
Cost-Based Filtering for Shorter Path Constraints�

Meinolf Sellmann

Cornell University
Department of Computer Science

4130 Upson Hall
Ithaca, NY 14853

sello@cs.cornell.edu

Abstract. Many real world problems, e.g. in personnel scheduling and trans-
portation planning, can be modeled naturally as Constrained Shortest Path Prob-
lems (CSPPs), i.e., as Shortest Path Problems with additional constraints. A well
studied problem in this class is the Resource Constrained Shortest Path Problem.
Reduction techniques are vital ingredients of solvers for the CSPP, that is fre-
quently NP-hard, depending on the nature of the additional constraints. Viewed
as heuristics, until today these techniques have not been studied theoretically with
respect to their efficiency, i.e., with respect to the relation of filtering power and
running time. Using the concepts of Constraint Programming, we provide a the-
oretical study of cost-based filtering for shorter path constraints on acyclic, on
undirected and on directed graphs that do not contain negative cycles.

Keywords: constrained shortest paths, problem reduction, optimization con-
straints, relaxed consistency

1 Introduction

Real world problems can frequently be modeled as Shortest Path Problems with addi-
tional constraints. The best known Constrained Shortest Path Problem (CSPP) is proba-
bly the Resource Constrained Shortest Path Problem [1, 3, 6, 14, 16] that consists in the
combination of a Shortest Path Problem and capacity constraints on a set of resources.
Even on directed acyclic graphs (DAGs), for non-negative objective functions and for
only one resource that problem is known to be NP-hard [13].

Standard applications for the Resource Constrained Shortest Path Problem are route
planning in traffic networks and quality of service routing [29, 21]. The Crew Schedul-
ing Problem is another example of a real world problem where CSPPs are used in many
successful approaches: In a column generation process, CSPPs have to be solved to
generate columns, which correspond to individual lines of work in this context [7, 30].

Generally, CSPPs appear very often as subproblems in column generation approach-
es. Examples range from route guidance [15] and duty scheduling in public transit [4]
up to the scheduling of switching engines [19]. In [17], a general framework for con-
straint programming based column generation was developed that formalizes the use of
optimization constraints in this context.

� This work was supported by the Intelligent Information Systems Institute, Cornell University
(AFOSR grant F49620-01-1-0076).

To solve Constrained Shortest Path Problems, state of the art solvers compute lower
and upper bounds on the problem and then close the duality gap. The latter task is
carried out by an enumeration procedure such as a tree search [3], dynamic program-
ming [20] or a k-shortest path algorithm [14]. Particularly in a tree search, but also in the
other approaches the tightening of (sub-)problems is vital for an effective gap closing
procedure. And therefore, it is essential for the overall performance and the practical
success of the entire approach.

The first tightening strategy that was proposed goes back to a work done by Aneja
et al. [1] for problem reduction of the Resource Constrained Shortest Path Problem.
The basic idea consists in identifying nodes and arcs that cannot be visited by any
path that obeys the given resource restrictions. The same method can also be used to
identify nodes and arcs that cannot be visited by any improving path, which gives a first
cost-based filtering algorithm for the problem. Dumitrescu and Boland [6] proposed a
repeated problem reduction procedure that has shown to be very successful for hard
constrained problems. Beasley and Christofides [3] have shown how a tighter global,
Lagrangian relaxation based bound can be used for the elimination of nodes and arcs.

Apparently, none of these heuristics has been classified with respect to its filtering
abilities. Moreover, the reduction techniques used all focus on the removal of nodes
and arcs, but those arcs and nodes that must be visited by all paths of a certain quality
remain undetected. However, with respect to the additional constraints of the CSPP this
information can be very valuable as it may prove useful for an additional simplification
of the problem.

Constraint Programming theory provides means for the state of consistency that a
domain filtering algorithm achieves. In [8], we extended the notion of generalized arc-
consistency (GAC) to the concept of relaxed consistency for optimization constraints.
It allows to measure and compare heuristic filtering algorithms not only with respect
to their running time, but also to their filtering power that is determined by the quality
of the relaxation used. With respect to shorter path constraints, we study the complex-
ity of achieving GAC. Since the problem is NP-hard in the general case, we introduce
shortest-path relaxations and develop and compare different filtering algorithms for dif-
ferent graph classes.

Particularly, in Section 2, we review the notion of relaxed consistency, and in Sec-
tion 3, we define shorter path constraints formally. In Section 4, we investigate the
problem of achieving GAC for a shorter path constraint on undirected graphs, where it
is shown to be NP-hard. We introduce a shortest-path relaxation and formulate a linear
time algorithm that achieves a state of relaxed consistency. Finally, in Section 5, we de-
velop cost-based filtering algorithms for shorter path constraints on directed acyclic and
general directed graphs with non-negative costs or graphs that at least do not contain
negative weight cycles.

2 Definitions and General Observations

Within a tree search, during the course of optimization we compute a sequence of fea-
sible solutions. We refer to the best known feasible solution as the incumbent solution.

