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Abstract: This paper addresses the gap in the scientific literature regarding construction cost estimates
for the construction of underground metro stations. It provides preliminary cost estimation models
using linear regression for use by the Greek underground metro public transport authority for
planning future extensions to the Athens and Thessaloniki networks. At the same time, it contributes
to the body of knowledge by proposing material quantity prediction models and presents a two-stage
preliminary cost estimation model for the construction of civil engineering works of underground
metro stations. Stage one uses the construction cost budgets of six metro stations in Greece to
develop a multilinear regression equation for the prediction of the overall cost for construction of civil
engineering works; stage two provides estimates of material quantities using linear regression, key
quantity ratios, and artificial neural networks. The data analyzed are from the prior measurements of
quantities for the construction of the Chaidari to Piraeus extension of the Athens Metro Line 3. After
comparing the actual values of costs and quantities with the corresponding predictions, acceptable
discrepancies are observed. All models provide estimates within ±25% discrepancies, which are
acceptable at the conceptual planning phase in order to initiate project funding quests.

Keywords: metro; underground construction; construction costs; material quantities estimation;
linear regression; artificial neural networks; cost prediction models

1. Introduction

The need to cover large urban areas, which are characterized by a low level of transport
service from the existing network, but at the same time have the conditions to make such
an investment economically viable, is the main reason for the construction of new metro
networks in developing cities worldwide. Metro is defined as an electrically powered
train operating on reserved tracks in urban areas [1]. The existence of such networks
dates back to 1890 when the London metro opened. Since then, 193 countries worldwide
have constructed and put into operation urban metro networks, 14 of which since 2018,
including over 17,000 km track length, almost 13,000 stations and accommodating over
58 trillion riders in 2019. It is a fact that in 2020, owing to the COVID-19 pandemic, global
metro ridership fell by 40% compared to 2019. Regardless, the necessary extensions of
existing and the construction of new networks are still being planned or are expected to be
planned in the coming years due to increasing urbanization, environmental challenges, and
aspirations for a better quality of life, with the most growth expected in the Asia–Pacific
region, the Middle East and North Africa (MENA) and Latin America [2].

This trend will likely continue in the near future. Therefore, the estimation of construc-
tion costs for both new networks and extension of existing ones around the world, with
obviously different geotechnical conditions, structural codes of practice, project procure-
ment frameworks, and price fluctuations, is essential for decision-makers worldwide to
make educated decisions regarding funding requirements and procurement strategies. In
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Athens, for example, the initial three-line network was completed in January 2000 even
though, historically, Line 1 opened as a conventional aboveground steam railway in 1869.
The other two lines, which are mostly underground networks, were constructed in the
1990s but since have been continuously expanding, while new lines, like Line 4, are being
planned [3]. With three lines having an overall length of nearly 92 km and 40 modern
underground stations, the Athens Metro constitutes the most popular means of transport
in the capital. Similarly, in Thessaloniki, the second largest city in Greece, the first lines
and its first extension of an overall length of 14.4 km with 18 stations are currently under
construction while additional extensions are already being planned [4].

The planning of a new metro network or the extension of an existing one begins with
the selection of locations for the construction of new stations. This decision is based on
serving as much as possible the population in the areas through which the line will pass,
i.e., they should be located in central locations with sufficient space, such as squares and
parks, serving important buildings and facilities, while at the same time reducing the
need for expropriation of privately owned properties. After pinpointing each station’s
location, the method of construction needs to be determined. Primarily, the criteria based
on which the appropriate construction method is chosen for each station are the available
space for the construction facilities and the accessibility of the project machinery, the
possibility of finding antiquities, the bypassing of networks, the maximum depth of the
station, and the expected environmental impacts. The most disruptive construction activity
is the excavation and primary support of the required space for the construction of the
structure of the underground station. While the construction of the tunnels is normally
achieved using a tunnel-boring machine (TBM), which works underground with minimal
or no disruption to ground-level activities, the options for the excavation required for
the construction of the stations are the Cut and Cover (C&C) method, the Cover and Cut
method, and the New Austrian Tunneling Method (NATM).

The C&C method has been widely used for a long time and is one of the most important
techniques chosen for the construction of underground stations worldwide, such as in
London in 1863, New York in 1900, and Canada in 1949 [5]. More recently, it has also
been used in cases of construction of shallow underground road tunnels, for example, the
Egnatia Motorway [6], but also for excavation of metro tunnels when poor mechanical
soil characteristics are encountered, as reported by Attiko Metro S.A. [7]. Initially, the
trench where the station structure will be built is excavated, including the required ground
support measures (piles, shotcrete, prestressed anchors), followed by the construction of
the station’s concrete structure. In the end, the structure is backfilled and the aboveground
area is reconstructed. As a result, the aboveground surroundings are disrupted for the
entire construction period. The C&C method is considered economically advantageous and
is chosen in cases where the excavation depth is less than 30 m, while the area available for
occupation of the site is sufficient and potential disturbance is considered acceptable [8].

The Cover and Cut method was originally developed for urban subway structures
where the least possible disruption of traffic is required. According to this method, shallow
excavation and grading are performed initially, followed by the construction of a subsoil
concrete “vault”. This vault acts as a retaining structure and provides full protection to
the main excavation activities below, carried out by conventional drilling and hauling
equipment [6] while at the same time allowing normal activities aboveground. Similar to
the C&C method, it is also not suitable or cost-efficient for very deep excavations.

In contrast, when the excavation depth is very deep (more than 30 m), problems
regarding the stability of the trench slopes are usually created by the previous methods.
As a result, they are considered to be economically unviable. Therefore, the underground
excavation and primary support to provide the necessary safe space for the construction
of the station are achieved by the NATM method, which is suitable in cases with limited
surface space, among other factors [8]. The basic principle of the NATM method is to
open the tunnel front by conventional mechanical means, usually in more than one phase,
to reduce the surface area of the excavation front and wall convergence. Temporary
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wall support is provided by applying shotcrete (plain or fiber-reinforced), rock anchors
(prestressed or passive), and/or the installation of umbrella-shaped fore-polling beams.
The type of primary support depends on the geotechnical conditions monitored while
excavating. For this reason, it is known as a “design as you monitor” approach [8]. This
method is commonly used for the construction of short road or rail tunnels in rural areas as
opposed to the use of TBMs for significantly longer tunnels in rural areas and all tunnels
in densely populated areas. The advantages of NATM are its applicability to large cross-
sections and noncircular cross-sections (such as metro stations) and little or no disturbance
caused at ground level [8].

