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ABSTRACT
Approximate queries on a collection of strings are important
in many applications such as record linkage, spell checking,
and Web search, where inconsistencies and errors exist in
data as well as queries. Several existing algorithms use the
concept of “grams,” which are substrings of strings used as
signatures for the strings to build index structures. A re-
cently proposed technique, called VGRAM, improves the
performance of these algorithms by using a carefully cho-
sen dictionary of variable-length grams based on their fre-
quencies in the string collection. Since an index structure
using fixed-length grams can be viewed as a special case of
VGRAM, a fundamental problem arises naturally: what is
the relationship between the gram dictionary and the per-
formance of queries? We study this problem in this paper.
We propose a dynamic programming algorithm for comput-
ing a tight lower bound on the number of common grams
shared by two similar strings in order to improve query per-
formance. We analyze how a gram dictionary affects the
index structure of the string collection and ultimately the
performance of queries. We also propose an algorithm for
automatically computing a dictionary of high-quality grams
for a workload of queries. Our experiments on real data
sets show the improvement on query performance achieved
by these techniques. To our best knowledge, this study is
the first cost-based quantitative approach to deciding good
grams for approximate string queries.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Content Analysis and Indexing

General Terms
Algorithms, Performance
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Approximate string query, gram selection, VGRAM
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1. INTRODUCTION
This paper studies the following problem: given a col-

lection of textual strings, such as person names, paper ti-
tles, telephone numbers, and company addresses, how to ef-
ficiently find those that are similar to a given query string?
The problem arises naturally in many applications. To name
a few, in record linkage [14], we often need to find from a ta-
ble those records that are similar to a given query string that
could represent the same real-world entity, even though they
have slightly different representations, such as giuliani ver-
sus guliani. In spellchecking, for each word that is not in a
predefined lexicon, we need to recommend a few good words
by searching within the lexicon those similar to the possibly
mistyped word. In Web search, the implementation of the
“Did you mean” feature by many search engines can benefit
from the capability of finding keywords that are similar to
a keyword in a search query.

Having a high performance of answering such queries is
critical to these applications, especially for the cases where
we want to answer queries interactively [9], or where the
queries are submitted to a server by many clients. For the
server case, there is a big difference between a response time
of 5ms for a query and a response time of 20ms, since the
former means a throughput of 200 queries per second, while
the latter means only 50 queries per second.

There are a variety of functions to measure the similarity
between strings, including edit distance (a.k.a. Levenshtein
distance), Jaccard similarity, and cosine similarity. Several
algorithms have focused on approximate string queries us-
ing the edit distance function (e.g., [18, 22]), mainly due to
its applicability in many scenarios. The idea of “grams” has
been widely used in these algorithms. A q-gram of a string
is a substring of length q that can be used as a signature for
the string. For instance, the 3-grams of the string giuliani

are giu, iul, uli, lia, ian, and ani. These algorithms rely
on the following observation: if the edit distance between
strings are within a threshold k, then they should share a
certain number of common grams, and this lower bound is
related to the gram-length q and the threshold k. For in-
stance, the edit distance between giuliani and guliani is
1, and they share 4 common 3-grams. Using this observa-
tion, we can decompose each string in the given collection
to grams, and build an inverted list for each gram, which
includes the id of the strings in which this gram appears.
Fig. 1 shows an example collection of 6 strings, and the cor-
responding inverted lists of their 2-grams. For a query, we
can also generate its grams, and locate the corresponding

353



inverted lists. We then search on the lists to identify those
string ids that have enough occurrences on these lists.

id string
1 bingo
2 bioinng
3 bitingin
4 biting
5 boing
6 going

(a) Strings.

gram string ids
bi → 1, 2, 3, 4
bo → 5
gi → 3
go → 1, 6
in → 1, 2, 3, 3, 4, 5, 6
io → 2
it → 3, 4
ng → 1, 2, 3, 4, 5, 6
nn → 2
oi → 2, 5, 6
ti → 3, 4

(b) Inverted lists of string ids
(default gram dictionary D0).

Figure 1: Strings and their inverted lists of 2-grams.

The gram length q can greatly affect the performance of
these algorithms. Earlier algorithms mainly use a “try-and-
see” approach. But there is a dilemma in choosing the gram
length q: If we increase q, there could be fewer strings shar-
ing a gram, resulting in shorter lists, and less time to access
them. On the other hand, it may also reduce the lower
bound on the number of common grams shared by similar
strings, causing more false positives after accessing the lists.

Recently we proposed a new technique, called VGRAM [18],
to improve the performance of these algorithms. Its main
idea is to judiciously choose a dictionary of high-quality
grams of variable lengths from the string collection based
on gram frequencies. An important observation is that two
similar strings should still share certain number of common
grams, and the new lower bound can be computed efficiently.
At a high level, VGRAM can be viewed as an additional index
structure associated with the collection of strings. Experi-
ments in [18] showed that adopting this technique in exist-
ing algorithms can reduce not only their index size, but also
their query-answering time.

The following is an interesting observation: An inverted-
list index based on grams of fixed-length q can be viewed as
a special VGRAM index structure, in which the gram dic-
tionary only includes grams of length q. The choice of the
gram dictionary greatly affects the performance of existing
algorithms. Based on this observation, several fundamental
problems arise naturally: what is the fundamental relation-
ship between the gram dictionary and the performance of
queries on the string collection? If this relationship is un-
derstood, how to compute a good gram dictionary automat-
ically? In this paper we study these issues, and make the
following contributions.
• Since the lower bound on the number of common grams

between similar strings affects the performance of algo-
rithms, it is important to make this bound as tight as
possible. [18] presented a simple way to compute a lower
bound. In Section 3 we develop a dynamic programming
algorithm that can compute a tighter lower bound.

• We formally analyze how adding a new gram to an exist-
ing gram dictionary can affect the index structure of the
string collection, thus the performance of queries (Sec-
tion 4). We will show that these analyses are technically
very challenging and interesting.

• We develop an efficient algorithm that can automatically

find a high-quality gram dictionary for the string col-
lection (Section 5). Notice in [18] we also developed a
heuristic-based algorithm for generating a gram dictio-
nary, which requires several manually-tuned parameters.
Our new algorithm does not require some of the parame-
ters, and is cost-based. To our best knowledge, this study
is the first cost-based quantitative approach to deciding
good grams for approximate string queries.

• We have conducted experiments on real data sets to eval-
uate the proposed techniques, and show that they can
indeed generate good gram dictionaries to improve per-
formance of existing algorithms (Section 6).

2. BACKGROUND

2.1 Approximate String Queries
The edit distance (or Levenshtein distance) between two

strings s1 and s2 is the minimum number of single-character
edit operations (insertion, deletion, and substitution) that
are needed to transform s1 to s2. For example, the edit
distance between masachusatts and massachusetts is 2. In
particular, we can transform the first string to the second by
inserting a character s and substituting the last character
a by character e. We denote the edit distance between s1

and s2 as ed(s1, s2). We focus on approximate selection
queries on collections of strings using this function. Let S
be a collection of strings (possibly with duplicates). An
approximate selection query on S includes a string Q and a
threshold k, and its answer includes all the strings s ∈ S
such that ed(Q, s) ≤ k. Such a query is denoted by σ(Q,k).

