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Abstract— With a large amount of open satellite multispectral
(MS) imagery (e.g., Sentinel-2 and Landsat-8), considerable
attention has been paid to global MS land cover classifica-
tion. However, its limited spectral information hinders further
improving the classification performance. Hyperspectral imaging
enables discrimination between spectrally similar classes but
its swath width from space is narrow compared to MS ones.
To achieve accurate land cover classification over a large cov-
erage, we propose a cross-modality feature learning framework,
called common subspace learning (CoSpace), by jointly consid-
ering subspace learning and supervised classification. By locally
aligning the manifold structure of the two modalities, CoSpace
linearly learns a shared latent subspace from hyperspectral-
MS (HS-MS) correspondences. The MS out-of-samples can be
then projected into the subspace, which are expected to take
advantages of rich spectral information of the corresponding
hyperspectral data used for learning, and thus leads to a better
classification. Extensive experiments on two simulated HS-MS
data sets (University of Houston and Chikusei), where HS-MS
data sets have tradeoffs between coverage and spectral resolution,
are performed to demonstrate the superiority and effectiveness
of the proposed method in comparison with previous state-of-
the-art methods.

Index Terms— Common subspace learning (CoSpace), cross-
modality learning, hyperspectral, landcover classification, multi-
spectral (MS), remote sensing.

I. INTRODUCTION

R
ECENTLY, the launch of operational optical broadband

[multispectral (MS)] satellites has successfully boosted
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Fig. 1. Illustration of the two kinds of multimodal feature learning
frameworks, where the switch (on–off) means that only one modality is
involved as the testing samples to meet the hypothesis of cross-modal learning.

the usage of MS data for various tasks such as urban mon-

itoring, management of natural resources, ecosystem, and

disasters prediction. There has been a growing interest in large-

scale land cover mapping of urban [1], agriculture monitor-

ing [2], [3], and mineral exploration [4], since high-quality

MS satellite imagery is openly available on a global scale

(e.g., Sentinel-2 and Landsat-8). However, MS data fail to

discriminate spectrally similar classes due to its broad spectral

bandwidth. Hyperspectral imaging can acquire richer spectral

information that enables high discrimination ability but its

coverage from space is much narrower than the one of MS

imaging due to the limitations of imaging devices and satellite

techniques. This tradeoff naturally motivates us to ponder a

question: can HS imagery covering only a limited part of the

MS imagery be explored to improve the classification of the

entire area covered by the MS imagery? This is as a typical

cross-modal feature learning problem.

Researchers have proposed a variety of multimodal feature

learning algorithms by introducing additional information,

which can be roughly categorized into two parts: fusion-

based joint feature learning (FJFL) [5], [6] and alignment-

based shared feature learning (ASFL) [7]. The main difference

between FJFL and ASFL is illustrated in Fig. 1.
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FJFL aims to learn discriminative features by absorbing

the different properties from multimodal data. FJFL fuses

the different sources at the data level to diversify the infor-

mation and then to further learn the higher level feature

representation. One intuitive way for FJFL is to directly learn

a joint data representation at the feature level. At present,

this is the mainstream approach for multimodal data analysis

[8]. For example, by embedding the height information from

light detection and ranging (LiDAR) into MS (HS) data,

Ghamisi et al. [9] learned multifold features from HS and

LiDAR correspondences for a multimodal classification task.

Iyer et al. [10] provided a graph-based new perspective for

feature extraction and segmentation of multimodal images

and achieved a desirable result. The resulting discriminative

features are beneficial for improving the performance of some

high-level applications, especially classification [11], [12],

object detection [13], image/video analysis [14], and spectral

unmixing [15]. Image fusion can also be regarded as a part

of FJFL when feature learning is applied subsequently. For

instance, hyperspectral and MS (HS-MS) data fusion enhances

the spectral resolution of MS data by fusing it with the low-

spatial-resolution HS data [5]. The fused HS-MS product can

be then seen as a new input for further discriminative feature

learning.

Behind the advancement of FJFL, the complete data cor-

respondence is the prerequisite. This limitation undoubtedly

results in a poor fit for cross-modal data analysis, in particular,

for cross-modal feature learning [16].1 In our MS-HS case,

the cross-modal learning refers to a problem that given a large-

scale MS image and a limited HS area partially overlapping

with the MS data (see Fig. 2, for example), we learn the

low-dimensional embedding representation from the limited

amount of MS-HS correspondences and transfer the learned

features to the rest of MS data for improving the performance

of large-scale land-cover and land-use mapping. During the

process, we expect to transfer the discrimination capability

learned from the rich spectral information into MS data

through the learned common subspace in order to more

effectively identify some challenging classes that are hardly

recognized by MS data due to its poor spectral information.