Obviously, once we have found a solution of a certain quality, we are searching for im-
proving solutions only. Thus, we impose a restriction on the objective. That restriction in
combination with other side-constraints of the original problem forms an optimization
constraint [7, 10, 11, 17, 22], which is the core concept that we will be using throughout
this paper. It was developed by a community that has been working on the integration
of constraint programming (CP) and operations research (OR) in recent years. Though
never explicitly stated as constraints, in the OR world optimization constraints are fre-
quently used for bound computations and variable fixing. From a CP perspective, they
can be viewed as global constraints that link the objective with some other constraints
of the problem:

Given � � ��, let ��� � � � � �� denote variables with finite domains �� �� ������
� � � � �� �� �����. Further, given a constraint � � �� � � � � ��� � ��� ��, and an
objective function � � �� � � � � ��� � �, let �� � �� � � � 	 � �.

Definition 1. Let
 � � denote an upper bound on the objective � to be minimized.
A function ���� 	

 � �� � � � � � �� � ��� �� with ���� 	

���� � � � � ��� � � iff

����� � � � � ��� � � and ����� � � � � ��� �
 is called minimization or, more generally,
optimization constraint.

The purpose of optimization constraints is twofold: first, they can be used for prun-
ing by computing a lower bound on the objective, which is the common idea in branch
and bound algorithms. Second, they may also be used to remove those values from vari-
able domains that cannot be part of any improving solution, which may be viewed as a
generalization of the variable fixing technique (for problems containing binary variables
only, variable fixing and domain filtering are of course the same).

2.1 On the Complexity of Cost-Based Domain Filtering Problems

In order to achieve generalized arc-consistency (GAC) [2, 18] of an optimization con-
straint, we have to find and remove all assignments that cannot be extended to an im-
proving solution that is feasible with respect to �. That is, if � is the only constraint of
a combinatorial optimization problem (we call that optimization problem and the opti-
mization constraint corresponding to or associated with each other), a GAC algorithm
allows us to compute improving solutions in a backtrack-free search. Consequently, if
the original problem is NP-hard, so is the problem of achieving GAC for the correspond-
ing optimization constraint. As an example, consider e.g. the Knapsack Problem [8].

If the optimization problem associated with an optimization constraint is polyno-
mial, then the problem of achieving GAC may also be polynomial. For example, con-
sider the AllDifferent constraint with costs. The corresponding optimization problem
is the Weighted Bipartite Matching Problem (WBMP) for which there exists a polyno-
mial time algorithm. Now, since the removal of an edge or two nodes (when the edge
between the nodes is chosen to be part of the matching) does not change the struc-
ture of the problem (i.e., the subproblem is again a WBMP), achieving GAC for the
AllDifferent with costs can obviously be done in polynomial time [24, 25].

The situation may change, however, if the problem structure is not preserved when
a variable is forced to take a specific value. Consider a Shortest Path Problem in an

arbitrary network, where we use a binary variable for each edge (whereby a value 1
means that the edge is chosen to be on the path, and a value 0 represents that the edge
is not on the path). The problem of finding a shortest path is of course solvable in
polynomial time. However, if we are to compute the set of edges that must or cannot be
part of any simple path that does not exceed a certain length, we are facing an NP-hard
problem, which is easy to see by reduction to the Two Vertex Disjoint Paths Problem [9].

2.2 Degrees of Consistency

The discussion shows that we cannot always hope for an efficient cost-based domain fil-
tering algorithm that achieves GAC. Therefore, we may consider to develop less effec-
tive but polynomial time bounded filtering algorithms that may only achieve a weaker
degree of consistency.

Regarding cost-based filtering, an idea that has been developed in OR to perform
variable fixing on linear integer problems is the reduced cost filtering method: when
solving the continuous relaxation bound on a linear combinatorial optimization problem
with the help of a general LP solver (such as the simplex algorithm or interior point
methods), we get dual information and reduced cost data for free. That data can be
used to compute a lower bound on the loss of performance that we have to accept when
adding a new constraint of the form � � � (usually this is done by performing one dual
simplex re-optimization step). And of course, if the loss is too large, we can deduce that
� must be removed from the domain of � . In [8], we strengthened and generalized the
basic idea by coupling optimization constraints and relaxations:

Definition 2. Given a minimization constraint ���� 	

 � �� � � � � � �� � ��� ��,
let �� �� � � � � � ��. Further, denote with �� the set of all subsets of , and let
� � �� � � such that for all �� 	 ��� � � 	 � �,

������ � ����� � �������� � � � � ���
 ����� � � � � ��� � �� �� � ��� � � 	 � ��,

where �� � � �. We call � a relaxation of ���� and say that ���� 	

 is relaxed �-
consistent, iff for any given � � 	 � � and �� � ��, ������ � �������� � ����� �
.

As one would expect, the definition states that relaxed �-consistency can the easier
be achieved the weaker the relaxation � is. For � ��, there is no work to do to
achieve relaxed �-consistency, whereas GAC is enforced when ���� � � � � ���� �
�������� � � � � ���
 ����� � � � � ��� � �� �� � ��� � � 	 � ��. That is, the choice of
� determines the degree of domain filtering.