2.2 Gram-Based Indices and Algorithms
Let s be a string of characters . We use “|s|” to denote the

length of the string, “s[i]” to denote the i-th character of s
(starting from 1), and “s[i, j]” to denote the substring from
its i-th character to its j-th character.

Let q be a positive integer. A positional q-gram of s is a
pair (i, g), where g is the substring of length q starting at
the i-th character of s, i.e., g = s[i, i + q − 1]. The set of
positional q-grams of s, denoted by G(s, q), is obtained by
sliding a window of length q over the characters of s. For
example, suppose q = 2, and s = bitingin, then G(s, q) =
{(1,bi), (2,it), (3,ti), (4, in), (5, ng), (6, gi), (7, in)}. For
simplicity, in our notations we omit positional information,
which is assumed implicitly to be attached to each gram.

Several algorithms [17, 22] are developed to answer ap-
proximate string queries based on inverted-list structures of
q-grams. In the index, for each gram g of the strings in
the collection S, we have an inverted list of the ids of the
strings that include this gram. If a gram appears in a string
multiple times (with different positions), the string id will
appear multiple times on the inverted list of this gram, with
the different positions. Fig. 1(b) shows such an index struc-
ture of 2-grams on six strings. To answer an approximate
query σ(Q, k) on S, these algorithms use various filtering
techniques to prune strings. Some filters are using the fol-
lowing fact. If ed(s1, s2) ≤ k, then the lengths |s1| and |s2|
should differ by at most k, and the strings should share at
least the following number of common q-grams:

max{|s1|, |s2|} + 1 − (k + 1) · q. (1)

In particular, a necessary condition for a string s in S to
be in the answer to the query is that s should share the
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following number of common grams with Q:

|Q| + 1 − (k + 1) · q. (2)

Using the inverted-list index, we can find the set of string ids
that satisfy this necessary lower-bound condition. Among
these candidate strings, we remove the false positives by
computing their real edit distances to the query string. If
the lower bound in Equation 2 is zero or negative, then we
need to scan the entire collection to find answers. This scan
could become more efficient if we can apply additional filters
on the strings. For instance, the length filter can help us
limit our search to a subset of strings.

As an example, consider the following approximate selec-
tion query σ(bingon, 1) on the six strings indexed in Fig. 1(b).
We generate 2-grams from the query: {bi, in, ng, go, on}.
For each of them, we access the corresponding inverted list,
and find the string ids that share |Q| + 1 − (k + 1) · q = 3
common grams with the query string, which are ids 1, 2,
3, 4, and 6. Finally, we compute their real edit distances
to the query string, and identify the (only) answer to the
query, which is string bingo with id 1.

2.3 VGRAM
In [18] we proposed VGRAM to improve the performance of

these algorithms by using a predefined dictionary of variable-
length grams, denoted by D. It uses a parameter, called
qmin, to indicate that by default, all the qmin-grams are
in the gram dictionary D. For a string s, we generate a
set of grams for s using the gram dictionary D, denoted by
VG(s,D), or just VG(s) when the dictionary D is clear from
the context. The main idea is that we still use a sliding
window to go through the characters of the string from the
left to the right, while the window size can vary at different
character positions, depending on the grams in D.

We use an example to illustrate this process. Let D0 de-
note the implicit fixed-length-gram dictionary in Fig. 1(b),
and D1 be the dictionary by adding a new gram ing to
D0. Fig. 2 illustrates how we decompose the string bingon

to grams using the new dictionary D1. At each character
position i, we find the longest gram in the dictionary that
matches a substring starting at the position i. (This step
can be done efficiently when the gram dictionary is stored
as a trie.) For instance, for the second position of character i
in the string, we generate a gram ing, since it is the longest
gram in the dictionary that matches a substring starting
from this position. We keep the gram only if its correspond-
ing substring is not subsumed by the substring of any earlier
gram. For this reason, we do not keep the gram ng, since its
corresponding substring has been subsumed by the substring
for the gram ing. If no gram in the dictionary matches a
substring starting at this position, we generate a qmin-gram
for this position. We produce the gram on for this reason.
The final set of grams is {bi, ing, go, on}.

Figure 2: Decomposing string bingon to variable-length

grams using the gram dictionary D1 = D0 ∪ {ing}.

After decomposing each string in S to grams using dic-
tionary D, we construct the corresponding inverted lists.
For the six strings in our running example, Fig. 3(a) shows
the inverted lists of string ids using the dictionary D1. For
comparison purposes, we use Fig. 3(b) shows the inverted

lists using another gram dictionary D2, which is obtained
by adding a new 3-gram bin to D1.

gram string ids
bi → 1, 2, 3, 4
bo → 5
gi → 3
go → 1, 6
in → 2, 3
ing → 1, 3, 4, 5, 6
io → 2
it → 3, 4
ng → 2
nn → 2
oi → 2, 5, 6
ti → 3, 4

(a) Use dictionary D1.

gram string ids
bi → 2, 3, 4
bin → 1
bo → 5
gi → 3
go → 1, 6
in → 2, 3
ing → 1, 3, 4, 5, 6
io → 2
it → 3, 4
ng → 2
nn → 2
oi → 2, 5, 6
ti → 3, 4

(b) Use dictionary D2.

Figure 3: Inverted lists using dictionaries of variable-

length grams. Each “gram” column includes the grams

in the corresponding dictionary. Each bold gram is a

newly added gram in the dictionary.

The process of answering a query is the same as that of
fix-length grams. The only difference is that we could use
a different lower bound. (See Section 3.2 for details.) For
instance, consider the same approximate query σ(bingon, 1).
We first generate positional grams {bi, ing, go, on}. We can
show that a string in the answer to this query should share
at least 2 common grams with the query string. We use the
new lists with the new bound to find the answer. Compared
to the lists of fixed-length grams, now we can access shorter
inverted lists. This example shows the main advantages of
VGRAM on reducing the index size and query time.

3. TIGHTENING LOWER BOUNDS ON
NUMBER OF COMMON GRAMS

A lower bound on the number of common grams shared
by two similar strings affects the performance of a query in
two ways. First, it affects how efficiently we can access the
inverted lists of the grams in the query. Second, it decides
how many strings become candidate answers to the query af-
ter accessing these lists. Therefore, it is critical to make this
lower bound as tight as possible. In [18] we gave a simple
way to compute this lower bound in the VGRAM technique.
In this section, we develop a dynamic programming algo-
rithm for computing a tighter lower bound.

