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ABSTRACT

A get of points, called consumers, and another point called
central supplier, are located in a Euclidean plane. The cost of
eonstructing a conmnection between two points 18 proportional to
the distance between them. The minimum cost required for con-
necting all the congumers to the supplier is given by a minimal
Steiner tree. An example is given in which for every allocation
of the total cost of the tree to the consumers, a coalition of
consumers exists, which is charged more than the cost required
for comnecting its members to the central supplier.

INTRODUCTION M

The following question was raised by Claus and Kleitman [2].
A network G is given, whose set of nodes is N U {0}, where
N={1,2,...,n} corresponds to a set of consumers and O corresponds
to a central supplier. The length d(i,j) of an arc (i,j) of G
denotes the cost of connecting i to j. The minimum cost required
to connect all the consumers to the central supplier (using arcs
of the network) is the length of a shortest spanning tree of G.
The question is how to allocate the total cost of a shortest
spanning tree T to the consumers. Several suggestions are given
in [2]. Claus and Granot [3] suggest a game-theoretic approach
to the problem. For every S C N let TS be a shortest tree of G

whose set of nodes is S U {0}, and let v(S) denote the total cost

of Ts. Thus, a cooperative game (N;v) in characteristic function

form (see [7]) is associated with the problem, and solution con-
cepts known in game theory can be employed. Granot and Huberman
[5] prove that the core of this game is never empty. In fact,
the following cost allocation belongs to the core. For every
consumer i let j(i) denote the node which follows i on the path
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in T which leads from i to 0. Let X, = d(i,j(i)). Then the al-

location x = (xl,...,xn) belongs to the core, i.e., Z X, = v (N)
and z X, 2 v(s) for all s C N. 1eN

ies

It is interesting to point here that Granot and Huberman's
proof can be simplified and their result can be strengthened in
the following way. Suppose that a coalition S of consumers is
allowed to use not only arcs that connect two members of S, or
a member of S and 0, but also every other arc of the network G.
Accordingly, let TS denote a shortest tree of G which spans the
set s U {0} (i.e. Tq is a shortest Steiner tree of G w.r.t.
s U {0}) and let u(S) denote the total cost of TS' Obviously,

u(N) = v(N) and u(S) £ v(S) for every SC N. Thus, the core of
(N;u) is contained in the core of (N;v). We claim that the cost
allocation x belongs to the core of (N;u). This follows from
the fact that u(S) = min{v(R): SCRCN} and the fact that x be-
longs to the core of (N;v), but a direct proof is as follows.
Suppose, per absurdum, that S C N is a coalition such that

z x; > u(S). Consider the subgraph GS of G such that (i,3)
ies v

is an arc of GS if and only if either (i,j) belongs to TS or

(i,j) belongs to T and i ¢ S. It is easily verified that Gs

spans N U {0} and the total cost of Gg is less than that of T.

This implies that T is not a shortest spanning tree of G, and
hence a contradiction.

In this paper we deal with a more general setup of the
problem. We assume that N U {0} is just a subset of the set of
nodes of G, i.e., the consumers are not limited to use only arcs
linking two consumers or arcs linking a consumer to the supplier,
but may use some additional arcs. It is well-known (see [1,p.143])
that this formulation enables us to deal with the case in which
the consumers, located in a Euclidean plane, can use any path for
connecting themselves to each other or to the central supplier.
The minimum cost required for connecting all the consumers to the
supplier is the length of a shortest Euclidean Steiner tree for
the set N U {0} (see [1]). The value u(S) could be defined as
the length of a shortest Euclidean Steiner tree for the set
s u{o}. .

In view of Granot and Huberman's result, and the stronger
version stated above, we find it interesting to report here that,
in contrast to the minimum spanning tree game, the core of the
Steiner tree game can be empty. Consider, for demonstration, an
application to cable TV network, mentioned by Claus and Kleitman,
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where the users wish to be connected to the station in the
cheapest way. Thus, they will construct a shortest Steiner tree.
Unfortunately, as is shown in the example below, it may happen
that they will not be able to split the cost in such a way that
no coalition S of users is charged more than the minimum cost
required for connecting all members of S to the station.