Regardless of the method of construction, the estimation of costs and required quanti-
ties of materials are the most important parameters for planning and successful completion
of complex infrastructure projects that are used by both the project owner and the contrac-
tor [9]. Estimating the potential construction costs of a project at the conceptual–feasibility
planning phase can help stakeholders to choose the most cost-effective solution, thus
reducing the risks related to the loss of funding. Prediction of a construction project’s
cost always involves risks and uncertainties due to the uniqueness of each project [10–13].
However, owing to the lack of a reliable database, data comparison studies regarding the
construction costs of major infrastructure projects, such as underground metro networks,
are rare internationally. In addition, each country has a unique legal framework covering
project implementation in general, and specific project procurement systems [14–16] and
contract types [17,18], and hence construction budget estimation methods.

The acceptable accuracy of such estimation methods is another issue of discussion in the
literature. According to Burke [19] and Flyvbjerg et al. [20], at each phase in the project life cycle
(conceptual, design, realization, and operation), different levels of cost-estimating accuracy can
be achieved from the detail of available information. As stated by Fragkakis et al. [21], most
feasibility and “go or no go” decisions concerning large transportation projects are made during
the conceptual stages of the project. According to Burke [19], an acceptable discrepancy of
predicted to actual construction cost can be taken as ±25% at the conceptual–feasibility phase.
On the other hand, the Association for the Advancement of Cost Engineering reported that
feasibility decisions that rely on cost estimates based on limited project design information
(1–15% of total project information) can provide accuracy levels from −15% to −30% and +20%
to +50% [22]. Furthermore, Hanioğlu [23] states that frequently in practice, such estimates will
be an “order of magnitude” with even higher discrepancies, up to ±50–100%. Nevertheless, at
least a preliminary feasibility study needs to be conducted to make the “go” decision, which, of
course, requires a cost estimate. Most practitioners rely on data inferred from costs associated
with past projects [24,25] and derive parametric estimates, i.e., offer a currency amount for a
generalized product unit, e.g., EURO per square meter. The accuracy of parametric estimates is
generally between 30–40% [23].

As the proposed models in this study utilize initial geometrical information regarding
the size of the excavation and station structure to provide cost estimates during the concep-
tual phase, an acceptable accuracy level that can be achieved at this phase is ±25% [19,26].
Even at this level of accuracy, early cost estimates enable the comparison of different design
alternatives in the predesign phase and the selection of the most economical technical
solution [26].

Therefore, the basis for this proposed research project is a comprehensive material
quantity and cost analysis of the contract for the extension of Line 3 from Chaidari to Piraeus,
which included the construction of six underground metro stations. For this contract, the
total contractual construction cost, including total civil engineering construction costs
(TCECs) and mechanical and electrical (M&E) installation costs, was EURO 343,960,000,
excluding contingencies, unforeseen costs, and value-added tax (VAT). Figure 1 shows
the distribution of costs between the major cost categories. It is easily deduced that the
TCEC for the construction of the six stations is, along with M&E, the top cost category
consuming 34% of the construction budget, while the actual TCEC for the tunnel network
construction is in second place, accounting for 26% of the costs. This initial observation



Buildings 2023, 13, 382 4 of 22

sparked an interest in determining if the issue of obtaining safe cost estimations for the
planning of the construction of underground metro stations has been adequately addressed
in the literature.
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Figure 1. Cost distribution for the construction of Athens Metro Line 3 extension from Chaidari to Piraeus.

2. Literature Review

Following a detailed but non-exhaustive literature review initiated by a search in
the Scopus research database using keywords (predict* OR forecast* OR *estimate*) AND
(construction AND cost*) in the title and keyword fields, 1538 documents were retrieved
that propose or examine methods for providing construction cost estimates in general.
Using the Scopus Analyze Search Results Tools, it was found that research in this domain
began as far back as 1945 and 1953 regarding tips for estimating the cost of hospital
construction. In the 1970s, single digit numbers of documents were produced yearly, with
this rate increasing in the 1980s. It was not until 2005 that cost prediction models became a
significant research domain, with a first peak in 2011 (82 documents) and the pinnacle of
relevant publications in Scopus being achieved in 2021 with 124 documents (Figure 2).
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The top four journals in terms of the overall number of documents published are
shown in Figure 3, along with the frequency of their publications through time. By far,
the most documents published were in the ASCE Journal of Construction Engineering and
Management with 107 documents, followed by Construction Management and Economics with
44, the ASCE Journal of Management in Engineering with 26, and Engineering Construction
and Architectural Management with 25. In addition, the top 10 authors involved in the
investigation of construction cost estimates are shown in Figure 4, while the top 10 countries
are shown in Figure 5.
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According to a recent systematic literature review and content analysis of construction
cost prediction models by Tayefeh Hashemi et al. [27], it was found that up until 2020, out
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of 92 documents examined, 40 refer to building projects; 16 to road projects, and the rest to
public projects, water-related projects, railway, and power projects. None were found that
provided cost estimations for the construction of underground metro stations. To add to
their work, a further content analysis of 51 relevant documents published in 2021 and 2022
was carried out. The results of this content analysis (Table 1) showed that, once again, the
majority of cost prediction methods and models referred to buildings (31). Nine referred to
power generation or network construction, seven to road construction, five to rail and road
tunnels, one to bridges, and one to a water-related project, while the gap in the literature
regarding cost prediction models for underground metro stations remains.

Table 1. Construction cost estimation research 2021 to 2022 per project type, method, and country.

