally requires an integration of the shear correla-
tion functions over a wide range of angular scales. Two math-

ematical functions have been developed (Crittenden et al. 2001;
Schneider et al. 2002), which each include an integral over only
small scales or large scales (see Schneider & Kilbinger [2007]
for a new suggestion to construct a third). However, neither in-
tegral is ideal in practice, because our correlation functions are
only well measured on scales between �0.50 and 400. The ab-
sence of complete data introduces an unknown constant of in-
tegration, and it is not possible to uniquely split this measured
shear field into distinct E- and B-mode components. As a prac-
tical attempt to estimate this constant, we extrapolate data into
the unknown régime, using predictions from the best-fit cos-
mology that is determined in x 5.
The signal on large angular scales is small, and the correspond-

ing integrals require the least correction. To calculate these,
we first define Cþ � C1 þ C2 and C� � C1 � C2. Then we can
compute

�E(	 ) � C1(	 )þ 2

Z 1

	

1� 3	2

# 2

� �
C�(#)

#
d#; ð13Þ

which contains only the E-mode signal, and

�B(	 ) � C2(	 )� 2

Z 1

	

1� 3	2

#2

� �
C�(#)

#
d#; ð14Þ

which contains only the B-mode signal. It is generally necessary
to add a function of 	 (not only a constant of integration) to �E(	 )
and subtract it from �B(	 ) (cf. Pen et al. 2002).
The components can also be separated via the variance of the

aperture mass statisticMap(	 ). This is obtained from a weighted
mean of the tangential (�t) and radial (�r) components of shear
relative to the center of a circular aperture. This statistic is given
by

Map(	 ) �
Z 1

�1

Z 1

�1
W Jj j; 	ð Þ�t Jð Þ d 2J; ð15Þ

Fig. 4.—Covariance matrix for the 2D correlation functions C1(	) and C2(	 )
shown in Fig. 2, obtained by splitting the COSMOS field into four quadrants and
performing the analysis separately in each. The diagonal elements illustrate the
size of the errors in each of the thirteen 	 bins, and the off-diagonal elements il-
lustrate how much the measurements are correlated. The color scale is logarithmic.

Fig. 5.—Variance of the 2D shear signal in circular cells of varying size.
Solid lines show predictions in a concordance cosmology with �8 varying as in
Fig. 2. Note that adjacent data points are highly correlated.
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which contains only contributions from the E-mode signal and

M? 	ð Þ �
Z 1

�1

Z 1

�1
W Jj j; 	ð Þ�r Jð Þ d 2J; ð16Þ

which contains only the B-mode signal, whereW ( Jj j) is a com-
pensated filter. We adopt a compensated ‘‘Mexican hat’’ weight
function

W (#; 	 ) ¼ 6


	2

#2

	2
1� #2

	2

� �
H(	� #); ð17Þ

where 	 defines an angular scale of the aperture and the
Heaviside step functionH truncates the weight function on large
scales.

Schneider et al. (2002) derived expressions for the variance of
these statistics as the aperture is moved across the sky. These
require integrals over the correlation functions from small scales

M 2
ap

D E
(	 ) � 1

2

Z 2	

0

#

	2

"
Cþ(#)Tþ

#

	

� �

þ C�(#)T�
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� �#
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(	 ) � 1

2

Z 2	

0

#

	2

"
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� �

� C�(#)T�
#

	

� �#
d#; ð19Þ

where

Tþ xð Þ ¼ 6 2� 15x2ð Þ
5

1� 2



arcsin

x

2

� �� �

þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� x2

p

100

120þ 2320x2� 754x4þ132x6�9x8

 �

;

ð20Þ

T�(x) ¼
192

35

x3 1� x2

4

� �7=2

ð21Þ

for x < 2 and Tþ(x) ¼ T�(x) ¼ 0 for x 	 2. We again estimate
the constant of integration by extrapolating our data with theo-
retical predictions in cosmological model preferred by the rest of
the data.

From Figure 6, we can see that �B(	 ) is consistent with zero on
all scales. The noise is particularly large on small scales, and the
rather unstableM 2

?(	 ) is affected on scales up to �10 by the first
bin.