Please note that we just start a preliminary investigation of

cross-modal learning (MS-HS) in this paper, that is, the MS

and HS images share the same land-cover classes.

Unlike FJFL, ASFL is more apt for cross-modal feature

learning, since ASFL can adaptively shuttle back and forth

between the different modalities or domains by means of

the learned common subspace. Matasci et al. [17] linearly

projected the hyperspectral data of the source and target

domains into a common feature space where the gap between

domains in hyperspectral image classification is expected to be

reduced. Kulis et al. [18] addressed the issue of visual domain

adaption by learning a nonlinear transformation in kernel

space, with the application to general object recognition.

In [19], a probabilistic framework was proposed to align the

1In contrast to multimodal learning (bimodality, for example), cross-modal
learning trains on single modality and tests on bimodality, or vice versa (train
on bimodality and test on single modality).

Fig. 2. Holistic workflow of the proposed CoSpace.

class distributions of two domains for robust hyperspectral

image classification. Manifold alignment (MA) [20] is also

a powerful tool for modeling this kind of issue. Inspired by

MA, Tuia et al. [7] aligned multiview remote sensing images

on manifolds by fully allowing for the spectral variabilities

between the different angle imageries, yielding a significant

improvement of classification performance.

It should be noted that these methods mentioned ear-

lier only consider the differences of a unimodality between

the source and target domains at the level of original

features, but they fail to investigate the transferability of

multimodality since the different modalities usually hold

the different feature dimensions. Although these approaches

can build connections between features or instances,

a poorly connected relationship between the learned com-

mon subspace and label information is still hindering the

low-dimensional feature representation from being more

discriminative.

We propose a cross-modality feature learning framework,

called common subspace learning (CoSpace), that learns the

shared feature representation (common subspace) from par-

tial HS-MS correspondences. Extensive experiments are con-

ducted on simulated MS and partially overlapped real HS data

based on two airborne HS data sets: the University of Houston

and Chikusei data sets. MS data are generated from HS data

by using the spectral response functions (SRFs) of Sentinel-2.

We relabel the training and testing classes on the data sets

to meet the problem setting of cross-modal feature learning

and further to make them more challenging (see Section III

for details). Our contributions can be specifically unfolded as

follows.

1) We propose a novel CoSpace approach by jointly con-

sidering the subspace learning and classification in order

to effectively bridge the learned features and label infor-

mation, aiming at addressing the HS-MS cross-modal

feature learning issue.
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2) By locally aligning HS-MS data on the low-dimensional

manifolds where the features of HS and MS share the

same dimension, CoSpace linearly learns a latent shared

subspace from HS-MS correspondences, where samples

are expected to be classified better. Because of the

subspace learned in a linear way, the out-of-samples data

can be simply and smoothly embedded.

3) An optimization algorithm based on the alternating

direction method of multipliers (ADMMs) is designed

to solve the proposed model.

The remainder of this paper is organized as follows.

In Section II, we first clarify our motivation and then propose

the methodology of the CoSpace model, finally, elaborate

on the corresponding ADMM-based optimization algorithm.

Section III presents the experimental results and analysis on

two different HS-MS data sets both qualitatively and quanti-

tatively. Finally, some conclusions are drawn in Section IV.

II. COSPACE: COMMON SUBSPACE LEARNING

To take the benefit of HS imagery covering only a limited

part of the MS imagery and, subsequently, improve the classi-

fication results of the entire area covered by the MS imagery,

our idea is to learn an HS-MS common subspace, in which the

data from one domain can be adaptively transferred to another

domain.

Our solution to the problem is to learn an HS-MS common

subspace, in which the data from one domain can be adaptively

transferred to another domain.

Fig. 2 shows the holistic diagram of the proposed CoSpace

method.

A. Problem Formulation

Let XM ∈ R
dM ×N and XH ∈ R

dH ×N be the observed MS

image with dM bands by N pixels and the HS image with

dH bands by N pixels, respectively. Y ∈ R
L×N is the label

matrix represented by one-hot encoding. �M ∈ R
d×dM (�H ∈

R
d×dH ) is denoted as the projection matrix for connecting

the MS (HS) data and the latent subspace. The variable P ∈

R
L×d is the weighted matrix specified by bridging the latent

subspace and label information. Accordingly, Ỹ = [Y, Y] ∈

R
L×2N can be modeled as follows.