In practice, � is usually chosen as a fairly tight bound that can still be computed
quickly. For example, linear programming relaxations can be used, as it was done in [8].
Generally, within a tree search there is a trade-off between the time spent per search
node and the total number of search nodes. Thus, the favorable choice of the accuracy
of the relaxation is always subject to the optimization problem at hand. We introduced
the concept of relaxed consistency because it allows to compare domain filtering algo-
rithms not only with respect to the running time but also with respect to the degree of
consistency they achieve.

3 Shorter Path Constraints

Definition 3. Denote with � � ����� �� a weighted (directed or undirected) graph
with

�

� � �������
�
�
�
��1, and let � � ��.

– A sequence of nodes � � �	�� � � � � 	�� � � � with �	� � 	���� � � for all � � � � �
is called a path from 	� to 	� in �.

– A path � is called simple iff � visits every node at most once. For all 	� � � � ,
denote with ��	� �� the set of all simple paths from 	 to �.

– For all paths � , nodes 	 � � and edges �	� �� � �, we write 	 � � or �	� �� � �
iff � visits node 	 or the edge �	� ��, respectively. For a set of nodes or edges �, we
write � 	 � , iff � � � for all � � �. Correspondingly, we write � 	 � iff � � �
for all � � � .

– The cost of a path � � �	�� � � � � 	�� is defined as ��� �� � ��
�

��	
� ��� ���� .
Accordingly, for any set � 	 � we define ��� ��� ��

�
���	��� ��	 .

Definition 4. Let � � ����� �� denote a (directed or undirected) graph with � �
�

and ! �
�
, a designated source "� � � and sink "� � � , and arc costs ��	 � �.
Further, assume we are given binary variables ��� � � � � ��, and an objective bound

 � �.

– A constraint ��#���� � � � � ��� �� "�� "��
� that is true, iff
1. the set �$�
 �� � �� 	 � determines a simple path in the graph � from the

source "� to the sink "�, and
2. the cost of the path defined by the instantiation of � is lower than

is called a shorter path constraint.
– We call every simple path in � from source to sink with costs less than
 admissi-

ble.

Obviously, the shorter path constraint is an optimization constraint. Now, to ease the
notation, for the remainder of this section we assume that a shorter path constraint is
associated with a set variable % 	 � that represents the set of edges $� for which �� �
�. The (current) domains of the variables � will be represented by two sets: the set of
possible members ����% �, and the set of required members &$'�% � of % . In the subtree
of the search rooted at the current choice point, we require &$'�% � 	 % 	 ����% �.
That is, &$'�% � represents the set of variables for which it has been set � � � �, and
the set � � ����% � represents the set of variables for which it has been decided to set
�� � � already. Then, in the current choice point, we have to search for admissible
paths � such that &$'�% � 	 � 	 ����% �. Note that we use the set variable % only
to ease the presentation. It has no impact on the implementation that is assumed to use
only the variables � . Especially, the didactic use of a set variable has no impact on the
state of GAC that we try to achieve2. To achieve GAC of a shorter path constraint, we
must ensure:

1 This is the common similarity assumption that states that the largest cost is bounded by some
polynomial in ��� and �� �.

2 Note that we could also model the shorter path constraint with a set variable instead of �
binary variables. Then, GAC for the binary model corresponds to bound-consistency in the set
model.

– For all $ � ����% �, there exists an admissible path � with &$'�% � � �$� 	 � 	
����% �, and

– for all $ (� &$'�% �, there exists an admissible path with &$'�% � 	 � 	 ����% � �
�$�.

That is, we have to find the set of all edges that must or cannot be part of all/any paths
with length lower than
.

Obviously, whether there exists an admissible path at all can be decided by apply-
ing a shortest path algorithm. However, to decide whether there exists a simple path that
visits a set of edges is already an NP-hard task which can be shown by a simple reduc-
tion to the Two Vertex Disjoint Path Problem. Consequently, the problem of achieving
GAC for the general shorter path constraint is also NP-hard.

4 Shortest Path Problems on Undirected Graphs

First, we consider shorter path constraints on undirected graphs with non-negative edge
weights. Obviously, on the existence of an admissible path can be decided by applying
a shortest path algorithm. However, it is easy to see that to decide whether there exists a
simple path that visits a set of edges is an NP-hard task. Therefore, in the following we
develop a cost-based filtering algorithm that achieves relaxed consistency rather than
generalized arc-consistency. In order to introduce the relaxation we want to use, we
start with

Definition 5. Denote with � � ����� �� a weighted (directed or undirected) graph.

– A path � is called a k-simple path in � iff for all � � � the path � visits � at most
) times. Note that a 1-simple path is a simple path in �.

– With � �	� �� � ��	� �� we refer to a shortest path from 	 to � (with respect to �).
Then, to ease the notation, we set ��	� �� �� ��� �� �	� ���.

– Given a shorter path constraint, a)-simple path � from "� to "� is called a)-
admissible path iff ��� �� � �
.

Note that, in a graph with non-negative edge weights, a shortest admissible path is also
a shortest 2-admissible path. Now, instead of checking for admissible paths only, we
consider the following shortest path relaxation (see Definition 2): Denote with ��% � the
domain of % represented as the pair of sets �&$'�% �� ����% ��. We set * �� ��
 � �
��"�� "�� with � 	 ����% �� and +� �� ��
 � is a 2-simple path from "� to "� with
� � �� for all � � �. Then, we define

�����% �� �� ���� ������ �� �
 � � *�,
��������� �������� �� �
 � � +���.