4. 3D SHEAR ANALYSIS

4.1. Correlation Function Tomography

We now split the catalog into three discrete redshift bins and,
as before, calculate the correlation functions using all pairs of
galaxies within each bin. The redshift bins are chosen in consid-
eration of the particular color information available. Degenera-
cies in the photometric redshift estimation cause galaxies with a
flat distribution in redshift to cluster artificially around z ¼ 1:3,
1.6, and 2.2. An excess at these positions is evident in Figure 1.
We therefore pick bins with boundaries away from these values

and with widths similar to the size of the local peaks in the red-
shift distribution. For COSMOS, suitable bins are 0:1 
 z 
 1,
1 < z 
 1:4, and 1:4 < z 
 3. This scheme conveniently divides
up the galaxies fairly evenly, with the slices each containing
32%, 24% and 44% of the galaxies. Unfortunately, the last bin
cannot be further subdivided without deeper IR or UV data. The
redshift slices and their resulting lensing sensitivity functions
are illustrated in Figure 7.

Figure 8 shows the increasing two-point correlation function
signal for pairs of source galaxies as a function of redshift, where
both galaxies are in the same redshift bin. Since the measure-
ments in the redshift bins are much more noisy than those from

Fig. 6.—E-B decompositions of the 2D shear field. The top panel shows the
statistics that formally require an integral over the measured correlation func-
tions to infinite scales, and the bottom panel shows those that formally require
an integral from zero. Filled circles show the E-mode, and open circles show the
B-mode. The lines show predictions in a concordance cosmology with �8 vary-
ing as in Fig. 2. Note that adjacent data points are in the top panel are highly
correlated.
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the projected 2D analysis, we plot Cþ(	 ) � C1(	 )þ C2(	 ) in
Figure 8. Theoretical predictions for the correlation functions are
obtained for each slice by replacing the lensing weight function
g(z) in equation (6) by those shown in Figure 7, and obtained from
only the galaxies in a given slice. Because the effective lensing
volume

R
g(z) dz increases for successive redshift bins, the signal

increases with z.
Figure 9 shows the measured covariance matrix for the 3D

correlation functions. The degree of correlation between the low-
est and highest redshift bins, primarily evident on small scales,
is unexpected. Had it been significant on all scales, a likely ex-
planation would have been cross-contamination of the bins by
galaxies from other redshifts (the well-known degeneracy be-
tween low and high redshift from photo-z estimation is discussed
in x 2.4). Had the covariance been equally evident in all three
bins, likely explanations could have been interference of intrin-
sic alignments like those suggested by (Hirata & Seljak 2004)
and imperfect correction for PSF variation or DRIZZLE-related
pixelization effects unaccounted for on small scales. In practice,
the most likely explanation is a combination of several such ef-
fects, each at a low level.

Although the signal in the individual slices is noisy, we have
attempted an E-B decomposition in Figure 10, using the same
two statistics as those applied to the 2D analysis. The integrals
over the noisy correlation functions are particularly ill-defined at
	 < 10. Nevertheless, the signal increases to high redshift, match-
ing the theoretical expectation for this measurement.

4.2. Growth of Structure

The total E-mode signal corresponds to the integrated mass
density along a line of sight, weighted by the lensing sensitivity
function. The evolving E-mode signal in Figures 8 and 10 grows
toward high redshift due to the increasing volume that it probes
and in which mass structures are located. This offers constraints
on the large-scale geometry of the universe. But if we are more
interested in the mass structures themselves, this function of 	 in

fixed-redshift slices can be recast into a function of z for fixed
angular scales.We now suggest a newway of viewing these data,
which stays close to measurable quantities but offers a new in-
sight into the underlying structure formation.
Each data point in Figure 8 corresponds to the amount of mass

within an effective volume. This volume is described in azimuthal
directions by Bessel functions, and in the redshift direction by the
lensing sensitivity function g(z). Assuming the best-fit cosmology
from x 5 to fix the geometry of the universe, we can divide by this
volume and obtain a quantity proportional to mass density. In
practice, to increase the signal-to-noise ratio of a measurement
that will involve many redshift bins, we do not restrict the mea-
surement to only those pairs within a given redshift slice, as be-
fore. We require the nearer galaxy to be inside the slice, but then
compute correlation functions using all galaxies behind it. The
more distant galaxy has then been lensed by anything the fore-
ground has been lensed by. The effect is merely to change the
(squared) lensing sensitivity function to the product of the sen-
sitivity function for the slice galaxies with that of the background
distribution. This creates a new, effective g(z) that peaks at slightly
higher redshift, but is still zero behind the nearest galaxy.
Figure 11 thus shows