3.1 Effect of Edit Operations on Grams
Let D be a gram dictionary in VGRAM, using which we

decompose strings to grams. We first see how edit opera-
tions on a string s affect its grams in VG(s,D). Consider
the i-th character s[i]. If there is a deletion operation on this
character, we want to know how many grams in VG(s,D)
could be affected by this deletion, i.e., they may no longer
be generated from the new string after this deletion opera-
tion. In [18] we showed how to efficiently compute an upper
bound on this number by using two tries of the grams in
the dictionary D. Let B[i] be the computed upper bound.
For simplicity, deletions and substitutions on this character
and insertions immediately before and after this character
are all called “edit operations at the i-th positions.” The
following proposition shows that this B[i] value is indeed an
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upper bound on the number of destroyed grams due to all
possible edit operations at this position.

Proposition 3.1. Let string s′ be obtained by doing edit
operations at the i-th position of a string s. The number of
grams in VG(s,D) that will no longer exist in VG(s′,D) is
at most B[i].

We call 〈B[1], B[2], . . . , B[|s|]〉 the Position-Gram-Bound
Vector (or “PGB Vector”) of the string s. For example, con-
sider a string biinding and the gram dictionary shown in
Fig. 3(a). The grams generated from this string are shown
in Fig. 4(a), which also shows the PGB vector for the string.
For instance, the value 3 on the character d means that any
number of edit operations at this position can destroy at
most 3 grams of this string. Fig. 4(b) shows the grams that
could be affected by edit operations at each position.

(a) Grams and
PGB vector.

Position Affected grams
b bi
i bi, ii
i bi, ii, in
n in, nd
d in, nd, di
i di, ing
n ing
g ing

(b) Affected grams.

Figure 4: Position-gram-bound (PGB) vector.

3.2 Tightening Lower Bounds Using Dynamic
Programming

From this PGB vector, we can compute a “number-of-
affected-gram vector”(“NAG vector”for short) for the string.
The k-th value in this vector, denoted by NAG(s, k,D) (or
just NAG(s, k) when the dictionary D is clear from the con-
text), indicates that if there are k edit operations on this
string, then there are at most this number of grams that
will no longer exist after these edit operations. It has been
shown in [18] that if two strings satisfy ed(s1, s2) ≤ k, then
they should share at least the following number of grams
(compared to the bound in Equation 1):

max
(
|VG(s1)| − NAG(s1, k), |VG(s2)| − NAG(s2, k)

)
. (3)

In particular, for a given query σ(Q,k), the following is a
lower bound on the number of common grams between a
string s and Q when ed(s,Q) ≤ k (compared to the bound
in Equation 2):

B(Q, k) = |VG(Q)| − NAG(Q,k). (4)

When answering a query, we often use the bound in Equa-
tion 4 mainly because it is only dependent upon the query,
not a string in the collection. For each candidate string sat-
isfying this bound, we could further do some pruning using
the possibly tighter bound in Equation 3.

Based on this analysis, the values in NAG vectors affect
the lower bound on the number of common grams between
similar strings, and ideally we want these bounds to be
as tight as possible. One way to compute the NAG(s, k)
value, as proposed in [18], is to take the summation of the
k largest values in the PGB vector of string s. We call it
the “k-max algorithm.” For example, consider the query
string biinding in Fig. 4(a). Assume k = 2. To compute
NAG(“biinding”,2), we could take the summation of the 2

largest values in the PGB vector, which is 3 + 3 = 6. The
bound given by this pessimistic approach could be loose,
since in some cases, those largest numbers might represent
overlapping grams. In the running example, the two posi-
tions (3 and 5) with the largest bound value are close to each
other. Fig. 4(b) shows that for the edit operations on these
two positions, their sets of affected grams overlap, and both
share the gram in. The total number of affected grams is 5
(instead of 6), which are bi, ii, in, nd, and di. In fact, a
tighter value for NAG(“biinding”, 2) is 5.

We develop a dynamic programming algorithm for com-
puting tighter-bound values for the NAG vector.

Subproblems: We create subproblems as follows. Let 0 ≤
i ≤ k and 0 ≤ j ≤ |s| be two integers. Let P (i, j) be an
upper bound on the number of grams in VG(s,D) that can
be affected by i edit operations that are at a position no
greater than j. Our final goal is to compute a value for
P (k, |s|).
Initialization: For each 0 ≤ i ≤ k, we have P (i, 0) = 0.
For each 0 ≤ j ≤ |s|, we have P (0, j) = 0.

Recurrence Function: Consider the subproblem of com-
puting a value for the entry P (i, j), where i > 0 and j > 0.
We have two options.
• Option (1): We do not have an edit operation at position

j. In this case, we can set P (i, j) to be P (i, j − 1), since
all the j edit operations occur before or at position j−1.

• Option (2): We have (possibly multiple) edit operations
at position j. These operations could affect at most B[j]
grams of s, where B[j] is the j-th value in the PGB vec-
tor of this string. For all the grams of s that start from
a position before j that cannot be affected by these edit
operations at the j-th position, let R(j) be their largest
starting position. (This number can be easily computed
when we compute the PGB vector for this string.) There-
fore, P (i, j) can be set as the summation of P (i−1, R(j))
and B[j], assuming in the worst case we have i − 1 edit
operations on positions before or at j.

For these two cases, we can assign their maximal value
to the entry P (i, j). The following formula summarizes the
recurrence function:

P (i, j) = max

{
P (i, j − 1), (no operation at j)
P (i − 1, R(j)) + B[j]. (operations at j)

Using the analysis above, we can initialize a matrix of size
(k +1)× (|s|+1). We set the values in the first row and the
first column to be 0. We use the recurrence function to com-
pute the value of each entry, starting from the top-left entry,
until we reach the right-bottom entry. The rightmost col-
umn will give us an NAG vector for the string. For example,
consider the query s = biinding and the gram dictionary
shown in Fig. 3(a). Fig. 5 shows the matrix to calculate an
NAG vector for this string. The dotted line shows the steps
to compute the value at the right-bottom entry. The last
column gives us an NAG vector, which is 〈0, 3, 5〉.

k 
k 
k 

k 
k 
k 

Figure 5: Matrix in dynamic programming.
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4. ADDING A GRAM TO A DICTIONARY
To decide a good gram dictionary for a string collection S

to answer approximate queries on S efficiently, we need to
understand the fundamental relationship between the gram
dictionary and query performance. In this section, we study
the following problem: how does the addition of a new gram
g to an existing gram dictionary D of S affect the index
structure of S, thus affect the performance of queries using
the index? At a high level, the new gram will have the
following effects. (1) The inverted-list index structure of S
will have one more inverted list for this gram g, which will
“suck” some string ids from the inverted lists of some grams
related to g. For instance, if g = abc, then the new list of
g will take some string ids from the list of the gram ab and
some from the list of the gram bc. (2) For an approximate
string query, it could generate a different set of grams, and
their corresponding inverted lists could become shorter. In
addition, the new gram can also affect the NAG vector for
the query string. Thus it could result in a different set of
candidate strings for the query using the possibly new lower
bound on the number of common grams between similar
strings. Next we will analyze the details of these effects.

4.1 Effects on Inverted Lists
We first study how adding a gram affects the inverted lists

on S. We introduce the following concepts.