Lemma 1. �� is a shortest path relaxation.

Proof: According to Definition 2, we have to show that

�����% �� � ������ �� �
 � � ��"�� "��� &$'�% � 	 � 	 ����% ��.

Let � � ��"�� "�� denote a shortest path in � with &$'�% � 	 � 	 ����% �. Obviously,
it holds that � � * and � � +� for all � � &$'�% �. And therefore, �����% �� �
��� �� �. ��

The big advantage of the above relaxation is that it allows to be checked for consis-
tency very easily, as we shall see below. Note, however, that �� does not require that
the 2-admissible paths must visit all nodes in &$'�% � simultaneously. Of course, this
weakens the relaxation. In practice, we can reduce the negative effects by improving
the probability that a 2-admissible path visits the edges in &$'�% �: we set � �	 �� � for
all �	� �� � &$'�% � and subtract ��� �&$'�% �� from
.

According to the definition, a shorter path constraint is relaxed � �-consistent, iff

1. for all � � ����% �, there exists a 2-admissible path � � +� , and
2. for all � (� &$'�% �, there exists an admissible path � � * with � (� � .

In the following two sections, we show how relaxed ��-consistency can be achieved
efficiently.

4.1 Removing Edges from the Possible Set

First, for all edges in �, we have to check whether there exists a 2-admissible path in
� that visits an edge �	� �� � �. We observe that the shortest 2-simple path from "� to
"� that visits �	� �� is either �� �"�� 	�� � ��� "��� with costs ��"�� 	� � ��	 � ���� "�� or
�� �"�� ��� � �	� "��� with costs ��"�� ��� ��	 � ��	� "��. Therefore, to check whether an
edge has to be removed from ����% � with respect to the relaxation � � it is sufficient
to know the shortest-path distances from the source and to the sink of all nodes. Both
values can be computed for all nodes by only two shortest-path computations in �
in time ��! � � ����� by using Dijkstra’s algorithm in combination with Fibonacci
heaps [12]. In a random access machine (RAM) model, shortest paths on undirected
graphs can be computed in time ��!��� when using the algorithm of Thorup (see [28]
and the recent extension of Pettie and Ramachandran in [23]). Thus, the set of edges that
has to be removed from ����% � to achieve relaxed ��-consistency can be computed in
time ��! � � �����, and in time ��! � �� on a RAM.

4.2 Adding Edges to the Required Set

After having removed all edges from � that cannot be part of any 2-admissible path,
the edges that must be visited by all such paths can be characterized by

Theorem 1. Assume that all edges in � are part of at least one 2-admissible path.
Then, an edge �&� �� � � must be visited by all admissible paths, iff �&� �� � � �"�� "��,
and �&� �� is a bridge in �3.

We can prove the above theorem with the help of the following two lemmas:

3 A bridge is an edge whose removal disconnects the graph.

vnv1 k

h
sr

1 f f+1

l

Fig. 1. The figure schematically shows an edge ��� �� � � that must exist according to Lemma 2.
Solid lines mark edges in�, dashed lines parts of the shortest path between �� and ��. The dotted
line between � and �� indicates that there exists a path between the two nodes that does not visit
the edge ��� 	�. The dashed lines between � and � indicate that the shortest path from � to �� visits
node �. The numbers on top of the nodes give their corresponding DFS numbers, and triangles
mark DFS subtrees.

Lemma 2. Assume that all edges in � are part of at least one 2-admissible path. Let
�&� �� � � denote an edge that must be visited by all admissible paths and that can be
removed from � without disconnecting "� and "�. Then, there exists an edge �)� �� � �
such that

1. � � � ��"�� "�� � �)� �� � � and �&� �� (� � ,
2.) is a shortest-path predecessor of &, and
3. �&� �� � � ��� "��.

Proof: (See Fig. 1.) Assume we compute a shortest path � � �	�� � � � � 	�� � ��"�� "��.
Then, 	� � "�, 	� � "� and 	� � &, 	��� � � for some � � � � �. Next, we change the
graph representation of � such that �	�� 	���� is the first outgoing edge of node 	� for
all � � , � �. For all nodes � � � , denote with -	 � ��� � � � � �� the ordering in which
the nodes are first visited by a depth first search using the modified graph representation
of �. Then, -�� � , for all � � , � �. Since the removal of �&� �� does not disconnect
"� and "�, there exists a forward edge �)� �� � � with -� � � and -� . � � �. This
implies the Statements 1 and 2.

It remains to show that �&� �� � � ��� "��. By assumption, there exists a 2-admissible
path / through the edge �)� ��. There are two possibilities: either / visits node) or
node � first, which corresponds to:

a) ��"��)� � ��� � ���� "�� �
, or
b) / visits � before) and ��"�� �� � ��� � ��)� "�� �
.

In the first case, because �&� �� (� � �"��)� and �&� �� must be visited by all admissible
paths, it holds that �&� �� � � ��� "��, and we are done.