The CoSpace can be modeled as follows:

Ỹ = P�X̃ + E (1)

where X̃ =

[
XM 0

0 XH

]
∈ R

(dM+dH )×2N , and � =

[�M ,�H ] ∈ R
d×(dM+dH ). E ∈ R

L×2N is the corresponding

residual matrix containing the additive noise and other errors.

Since (1) is a typically ill-posed problem because of

more degrees of flexibility involved (e.g., latent subspace

estimation), several assumptions (or prior knowledge) should

be introduced into CoSpace using regularization technique.

Followed by a popular joint learning framework proposed in

[21], we formulate the CoSpace as the following constrained

optimization problem:

min
P,�

⎧
⎨
⎩

1

2
‖Ỹ−P�X̃‖2

F + �(P) + �(�)

s.t. ��T = I

⎫
⎬
⎭ . (2)

Fig. 3. Example to clarify the joint adjacency matrix.

The two regularization terms in (2) are detailed in the

following.

To achieve a reliable generalization of our model, the vari-

able P parameterized by α can be regularized by a Frobenius

norm

�(P) =
α

2
‖P‖2

F (3)

and the prior knowledge with respect to �, resulting in a

multimodal MA regularization, can be expressed with a joint

graph structure as

�(�) =
β

2
tr(�X̃L(�X̃)T) (4)

where L = D − W ∈ R
2N×2N stands for a joint Laplacian

matrix, W that is a corresponding adjacency matrix can be

directly inferred from label information in the form of the

linear discriminant analysis (LDA)-like graph [22]

Wi, j =

{

1/Nk , if Xi and X j belong to the kth class

0, otherwise

(5)

and then D is computed by Dii =
∑

i �= j Wi, j . Fig. 3 illustrates

the joint graph structure.

B. Model Optimization

Considering the nonconvexity of problem (2), an iterative

alternating optimization strategy is adopted to solve the convex

subproblems of each variable P and �. An implementation of

CoSpace is given in Algorithm 1.

Optimization with respect to P: This is a typical least-

squares problem with the Tikhonov regularization that can be

formulated as

min
P

{
1

2
‖Ỹ − P�X̃‖2

F +
α

2
‖P‖2

F

}
(6)

which has a closed-form solution

P = (ỸQT)(QQT + αI)−1 (7)

where Q = �X̃.
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Algorithm 1: CoSpace

Input: Ỹ, X̃, L, and parameters α, β, maxIter.

Output: P, �

t = 1, ζ = 1e − 4;

Initializating P and �

while not converged or t > maxIter do
Fix other variables to update P by (7)

Fix other variables to update � by Algorithm 2

Compute the objective function value E t+1 and check

the convergence condition: if | E t+1−E t

E t | < ζ then
Stop iteration;

else
t ← t + 1;

end

end

Algorithm 2: Solving the Subproblem for �

Input: Ỹ, P, J, X̃, L, β, maxIter.

Output: �.

Initialization: � = 0, G = 0, �1 = 0, �2 = 0,

µ = 10−3, µmax = 106, ρ = 1.5, ε = 10−6, t = 1.

while not converged or t > maxIter do
Fix other variables to update J by

J = (PTP + µI)−1(PTỸ + µ�X̃ − �1).

Fix other variables to update � by

� = (µJX̃T + �1X̃T + µG + �2)

×(µX̃X̃T + µI + βX̃LX̃T)−1.

Fix other variables to update G by

[U, S, V] = svd(� − �2/µ), G = UIn×m V.

Update Lagrange multipliers by

�1 ← �1 + µ(J − �X̃), �2 ← �2 + µ(G − �).

Update penalty parameter by

µ = min(ρµ,µmax).