Definition 1. Let gi be a gram in D. The complete list of
gi, denoted by C(gi), includes all the ids of the strings in S
that include this gram. The local list of gi with respect to
a gram dictionary D, denoted by L(gi,D), includes all the
ids of the strings whose decomposed grams using a gram
dictionary D include the gram gi.

The lists shown in earlier figures are all local lists. When
using fixed-length grams, the complete and local lists for a
gram are always the same. For instance, the lists in Fig. 1(b)
are both the complete and local lists for the corresponding
grams. In general, L(gi,D) is always contained in C(gi).
However, if a string id appears on the complete list C(gi), it
might not appear on the local list L(gi,D), since the string
might not generate this gram gi due to the fact that this
gram is subsumed by another gram of the string. We will
see that these lists can help us analyze the effects of adding a
gram to an existing dictionary, and quantify the performance
improvement on queries. Thus we want to incrementally
maintain these lists after adding a gram. In the rest of this
paper, we refer the local list of a gram as“the list of a gram,”
unless specified otherwise. Notice that the set of complete
lists of grams is a temporary index structure used in the
process of generating a gram dictionary. After that, the
final index structure does not keep these complete lists.

Let g1 be an existing gram in D, and g be a new gram
obtained by appending a character to the end of g1. Let
g2 be the longest suffix of g that exists in D. Fig. 6(a)
illustrates these grams, and Fig. 6(b) shows an example,
where g1 = in, g = ing, and g2 = ng. Let the new gram
dictionary D′ = D ∪ {g}. We next show how to obtain
the complete and local lists for this new gram, how the new
gram affects the local lists of the existing grams. Notice that
complete lists of grams never change, and this new gram g
does not affect the local lists of the existing grams except
those of g1 and g2.

g1 g2

g

(a) Extend g1 to g.

g

g2g1
(b) An example.

Figure 6: Extending a gram to a new gram.

The complete list C(g) can be obtained by scanning the
string ids on the complete list C(g1). For each occurrence
of a string s in C(g1), consider the corresponding substring
s[i, j] = g1. If the corresponding longer substring s[i, j+1] =
g, then we do the following: (1) Add this string id to the
complete list of the gram g; (2) Remove this occurrence of
string id s from the local list of g1 (if any); and (3) Remove
the occurrence of string id s from the local list of g2 (if any).
As a result, the local lists of grams g1 and g2 could shrink.

The process of computing the local list L(g,D′) is more
subtle. Clearly L(g,D′) ⊆ C(g). One question is whether
we could assign all the ids in C(g) to L(g,D′). The following
example shows that we cannot do this simple assignment in
some cases. Consider the example in Fig. 6(b), in which
we add the new gram g = ing. If the original dictionary
had a gram ingo, whose local list has a string bingo, then
this string id should not appear on the local list of the new
gram ing, because this string will not generate an ing gram
using the new dictionary. This example shows that in the
worst case, to compute L(g,D′), we might need to access
the lists of all grams in dictionary D that have this new
gram g as a substring, and identify some string ids to be
removed from the complete list C(g). Clearly this process
can be very inefficient. However, the following lemma shows
in some cases we do not need this expensive process.

Lemma 1. If the new gram g is a longest gram in the new
dictionary D′, then L(g,D′) = C(g).

This lemma says that if each time we choose a new gram
that does not have a longer gram in the original dictionary,
then we can safely assign the complete list C(g) to its lo-
cal list L(g,D′). In the rest of this section, we assume the
new gram has this property, and our algorithm in Section 5
can satisfy this requirement easily by doing a breadth-first
traversal of the trie.

g g

C(g )1

L(g ,D)1

L(g ,D)2

L1

L2

L(g,D')

1

L(g ,D')2

L1

L2

L(g ,D')
LC

LC

C(g)
LC

Figure 7: Changing inverted lists of grams g1 and g2

after adding a new gram g.

As summarized in Fig. 7, adding g to the existing gram
dictionary D will introduce a complete list C(g) and an iden-
tical local list L(g,D′) for this new gram, which will take
some string ids from the original local lists L(g1,D) and
L(g2,D) of g1 and g2, respectively. As a result, the total
index size (without the complete lists) will decrease.

4.2 Effects on Lower Bounds
Consider a query σ(Q, k). Equation 4 in Section 3.2 shows

a lower bound on the number of common grams between the
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Query Q Dictionary Gram set NAG(Q, 1) Lower bound Candidate ids
D0 {bi, in, ng, go, on} 2 3 1, 2, 3, 4, 6

bingon D1 {bi, ing, go, on} 2 2 1, 3, 4, 6
D2 {bin, ing, go, on} 2 2 1, 6
D0 {bi, it, tt, ti, in, ng} 2 4 3, 4

bitting D1 {bi, it, tt, ti, ing} 2 3 3, 4
D2 {bi, it, tt, ti, ing} 3 2 1, 3, 4

Table 1: Effects of adding a new gram on a dictionary on queries when edit-distance threshold k = 1. In the last

column, each underlined string id is in the answer to the query.

query string Q and a string s in the answer. The lower bound
is decided by both the number of grams in VG(Q) and the
k-th value in the NAG vector, NAG(Q, k). Adding a gram
to D could affect both numbers. 1 Consider the strings in
Fig. 1(a) and two queries, Q1 = bingon and Q2 = bitting,
both with an edit-distance threshold 1. Table 1 shows the
different effects of adding a new gram to an original dictio-
nary on the two queries.

Effects on VG(Q): If the query string Q does not include
a substring of gram g, clearly adding g to the dictionary will
not affect VG(Q). If Q does include a substring of g (pos-
sibly multiple times), for each of them Q[i, j] = g, consider
the longest suffix gram g2 of g that exists in the original
dictionary (Fig. 6(b)). There are two cases.
• If this substring Q[i, j] produces a gram g2 in VG(Q),

then this gram will be subsumed by the new gram g
using the new dictionary. Thus it will not appear in
the new set of grams for Q, causing the size |VG(Q)| to
decrease by 1. For example, consider string bingon in
Table 1. Using D0, bingon produces five grams. Using
D1, which has included one more gram ing, the string
produces four grams. The gram in has been replaced by
a new gram ing, while ng is no longer produced.

• If substring Q[i, j] does not produce a gram g2 using the
original dictionary, then this substring will produce the
same number of grams in VG(Q) using the new dictio-
nary. For instance, for the string bingon in Table 1,
when we add the gram bin to D1 to get D2, the number
of grams for the string does not change.

To summarize, after adding g to the dictionary, the size
|VG(Q)| will either remain the same or decrease.