So let us consider the second case. Let 0 � ��"�� �� denote a shortest path from "�
to � with �&� �� (� 0. Without loss of generality we may assume that) and � are chosen
such that �)� �� � 0. We observe that �&� �� � � �"�� ��, because otherwise this implies
that �)� �� � 0 � � �"�� ��. But then the 2-admissible path visits node) before node �.
Now, because) is a shortest-path predecessor of & and �&� �� � � �"�� ��, it holds that
) � � �"�� ��. And then,

v1 vnsr

i j

Fig. 2. The figure schematically shows an edge �
� �� � � that must exist according to
Lemma 3. Solid lines mark edges in �, dashed lines mark parts of the shortest path between
�� and ��. Dashed lines indicate parts of the shortest path from �� to a node, dotted lines
parts of the shortest path from a node to ��. The proof of Theorem 1 shows that the path
�� ���� ��� � ���
�� � ��� 	�� � �	� ���� is two admissible and does not visit the edge ��� 	�.

��"��)� � ��� � ���� "�� � ��"��)� � ��� � ����)� � ��)� "��
� ��"��)� � ��)� �� � ��� � ��)� "��
� ��"�� �� � ��� � ��)� "��
�
,

which reduces this case to (a). ��

Lemma 3. Assume that all edges in � are part of at least one 2-admissible path. Let
�&� �� � � denote an edge that must be visited by all admissible paths and that can be
removed from � without disconnecting "� and "�. Then, there exists an edge �	� �� � �
such that �&� �� � � �	� "�� and �&� �� (� � ��� "��, and �&� �� (� � �"�� 	� and �&� �� �
� �"�� ��.

Proof: (see Fig. 2.) Denote with �)� �� � � an edge as in Lemma 2. Then, there exists
a path � � ���� "�� with �&� �� (� � and �&� �� � � ��� "��.

1. Due to �&� �� (� � �"�� "��, there exists an edge �	� �� � � such that �&� �� �
� �	� "�� and �&� �� (� � ��� "��.

2. By assumption, there is a 2-admissible path that visits �. Since �&� �� (� � ��� "��,
it follows that �&� �� � � �"�� ��, because �&� �� must be visited by all admissible
paths. Finally, assume that �&� �� � � �"�� 	�. Then, the shortest path visiting node
	 has costs

��"�� &� � �� � ���� 	� � ��	� &� � �� � ���� "��.

But the path from "� via &, 	 and � to "� has costs

��"�� &� � ��&� 	� � ��	� �� � ���� "��,

which is lower or equal to the cost of the shortest path visiting 	. This implies that
it is a shortest path visiting node 	, too. But it does not visit some edges with zero
costs. Particularly, it does not visit the edge �&� ��. Therefore, we may assume that
�&� �� (� � �"�� 	�.

��

Proof of Theorem 1:

� Let �&� �� be a bridge on the shortest path � � ��"�� "��. Then, the removal of
�&� �� disconnects the graph �. Since the node pairs �"�� &� and ��� "�� are still
connected, the removal of �&� �� also disconnects "� and "�. Thus, for all � �
��"�� "��, it holds that �&� �� � � . Therefore, also all admissible paths must visit
�&� ��.

� Obviously, if there exists any admissible path, then � �"�� "�� is admissible, too.
Thus, �&� �� � � �"�� "��. Now assume that the removal of �&� �� does not discon-
nect "� and "�. Then, according to Lemma 3, there exists an edge �	� �� � � such
that �&� �� � � �	� "��, �&� �� (� � ��� "��, �&� �� (� � �"�� 	� and �&� �� � � �"�� ��.
By assumption, there exists a 2-admissible path / visiting �	� ��. Without loss of
generality we may assume that / visits node 	 before node �, because

��"�� �� � ��	 � ��	� "�� � ��"�� &� � �� � ���� �� � ��	 � ��	� &� � �� � ���� "��
� ��"�� &� � ��&� 	� � ��	 � ���� �� � ���� "��
� ��"�� 	� � ��	 � ���� "��.

But this implies that �&� �� (� /, which is a contradiction to the assumption that
every admissible path must visit �&� ��.

��
Using Theorem 1, after having removed all edges that cannot be part of any 2-

admissible path, we can compute all edges that must be visited by all admissible paths
in time ��! � ��: first, we compute a shortest path � � ��"�� "�� and mark all edges
on this path. Then, we compute all bridges in � (which can easily be done in linear
time, see [5]) and check which ones are visited by � . It follows:

Corollary 1. On undirected graphs with non-negative edge weights, relaxed � �-con-
sistency of a shorter path constraint can be achieved in time ��! � � �����, and in
time ��! � �� on a RAM.

5 Shortest Path Problems on Directed Graphs

On acyclic graphs, it is easy to see that arc-consistency can be achieved in linear time by
computing shortest-path distances from the source and to the sink, and be determining
bridges in the undirected version of the graph after the removal of arcs.

So let us consider general directed graphs with non-negative arc weights. In the end
of this section, we will also give two theorems that we can prove for graphs that may
contain negative arc weights but no negative cycles.