EXAMPLE

Consider a case of five consumers located symmetrically in
the Euclidean plane around the central supplier. We shall prove
(see "The Proof" below) that a shortest Steiner tree, which con-
nects the five consumers to the supplier, is composed of two com-
ponents, namely, a shortest Steiner tree linking two adjacent
consumers to the supplier, and a shortest Steiner tree linking
the other three consumers to the supplier. In other words,
u({1,2,3,4,5}) = u({1,2}) + u({3,4,5}). since the core is a
convex set, it follows by the symmetry (w.r.t. permutations of
the consumers set) that if the core is not empty then the equal
cost allocation must belong to the core. However, computation
shows that if the distance between adjacent consumers is 1.0,
then u({1,2}) = 1.5542 and u({3,4,5}) = 2.3928. It follows that
in the equal cost allocation the coalitign {1,2} is charged more
than u({1,2}). This implies that the equal cost allocation is
not in the core and hence the core of this game is empty. The

shortest tree is shown in .Figure 1.
4

Fig. 1



4 MEGIDDO

THE PROOF

We shall prove that the tree shown in Figure 1 is the
shortest Steiner tree that connects the vertices of the penta-
gon to its center.

v Suppose that T is a shortest Steiner tree for the set
{0,1,...,5}. It is well-known (see [4] for proofs of all prop-
erties of minimal Steiner trees mentioned in the present proof)
that the degree of any node in T is not greater than 3. More-
over, since the angle between any two arcs incident at a node

of T is not less than 1200, it follows that the degree of every
consumer i (1Zi<5) in T is exactly 1. We shall prove that the
degree of 0 in T is exactly 2.

First, suppose that the degree of 0 in T is 3. This
implies that T (or an equivalent tree) is composed of three
shortest Steiner trees with respect to the sets {0,1,2}, {0,3,4},
{0,5}. However, in that case the angle between the link from
0 to 5 and the link from O that belongs to the tree of {0,1,2}

is 1080, in contradiction to the property mentioned before.
Next, suppose that the degree of 0 in T is 1. In this
case T has exactly ten nodes; this follows from the fact that
the degree of every node of T which is net in {0,1,...,5} is 3,
and if there are x such nodes then (3x+6)/2 = (x+6) - 1. It is
easy to verify that T must be isomorphic to either of the trees
shown in Figures 2 and 3. All the angles in these figures are

of 1200. We shall now reason why the shortest Steiner tree can
be neither of the type of Figure 2 nor of the type of Figure 3.
Notice that the center 0 in our example belongs to the convex
hull of every set of four consumers. This implies, as can be
easily seen, that neither of the points A,B,E,F,G,H,I,J,K,L can
play the role of 0; for each one of these points there exists a
set of four others in the same tree whose convex hull does not
contain the point. It is only left to show that C cannot play
the role of 0 (the case of D is symmetric). The straight line
through S; and S, passes through the point which lies outside

the pentagon of consumers and forms together with A and B an
equilateral triangle (see [6]). Moreover, this line separates
the center from the consumer corresponding to D. Similarly,
the straight line through Sy and s, passes through the point

which lies outside the pentagon and forms together with E and F

an equilateral triangle, and this line also separates the center
from the consumer corresponding to D. However, since these two

lines must be parallel, the structure as a whole is not feasible
within the pentagon of consumers.
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Fig. 3

Thus, the degree of 0 in T is 2. Obviously, a partition
of {1,...,5} which yields a shortest tree is to the sets {1,2}
and {3,4,5}. The shortest trees for the sets {0,1,2} and
{0,3,4,5} can be easily found by the method of Melzak [6].
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NOTES ADDED IN PRESS

The idea of applying game theory to cost allocation for
spanning trees, as well as the result of [51, appear in fact
in C. G. Bird's "On Cost Allocation for a Spanning Tree: A
Game Theoretic Approach," Networks, 6, 1976, pp. 335-350.

Another related paper, "Computational Complexity of the
Game Theory Approach to Cost Allocation for a Tree," by the
pPresent author, is forthcoming in Mathematics of Operations
Research.