Check the convergence conditions: if ‖J − �X̃‖F < ε

and ‖G − �‖F < ε then
Stop iteration;

else
t ← t + 1;

end

end

Optimization with respect to �: The optimization problem

for � can be formulated as

min
�

⎧
⎨

⎩

1

2
‖Ỹ − P�X̃‖2

F +
β

2
tr(�X̃L(�X̃)T)

s.t. ��T = I

⎫
⎬

⎭. (8)

In order to solve (8) effectively with ADMM, we consider

an equivalent form by introducing auxiliary variables J and G

Fig. 4. Convergence analysis of CoSpace is experimentally performed on the
two HS-MS data sets. (a) University of houston HS-MS data sets. (b) Chikusei
HS-MS data sets.

to replace �X̃ and �, respectively,

min
�,J,G

⎧
⎨
⎩

1

2
‖Ỹ − PJ‖2

F +
β

2
tr(�X̃L(�X̃)T)

s.t. J = �X̃, G = �, GGT = I

⎫
⎬
⎭. (9)

The augmented Lagrangian version of (9) is

LC(�, J, G,�1,�2)

=
1

2
‖Ỹ − PJ‖2

F +
β

2
tr(�X̃L(�X̃)T) + �T

1 (J − �X̃)

+ �T
2 (G − �) +

µ

2
‖J − �X̃‖2

F +
µ

2
‖G − �‖2

F

s.t. GGT = I (10)

where �1 and �2 are the Lagrange multipliers and µ is

the penalty parameter. Algorithm 2 summarizes the specific

procedures for solving the problem (9), and the solution to

each subproblem is detailed in Appendix A.

Finally, we repeat these optimization procedures until a

stopping criterion is satisfied.

C. Convergence Analysis

The iterative alternating strategy used in Algorithms 1

and 2 is a block coordinate descent, whose convergence is

theoretically guaranteed as long as each subproblem of (2)

is strictly convex, which can be exactly minimized [23].

Moreover, we experimentally display an illustration to clarify

the convergence of CoSpace on both HS-MS data sets, where

the objective function value is recorded in each iteration (see

Fig. 4).

III. EXPERIMENTS

In this section, we quantitatively and qualitatively evaluate

the performance of the proposed method on two HS-MS data

sets taken over the University of Houston and Chikusei. To val-

idate the transferability of learned features by our CoSpace

method, classification is explored as a potential application.

Therefore, three different classifiers, namely, the nearest neigh-

bor (NN) based on the Euclidean distance, linear support

vector machines (LSVMs), and canonical correlation forest

(CCF) [24], are selected for this task. As a variant of random

forest [25], CCF has shown its effectiveness in various tasks

[26]–[28] because of supervised feature extraction via canon-

ical correlation analysis when constructing each decision tree.

Furthermore, we compare the proposed method (CoSpace)
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Fig. 5. MS image and its corresponding hyperspectral image that partially covers the same area, as well as training and testing labels, for (a) University of
Houston HS-MS data set and (b) Chikusei HS-MS data set, respectively.

TABLE I

NUMBER OF TRAINING AND TESTING SAMPLES FOR

THE UNIVERSITY OF HOUSTON MS-HS DATA SET

with several classical approaches, which are suitable for the

cross-modal feature learning task, including principle compo-

nent analysis based on joint dimensionality reduction (P-JDR

for short) [29], locality preserving projection (LPP) based on

unsupervised MA (L-USMA for short) [30], and LPP-based

supervised MA (L-SMA) [31] as well as the original MS

(baseline). Tables I and II list the number of training and test

samples on two used data sets.

A. University of Houston HS-MS Data Sets

1) Data Description: The HS data were acquired by the

ITRES CASI-1500 sensor over an urban area around the cam-

pus of the University of Houston, Houston, TX, USA, which

was provided in the 2013 IEEE GRSS data fusion contest [32].

The image consists of 349 × 1905 pixels with 144 spectral

bands in the wavelength from 364 to 1046 nm with spectral

resolution of 10 nm at a ground sampling distance of 2.5 m.

Spectral simulation is performed to generate the MS image by

degrading the full HS image in the spectral domain using the

TABLE II

NUMBER OF TRAINING AND TESTING SAMPLES FOR

THE CHIKUSEI MS-HS DATA SET

MS (SRFs of Sentinel-2 as filters (for more details refer to [5]).

Following this, the MS data with dimensions of 349×1905×10

are generated. The MS image and the corresponding partial

HS image over the University of Houston scene are shown

in Fig. 5(a).

2) Experimental Setup: Initially, we redistribute the training

and testing samples, as shown in Fig. 5(a) and, more specifi-

cally, listed in Table I, to meet our problem setting that there

is a large amount of the MS data (complete low-quality data)

together with a limited amount of the HS data (incomplete

high-quality data).