First Author Year Ref. Project Type Method Country

Akanbi T. 2021 [28] Buildings BIM USA
Alfaggi W. 2022 [29] Buildings Fuzzy AHP Libya

Ali Z.H. 2022 [30] Buildings GBM/ANN/SVM Iraq
Alshboul O. 2022 [31] Buildings GBM/ANN/RF North America
Alshboul O. 2022 [32] Buildings GBM North America

Al-Tawal D.R. 2021 [33] Buildings ANN Jordan
Challa R.K. 2022 [34] Buildings ANN India

Dang-Trinh N. 2022 [35] Buildings SVM/ANN/LR Vietnam
Dobrucali E. 2021 [36] Buildings ANN

Fazeli A. 2021 [37] Buildings BIM Iran
Goel S. 2021 [38] Buildings RF India

Ismail N.A.A. 2021 [39] Buildings BIM Malaysia
Ji S. 2021 [40] Buildings ANN South Korea

Kantianis D.D. 2022 [41] Buildings ANN/LR Greece
Le H.T.T. 2021 [42] Buildings BIM

Nehasilová M. 2022 [43] Buildings BIM Czech Republic
Park U. 2022 [44] Buildings RF/SVM/GBM South Korea

Rouhanizadeh B. 2021 [45] Buildings BIM USA
Santos M.C.F. 2021 [46] Buildings BIM Brazil

Sharma V. 2022 [47] Buildings LR/RF/GBM/ANN/GPR China
Tung S.H. 2021 [48] Buildings VR/BIM
Ujong J.A. 2022 [49] Buildings ANN Nigeria
Wahab A. 2022 [50] Buildings BIM USA
Wang B. 2021 [51] Buildings ANN China

Xu J. 2021 [52] Buildings MFO China
Yang S.-W. 2022 [53] Buildings BIM South Korea

Ye D. 2021 [54] Buildings ANN China
Zhang X. 2022 [55] Buildings SVM/PSO

Ibrahim A.H. 2021 [56] Buildings/Power/Water AHP Egypt
Alsharif S. 2022 [57] Power ANN USA

Choi Y. 2022 [58] Power MCS MENA/Asia
Geng S. 2021 [59] Power PSO/SVM China
Idris M. 2021 [60] Power NLR Indonesia

Ji H. 2022 [61] Power DT China
Kim S. 2021 [62] Power ANN USA
Sha J. 2023 [63] Power RA China

Feng F. 2022 [64] Roads SVM China
Gante D.V. 2022 [65] Roads ANN China

Lee J.G. 2022 [66] Roads ANN International
Mohamed B. 2022 [67] Roads ANN/SVM/RF USA

Sharma S. 2021 [68] Roads ANN
Warren J. 2022 [69] Roads ML USA

Kovacevic M. 2021 [70] Bridges ANN/RT Bagging/RF/GBM/SVM/GPR Balkans
Liu S. 2022 [71] Tunnels SVM China

Mahmoodzadeh A. 2022 [72] Tunnels RA Iraq
Mahmoodzadeh A. 2021 [73] Tunnels RA/SVM/DT Iran
Mahmoodzadeh A. 2022 [74] Tunnels GPR/PSO/GWO/MVO/MFO/SCA/SSO Iran/Iraq

Petroutsatou K. 2021 [75] Tunnels ANN Greece

Note: BIM (Building Information Modeling), AHP (Analytical Hierarchy Process), GBM (Gradient Boosting
Machine), SVM (Support Vector Machine), ANN (Artificial Neural Networks), LR (Linear Regression), RF (Regres-
sion Forests), GPR (Gaussian Process Regression), VR (Virtual Reality), MOFO (Multiobjective Fuzzy Objective),
PSO (Particle Swarm Optimization), MCS (Monte Carlo Simulation), NLR (Nonlinear Regression), DT (Decision
Trees), GPR (Gaussian Process Regression), GWO (Grey Wolf Optimization), Multiverse Optimization (MVO),
Moth Flame Optimization (MFO), SCA (Sine Cosine Algorithm), SSO (Social Spider Optimization).

The most common approaches employed for the development of cost prediction
models during the past two years include Artificial Neural Networks (ANNs), Support
Vector Machines (SVM), Building Information Modeling (BIM), Gradient Boosting Ma-
chines (GBM), Gaussian Process Regression (GPR), and Linear Regression (LR). Even
though ANNs and other machine learning techniques are considerably more robust and
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sophisticated, the proposed prediction models are based on simple LR analysis because the
resulting equations are simple to understand and easily applied by underground metro
public authority decision-makers, and do not require advanced mathematical knowledge
and access to specialized software.

By examining Tayefeh Hashemi et al.’s [27] findings and the results of the additional
review carried out herein, it was found that LR is applied to determine either major
material quantities or direct cost estimates for the construction of buildings [41,68,76,77];
highways [78] (including bridges [79–81], culverts [82], and tunnels [83]); water supply
networks [84]; hydroelectric power-plant construction [85]; and, most recently, power-line
towers [63].

Alshemosi and Alsaad [76] developed a multilinear regression model based on data
from 10 residential buildings for the prediction of total construction costs. The ten inde-
pendent variables were taken as the estimator’s experience, market conditions, degree
of economic instability, accuracy of bidding documents, site conditions, total area of the
residential building, height of the residential building, project location, type of residential
building, and estimation method. Using more variables relevant to the building charac-
teristic, Alshamrani [77] proposed a user-friendly regression model to predict the initial
cost of conventional and green college buildings with a maximum of three floors in North
America. His model used building area, floor height, number of floors, structure type, and
envelope form as input parameters, all known at the initial planning stages.

One study by Sodikov [78] was found to provide unit cost and material quantity
estimation models for new highway construction using historical data from projects in
Poland and Thailand. The independent variables included work duration, pavement width,
shoulder width, ground rise and fall, average site clearing and grubbing, earthwork volume,
surface class, and base material, all related to project characteristics. These estimates
referred to projects with no major bridges or tunnels. For a comprehensive estimate of
highway construction costs, researchers have proceeded to derive such equations for bridge
and tunnel costs.