As for undirected graphs, achieving arc-consistency for shorter path constraints in
general directed networks is NP-hard. Regarding the removal of arcs from the possible
set, relaxed ��-consistency on directed graphs with non-negative arc weights can be
achieved in the same way as on undirected graphs. However, with respect to arcs that
must be visited by all admissible paths, the situation is even more complicated. Recall
the result from Section 4: After having removed the infeasible edges, in undirected
graphs the edges that have to be required are exactly the ones on the shortest path that
must be visited by all paths from "� to "�.

v4
1 1 1

1 1
4 4

3

1 2v1

Fig. 3. A directed graph with non-negative arc weights. Assume we are given an upper bound
 � �. All arcs in the graph are part of an admissible path with costs lower than . And every
admissible path with costs lower than must visit the arc ��� ��. However, there exists a path
���� �� ��� that does not visit this arc.

Unfortunately, this classification does not hold for directed graphs as can be seen in
Figure 3. Thus, for all arcs �	� �� � � �"�� "��, we have to recompute the shortest-path
value when removing �	� �� from �, which may require ��� shortest-path computations
in the worst case. It follows:

Theorem 2. On directed graphs with non-negative arc weights, relaxed ��-consistency
can be achieved in time ����! � � ������.

Since the computation time of the algorithm sketched in the above may not be ef-
ficient enough to be of profit when being applied in a tree search, in the following we
consider another shortest path relaxation. Let 1 	 � denote a shortest-path tree in �
rooted at "�. Without loss of generality, we may assume that every node in � can be
reached from "�. Obviously, when $ � � is removed from 1 , the nodes in � are par-
titioned into two sets: the set "� � �� � � of nodes that are still connected with "� in
1 � �$�, and the complement of �� in � , ��

� (see Fig. 4).
Obviously, ��

� �� � iff $ � 1 . We set

2 �� ��
 � is a 2-simple path from "� to "� with
� 	 ����% � or, if $ � � � ����% �, then there
exists an arc �	� �� � � � 1 such that
	 � �� and � � ��

� �.

And we define

�����% �� �� ���� ������ �� �
 � � 2�,
��������� �������� �� �
 � � +���.

To understand the above shortest path relaxation better, we make the following obser-
vations:

– Obviously, because * 	 2 , �� is dominated by ��, i.e., �� � ��. And therefore,
�� is also a shortest path relaxation.

– The difference between relaxations �� and �� only consists in the set 2 that is used
instead of * to determine the arcs that have to be required to achieve a state of
relaxed consistency. In contrast to * , the set 2 also contains paths � that are not
simple and that may visit arcs $ (� ����% �. However, if $ � � � ����% �, then we
enforce that � must also visit another arc �	� �� (� 1 that connects �� with ��

� .
This implies $ � 1 , as otherwise ��

� � �. Moreover, it holds that ��� �� � �
�����"�� 	� � ��	 � ���� "��
 �	� �� � ��� � ��

� � � 1�.

vn

Se
C

v1 r

Se

ji

s
e

Fig. 4. The figure schematically shows a shortest-path tree � rooted at ��. Solid lines denote arcs
in �, dashed lines mark parts of the shortest path � ���� ��� from �� to ��. The triangles sym-
bolize shortest-path subtrees. For an edge � � ��� 	� � � ���� ���, the nodes in � are partitioned
into two non-empty sets �� and ��� . If � is removed from the graph, the shortest path from �� to
�� must visit an edge �
� �� � ��� � ��� � � � .

– Like ��, also �� does not force the 2-admissible paths to visit the nodes in &$'�% �
simultaneously. Again we can improve the effectiveness of the filtering algorithm
by setting ��	 �� � for all �	� �� � &$'�% � and by subtracting ��� �&$'�% �� from

.

– A shorter path constraint is relaxed ��-consistent, iff
1. for all � � ����% �, there exists a 2-admissible path � � +� , and
2. for all � (� &$'�% �, there exists a 2-admissible path � � 2 with � (� � , or

there exists an arc $ � � � 1 such that $ � �� � ��
� .

We have seen that the relaxation �� is dominated by ��. Nevertheless, we can show
that cost-based filtering that achieves relaxed ��-consistency is still at least as strong as
ordinary reduced cost filtering:

Lemma 4. If a shorter path constraint is relaxed ��-consistent, reduced cost filtering
is ineffective.4

5.1 Relaxed ��-Consistency

As relaxations �� and �� do not differ with respect to the definition of +� , � � �, to
remove arcs from ����% � we can simply follow the procedure sketched in Section 4.

Regarding the identification of arcs that have to be added to &$'�% � so as to achieve
relaxed ��-consistency, for all $ � ����% � � &$'�% � we have to compute the cost of
the shortest 2-simple path � from "� to "� such that $ (� � or such that there exists an
edge �	� �� � � � 1 with �	� �� � �� � ��

� , where 1 is a shortest-path tree in � rooted
at "�.