For the performance assessment of the algorithms,

we adopt three criteria to quantify experiential results as

follows.

1) Overall Accuracy (OA): This index is defined by the

ratio between the number of MS samples that are

correctly classified and the number of corresponding test

samples.
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Fig. 6. Classification maps and corresponding highlighted subareas of the different algorithms obtained using three kinds of classifiers on the University of
Houston data set.

2) Average Accuracy (AA): We collect the classification

accuracy of each class and average them to achieve an

AA-based evaluation.

3) Kappa Coefficient (κ): It statistically measures the

agreement between the final classification map and the

ground-truth map. Generally speaking, κ is more robust

and convincing than a simple percent-based agreement

calculation (e.g., OA and AA), since the agreement

occurring by chance is fully considered.

Furthermore, we experimentally maximize the performance

of the different algorithms by tuning their parameters, such as

dimension (d), regularization parameters (α, β, γ ), and so on,

using ten-fold cross-validation on training data. For the dimen-

sion (d) which is a common parameter for all algorithms, they

can be selected ranging from 10 to 50 at an interval of 10. For

the number of NNs (k) and the standard deviation of Gaussian

kernel function (σ ) in L-USMA, we select them in the range of

{10, 20, . . . , 50} and {10−2, 10−1, 100, 101, 102}, respectively,

and two regularization parameters (α, β) in CoSpace are both

chosen from {10−2, 10−1, 100, 101, 102}.

3) Results and Analysis: Fig. 6 shows the classification

maps of compared algorithms using three different classifiers,

while Table III details the quantitative assessment results under

the optimal parameters determined by cross-validation.

Overall, after absorbing partial HS information, those ASFL

approaches are prone to obtain a better classification result,

compared to the baseline (only MS data). P-JDR steadily

outperforms the baseline, especially using 1NN and LSVM

classifiers, although its classification accuracy using CCF is

slightly lower than that of baseline. By embedding local topo-

logical structure of data, L-USMA performs better than base-

line, and even P-JDR, showing stable results for three kinds of

classifiers. With a more discriminative supervised information,

L-SMA obtains more competitive results by locally construct-

ing LDA-like graph, whose performance is basically superior

to that of the baseline, P-JDR, and L-USMA. Unlike L-SMA

that only aligns different modalities on a common subspace,

the proposed CoSpace learns a latent subspace by aligning

different modalities and also bridges the learned subspace

with label information, achieving the best classification accu-

racy. Compared to baseline, P-JDR, L-USMA, and L-SMA,

CoSpace increases the OAs of 7.12%, 2.45%, 2.49%, and

3.78%, respectively, with 1NN classifier, and 7.26%, 5.07%,

3.84%, and 1.37%, respectively, with LSVM classifier, as well

as 3.96%, 5.04%, 3.75%, and 2.58%, respectively, with CCF

classifier. Likewise, there are similar trends for the other

indices of AA and κ , which indicate that CoSpace tends to

learn semantically meaningful features.

We can also observe from Fig. 5(a) and Table I that the

training samples collected in a very limited area badly results

in the data unbalance between different classes. For instance,

the number of training samples in Health Grass is dozens

of times as much as that in Water, Railway, Residential,

Commercial, and Parking Lot2. This might make the classifier

impossible to be trained effectively, since more attentions are

paid on those classes with large-size samples, and, contrari-

wise, the small-scale classes play relatively less and even

nothing.
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TABLE III

QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON THE UNIVERSITY OF HOUSTON DATA.
THE BEST ONE IS SHOWN IN BOLD

Fig. 7. Sensitivity analysis to the training set size using three different
classifiers on the two MS-HS data sets. (a) Houston HS-MS data sets.
(b) Chikusei HS-MS data sets.

A feasible solution to the problem is to enhance data

representative ability by jointly feature learning from mul-

timodalities. For the performance evaluation of classifying

those small-scale classes, e.g., Residential, Commercial, and

Railway, a direct evidence has been shown in Table III that

those ASFL-based approaches (e.g., P-JDR, L-USMA, and

L-SMA as well as CoSpace) obviously perform better on

these small-scale samples than directly using original MS data

(baseline). As expected, CoSpace dramatically outperforms

the others, particularly on Residential and Railway. There

is no denying, however, that CoSpace is superior to other

algorithms to a larger extent, although it fails to effectively

identify Parking Lot2 as same with others.