G(z; 	 ) � Cþ(	; z)R z

0
g2 z0ð Þ dz0

ð22Þ

¼ 1

2


R
C

�
‘ (	; z)J0(‘	 )‘ d‘R z

0
g 2 z0ð Þ dz0

; ð23Þ

the growth of power on different angular scales. The foreground
mass is most likely to lie near the peak of the sensitivity function,
so we place the data points at this redshift. In practice, it could lie
anywhere within g(z), so we overlay error bars in z equal to the
rms of g about its peak. Theoretical predictions of this quantity

Fig. 7.—Thin solid line shows the redshift distribution of source galaxies and
the thick solid line shows their distribution after accounting for the magnitude-
dependent weighting scheme. In both cases, the bin size is�z ¼ 0:02. The dashed
lines show (artificially normalized) redshift sensitivity curves obtained by slicing
this distribution into the discrete redshift bins indicated by the arrows at the top.

Fig. 8.—Evolution of the cosmic shear two-point correlation function signal
with increasing redshift. The series of data points, (circles, squares, then tri-
angles), show measurements from slices between redshifts 0.1, 1, 1.4, and 3.
The black curves show predictions from a flat �CDMmodel with�m ¼ 0:3 and
�8 ¼ 0:85, for the same slices, increasing in redshift from the bottom to the top.
Open circles depict negative values. [See the electronic edition of the Supplement
for a color version of this figure.]

MASSEY ET AL.246 Vol. 172



are overlaid, assuming a flat,�CDMcosmology, with the best-fit
parameters found in x 5.

The growth toward z ¼ 0 represents a combination of the
physical growth of structure and the mixing of fixed physical
scales at different redshifts into a measurement at one apparent
angular scale. Both of these effects act in the same sense, to in-
crease the signal toward the present day. This is in contrast to the
cosmic shear signal in Figures 8 and 10, which itself increases
toward high redshift. On large scales, the small cosmic shear sig-
nal makes the measurement fairly noisy. On intermediate scales,
the data closely follow the predictions. The lowest redshift point
is obtained from pairs of galaxies where the nearest is between
z ¼ 0:1 and z ¼ 0:7.We speculate that the apparently significant
upturn at low z and on small scales might be caused by con-
tamination of that redshift bin by high-redshift galaxies. These
could have been caught by the photometric redshift degeneracy
discussed in x 2.4 and would contain an apparently spurious
signal when moved to low redshift. The accuracy of the pho-

tometric redshifts may therefore be limiting the precision of
this measurement.

5. CONSTRAINTS ON COSMOLOGICAL PARAMETERS

5.1. 2D Parameter Constraints

We now use a maximum likelihood method to determine the
constraints set by our 2D observations of C1(	 ) and C2(	 ) on the
cosmological parameters �m, the total mass-density of the uni-
verse, and �8, the normalization of the matter power spectrum at
8 h�1 Mpc. We assume a flat universe, with a Hubble parameter
h ¼ 0:7.

We closely follow the approach of Massey et al. (2005), ob-
taining theoretical predictions for the linear transfer function from
the fitting functions of Bardeen et al. (1986) and for the nonlinear
power spectrum using the fitting functions of Smith et al. (2003b).
The theoretical correlation functions are first calculated from
equation (6) in a three-dimensional grid spanning variations in�m

Fig. 9.—Covariance matrix of correlation function data used in the 3D cosmic shear analysis. Note that this includes only the three correlation functions where both
galaxies are in the same redshift bin. An additional three correlation functions can be formed from pairs in which the galaxies come from different slices, but these are not
shown in this plot for the sake of clarity.
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from 0.05 to 1.1, �8 from 0.35 to 1.4 and the power spectrum
shape parameter � from 0.13 to 0.33. We used the full redshift
distribution of source galaxies (after correction for weighting)
shown in Figure 1.