First, we compute the shortest paths from "� to "� and "� to "� in the reverse of
� in time ��! � � �����. As a byproduct, we get 1 	 � and shortest-path distances
��"�� 	�, ��	� "�� for all 	 � � . If ��"�� "�� �
, the current choice point is inconsistent,
and we can backtrack. Otherwise, candidates to be added to &$'�% � are only the arcs
$ � � �"�� "��. Since "� � �� and "� � ��

� , the shortest 2-simple path � from "� to "�
with $ (� � must contain an arc �	� �� � �����

� . And since 1������
� � �$�, we have

4 The proof is omitted due to space restrictions. A full version of the paper can be found in [26].

that �	� �� (� 1 . Therefore, it is sufficient to compute, for all $ � � �"�� "��, the costs of
the shortest 2-simple path � from "� to "� that contains some �	� �� � ��� � ��

� � � 1 .
Let � �"�� "�� � �&�� &�� � � � � &�� &����, � � ��, &� � "� and &��� � "�, and denote

with �$�� � � � � $�� the sequence of arcs that � �"�� "�� visits, whereby $� � �&�� &����
for all � �) � �. Further, for all � �) � �, denote with 0� a shortest 2-simple path
from "� to "� with �	� �� � 0� for some �	� �� � ���� � ��

��
� � 1 . Then,

��� �0�� � �����"�� 	� � ���	 � ���� "��
 �	� �� � ���� � ��
��
� � 1�.

A brute force approach requires time 3��!� to determine these values. However, we
can do better when we compute the values ��� �0�� for all � �) � � sequentially.
Note that ��� 	 � � � 	 ��� and ��

��
	 � � � 	 ��

��
. We keep the nodes � in the current

set ��
��

in a min-heap, whereby the associated value of � in the heap is defined as

�	 �� �����"�� 	� � ���	 � ���� "��
 	 � ��� and �	� �� � � � 1�.

Obviously, the smallest �	 in the heap determines ��� �0��. In the transition from one
shortest-path arc $� to the next $���, the nodes 	 � ��� ������ have to be removed from
the heap, and the values �	 must be updated. For each node 	 � ��� ������, we iterate
over all outgoing arcs and perform a decrease-key on the adjacent nodes if necessary.
Then, 	 is removed from the heap. Since every node in � leaves the heap at most once
and never re-enters it, for all � �) � � this procedure requires at most ! decrease-key
operations and � delete-min operations. Therefore, when using a Fibonacci heap, the
values ��� �0�� for all � �) � � can be determined in time ��! � � �����. Then,
$� is added to &$'�% � iff ��� �0�� �
. It follows

Theorem 3. On directed graphs with non-negative arc weights, relaxed ��-consistency
of a shorter path constraint can be achieved in time ��! � � �����.

Finally, we would like to note that the results can be extended for directed graphs
with no negative cycles (see [26] for proofs):

Theorem 4. On directed graphs without negative cycles, relaxed ��-consistency of a
shorter path constraint can be achieved in time ����! � � ������.

Theorem 5. On directed graphs without negative cycles, relaxed ��-consistency of a
shorter path constraint can be achieved in time ���!�. For 4������ calls to the filter-
ing procedure with changing variable domains, relaxed ��-consistency can be achieved
in amortized time ��! � � �����.

6 Conclusion

We summarize the results that we achieved (see Table 1): On arbitrary directed and on
undirected graphs, achieving GAC is an NP-hard task. Therefore, we introduced the
notion of relaxed consistency and developed two shortest path relaxations � � and ��.
Both relaxations are based on the class of 2-simple paths. We showed that �� domi-
nates ��, and cost-based filtering based on �� is superior to reduced cost filtering. On
undirected graphs with non-negative edge weights, relaxed � �-consistency (and there-
fore also relaxed ��-consistency) can be achieved in time ��! � � ����� and in time

Degree of Consistency
Graph Type GAC �� �� RedCost

undirected, � � � NP-hard ���	 �
�� ��, ��� ����	 ��
DAG ���	 ��

directed, � � � NP-hard �����	 �
�� ��� ���	 �
�� ��
directed, NP-hard �����	 �
�� ��� O(nm)

no negative cycles amort.�����: ���	 �
�� ��

Table 1. The table gives an overview of the findings in this paper.

��!��� on a RAM. On DAGs, generalized arc-consistency can be achieved in linear
time. On general directed graphs with non-negative arc weights, relaxed � �-consistency
can be obtained in time ����! � � ������, and a state of relaxed ��-consistency can
be achieved in time ��! � � �����. Finally, in the presence of negative arc weights,
we achieve relaxed ��-consistency in time ����! � � ������, and ��-consistency in
time ���!� or ��!�� ����� for 4��� calls of the filtering algorithm with changing
variable domains.

Note that these results are superior to the heuristics in [1], since we can also identify
arcs that must be visited, which is a valuable information with respect to other con-
straints that may be present. With respect to the idea of an iterated reduction procedure
as suggested in [6], we may assume that this is given by embedding the cost-based fil-
tering algorithms in a CP solver. Regarding the tightening of lower bounds with respect
to other linear constraints, e.g. as proposed in [3] for the Resource Constrained Shortest
Path Problem, we refer the reader to the concept of CP-based Lagrangian relaxation
presented in [27]. Finally, note that the algorithms we developed are all practicable and
easy to implement (except of course the linear time shortest path algorithm on undi-
rected graphs). Therefore, we expect this work to be relevant for many applications and
practical approaches in the field of discrete optimization.