To visually highlight the classification differences for the

different methods, we enlarge the classification maps of a

subarea overshadowed by the cloud, as shown in Fig. 6 where

we can see that the methods with considering the hyperspectral

information are able to generate the more discriminative

features than the baseline, while the proposed CoSpace yields

a better performance in identifying the materials in the shadow

area, particularly for vegetation (e.g., Grass), Residential, and

Commercial that are easily misclassified by the traditional

methods.

4) Sensitivity Analysis to the Training Set Size: As the

performance of the CoSpace largely depends on the number of

training samples, it is, therefore, indispensable to investigate

the sensitivity of the training set size. In detail, we conduct

the classification using the CoSpace by fixing the test set and

setting a series of new training sets randomly selected from

the original training set with the different percentages ranging

from 5% to 100% at a 5% interval. As can be seen in Fig. 7(a),

there is a similar trend in OAs using different classifiers, that

is, the classification accuracy improves with the training set

size, faster in the early, and later basically stabilized.

B. Chikusei HS-MS Data Sets

1) Data Description: The Headwall’s hyperspectral visible

and near-infrared series C (VNIR-C) imaging sensor acquired

the airborne HS data set over the agricultural and urban

areas of Chikusei, Ibaraki, Japan, in 2014. This VNIR-C

sensor collected 128 bands covering the wavelength range

from 363 to 1018 nm with spectral resolution of 10 nm, and

the scene consists of 2517 × 2335 pixels at ground sample

distance of 2.5 m. The data set was made available to the

scientific community recently, and more details regarding the

data acquisition and processing can be found in [33]. Similarly,

the MS image with the size of 2517×2335×10 was simulated

by spectrally down-sampling the full HS image using the

known SRFs of Sentinel-2. The generated MS image and

the partial HS image over the Chikusei scene are shown

in Fig. 5(b).

2) Experimental Setup: Fig. 5(b) shows the latest training

and testing labeling of the Chikusei data set, which is quan-

tified in Table II. Three indices: OA, AA, and κ introduced

earlier are calculated to quantitatively assess the classification

performance. Similar to the case of the University of Houston

data set, the parameters for those given algorithms are deter-

mined by the tenfold cross-validation on the training samples

and the same range setting with those used for the University

of Houston data set is also conducted to the Chikusei data set.
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Fig. 8. Classification maps and corresponding highlighted subareas of the different algorithms obtained using three kinds of classifiers on the Chikusei
data set.

3) Results and Analysis: Similar to the University of Hous-

ton scene, we evaluate the performance for the Chikusei

data both quantitatively and visually. Three classification

indices with optimal parameters for different algorithms are

summarized in Table IV. For visual comparison, we give

the corresponding classification maps in the full scene with

those comparative algorithms under the different classifiers,

as shown in Fig. 8.

As the classes in the Chikusei scene are more challenging

classes and the distribution of training samples is inhomo-

geneous, directly using original MS data as input fails to

identify certain materials, such as Forest, Man-made (Dark),

and Man-made (Grass), yielding a poor performance in OA,

AA, and κ . Especially while using 1NN classifier, P-JDR and

L-USMA, which belong to the unsupervised feature learning

method, observably exceed baseline in classification accuracy

by 4.46% and 5.49%, respectively. For LSVM and CCF

classifiers, a similar trend is also demonstrated in Table IV.

Because of the limited training samples and their distribution

unbalance, the subspace projection learned by L-SMA easily

traps into over-fitting, despite only having a weak performance

improvement compared to these previously compared algo-

rithms. By jointly performing subspace learning and classifi-

cation, CoSpace not only aligns the different modalities in a

latent common subspace but also connects the subspace with

label information formulated by training data. As a result,

CoSpace obtains a higher classification accuracy than other

algorithms, as listed in Table IV. This might attribute to
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TABLE IV

QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT ALGORITHMS ON THE CHIKUSEI DATA. THE BEST ONE IS SHOWN IN BOLD

the learned common subspace, since the features projected

in the subspace can absorb various properties from different

modalities.