We then fitted the observed shear correlation functions d(a) ¼
fC1(a);C2(a)g to the theoretical predictions calculated at the cen-
ters of each bin t(a), computing the log-likelihood function

�2 #;�m; �8;�ð Þ ¼ d(a)� t a;�m; �8;�ð Þ½ �T

;Cov(d )�1 d(#)� t #;�m; �8;�ð Þ½ �

throughout the grid, where Cov(d ) is the covariance matrix in
Figure 4. In an advance of earlier incarnations, we perform the
matrix inversion via a singular value decomposition (SVD), and
discard all eigenvalues not within machine precision of the larg-
est. We do not include the multiplicative factor suggested by
Hartlap et al. (2007). We then marginalize over �with a Gaussian
prior centered on 0.19 and with an rms width of 15% (Percival
et al. 2001). To compute confidence contours, we numerically
integrate the likelihood function

L �m; �8ð Þ ¼ e�� 2=2: ð24Þ

Our constraints on cosmological parameters from this 2D
analysis are presented as a projection through parameter space in
Figure 12. The contours represent statistical errors, including full
non-Gaussian sample variance. Formally, the best-fit model has
�m ¼ 0:30, �8 ¼ 0:81, and� ¼ 0:21, and this achieves a reduced
�2 of �2

red � �2 /(nparam � 3) ¼ 1:10 in 23 degrees of freedom.
However, there is a well-known degeneracy between �m and �8

when using only two-point statistics. Changing the � parameter
slides the contours back and forth along this valley, and margin-
alization over this parameter also slightly increases the minimum
�2. After marginalization, a good fit to our 68.3% confidence
level from statistical errors is given by

�8

�m

0:3

� �0:44
¼ 0:81� 0:075; ð25Þ

with 0:15 
 �m 
 0:7.
Massey et al. (2005) were unable to use the full covariance

matrix due to instabilities in the matrix inversion, and so had set
to zero any elements in the covariance ofC1(	 ) withC2(	 ) (these
are the bottom-left and top-right quarters in Fig. 4). This problem
has been resolved in the present work by the use of an SVD.
However, if we discard half of the covariance matrix as in
Massey et al. (2005), we obtain parameter constraints

�8

�m

0:3

� �0:44
¼ 0:83� 0:07: ð26Þ

If we discard all of the off-diagonal elements in the covariance
matrix, we obtain

�8

�m

0:3

� �0:44
¼ 0:84� 0:065: ð27Þ

The slightly smaller error bars are expected, but the shift in the
best-fit value relative to result equation (25) is not. This effect
might go someway toward explaining the higher than usual value
obtained for this quantity in Massey et al. (2005).
Note that all of the above constraints incorporate only statis-

tical sources of error, although these do include non-Gaussian
sample variance and marginalization over other parameters. We
can propagate the various sources of potential systematic error by
noting that

Ci(5
0) / �1:46

m �2:45
8 z1:65s ��0:11(P�)�2; ð28Þ

for i2f1; 2g in a fiducial �CDM cosmological model with
�m ¼ 0:3,�� ¼ 0:7, � ¼ 0:21, and �8 ¼ 1:0. Adding an uncer-
tainty equivalent to 10% in the median source redshift, a 6% shear
calibration uncertainty (see Leauthaud et al. 2007; Heymans et al.
2006; Massey et al. 2007), and an empirically estimated binning

Fig. 10.—E-B decomposition of the 3D cosmic shear signal, in different red-
shift bins, colored as in Fig. 8. For clarity, only the E-modes are shown. Open
circles depict negative values. The B-modes are as noisy, but are consistent with
zero. Note that adjacent data points are highly correlated. [See the electronic
edition of the Supplement for a color version of this figure.]
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instability (cf. Massey et al. 2005) to our constraint from the full
covariance matrix gives a final 68.3% confidence limit of

�8

�m

0:3

� �0:48

¼ 0:81� 0:075� 0:024� 0:05� 0:02

¼ 0:81� 0:17; ð29Þ

where the various systematic errors have been combined linearly
on the second line.