References
1. Y. Aneja, V. Aggarwal, K. Nair. Shortest chain subject to side conditions. Networks, 13:295-

302, 1983.
2. K. R. Apt. The Rough Guide to Constraint Propagation. Principles and Practice of Con-

straint Programming (CP), Springer LNCS 1713:1–23, 1999.
3. J. Beasley, N. Christofides. An Algorithm for the Resource Constrained Shortest Path Prob-

lem. Networks, 19:379-394, 1989.
4. R. Borndoerfer, A. Loebel. Scheduling duties by adaptive column generation. Technical

Report, Konrad-Zuse-Zentrum fuer Informationstechink Berlin ZIB-01-02, 2001.
5. T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to Algorithms. The MIT Press, 1993.
6. I. Dumitrescu, N. Boland. The weight-constrained shortest path problem: preprocessing,

scaling and dynamic programming algorithms with numerical comparisons. International
Symposium on Mathematical Programming (ISMP), 2000.

7. T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann, B. Vaaben. Constraint programming
based column generation for crew assignment. Journal of Heuristics, 8(1):59-81, 2002.

8. T. Fahle, M. Sellmann. Cost-Based Filtering for the Constrained Knapsack Problem. Annals
of Operations Research, 115:73–93, 2002.

9. S. Fortune, J. Hopcroft, J. Wyllie. The directed subgraph homeomorphism problem. Theo-
retical Computer Science, 10(2):111–121, 1980.

10. F. Focacci, A. Lodi, M. Milano. Cost-Based Domain Filtering. Principles and Practice of
Constraint Programming (CP) Springer LNCS 1713:189–203, 1999.

11. F. Focacci, A. Lodi, M. Milano. Cutting Planes in Constraint Programming: An Hybrid
Approach. CP-AI-OR’00, Paderborn Center for Parallel Computing, Technical Report tr-
001-2000:45–51, 2000.

12. M. L. Fredmann, R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. Journal of the ACM 34:596–615, 1987.

13. M. R. Garey, D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

14. G. Handler, I. Zang. A Dual Algorithm for the Restricted Shortest Path Problem. Networks,
10:293-310, 1980.

15. O. Jahn, R. Moehring, A. Schulz. Optimal routing of traffic flows with length restrictions in
networks with congestion. Technical Report, TU Berlin 658-1999, 1999.

16. H. Joksch. The Shortest Route Problem with Constraints. Journal of Mathematical Analysis
and Application, 14:191-197, 1966.

17. U. Junker, S.E. Karisch, N. Kohl, B. Vaaben, T. Fahle, M. Sellmann. A Framework for
Constraint programming based column generation. Principles and Practice of Constraint
Programming (CP), Springer LNCS 1713:261–274, 1999.

18. V. Kumar. Algorithms for Constraints Satisfaction problems: A Survey. The AI Magazine,
by the AAAI, 13:32-44, 1992.

19. M. Luebbecke, U. Zimmermann. Computer aided scheduling of switching engines. CASPT,
2000.

20. K. Mehlhorn, M. Ziegelmann. Resource Constrained Shortest Paths. Proc. 8th European
Symposium on Algorithms (ESA), Springer LNCS 1879:326-337, 2000.

21. A. Orda. Routing with end to end QoS guarantees in broadband networks. Conference on
Computer Communications (Infocom), IEEE, 27-34, 1998.

22. G. Ottosson, E.S. Thorsteinsson. Linear Relaxation and Reduced-Cost Based Propagation
of Continuous Variable Subscripts. CP-AI-OR’00, Paderborn Center for Parallel Computing,
Technical Report tr-001-2000:129–138, 2000.

23. S. Pettie, V. Ramachandran. Computing undirected shortest paths using comparisons and
additions. ACM-SIAM Symposium on Discrete Algorithms, January 2002.

24. J.C. Régin. Arc Consistency for Global Cardinality Constraints with Costs. Principles and
Practice of Constraint Programming (CP), Springer LNCS 1713:390–404, 1999.

25. M. Sellmann. An Arc-Consistency Algorithm for the Weighted All Different Constraint.
Principles and Practice of Constraint Programming (CP), Springer LNCS 2470:744–749,
2002.

26. M. Sellmann. Reduction Techniques in Constraint Programming and Combinatorial Optimi-
zation. PhD Thesis, University of Paderborn, Germany, http://www.upb.de/cs/sello/diss.ps,
2002.

27. M. Sellmann and T.Fahle. Coupling Variable Fixing Algorithms for the Automatic Recording
Problem. Annual European Symposium on Algorithms (ESA), Springer LNCS 2161: 134–
145, 2001.

28. M. Thorup. Undirected single source shortest paths in linear time. Annual Symposium on
Foundations of Computer Science (FOCS), IEEE, 12–21, 1997.

29. G. Xue. Primal-dual algorithms for computing weight-constrained shortest paths and weight-
constrained minimum spanning trees. International Performance, Computing, and Commu-
nications Conference (IPCCC), IEEE, 271-277, 2000.

30. T. H. Yunes, A. V. Moura, C. C. Souza. A hybrid approach for solving large crew scheduling
problems. International Workshop on Practical Aspects of Declarative Languages (PADL),
Springer LNCS 1753:293-307, 2000.