Similarly, we also make a visual comparison by giving a

salient region in which the CoSpace’s superiority in classifying

complex and similar land-cover classes is further shown as

detailed in Fig. 8. Compared to other alignment-based meth-

ods, CoSpace is capable of better transferring HS informa-

tion into MS data by means of joint subspace learning and

classification, yielding a more discriminative low-dimensional

embedding. The learned features can recognize those classes

of holding very similar features in MS data, such as Bare

Soil (Farmland) and Row Crops, Weeds in Farmland, and

Rice Field (Grown), more effectively. As shown in Fig. 8,

CoSpace performs more reasonable and competitive classifi-

cation results, that is, on the one hand, the Weeds in Farmland

and Rice Field (Grown) are most likely to be coexisted in a

scene; on the other hand, the Bare Soil (Farmland) and Row

Crops are separated more correctly. This can be explained by

a powerful transferability of HS information in the proposed

CoSpace.

4) Sensitivity Analysis to the Training Set Size: Similar to

the MS-HS Houston data sets, we apply the same investigating

strategy and observe the trend of classification performance

using CoSpace with different sizes of training sets on the MS-

HS Chikusei data sets in Fig. 7(b). There is a very substantial

change in classification accuracy with the increase of the

training set size ranging from 5% to 40% of total training

samples, while the performance tends to be stable after the

training set size is over 50%.

IV. CONCLUSION

The tradeoff between MS and HS imaging in terms of

observation ranges and spectral resolution motivates us to

ponder whether HS data partially overlapping MS data can

contribute to improving the classification performance of the

whole MS imagery. For this purpose, we proposed CoSpace

to achieve the property transferring in the different domains

by learning a latent common subspace. Moreover, an effective

joint strategy that simultaneously considers subspace learning

and classification is embedded into the proposed method to

tightly bridge the gap between the learned subspace and

label information, leading to a more discriminative feature

representation. The superior classification performance using

CoSpace is demonstrated on two different data sets, compared

to using other state-of-art methods.

We performed transfer learning on homogeneous data sets

in the considered MS-HS case in the sense that both data

sources are optical images covering similar spectral ranges

and thus the HS information can be transferred into the MS

one linearly. The CoSpace’s ability in handling heterogeneous

data sources remains limited due to its linearized modeling.

In the future work, we will develop a more general system by

integrating some powerful and emerging nonlinear tools (e.g.,

deep learning) into our framework.

In addition, we just assumed to share the same land-cover

classes across MS and HS images in this paper. In reality,

the number of land-cover classes in the large-scale MS scene

might be usually more than the one in the overlapped area of

MS and HS images. This naturally motivates us to generalize

our model in the future work.

APPENDIX

SOLUTION TO PROBLEM (8) WITH RESPECT TO �

The solution to problem (8) can be transferred to equiv-

alently solve the problem (10) with ADMM. Considering

the fact that the object function in (10) is not convex with

respect to all variables simultaneously, but it is a convex

problem regarding the separate variable when other variables

are fixed, therefore, we successively minimize LC with respect

to �, J, G,�1,�2 as follows.
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Optimization with respect to �: The optimization problem

for � can be written as

min
�

⎧
⎪⎨
⎪⎩

β

2
tr(�X̃L(�X̃)T) + �T

1 (J − �X̃)

+�T
2 (G − �) +

µ

2
‖J − �X̃‖2

F +
µ

2
‖G − �‖2

F}

⎫
⎪⎬
⎪⎭

(11)

which has a closed-form solution

� ← (µJX̃T+�1X̃T+µG+�2)×(µX̃X̃T+µI+βX̃LX̃T)−1.

(12)

Optimization with respect to J: The variable J can be

estimated by solving the following problem:

min
J

{
1

2
‖Ỹ − PJ‖2

F + �T
1 (J − �X̃) +

µ

2
‖J − �X̃‖2

F

}
(13)

its analytical solution is given by

J ← (PTP + µI)−1(PTỸ + µ�X̃ − �1). (14)

Optimization with respect to G: For G, the optimization

problem with orthogonal constraint can be formulated as

min
G

{
�T

2 (G − �) +
µ

2
‖G − �‖2

F}, s.t. GGT = I
}

(15)

which can be effectively solved using the strategy of splitting

orthogonality constraints [34] in two steps.

The first step is to perform the singular value decomposi-

tion (SVD) factorization

[U, S, V] = svd(� − �2/µ). (16)

The second step is to update G with satisfying orthogonal

constraint

G ← UIn×m V. (17)

Lagrange multipliers (�1, �2) and penalty parameter (µ)

update: Before stepping into the next iteration, Lagrange

multipliers need to be updated by

�1 ← �1 + µ(J − �X̃), �2 ← �2 + µ(G − �) (18)

and penalty parameter be updated by

µ ← min(ρµ,µmax). (19)
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