5.2. 3D Parameter Constraints

We now include the redshift information available for each
object, adopting the 3D binning scheme introduced in x 4. A sim-
ple 2D analysis can first be performed within each redshift slice,
by simply exchanging the redshift sensitivity function g(z) calcu-
lated using the full redshift distribution for one calculated using
the restricted distributions. Figure 13 shows the constraints on
cosmological parameters from each slice, using only pairs of gal-
axies where both pairs lie in that slice, but the full covariance
matrix for each. The individual results are clearly more noisy
than for the full 2D analysis, since each slice contains only approx-
imately one-ninth of the number of galaxy pairs. However, all of
the slices are consistent with our base cosmological model. Fur-

thermore, while the statistical noise is similar in each slice, be-
cause they all contain a similar number of galaxy pairs, the signal
(and hence the signal-to-noise ratio) clearly increases at high red-
shift, as expected.

In Figure 14, the constraints from the three redshift bins are
combined as if they all provided independent information (de-
spite the fact that the redshift sensitivity functions in Fig. 7 clearly
overlap, and are therefore correlated). Although there are ap-
proximately only one-third of the number of galaxy pairs in this
analysis as there were in the 2D analysis, the additional infor-
mation about the evolution of the signal as a function of redshift
retightens the 68% confidence limit constraints back to a similar
value of

�8

�m

0:3

� �0:44
¼ 0:86� 0:08; ð30Þ

for �m 	 0:25. The best-fit model has �m ¼ 0:55 and �8 ¼
0:64, which achieves �2

red ¼ 1:18 in 28 degrees of freedom.
We can restore the missing galaxy pairs, and their information

content, by introducing three additional correlation functions con-
structed from pairs of galaxies that lie in different redshift slices.
The theoretical expectation for these correlation functions requires

Fig. 11.—Growth of structure over cosmic time. This links the cosmic shear signal on fixed angular scales as a function of redshift (rather than the other way around,
as in previous figures). Data points are located at the peak of the lensing sensitivity function for each set of source galaxies. The source galaxies themselves are
approximately twice as far away. The different colors distinguish different angular scales. For each of these, the dashed line shows the theoretical expectation, assuming
the best-fit cosmological model from x 5.
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that the g2(z) term in equation (6) be replaced by the product
of the lensing sensitivity functions for the two redshift bins. We
use the full covariance matrix, which is again estimated from
variation between the four quadrants of the COSMOS field. Fig-
ure 15 shows a projection of the log-likelihood surface, with the
usual contours.

The best-fit model has �m ¼ 0:47 and �8 ¼ 0:72, which
achieves�2

red ¼ 2:35 in 56 degrees offreedom. This is significantly
greater than unity because only statistical errors are currently in-
cluded. As described below, the error budget is increased by a
factor of �1.5, and the minimum �2

red to 1.04, when consider-
ing systematic errors in the relative shear calibration and mixing
of galaxies between bins. Again we find the usual degeneracy,
along which the best-fit position is determined by the parameter
�. However, with the full 3D information, parameter constraints
in the direction orthogonal to this are much tighter. Our 68% con-
fidence limits are well fit by

�8

�m

0:3

� �0:44
¼ 0:866� 0:033; ð31Þ

for 0:3 
 �m 
 0:6.
We now incorporate a systematic error budget into our 3D

parameter constraints. We allow a 6% absolute shear calibration
uncertainty (Leauthaud et al. 2007), a 5% relative shear calibra-
tion uncertainty between low- and high-redshift bins, and a po-
tential 10% contamination (e.g., Massey et al. 2004b) of the
high-redshift bin by galaxies really at low redshift (and vice

Fig. 12.—Constraints on cosmological parameters from a traditional 2D
cosmic shear analysis, after marginalization over other free parameters. In order
of decreasing thickness, the contours indicate 68.3%, 95.4%, and 99.7% confi-
dence limits due to statistical errors; additional uncertainty potentially contrib-
uted by sources of systematic error is discussed in the text. The gray-scale background
is logarithmic and shows �2 divided by the number of degrees of freedom in the
data. The white area at the bottom-right was excluded because the Smith et al.
(2003b) fitting functions could not be evaluated without unreasonable extrapo-
lation of the nonlinear matter power spectrum to physical scales smaller than
0.1 h�1 kpc. This can be compared to themuch tighter constraints from the full 3D
analysis in Fig. 15.