Effects on NAG(Q, k): Take the string bitting in Table 1
as an example. The addition of the new gram bin to the dic-
tionary D1 causes value NAG(bitting, 1) to increase from
2 to 3. In general, if string Q does not include the gram
g1 nor gram g2, then adding the gram g to the dictionary
will not affect the NAG vector of Q. Otherwise, g could
affect the vector in the following way. It could cause the
values of the PGB vector of the string to increase, because
an edit operation at a position could destroy more grams.
In particular, due to the addition of g, a position in string
Q could either overlap with more grams, or an operation at
this position could destroy one more gram that cannot be
destroyed before adding g. For instance, in the string bin-

gon in our running example, consider its third character n.
After adding bin to D1 to get D2, the PGB value at this
position changes from 1 to 2. The reason is that this po-
sition overlaps with one gram when D1 is used. When we
use D2, this position overlaps with two grams. Notice that

1Although this discussion is based on a query string, the
result is also valid for a string in the collection S in general.

increasing a value in the PGB vector does not necessarily
increase the final NAG values, because the latter are com-
puted using the dynamic programming algorithm presented
in Section 3.2.

Table 2 summarizes the effect of a substring Q[i, j] on
the lower bound of the query string after the new gram g
is added to the dictionary. Take case 2 as an example. It
shows that if the substring includes one of g1 and g2, but
not g, then after the gram g is added to the dictionary, this
substring will cause the lower bound of Q either unchanged,
or to decrease by 1.

4.3 Effects on Candidates
The above analysis has shown that, after adding the gram

g to D, the local inverted lists of the data collection can
change, the query string Q could generate a new set of
grams, and the lower bound |VG(Q)| − NAG(Q,k) could
decrease. As a consequence, the set of candidates satisfying
the new lower bound can also change. Table 2 also summa-
rizes the effects of a substring Q[i, j] on string candidates
after the gram g is added. For case (1), the substring does
not include the gram g1, nor gram g2. Thus this addition of
g will not affect the candidates for the query (represented
as “No change” in the table).

For case (2), the substring includes only one of the grams
g1 and g2, but not g. The set of grams for this string will not
change, i.e., VG(Q,D) = VG(Q,D′). As shown in Fig. 7,
the corresponding local inverted list of g1 or g2 will change.
For those string ids on this list that are not moved to the
local list of the new gram, as represented as L1 or L2 in
the figure, if the lower bound does not change, then whether
these string ids are candidates for the query or not will not
be affected by this new gram (represented as “No change” in
the table). If the bound has decreased by 1, then some of
the string ids on this list, which are not candidates before,
could become candidates, as represented as “No → Yes” in
Table 2. This case is “bad” since more string ids need to be
postprocessed. For those string ids that are moved to the
local list of g, represented as Lc in the figure, if the lower
bound does not change, some of them that are candidates
before adding g might no longer be candidates after adding
g, represented as “Yes → No” in the table. This case is good
since more false positives have been pruned. If the bound
decreases by 1, then some of them who are not candidates
before can become candidates, indicated by “No → Yes”.
Similar analyses can be done for the other two cases.

5. ALGORITHM FOR GENERATING
A GRAM DICTIONARY

We develop an algorithm for automatically generating a
high-quality gram dictionary D for a string collection S to
support queries on S. From Section 4 we can see that adding
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Case Condition on Q[i, j] Lower Bound Candidates satisfying lower bound
1 No g1 and no g2 No change No change
2 One of g1 and g2 No change or -1 No change, “Yes→ No”, or “No → Yes”
3 g No change or -1 No change or “Yes→ No”
4 g1 and g2, but no g No change, -1, or -2 No change, “Yes→ No”, or “No → Yes”

Table 2: Effects of a substring Q[i, j] of a query string Q on the lower bound |VG(Q)| − NAG(Q, k) and the string

candidates satisfying the lower bound after the gram g is added to the dictionary.

a gram to an existing dictionary can have different effects on
the performance of different queries. Therefore, choosing a
good gram dictionary has to be cost based, and it depends on
a given workload of queries. We thus assume we are given a
set of queries W = {σ(Q1, k1), . . . , σ(Qn, km)} on the string
collection S, and we want to generate a gram dictionary to
optimize the overall performance of these queries, measured
by their average query time.

5.1 Algorithm Overview
Fig. 8 formally describes the algorithm. Its main idea is

the following. We first sample some strings from S to get
a new collection S′ to be used to generate inverted lists for
the grams (line 1). The reason to do sampling is to reduce
the space requirement by the algorithm and the estimation
time for each new possible gram to add.

Algorithm: GramGen
Input: String collection S, query workload W , and qmin;
Output: a gram dictionary as a trie T .
Method:

(1) Get a sample collection S′ from strings in S;
(2) Generate qmin-grams for strings in S′;
(3) Use the grams to construct a trie T ;
(4) Initialize each leaf node’s complete list and (identical)

local list of string ids using the generated grams;
(5) Queue Q = {leaf nodes in T };
(6) WHILE (Q is not empty) {
(7) Queue for the next level: Qnew = ∅;
(8) Reorder queue Q;
(9) FOR (each node n in Q) {
(10) n = Q.pop(); // gram “g1” in Fig. 6(a)
(11) Use strings on the complete list of n to

add children to n by appending a character;
(12) FOR (each child node c of n) {

// c corresponds to new gram “g” in Fig. 6(a)
(13) Compute the complete and local lists of c

using the complete list of n;
(14) Find the node n′ in T whose gram is

the longest suffix of the gram for c;
// n′ corresponds to gram “g2” in Fig. 6(a)

(15) IF (Evaluate(T , n, c, n′, W ) returns “yes”) {
// Add this new gram to the dictionary

(16) Qnew.push(c);
(17) Adjust local lists of n and n′;

}
ELSE

// do not add this gram to the dictionary
(18) Remove node c and its lists;

} // “IF”
} // “FOR”

(19) Remove complete list of n; // no longer useful
} // “FOR”

(20) Q = Qnew; // process the next level
} // “WHILE”

(21) RETURN T ;

Figure 8: Algorithm for generating a gram dictionary.

In each iteration, we store the current gram dictionary as
a trie, in which all the paths starting from the root of length
at least qmin correspond to the grams in the dictionary. In
order to efficiently maintain these lists incrementally after
each new gram is added (line 16), we want to minimize the
number of lists that need to be updated. Lemma 1 in Sec-
tion 4.1 shows that if each new gram has the longest length
among the existing grams, we only need to update the lists
of two existing grams using the procedure discussed in Sec-
tion 4.1 (line 17). For this reason, we do a breadth-first
traversal of the trie to add grams, and grow the grams level-
by-level. This traversal is implemented by using two queues:
the queue Q includes the leaf nodes of the current level, and
the queue Qnew includes the leaf nodes of the next level to
be further considered (lines 5, 6, 7, 16, and 20).

In the algorithm we maintain both the complete list and
local list of string ids for each gram, which have several
advantages. (1) They can help us select an extended gram
(line 11). (2) They can be used to estimate the performance
improvement (if any) by adding an extended gram to the
dictionary (line 15). (3) If the sampled strings include all
the strings in S, then after the algorithm terminates, we will
already obtain the (local) inverted lists of grams for the final
dictionary, thus we do not need another scan of the data set
to generate the inverted-list index structure. Notice that
after we finish processing all the extended grams for a node
n, we can safely remove the complete list of n to save space,
since this complete list is no longer needed (line 19).