The following studies provide construction cost and material quantity estimation
models using RA and based on data from the Egnatia Motorway, which is part of the Trans-
European Network for Transport and one of the most significant projects constructed using
European funding and has been fully operational since 2008. The 670 km long motorway
is a high-speed motorway consisting of a dual carriageway with a width of 24.5 m for
most sections and 22 m for difficult mountainous areas. Petroutsatou et al. [83] included
independent variables related to the ground conditions along with overburden height and
excavation face cross-section area for the prediction of road tunnel construction costs. The
major bridges cost category was addressed by Fragkakis et al. [81] who, based on only two
input variables, deck width and length, derived regression equations that calculated the
volume of concrete, the weight of reinforcing steel, and the weight of prestressing steel,
which were then multiplied with representative unit costs to provide deck construction
cost estimates. Antoniou et al. analyzed the distribution of total costs and material
quantities required for smaller road bridges, i.e., overpasses [79] and underpasses [9], by
relating quantities to a new dimension called the theoretical volume. This is defined as
the product of the dimensions of the local road that must be realigned to underpass the
motorway (width multiplied by the overhead clearance height). From the appropriate data
processing using the linear regression method, a linear interdependence of costs with the
superstructure area and the theoretical volume was found. Finally, Fragkakis et al. [82]
proceeded to create a multiple linear regression model for predicting the construction
cost of the smallest but most frequent structures, culverts, i.e., conduits for the passage of
surface drainage water under motorways. The independent variables in this study were
the net height, the net width, and the height of the overburden.

Similarly, Marchionni et al. [84] used simple and multiple regression to provide cost
functions and prediction bands for different types of assets of water supply systems based
on hydraulic (i.e., flow, pump head, pump power) and physical (i.e., volume, material,
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diameter) characteristics of the assets. Gunduz and Sahin [85] derived a cost model for the
construction of hydroelectric power-plant projects in Turkey based on estimated design
discharge, design head, tunnel length, energy transmission line length, and estimated
hundred-year occurrence flood discharge. Finally, most recently, LR has once again been
employed to determine cost estimates for major infrastructure projects such as the tower
construction for power-line distribution by Sha et al. [63]. In their study, tower type, height,
and weight are implemented as independent variables in their regression analysis of data
from similar projects in China.

All the above proposals for linear regression models aim to provide user-friendly
methods of early cost estimation of important infrastructure projects for owners without
knowledge or access to sophisticated machine learning techniques. Thus, they can make
educated guesses of the costs of their projects at preliminary design stage by using simple
linear equations and input variable values known at the early stages of planning.

Nevertheless, it is significant to mention that ANN analysis, like linear regression,
produces mathematical models that belong to the category of empirical capacity models.
Their architecture consists of hidden layers with various artificial neural cells that contain
activation functions. Several studies use ANN to predict and estimate cost, duration, and
even lane capacity [86–89].

This paper aims to present similar results and derive useful equations for the concep-
tual phase construction cost estimates of underground metro stations, which, to the best of
the authors’ knowledge, have not been previously presented in the scientific literature. It
is envisaged that the proposed models will allow underground metro public authorities
to pre-estimate the quantities and therefore the cost of civil engineering works, especially
during the initial stages of seeking funding. ANNs are also adopted to predict the material
quantities or major work packages that can then be multiplied with applicable unit rates in
each country of application.

3. Methodology
3.1. Research Objectives

The methodology employed follows an ”action” research style. First, it states the
research questions within the context of a specific situation and collects and analyzes data
with the ultimate goal of constituting the basis for the development of proposals to improve
practice [90]. One unique feature of action research is that it can provide step-by-step
processes for problem-solving and decision-making to improve practice [91]. Additionally,
Jupp [92] notes that while its findings are not conventional in the sense of deriving a new
theory, they can contribute to new practices, changing behavior patterns, or improvements
in managerial processes.

Therefore, the current action research aims to investigate the gap in the literature
regarding the lack of cost estimation models for the construction of underground metro
stations based on early project data. It provides functions for the prediction of the total
civil engineering costs (TCEC) and key material quantities and a step-by-step process for
deriving increasingly more accurate estimates. This approach aims to provide underground
metro public authorities with a decision-making tool for early forecasting costs of under-
ground stations. Along with other similar work for the estimation of tunnel construction,
M&E, and entire life cycle costs [75,83,93], it can provide them with a decision-making tool
for detailed strategic planning, alternative scheme analysis, preliminary budget approval,
and project funding requests. The chosen methods to be employed are LR and ANN using
cost and material quantity data from previously constructed metro stations on the Athens
Metro Line 3 extension.

3.2. Data Collection and Description

The data to be analyzed are actual project construction material quantities and costs
from the construction tender documents from the Line 3 extension of the Athens Metro
from Chaidari to Piraeus. It includes the construction of a 7.6 km underground tunnel,
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8 ventilation shafts along the tunnel, and 6 new underground metro stations. Table 2 depicts
the major technical characteristics of each station. In this section, the construction methods
of the underground metro stations are briefly described to provide optimal understanding
of the research and its results. For the construction of each station, the following general
construction procedure was followed:

1. Before the start of temporary support works, traffic and public utility bypassing
works are carried out. At the same time, the site area is occupied, and the topographic
network is installed to monitor the water table and the movements of the earth
and adjacent structures during the excavation period. Then, the construction of the
temporary retaining wall around the perimeter of the station’s ground plan is carried
out, initially with the construction of concrete piles.

2. Next, the station trench was excavated while taking the necessary excavation wall
support measures and installing the required waterproofing materials.

a. For stations S1 and S2, this was achieved by using only the C&C method
whereby first, a temporary retaining wall made of concrete piles of at least
25 m length and 1.0 m diameter is constructed around the perimeter of the
station, followed by the construction of a rectangular cross-section reinforced
concrete that connects the pile heads. A safety parapet is placed on the pile
head before excavation begins. Excavation progresses in stages, using project
machinery such as excavators and loaders, at levels determined by the design.
At each completed excavation level (1st, 2nd, etc.), to ensure the stability of the
trench walls, prestressed anchors are installed and tensioned, and shotcrete of
C20/25 grade, which is reinforced with a double structural grid (type T188), is
applied to the vertical trench walls. This procedure is then repeated for each
level of excavation down to the final level, where the temporary drain under
the station foundation is constructed to discharge water from the excavation.
This consists of a geotextile system, uniform large-sized gravel and polyester
(nylon) membrane sheets applied to the floor and walls of the excavated trench.