Fig. 13.—Constraints on cosmological parameters from within each of the
three separate redshift slices, from low (top) to high redshift (bottom). The red-
shift binning scheme is shown in Fig. 7 and discussed in the text. The contours
indicate 68.3%, 95.4%, and 99.7% confidence limits, and the logarithmic color
scale is common to all three slices.
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versa) due to the possibility of catastrophic redshift errors dis-
cussed in x 2.4. This leaves a final 68.3% confidence limit of

�8

�m

0:3

� �0:44
¼ 0:866� 0:033� 0:026� 0:009þ0:017

�0:000

¼ 0:866þ0:085
�0:068; ð32Þ

where the various systematic errors have been combined linearly
on the second line. Note that, when considering the relative im-
provement in the parameter constraints from a 2D analysis (29)
to a 3D analysis (32), it is not appropriate to include errors from
uncertainty in the absolute calibration of a shear measurement
method that is common to both. Continuing to budget for poten-
tial relative miscalibration between low- and high-redshift bins,
as well as including all other sources of systematic and statis-
tical error, reveals a dramatic threefold tightening of parameter
constraints.

We have also tried increasing the number of redshift slices, for
a finer quantitative measurement of the evolution of the shear
signal. We attempted an analysis using five redshift bins, created
by splitting in half the first two slices of the three used previously.
Unfortunately, the covariance matrix became degenerate, and
harder to invert. Furthermore, the best-fit �2

red and cosmological
parameter constraints degraded. The results in each bin were very
noisy (the signal-to-noise ratio is proportional to n�2

gal), but, as in
x 4.2, there were hints that the signal did not evolve as expected
after this finer redshift binning. The likelihood surfaces from in-
dividual slices did not agree, so their combination was blurred
out. We interpret this as indicating that galaxies were beginning
to be placed in the wrong redshift bins, and polluting that signal.
Thus, we have effectively reached the available precision of the
photometric redshifts, at least at the high redshifts in which the
weak-lensing signal is concentrated. For further progress, we

await ongoing, deeper multicolor observations of the COSMOS
field.

6. CONCLUSIONS

We have performed a fully three-dimensional cosmic shear
analysis of the largest ever survey with the Hubble Space Tele-
scope. The 3D shear field contains rich information about the
growth of structure and the expansion history of the universe. In-
deed, by assuming a concordance cosmological model, we have
directly measured the growth of structure on both linear and non-
linear physical scales. We have also placed independent 68%
confidence limits on cosmological parameters. From a traditional,
two-dimensional cosmic shear analysis, we measure

�8

�m

0:3

� �0:48
¼ 0:81� 0:17; ð33Þ

with 0:15 
 �m 
 0:7. From a full, three-dimensional analysis
of the same data, we obtain

�8

�m

0:3

� �0:44
¼ 0:866þ0:085

�0:068; ð34Þ

with�m 	 0:3. This represents a dramatic improvement over al-
ready remarkable constraints. In fact, disregarding uncertainty
in the absolute calibration of our shear measurement method,
which is common to both analyses, the 3D constraints repre-
sent a threefold relative improvement in the errors from the 2D
constraints.

Fig. 14.—Combined constraints on cosmological parameters �m and �8
from a series of effectively 2D shear analyses in each of the three redshift slices
(see text). Only pairs of galaxies where both lie in the same redshift slice have
been included in this analysis. This can be compared to the similar result from
the 2D analysis in Fig. 12 and the full 3D analysis in Fig. 15.