There are different orders to visit the current leaf nodes to
identify grams to extend. As in [18], we can use three orders.
(1) SmallFirst: Choose a child with the shortest local list;
(2) LargeFirst: Choose a child with the longest local list; (3)
Random: Randomly select a child. We implement such an
order in line 8. In line 11, we need to find possible extended
grams for an existing gram at node n as follows. For each
string s on the complete list of n, consider the substring
s[i, j] corresponding to the gram of n. If the string has
a substring s[i, j + 1], we add a child of node n with the
character s[j], if this child is not present.

EXAMPLE 1. We use Fig. 9 to show one iteration in
the algorithm. Fig. 9(a) shows a trie for the six strings in
Fig. 1(a). For simplicity, we only draw the local lists for
the grams. So far we have processed all the grams of length
qmin = 2. Now we consider expanding the node n8, which
corresponds to the gram bi. We generate its three children
corresponding to the extended grams bin, bio, and bit, by
scanning the strings on the complete list of bi, which is the
same as its local list so far: 〈1, 2, 3, 4〉. For each of the chil-
dren, we compute their complete and (identical) local lists
by scanning the complete list of n8, and identifying the sub-
strings corresponding to this new gram. At this stage, we do
not change the local list of n8 yet, since we have not decided
whether some of the extended grams will be added. Suppose
by running the function Evaluate() we decide to add the gram
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bin to the dictionary. In this case, we modify the local list
of node n8 and the local list of gram in (node n12). The new
trie is shown in Fig. 9(b). �
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Figure 9: One step of adding a gram in algorithm Gram-

Gen. A list with a thicker line is modified. Each dotted

line points to a child that could potentially be added.

5.2 Estimating the Benefits of a Gram
A critical step in the algorithm is to decide whether adding

a candidate gram g for child node c can improve the overall
performance of the query workload (procedure Evaluate in
line 15). A naive way to do this evaluation is to run the query
workload W using the new gram dictionary after adding g,
and compare the performance with that on the original dic-
tionary D. If it does improve the performance, then we add
g to the dictionary. Notice that the trie already includes
the local lists for the grams, which can be maintained incre-
mentally by modifying just three lists for each potential new
gram. Thus re-running the query workload does not require
rebuilding the inverted-list index structure. Still this ap-
proach could be computationally prohibitive since it needs
to rerun the queries for each potential new gram.

In order to do this evaluation efficiently, we can estimate
the effect on the query performance by adding the gram g
corresponding to the child node c. Recall that the time to
answer a query σ(Q,k) mainly consists of two parts: the
time to access the inverted lists of the generated grams of
string Q, and the time to postprocess the candidates to
remove false positives by computing their distances to Q.
Based on the analysis in Section 4, we know that adding the
gram g has several effects on the query performance. Next
we will discuss how to estimate these effects quantitatively.

We first estimate how adding the gram g affects the in-
verted lists. When we expand the node n by adding the
children as potential grams, we have already computed the
complete list and local list for each child, including g. Thus

we know their local lists if g is added. But we do not know
the new local lists of nodes n and n′ (corresponding to “g1”
and “g2” in Fig. 6(a) respectively) after g is added. The size
of each of the two new lists can be estimated by assuming
all the string ids in the new list of g will be removed from
the original local lists of n (for g1) and n′ (for g2).

The exact amount of time to access the inverted lists of
the grams from a query string Q depends on the specific
algorithm used for this process. In the literature there are
several algorithms for doing this step [22, 17]. Different
algorithms have different time complexities in terms of the
lengths of these lists. As an illustrative example, we use
the HeapMerge algorithm in [22] to show how changes on
the lists affect the performance of accessing the lists using
this merge algorithm. The main idea of this algorithm is
to have a cursor on each list, and maintain a heap for the
string ids currently pointed by the cursors on the lists. In
each iteration we process the top element (a string id) on the
heap, and count the frequency of this id. We add the string
id to the set of candidates if its frequency is at least the
specified threshold. We move the cursor of this list to the
next one, and add its new id back to the heap. We repeat
the process until all the ids on the lists are processed. If h
be the number of grams of string Q, and M be the total size
of the lists of these grams, then the time complexity of this
algorithm is O(M log h).

Now let us see how the changes of the lists affect the per-
formance of accessing the lists when answering the queries
in the workload W . For each query σ(Q,k), we use the four
cases described in Table 2 to discuss how to do the analysis.
Let h = |VG(Q,D)|, and M be the total length of the lists
of these grams, and H be the average of the h values for all
the queries in W .
• Case 1: If Q does not have a substring of g1 nor g2, then

the time to access the lists of grams of Q does not change
after adding g.

• Case 2: If Q has only one substring of g1 or g2, then after
adding g, the new list-access time can be estimated as:
α
(
(M−|L(g,D′)|) log h

)
, in which α is a constant to con-

vert list length to running time. (This constant can be
easily maintained by running some sample queries.) So
the reduced time can be estimated as: T2 = α

(
|L(g,D′)|

log H
)
.

• Case 3: If Q has only one substring of g, then after
adding g, the new list-access time can be estimated as
α
(
(M − |L(g1,D)| − |L(g2,D)| + |L(g,D′)|) log (h + 1)

)
.

So the reduced time can be estimated as T3 = α
(
(|L(g1,

D)| +|L(g2,D)| − |L(g,D′)|) log H
)
.

• Case 4: If Q has both g1 and g2, but no g, then after
adding g, the new list-access time can be estimated as
α
(
M − 2|L(g,D′)| log (h)

)
. So the reduced time can be

estimated as T4 = α
(
2|L(g,D′)| log H

)
.

These formulas can be adjusted accordingly if Q has mul-
tiple substrings satisfying these conditions. One way to es-
timate the overall effect on the list-access time by the query
workload W is to go through the queries one by one, and
apply the above formulas for each of them, and compute
the summation of their effects. An alternative way, which
is more efficient, is the following. We build another trie for
the grams from the queries. This trie, denoted by TW , is
constructed and maintained incrementally in the same way
as the trie for the strings in the collection S during the run-
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ning of the algorithm GramGen. Using this trie TW , we can
compute how many queries are in each of the cases 2 - 4.
Let p2, p3, and p4 be the number of queries in W belong-
ing to cases 2, 3, and 4, respectively. The overall reduction
on the list-access time for the queries can be estimated as
p2 × T2 + p3 ∗ T3 + p4 ∗ T4.

We use the same methodology to estimate the overall ef-
fect of adding gram g on the number of candidates. The
main idea is to consider queries in cases 2 - 4. Using the
analysis in Section 4, we classify the queries in each case
based on the effects of g on their lower bounds and num-
bers of candidates. We multiply the number of queries and
the estimated benefit for each query, and compute the sum-
mation of these benefits. In addition, recent techniques as
presented in [19] can also be used to do such estimations.