b. Stations S3, S4, and S6 were designed using a combination of the NATM and
C&C methods because the space available at ground level for an open excava-
tion was limited. First, smaller plan-area ventilation shafts are constructed using
the C&C method. They ultimately constitute the ticketing and E/M facilities
while providing the necessary access for the construction of the NATM tunnel
section, which constitutes the station’s platform and track areas. Support of the
excavated walls was provided by applying fiber-reinforced shotcrete and the
using rock anchors (prestressed or passive), and placing of fore-polling beams
in the shape of an umbrella.

c. Station S5 foresaw the construction of a diaphragm wall surrounding the ex-
cavation perimeter and then the trench excavation using the Cover and Cut
method. This was necessary due to its proximity to the sea, the resulting high
groundwater level, and the need to return the ground level to traffic use as soon
as possible. Therefore, following the completion of the construction of the di-
aphragm walls and the station roof slab, the immediate use of the ground-level
area is allowed. Next, the rest of the excavation is carried out underground
from top to bottom.

3. After construction of both the temporary retaining wall and the temporary drainage
system, with the formation of the corresponding working floor and the relevant
surveying, the waterproofing of the station is installed.

4. Once the installation of the waterproofing system is complete, the construction of
the reinforced concrete shell of the station can begin from the bottom up, in the case
of the C&C method, and from top to bottom for the Cover and Cut method. This
includes forming and installing reinforcement, construction and or adjustment of the
formwork, and pouring of the concrete to form all structural elements (slabs, beams,
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columns, perimeter walls, etc.) at each level of the station, from the foundation to the
roof, following the approved design.

5. Finally, surface restoration works include construction of curbs and gutters and
surface drainage systems; connection of the station’s power, water, and telephone
networks with the local networks; and paving of roads, lighting installations, and
planting and irrigation networks. While the surface restoration works are underway,
the construction of the underground station’s non-structural works are completed,
including completion of construction, coating and painting of the nonbearing masonry,
coating and painting of exposed concrete, installation of industrial flooring in the
technical areas, laying of ceramic and granite tiles on the walls and floors, and hanging
suspended ceilings and installation of windows.

Table 2. Technical characteristics of the underground stations.

Station S1 S2 S3 S4 S5 S6

Construction Method C&C C&C C&C, NATM C&C, NATM Cover and Cut C&C, NATM
NATM Length (m) - - 35 110 - 43

Geology Lake Marl
Deposits Athens Schist Athens Schist Limestone Marine Marl

Deposits
Marine Marl

Deposits
Theoretical Excavation

Volume (V, m3) 87.291 88.136 82.045 64.280 100.890 106.068

Maximum Depth (d, m) 28.90 26.40 28.00 27.00 27.00 28.00
Average Level Area (Al,

m2) 3.020 3.338 2.930 2.381 3.737 3.788

No. of Levels (n) 3 2 3 4 3 3
Total Floor Area (AT, m2) 9.061 6.677 8.791 9.524 11.211 11.364

3.3. Material Quantity Data

The data collected were from the official construction contract tender documents and
definitive designs. These refer to quantities from civil engineering works, as follows:

• Length of concrete piles by diameter category (m);
• Concrete volume for pile head construction (m3);
• Concrete volume of diaphragm walls (m3);
• Excavation volume per construction method (C&C and NATM) (m3);
• Length of prestressed anchors (m);
• Volume of shotcrete (m3);
• Surface area of waterproofing membrane (m2);
• Concrete volume for structural elements (slabs, beams, perimeter walls, columns) per

excavation method (C&C and NATM) (m3);
• Steel reinforcement mass for the permanent concrete structure and the diaphragm

walls (kg);
• Backfill volume (m3).

At the same time, the quantities of important architectural works were also collected.
These, as budgeted in units of area measurement (m2), include the construction of nonbear-
ing masonry (brickwork and scaffolding), coatings, painting of floors, walls, and ceilings,
and the installation of suspended ceilings with the use of shaped aluminum sheets and
perforated metal panels (Table 3).
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Table 3. Material quantity data.

Station S1 S2 S3 S4 S5 S6

Pile Length (m) 5625 5911 4898 1415 6892 5053
Pile Volume (m3)
(including pile head)

3203.4 3381.2 2863.0 906.4 4778.8 4542.3

Diaphragm Wall Volume (m3) 14,100
C&C Excavation Volume (m3) 87,291 88,136 72,113 34,951 100,890 86,403
NATM Excavation Volume (m3) 9932 29,329 19,665
Prestressed Anchor Length (m) 30,053 23,202 19,282 7693 * 16,630
Shotcrete Volume (m3) 970 1073 792 469 * 975
Total Waterproofing System
Area (m2) 27,300 31,140 29,760 52,223 20,000 50,100

C&C Structural Concrete
Volume (m3) 21,805 22,842 19,017 12,320 24,243 22,091

NATM Structural Concrete
Volume (m3) 0 0 1424 4276 0 4900

Steel Reinforcement Total
Weight (kg) 3,075,270 3,340,426 2,830,543 2,206,404 2,950,000 3,605,000

Backfilling Volume (m3) 9805 16,624 13,689 2362 4600 8500
Brickwork Area (m2) 3870 3858 4200 3000 6459 2405
Coating Area (m2) 12,570 11,170 5662 5147 8756 6390
Painting Area (m2) 8743 5445 4810 4215 8636 5990
Suspended Ceiling Area (m2) 3508 3940 3161 2332 3976 4100

* Data not available.

3.4. Cost Data

According to the final design budget, the total cost for the construction of the “Chaidari–
Piraeus” extension is EURO 343.96 million. This includes the construction of the six
stations as described, the construction of ventilation shafts, the construction of the tunnels
(using both TBM and NATM), and all the electromechanical works. The TCEC of the six
underground stations amounts to EURO 118.35 million, or 34.4% of the total cost of the
extension (Figure 1).

Table 4 presents cost data collected for the construction of each station. These data
include only the civil engineering costs as derived from the tender budget. It is therefore
based on unit gross rates and consists of all costs for construction (material, workmanship,
machinery, etc.) and all indirect costs associated with the construction contract according
to Greek national public works law.