Fig. 15.—Constraints on cosmological parameters�m and �8, from a full 3D
cosmic shear analysis. Solid contours indicate 68.3%, 95.4%, and 99.7% con-
fidence limits due to statistical errors andmarginalization over other parameters;
potential sources of additional, systematic error are discussed in the text. These
constraints are far tighter than the equivalent results from our simple 2D analy-
sis, which are reproduced from Fig. 12 as dotted lines for ease of comparison.
The white area at the bottom-right was excluded because the Smith et al. (2003b)
fitting functions could not be evaluated without unreasonable extrapolation of the
nonlinear matter power spectrum to physical scales smaller than 0.1 h�1 kpc.
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A solely two-point cosmic shear analysis cannot easily isolate
a measurement of just �m. The degeneracy with �8 is broken
only by the difference in signal between large and small scales.
Our best-fit value of�m is slightly larger than the measurement
of 0:23� 0:02 from the 2dF galaxy redshift survey (Cole et al.
2005). As discussed in x 3.3, undetected CTE correction resid-
uals could potentially affect our measurement on the very largest
scale in each redshift slice; however this datum carries very little
weight because of shot noise, so this explanation is unlikely. Be-
cause high-redshift slices probe larger physical scales than low-
redshift slices, our measurement of �m could also be potentially
biased by photometric redshift failures. After allowing for this
effect in our systematic error budget, the discrepancy in �m is
within 1 � of the 2dF results, so we shall not pursue this further.

The main constraint from our data is on �8. We find a value
slightly larger than that of 0:74þ0:05

�0:06 from the three-yearWMAP
data (Spergel et al. 2007). Our result is also larger than most
estimates of cluster abundance from X-ray surveys (e.g., Borgani
et al. 2001; Schneider et al. 2002), and from other recent space-
based weak-lensing measurements (Heymans et al. 2005;
Schrabback et al. 2007). However, the HST GEMS survey, on
which both of the latter were based, suffers from sample variance
due to its limited size, and is suspected from other measures of
containing an unusually empty portion of the universe. Further-
more, independent measurements of �8 ¼ 0:85 or slightly greater
have recently been published by McCarthy et al. (2007) from
observations of the gas mass fraction in X-ray-selected clusters;
Li et al. (2006), by counting the number of observed giant arcs;
and Viel et al. (2004) and Seljak et al. (2006) with Ly� forest
data. All of these measures contain information about small-
scale density fluctuations at relatively low redshift, something
much more intrinsically suited to a measurement of �8 than the
cosmic microwave background. Our results are also remark-
ably consistent with those from the ground-based CFHT wide
synoptic legacy survey (Hoekstra et al. 2006). Such agreement
between the largest space-based and ground-based surveys dem-
onstrates thematurity of the field post-STEP. The combination of
all these results is therefore beginning to hint at inconsistencies
in either the standard cosmological model or in the interpretation
of one or more of these methods.

With the profundity of this statement inmind, we are careful to
realistically include all possible sources of systematic error. The
dominant contribution to the total error budget is uncertainty in
the absolute calibration of our shear measurement method. The
weak-lensing community is earnestly working to improve and
ascertain the reliability of various methods through simulated
images that contain a known input signal (Leauthaud et al. 2007;
Heymans et al. 2006; Massey et al. 2007).

Aside from this contribution, further exploitation of the
COSMOS survey is currently limited by two additional sources
of potential systematic error. Conveniently, these two limits cur-

rently happen to lie at a similar flux level and therefore affect a
similar population of galaxies, which we simply remove from
our analysis. Since a weak-lensing measurement is concerned with
the mass distribution in front of galaxies rather than the galax-
ies themselves, this can be donewithout worries about bias. First,
the in-orbit degradation of the ACS CCDs has led to inadequate
charge transfer efficiency during readout, which creates trailing
of faint objects, and mimics a weak-lensing signal. In Rhodes
et al. (2007) we formulated an empirical correction scheme for
the CTE effect, which works for all but the faintest galaxies; an
ongoing effort to correct CTE pixel-by-pixel in raw images should
allow us to push this limit and dramatically increase the number
density of galaxies with measured shears. Second, the finite num-
ber of colors available for each galaxy, and particularly the depth
in near-IR bands, limits the current accuracy of photometric red-
shifts. Continuing observations with the Subaru telescope should
improve their precision. This will allow finer resolution in the
redshift direction and, most importantly, will break redshift de-
generacies ubiquitous in the redshifts of faint objects, so that
they can also be used.
By understanding the characteristics of effects that dominate

real data, COSMOS is proving an invaluable dry run for future
dedicated weak-lensing missions in space. We have revealed im-
portant aspects that should ideally be minimized by hardware
design and mission scheduling requirements. However, we have
also demonstrated the rich information content of the 3D shear
field and shown a proof of concept for some of the proposed
tomographic analysis techniques that will be required to fully
exploit such future data.
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