6. EXPERIMENTS
In this section, we report our experimental results of the

proposed techniques. We used three real data sets to do
the evaluation, as summarized in Table 3. The data set
of “Article Titles” included article titles downloaded from
the DBLP Bibliography.2 The data set of “Movie Titles”
included movie titles downloaded from the Web site of the
Internet Movie Database (IMDB)3. The data set of “Actor
Names” included actor names from the same IMDB site.

Length Range of # of
Data set String # injected edit

Min Max Avg operations
Article Titles 277,000 6 207 66 [1, 6]
Movie Titles 855,000 8 249 35 [1, 3]
Actor Names 1,200,000 4 74 17 [1, 2]

Table 3: Descriptions of the original data sets.

For each data set, we generated query workloads as fol-
lows. We randomly chose a string from the data set, and in-
troduced a random number of edit operations on the string
at random positions. The range of this random number is
shown in the last column in Table 3. Let Q be the new string,
and k be this random number. We formed an approximate
string query σ(Q, k). We generated a query workload W of
1,000,000 strings for a data set. We selected a subset W1

of the query workload, and ran our algorithm to generate
a gram dictionary for the data set using W1. We evaluated
the quality of the gram dictionary by running another sub-
set W2 of queries in W , assuming W1 and W2, both from W ,
have the same probabilistic distribution. We measured their
average running time on the dictionary. In the experiments
the number of queries in workload W2 was always 1, 000. We
used the DivideSkip algorithm in [17]. For each original data
set, whenever larger data sets were needed, we used the same
procedure described above to add new strings by sampling
strings in the data set and introducing random edit opera-
tions to the new strings. We implemented the three policies
of choosing children to extend (line 8 in Fig. 8). The obser-
vation was consistent with our results in [18]: the LargeFirst
policy consistently gave the best performance. Thus in the
experiments we used this policy.

All the algorithms were implemented using GNU C++.
The experiments were run on a Dell GX620 PC with an

2www.informatik.uni-trier.de/∼ley/db
3www.imdb.com

Intel Pentium 2.40GHz Dual Core CPU and 2GB memory
with a 250GB disk, running an Ubuntu (Linux) operating
system. Index structures were assumed to be in memory.

6.1 Effect of Tightening Lower Bounds Using
Dynamic Programming

We first evaluated the effect of tightening lower bounds
using the dynamic programming algorithm (Section 3). We
used a data set with one million actor names and constructed
a gram dictionary using the following setting: 100, 000 sam-
pled strings, 5, 000 queries in workload W1, and qmin = 4.
We used the algorithm in [18] for computing a lower bound
of the number of common grams between strings by choos-
ing k largest values in the PGB vector of the string. This
algorithm is denoted by k-Max. We also implemented our
new dynamic programming algorithm for computing a lower
bound, denoted by DP. Fig. 10(a) shows the different aver-
age lower bounds for different edit distance thresholds com-
puted by these two algorithms. The x-axis is the edit dis-
tance threshold for different queries in the workload W2.
Fig. 10(b) shows how the average query time changed when
we increased the number of strings in a data set by selecting
a subset of strings in the original data set.

When the threshold was 1, both algorithms computed the
same lower bounds with the average value, 7.28. When the
threshold was 2, the average lower bound computed by k-
Max was 5.15, while it was 5.28 by DP. Although the lower
bound computed by DP increased slightly, the performance
had a better improvement. For instance, when we used the
data set of 1 million strings, the average query time using
the bound of k-Max was 9.8ms, while the time was reduced
to 2.8ms by using the lower bounds computed by DP! When
the edit distance threshold was 3, the average lower bound
by k-Max was 2.25, while it was 1.76 by DP. This tighter
lower bound reduced the average query time from 50.7ms
to 23.3ms for the data set of 1 million strings. We observed
similar reductions on other edit distance thresholds, and did
not report the results in Fig. 10(b).

Figs. 10(c)-(f) show the results for the other two data sets.
The dynamic programming algorithm also computed tighter
lower bounds, and thus reduced query time. The time re-
duction for these two data sets was not as significant as that
for the data set of actor names. The main reason is that the
strings in the last two data sets were longer, which resulted
in larger lower bounds. These relatively large lower bounds
can already prune many string candidates, and tightening
these bounds did not improve the query performance too
much. As a conclusion, the benefits of using the dynamic
programming algorithm are more significant when the query
performance is very sensitive to changes of lower bounds, es-
pecially for relatively short strings.

6.2 Quality of Gram Dictionary
We evaluated the algorithm GramGen for generating gram

dictionaries. For each of the three original data sets, we
generated a data set with 1 million strings. We used qmin =
5 for article titles, and qmin = 4 for movie titles and actor
names. For each data set, we fixed a workload W1 of queries,
and varied the sampling ratio in the algorithm from 0.1% to
4%. We also fixed a sampling ratio, and varied the number
of queries in the workload.
Accuracy of Gram-Benefit Estimation: The quality of
its final dictionary depends on how accurately we can es-
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Figure 10: k-Max and dynamic programming.

timate the benefits of a new gram. We conducted experi-
ments to evaluate the accuracy of the Evaluate estimation
method. For each potential gram g, we used a brute force
approach by running the queries in the workload W1 using
the dictionary D without the gram g, and computing their
average time. We also ran the queries with the dictionary
D ∪ {g}, and measured the average time. Notice that this
step, which was time consuming, is mainly for comparison
purposes, and it is not needed in our algorithm. If the aver-
age time decreases, we should add this gram to D. We also
estimated the benefits of gram g, as described in Section 5.2,
and made a decision about whether to add g. If this decision
is consistent with the decision of the brute force approach,
we call it a correct decision. We measured the accuracy of
the estimation as follows:

Accuracy =
# of correct decisions

# of evaluated grams
× 100%.

Fig. 11(a) shows the accuracy results for different sam-
pling ratios for the three data sets, when we used 4, 000
queries in workload W1. When the sampling ratio was 0.5%
(5, 000 strings), the accuracy was already 79.8% for the data
set of actor names, 72.1% for the movie titles, and 57.3% for
the article titles. As we further increased the sampling ratio,
the accuracy kept increasing (with a slower pace), since the
sampled strings more accurately represented the distribution
of grams in the entire data set.

Fig. 11(b) shows how changing the number of queries in
the workload W1 affected the estimation accuracy for the
three data sets, when the sampling ratio was 4% (40, 000
strings). When there were 2, 000 queries, the accuracy was

80.3% for the data set of actor names. It increased to 83.9%
when the number of queries increased to 50, 000. Similar
results were seen for the other two data sets. The reason for
the accuracy improvement is that our estimation method
uses frequencies of gram lists from the queries as a repre-
sentative distribution. The more queries we have, the more
representative these lists are for the real distribution.
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Figure 11: Accuracy of estimating gram benefits.

Query Performance: We evaluated the quality of a gener-
ated gram dictionary for each data set by running a workload
W2 of 1, 000 queries on the data set, using the generated dic-
tionary. Fig. 12(a) shows how the average running time of
queries changed if we increased the sampling ratio to gener-
ate the gram dictionary, for the three data sets. The analysis
is similar to that of Fig. 11(a). As we increased the sampling
ratio, since our method gave more accurate estimations, we
added high-quality grams to the dictionary, which reduced
the running time of queries.