Table 4. Civil engineering cost breakdown in EURO.

Code Cost Category S1 S2 S3 S4 S5 S6 ALL %

1.0 Surface Traffic and Utility Network
Restoration 253,595 186,265 724,772 102,328 2,587,955 76,614 3,931,529 3.32%

2.0 Excavation and Primary Support 5,859,098 6,220,111 6,508,665 5,750,840 13,235,952 6,824,826 44,399,492 37.51%

2.1 Piles and Diaphragm Walls 1,068,973 1,130,758 940,775 266,053 7,752,363 1,203,041 12,361,963 10.44%

2.2 C&C Excavation and Support 4,790,125 5,089,353 4,162,975 2,325,772 5,483,589 3,534,581 25,386,395 21.45%

2.3 NATM Excavation and Primary
Support 0 0 1,404,915 3,159,015 0 2,087,204 6,651,134 5.62%

3.0 Final Reinforced Concrete Structure 6,794,228 7,337,699 6,260,530 5,259,665 7,815,624 8,361,241 41,828,987 35.34%

3.1 Reinforced Concrete 6,794,228 7,337,699 5,819,597 3,442,610 7,815,624 6,690,235 37,899,993 32.02%

3.2 NATM-Permanent Lining 0 0 440,933 1,817,055 0 1,671,006 3,928,994 3.32%

4.0 Waterproofing 361,020 410,159 292,765 169,572 230,040 434,834 1,898,390 1.60%

5.0 Backfill 100,381 171,213 141,027 24,851 46,008 86,967 570,447 0.48%

6.0 Supplementary Geotechnical
Investigations and Monitoring 515,995 406,396 640,870 600,812 385,318 637,757 3,187,148 2.69%

7.0 Ground-Level Restoration 1,128,849 1,800,558 742,623 400,541 710,250 1,118,145 5,900,966 4.99%

8.0 Architectural Works 2,597,586 2,282,212 2,540,272 2,309,691 3,743,908 3,166,007 16,639,676 14.06%

Major Costs (MC) 15,250,912,00 15,840,022,00 15,309,467,00 13,320,196,00 24,795,484,00 18,352,074,00 102,868,155,00 86.91%

Total Civil Engineering Costs 17,610,752,00 18,814,612,00 17,851,524,00 14,618,300,00 28,755,056,00 20,706,392,00 118,356,636,00 100.00%
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4. Results and Validation
4.1. Cost Prediction Models Using Linear Regression

Figure 6 shows the distribution of the TCEC for all stations. Excavation and primary
support account for 37.5% of the total cost, followed by reinforced concrete structures with
35.3% and architectural works with 14.1%.
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A series of multilinear regression analyses were carried out between costs as the
dependent variable (DV) and a few general technical characteristics of the stations as the
independent variables (IVs). Apart from the TCECs, the sum of the three major subcosts
(excavation and support, reinforced concrete, and architectural works) was also examined
as a dependent variable (MC) since, as shown in Figure 6, they account for a total of 85% of
the TCE costs in close agreement with the Pareto theory.

The IVs examined were theoretical excavation volume (V), maximum depth (d), aver-
age level area (Al), number of levels (n), and total floor area (AT). Tables 5 and 6 show the
combinations examined, the resulting coefficient of determination (R2) achieved, and the
resulting equation coefficients. The results indicate that the derived equation that provides
the best fit, i.e., it returns the highest R2 value, is model 2.3. According to this, the sum of
the major costs (MC) for excavation and support, reinforced concrete, and architectural
works can be calculated when the total theoretical excavation volume (V), the total depth
(d), and the total required floor area (AT) are known (Equation (1)):

MC = 41,965,771.58 + 166.72 × V − 1,778,392.95 × d + 1004.76 × AT (1)

As shown previously, MC is approximately equal to 85% of TCEC, then the TCEC can
be calculated using Equation (2):

TCEC = MC/0.85 = 49,371,495.98 + 196.14 × V − 2,092,227 × d + 1182.07 × AT (2)

The regression analyses also provide a fairly well-fitting model (4.3) for use in the
situation when the total depth (d), average floor level area (Al), and number of floors (n)
are known. Then, the sum of the major costs (MC) can be calculated as follows:

MC = 12,338,312.63 − 1,037,060.47 × d + 7.816.11 × Al + 2,791,215.38 × n (3)
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As shown previously, MC is approximately equal to 85% of TCEC.Therefore, the TCEC
can be calculated using Equation (4):

TCEC = MC/0.85 = 14,515,661.92 − 1,220,071.14 × d + 9,195.42 × Al + 3,283.782.80 × n (4)

This is a useful equation, as at the preliminary design phase the required depth to
which the station will be excavated is known, as it is the result of the general network
alignment. In addition, the required average area per level is known and calculated
according to the expected use, and the number of levels depends on the expected travelers
per day.

Finally, the best-fitting equations for direct prediction of the TCEC are models 1.3 and
3.3, resulting in Equations (5) and (6):

TCEC = 49,257,993.05 + 215 × V − 2,074,444.6 × 5d + 919.03 × AT (5)

TCEC = 16,790,221.65 − 1,189,814.04 × d + 8,833.51 × Al + 2,485,622.18 × n (6)

Table 5. Linear regression model results.

Model DV IV(s) R2

1.1 Total Cost V 0.560
1.2 Total Cost V,d 0.660
1.3 Total Cost V,d, AT 0.740
2.1 Major Costs V 0.548
2.2 Major Costs V,d 0.640
2.3 Major Costs V,d, AT 0.775
3.1 Total Cost d, 0.039
3.2 Total Cost d, Al 0.668
3.3 Total Cost d, Al, n 0.736
4.1 Major Costs d, 0.034
4.2 Major Costs d, Al 0.645
4.3 Major Costs d, Al, n 0.766
5.1 Total Cost V 0.560
5.2 Total Cost V, AT 0.600
6.1 Major Costs V 0.548
6.2 Major Costs V, AT 0.629

Table 6. Best-fitting regression models.

Model 2.3
R2 = 0.775

(Constant) 41,965,771.577
Model 4.3
R2 = 0.766

(Constant) 12,338,312.629
Volume_m3 166.716 Depth_m −1,037,060.465

Depth_m −1,778,392.950 AvFloorArea_m2 7816.114
TotalFloorArea_m2 1004.755 No.floors 2,791,215.375

Model 1.3
R2 = 0.740

(Constant) 49,257,993.048
Model 3.3
R2 = 0.736

(Constant) 16,790,221.651
Volume_m3 214.998 Depth_m −1,189,814.042

Depth_m −2,074,444.650 AvFloorArea_m2 8833,509
TotalFloorArea_m2 919.027 No.floors 2,485,622,177

4.2. Material Quantity Models Based on Linear Regression, Ratios, and ANN

A series of multilinear regression analyses and production of ANN models using SPSS
were carried out between various material quantity variables as the dependent variable
and a few general technical characteristics of the stations as the independent variables.

A very good fit was found for the linear regression models for calculating the total
required structural concrete volume (TCV) and shotcrete volume (SCV) based on the
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estimated theoretical excavation volume (V). Equations (7) and (8) present the proposed
models with coefficients of determination (R2) equal to 0.996 and 0.665, respectively.

TCV = 0.25 × V + 300.06 (7)

SCV = 0.013 × V − 258.14 (8)

Similarly, an excellent fit was found for the linear regression model for estimating the
required quantity of steel reinforcement (SR) based on the calculated TCV. Equation (7) presents
the proposed model with an almost perfect coefficient of determination (R2 = 0.992).

SR = 132.80 × TCV+ 46,303.90 (9)

An important observation is the connection between the total theoretical excavation
volume V and the quantity of piles, as calculated for each station. From Table 3 and Figure 7,
it can be seen that for all six stations, the ratio of the volume of piles (PV) (m3) to V (m3)
averages 3.6%, i.e., for every cubic meter of excavation, there is an estimated need for
0.036 m3 of concrete piles.
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Figure 7. Ratio of PV (m3) to V (m3) per station.

In particular, for the first three stations with identical geological conditions (Athens
schist), the percentage ranges from 3.5% to 3.8%. In the case of stations with looser subsoil,
such as S5 and S6 (marine marl deposits), we observe that the rate increases to 4.7% and
4.3%, respectively, which implies more cubic piles per cubic meter of excavation. In the case
of station S4, the ratio of the quantity of piles to the volume of C&C excavation decreases
to 1.4%, a result related to the hard ground conditions in the area (limestone). Similarly, the
average ratio of shotcrete volume (SCV) per total theoretical excavation volume (V) was
calculated as 0.99%, as shown in Figure 8. Finally, the average ratio of prestressed anchor
length (PAL) to SCV was calculated as 22 (Figure 9).
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Five material quantity prediction models were investigated based on ANNs created
using IBM SPSS Statistics 23 statistical analysis software (SPSS). The models were based
on the radial basis function in which 70% of the sample was assigned to training and 30%
of the sample was assigned to testing. The number of neurons within the hidden layer is
automatically computed. Table 7 presents the independent and dependent variables for
each model.

Table 7. Prediction models based on artificial neural networks.

Model DV IV Model Training
Sum of Squares Error

Testing
Sum of Squares Error

1 TCV V -
2 SR V RBF 0.0573 1.848
3 PV V RBF 2.012 × 10−5 0.005
4 SCV V RBF 1.062 × 10−30 0.393
5 PAL SCV RBF 0.001 0.701

In the case of attempting to predict TCV using V as an input variable (model 1), SPSS
could not produce the model. In all other cases, the models were very efficient. The models
for the predicting PV and SCV are the most successful ones (models 3 and 4).

4.3. Validation of Linear Regression Models

The predicted TCEC was calculated for each station using all four LR equations and,
as shown in Table 8, all models deviated from the actual values by −13% to + 21%. This
is considered acceptable considering the stage at which these estimates are made using
very fundamental geometrical information, i.e., during the conceptual phase, where the
accuracy of estimations usually is ±25% [85]. In Table 9, the three LR material quantity
prediction models are applied to the dataset, also returning good results. More specifically,
Equations (5)–(7) were applied to the dataset, and the results showed deviations from the
actual values once again less than ±25% in almost all cases except for the prediction of total
weight of steel reinforcement for station S5, where it was overestimated by 30%. Even this
level of discrepancy is acceptable in the conceptual estimating phase [86,87].

Table 8. Validation calculations for cost prediction models.

St
at

io
n Independent Variables TCEC

Actual
(EURO)

Predicted (EURO) Deviation Predicted vs. Actual (+/− %)

V (m3) d (m) Al (m2) n AT (m2)
TCEC

(Equation
(2))

TCEC
(Equation

(4))

TCEC
(Equation

(5))

TCEC
(Equation

(6))

TCEC
(Equation

(1))

TCEC
(Equation

(2))

TCEC
(Equation

(3))

TCEC
(Equation

(4))

S1 87,291 28.9 3020 3 9061 17,610,752 16,738,237 16,877,133 16,401,438 16,538,663 −5% −4% −7% −6%
S2 88,136 26.4 3338 2 6677 18,814,612 19,316,487 19,567,673 19,578,258 19,836,632 3% 4% 4% 5%
S3 82,045 28 2930 3 8791 17,851,524 17,273,125 17,147,609 16,892,411 16,814,479 −3% −4% −5% −6%
S4 64,280 27 2381 4 9524 14,618,300 16,747,362 16,603,176 15,821,029 15,640,319 15% 14% 8% 7%
S5 100,890 27 3737 3 11,211 28,755,056 25,922,244 25,788,387 25,242,583 25,132,936 −10% −10% −12% −13%
S6 106,068 28 3788 3 11,364 20,706,392 25,026,492 25,037,283 24,422,020 24,393,631 21% 21% 18% 18%

V = total theoretical excavation volume (m3), d = depth (m), Al = average level area (m2), n = number of levels,
AT = total floor area, TCE = total civil engineering costs (in EURO).



Buildings 2023, 13, 382 16 of 22

Table 9. Validation calculations for material quantity prediction models.