Fig. 12(b) shows how the average query time changed if
we increased the number of queries in the workload W1 to
generate the gram dictionary. The analysis is similar to that
of Fig. 11(b). As we increased the number of queries in the
workload, the frequencies of lists used by our method became
a better representation of the real distribution, making our
method generate better grams. Thus the running time of
queries reduced.
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Figure 12: Average query time.

Dictionary-Construction Time: Fig. 13(a) shows how
the total time to construct a gram dictionary changed when
we increased the sampling ratio. This construction time
grew linearly as the sampling ratio increased. For instance,
for the data set of movie titles, when we sampled 0.5% of the
strings (i.e., 5, 000 sampled strings), the total construction
time was only 1.65 seconds. When we sampled 4% of the
strings, the total construction time was 8.81 seconds. For
the data set of movie titles, when we sampled 0.5% of the
strings, the total construction time was only 4.72 seconds.
When we sampled 4% of the strings, the total construction
time was 33.23 seconds. The reason for this growth is that,
as we sampled more strings from each data set, it took more
time to incrementally maintain the complete list and local
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list for each gram. Thus the time in each step in the al-
gorithm increased, causing more time to construct the final
dictionary. The dictionary-construction time for the article
data set was the longest among the three data sets, since
the strings in this data set were the longest. It shows that
the construction time is also affected by the string lengths,
which affect the lengths of gram lists.

Fig. 13(b) shows how the construction time changed when
we increased the number of queries in the workload W1,
when the sampling ratio was fixed to be 4%. As this num-
ber increased, the construction time also increased. The
reason for this growth is that, as we had more queries in the
workload W1, it took more time to incrementally maintain
the trie built for the queries. Notice that since the sampled
strings were fixed, increasing the number of queries in W1

did not increase the number of grams that needed to be eval-
uated. Thus the linear growth rate was smaller than that of
the sampling ratio.
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Figure 13: Dictionary-construction time.

6.3 Choosing qmin

Algorithm GramGen assumes a given qmin parameter. We
evaluated how different qmin values affect the quality of the
final gram dictionary. For the data set of article titles, we
first fixed a workload W1 of 3, 000 queries, and used different
sampling ratios for the data strings. We used different qmin

values. The results of average query performance using the
final gram dictionary are shown in Fig. 14(a). It shows that,
for a fixed sampling ratio, as we increased the qmin value, the
average query time first decreased. After qmin was greater
than 5, the query time started increasing. That is, the qual-
ity of the final gram dictionary first increased, then started
decreasing. This minimum point did not change even when
we varied the sampling ratio. We also did the experiments
by fixing the sampling ratio to 2%, and changing the number
of queries in workload W1. The results in Fig. 14(b) show
that we have the same minimum point qmin = 5 indepen-
dently from the number of workload queries. We had the
same observation for the other two data sets.

These experimental results suggested the following way to
choose an optimal qmin automatically. We fixed a sampling
ratio and a number of queries in workload W1. We ran the
GramGen algorithm for different qmin values, and compared
the average query performance for the generated gram dic-
tionary for each qmin value. We chose the qmin value that
can give us the smallest query running time.

6.4 Comparison with Algorithm Prune

In [18] we proposed a heuristic-based algorithm, called
Prune, for generating a gram dictionary for a collection of
strings. This algorithm requires a few important parame-
ters, and does not consider a workload of queries. We used
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Figure 14: Effect of qmin on query time (article titles).

this algorithm, and ran it on a data set of article titles. We
manually tuned those parameters in order to achieve the
best performance, and the optimal setting was: qmin = 5,
qmax = 7, frequency threshold T = 2, 000, and LargeFirst
policy. Then we ran our algorithm GramGen to generate a
gram dictionary, with the following setting: 1% sampling
ratio, 2, 000 workload queries, qmin = 5 (automatically gen-
erated). We compared the query performance using these
two different dictionaries.

Fig. 15(a) shows how the average query time using the two
dictionaries changed as the size of the data set increased.
Fig. 15(b) shows the query performance results for queries
with different edit distance thresholds, when the data set
had 1 million strings. The figures show that the gram dic-
tionary generated by our new algorithm had a higher quality
than that by the previous algorithm.
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Figure 15: Comparison of dictionaries generated by al-

gorithms GramGen and Prune (article titles).

7. RELATED WORK AND CONCLUSIONS
In the literature the term approximate string matching

also means the problem of finding within a long text string
those substrings that are similar to a given query pattern.
See [20] for an excellent survey on research related to this
problem. In this paper, we use this term to refer to the
problem of finding from a collection of strings those similar
to a given query string.

Many algorithms have been developed for the problem of
approximate string joins based on various similarity func-
tions [1, 2, 4, 6, 8, 22], especially in the context of record
linkage [14]. Some of them are proposed in the context of
relational DBMS systems. The VGRAM [18] technique has
been shown to improve those algorithms based on edit dis-
tance. Several recent papers have mainly focused on approx-
imate selection (or search) queries [9, 17]. In this paper we
mainly focused on selection queries due to its importance
to many applications. Although our discussions mainly as-
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sumed an index of inverted lists of grams, they are also valid
for other similar index structures, since we mainly focused
on how the bags of string ids for grams change when adding
a new gram to the dictionary. For example, if we use a hash
table to manage these bags, as used in [1], the discussions are
still valid after minor changes according to the algorithm.

There are recent studies on the problem of estimating the
selectivity of SQL LIKE substring queries [5, 11, 15], and
approximate string queries [12, 16, 19]. Some of the methods
in these techniques can be adopted to solve the estimation
problems in generating a gram dictionary. Notice that our
estimation subproblems are more complicated due to the
fact that the overall performance of queries is affected by
several factors, such as the lists of grams, the method to
compute the lower bound of common grams between similar
strings, and the number of candidates satisfying the lower
bound. It also depends on the specific algorithm used to
access the inverted lists of grams.

Another related study is [10], which proposed a gram-
selection technique for indexing text data under space con-
straints. They mainly considered SQL LIKE queries using
fixed-length grams. Our work differs from theirs since we
focused on approximate string queries using variable-length
grams. [3] studied the problem of selecting word grams
for improving classification performance of email messages.
Other related studies include [7, 13, 21].

Conclusions: In this paper, we studied a fundamental prob-
lem in answering approximate queries on a collection of
strings in the context of the VGRAM technique: what is
the relationship between a predefined gram dictionary and
the performance of queries? We proposed a dynamic pro-
gramming algorithm for computing a tight lower bound on
the number of common grams shared by two similar strings
in order to improve query performance. We analyzed how
adding a gram to an existing dictionary affects the index
structure of the string collection, and the performance of
queries. We proposed an efficient algorithm for automati-
cally generating a high-quality gram dictionary. Our exten-
sive experiments on real data sets show that these techniques
can greatly improve approximate string queries.
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