Station V TCV
Actual

TCV
Predicted

TVC
Deviation

SCV
Actual

SCV
Predicted

SCV
Deviation SR Actual SR

Predicted
SR

Deviation

S1 87.291 21.805 22.123 1.46% 970 876,643 −9.62% 3,075,270 3,399,213 10.53%
S2 88.136 22.842 22.334 −2.22% 1073 887,628 −17.28% 3,340,426 3,427,267 2.60%
S3 82.045 20.441 20.811 1.81% 792 808,445 2.08% 2,830,543 3,225,046 13.94%
S4 64.280 16.596 16.370 −1.36% 469 5775 23.13% 2,206,404 2,635,248 19.44%
S5 100.890 24.243 25.523 5.28% 2,950,000 3,850,700 30.53%
S6 106.068 26.991 26.817 −0.64% 975 1,120,744 14.95% 3,605,000 4,022,609 11.58%

V = total theoretical excavation volume (m3), TCV = total concrete volume (m3), SCV = shotcrete volume (m3),
SR = steel reinforcement weight (kg).

4.4. Example Application of Models

Let us assume that a station is planned to be built on the under-design section of the
Thessaloniki Metro extension toward the airport Macedonia. The estimated independent
variables are given in Table 10.

Table 10. Initial predesign technical characteristics of proposed station.

Technical Characteristic Value

Theoretical Excavation Volume (m3) 90,000
Depth (m) 29
Total Required Floor Area (m2) 3000

Since this station is to be built in Greece, we can use Equation (2) directly to estimate
the TCEC, as follows:

TCE = 49,371,495.98 + 196.14 × V − 2,092,227 × d + 1,182.07 × AT = 49,371,495.98 + 196.14

× 90,000 − 2,092,227 × 28 + 1,182.07 × 3000 = 11.987.950€

In addition, this research work proposes quantity estimation models that can be used
as an initial rule of thumb to provide early cost estimates for each underground station
constructed anywhere worldwide having similar ground conditions as the Athens Metro
by applying the following steps.

Step 1: Estimate the theoretical total excavation volume (V), which can be taken as the external
dimensions of the underground station itself. For example, consider that V = 90.000 m3;
Step 2: Use Equation (8) to calculate the estimated shotcrete volume or the 1% average ratio
of SCV/V to calculate SCV and then the PAL using the average ratio given in Figure 9:

SCV = 0.013 × V−258.14 = 0.013 × 90,000 − 258.14 = 912 m3 (rounded up to the nearest unit).

PAL = 22 × SCV = 22 × 912 = 20,064 m

Step 3: Calculate PV by using the best-fit ratio provided in Figure 7 or using the average
ratio (3.6%).

PV = 3.6% × V = 3.6% × 90.000 = 3240 m3

Step 4: Calculate TCV using Equation (7) and then SR using Equation (9):

TCV = 0.25 × V + 300.06 = 0.25 × 90,000 + 300.06 = 22,800 m3

SR = 132.80 × TCV + 46,303.90 = 132.80 × 22,800 + 46,303.90 = 3,074,144 kg.

Step 5: Using the sum of V, SCV, PV, and PAL quantities multiplied by applicable unit rates
in each country, an estimate of approximately 35% of TCECs is obtained corresponding to
the excavation and primary support costs (Table 4). Similarly, the TCV and SR quantities can
then be multiplied by the prevailing unit rates of concrete and steel relevant in each country
and subsequently summed to obtain a pre-estimate of another 35% of the TCEC costs
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corresponding to the construction costs of the reinforced concrete structure. After adding,
another 15% for architectural works and a remaining 15% for waterproofing, backfill,
supplementary geotechnical investigations, monitoring, and ground-level restoration,
a fairly representative cost estimate is obtained for the civil engineering works for the
construction of underground metro stations.

5. Conclusions

This research contributes to the body of knowledge as the first attempt at providing
total civil engineering construction cost and material quantity prediction models for under-
ground metro stations based on data available at the conceptual design phase. It focused on
analyzing civil engineering costs and material quantity data from six underground metro
stations. Then, using these data, analytical equations based on linear regression analysis
were proposed for obtaining early cost and material quantity pre-estimates. ANNs were
constructed to develop key material quantity predictions for use by estimators in other
countries. After comparison of the predicted and actual values for each metro station, it
was found that the linear equations can be considered a good fit to the data, while efficient
ANN models for material quantity prediction were also derived. The following conclusions
can be drawn from this study:

• The MC variable consisting of the cost categories “excavation and support”, “rein-
forced concrete” and “architectural works” correspond to 85% of the TCE costs, in
close agreement with the Pareto theory.

• The proposed formulae can be used at the preliminary phase to achieve reasonably
accurate cost estimates of the civil engineering works for underground metro stations
when only the theoretical excavation volume (V), total depth (d), and the average
floor level area (Al) and/or the number of floors (n) are known. Using these cost
equations is considered a convenient tool for achieving early estimates of the cost of
underground metro stations when only limited geometrical information on the size of
the stations is known, allowing allocated budgets to be spent wisely in producing safe,
reliable, and sustainable transportation structures.

• The material quantity formulae and ANN models produced in this study for the
estimation of key material quantities such as total concrete volume, steel reinforcement
mass, pile volume, shotcrete volume, and prestressed anchor lengths can provide
international decision-makers at early planning stages with major material quantity
estimations. These can then be multiplied with relevant national unit rates to obtain
civil engineering cost estimates for the construction of underground metro stations.
In this way, the limitations in the cost estimation models due to international price
fluctuations are overcome.

Limitations of this study are the small number of stations, specific ground conditions
(marl deposits, Athens schist, limestone), structural codes of practice, national project
procurement framework, and unit prices that affect the data employed. In addition, further
research should include cost estimation models for financing not only the civil engineering
construction costs, but also the operation and maintenance of such projects, which are
time-dependent, thus requiring the implementation of robust models to be verified by
sensitivity analyses. Nevertheless, the available data and resulting models can be consid-
ered a springboard for further research and refinement of the models for varying ground
conditions and procurement procedures with collaborations and data sharing between
researchers worldwide for the entire life cycle of underground metro stations.
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