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Abstract—We study moving-target defense (MTD) that ac-
tively perturbs transmission line reactances to thwart stealthy
false data injection (FDI) attacks against state estimation in
a power grid. Prior work on this topic has proposed MTD
based on randomly selected reactance perturbations, but these
perturbations cannot guarantee effective attack detection. To
address the issue, we present formal design criteria to select MTD
reactance perturbations that are truly effective. However, based
on a key optimal power flow (OPF) formulation, we find that
the effective MTD may incur a non-trivial operational cost that
has not hitherto received attention. Accordingly, we characterize
important tradeoffs between the MTD’s detection capability
and its associated required cost. Extensive simulations, using
the MATPOWER simulator and benchmark IEEE bus systems,
verify and illustrate the proposed design approach that for the
first time addresses both key aspects of cost and effectiveness of
the MTD.

I. INTRODUCTION

Cyber attacks against critical infrastructures can lead to

severe disruptions. The December 2015 attack against the

Ukraine’s power grid was a real-world example, which caused

power outages for a large number of customers for hours [1].

These attacks were typically crafted by sophisticated attackers,

sometimes with national backing, who managed to spend

considerable time inside a system to learn its operational

details, and accordingly designed the injection of malicious

data/control to disrupt its operations [2]. It is thus imperative

to design counteracting defense approaches to defeat the

knowledgeable attackers. Moving-target defense (MTD) [3] is

a defense approach that has received increasing attention. It

is based on dynamically changing the system parameters that

attackers need to target for customizing their attacks, in order

to invalidate the attackers’ prior knowledge of the system and

render ineffective any of their prior designed strategies. It has

the potential to make it extremely difficult or impossible for

would-be attackers to keep up with the system dynamics.

In this paper, we focus on false data injection (FDI) attacks

against state estimation (SE) in power grids. SE is a key

method for grid operators to obtain a best estimate of the

system state from noisy sensor measurements collected via

a supervisory control and data acquisition (SCADA) system,

This work was supported by the National Research Foundation (NRF),
Prime Minister’s Office, Singapore, under its National Cybersecurity R&D
Programme (Award No. NRF2014NCR-NCR001-31) and administered by the
National Cybersecurity R&D Directorate.

for example. Its output is used in critical applications such as

economic dispatch (for profits) and contingency analysis (for

reliability). A bad data detector (BDD) associated with the

SE is often deployed for identifying bad data (e.g., sensor

anomalies and FDI attacks) to ensure trustworthy results.

However, it has been shown [4] that FDI attacks crafted

using detailed knowledge of a power grid’s topology and the

reactance settings of its transmission lines can bypass the

BDD and remain stealthy. Such an undetected attack can have

severe consequences, e.g., trips of transmission line breakers

or unsafe frequency excursions [5], [6].

To strengthen the BDD, it has been shown that if a carefully

chosen subset of the sensors can be well protected (e.g., by

tamper-proof and encryption-enabled PLCs), or if a key subset

of the state variables can be independently and reliably verified

by phasor measurement units (PMUs) deployed at strategically

chosen locations, then a BDD-bypassing FDI attack becomes

impossible [7], [8], [9]. However, a major revamp of the basic

sensing infrastructure can be quite expensive (e.g., PMU has

high cost [10]) or infeasible for the many existing legacy

systems whose life cycles often last decades and which are not

expected to retire for the foreseeable future. Alternatively, FDI

attacks can be significantly mitigated by MTD that invalidates

the knowledge attackers used for crafting their prior attacks,

specifically by active perturbation of the grid’s transmission

line reactance settings in our application context [11], [12],

[13]. This approach is practical because of current D-FACTS

devices capable of active impedance injection [14]. Because

of their low cost and ease and flexibility of deployment, they

are being increasingly installed in existing alternating-current

(ac) transmission networks to control power flows [15].

Prior work on MTD for FDI attacks against power grid

SE has two important limitations, which are related. First,

the MTD is implemented by selecting a random subset of

transmission lines and introducing similarly random pertur-

bations to their reactance settings [13]. There are no known

conditions for the MTD perturbations to be truly effective. An

important finding of this paper is that the randomly selected

perturbations do not necessarily guarantee effective detection.

Rather, a perturbation must satisfy certain design criteria that

we will make clear (in Section V), or FDI attacks crafted

using (outdated) system knowledge before the perturbation

will remain stealthy after it. Second, without an adequate



characterization of effective MTD, prior work has not been

able to address explicitly the associated cost involved. Rather,

it is assumed that the MTD can be always constrained to have

negligible or some “low enough” operational cost [13], [11].

However, MTD designed with any absolute cost constraints

will not be useful if the MTD does not perform. It is thus

critical to understand the inherent cost-benefit tradeoff of the

MTD to accordingly inform system operators (SOs) in their

choice of security policies, which is a key objective of this

paper.

To achieve our goal, we analyze the problem of selecting

MTD reactance perturbations that jointly consider their effec-

tiveness (i.e., capability of attack detection) and operational

cost (i.e., economic inefficiency). As in prior work, we assume

that the attacker has learned the system configuration initially

and uses this knowledge to craft stealthy FDI attack vectors,

but the attacker cannot track the reactance perturbations with-

out significant delays. In this setting, large MTD perturbations

will cause the actual system to deviate significantly from

the attacker’s prior knowledge, so that a large majority of

the previously stealthy FDI attacks will now likely become

detectable. Conversely, however, the large perturbations will

also cause the power grid to operate significantly away from

the optimal state, thereby incurring a significantly higher

economic cost. On the other hand, smaller perturbations will

be less expensive, but risk more undetected attacks. The

general cost-benefit tradeoff is thus interesting.

In this paper, we address the cost-benefit tradeoff of the

MTD by formulating its perturbation selection as a constrained

optimization problem, namely minimization of the operational

cost subject to a given effectiveness constraint. The opera-

tional cost is quantified as the increment due to the MTD

over the cost achieved at optimal power flow (OPF) of the

system without MTD. This cost is always non-negative. The

effectiveness is quantified as the fraction of prior stealthy

FDI attacks (i.e., those before the MTD perturbation) that

will become detectable by the BDD after the perturbation.

It is difficult to give an exact analysis of the effectiveness.

We will instead employ a heuristic metric that effectively

invalidates the attacker’s knowledge required to bypass the

BDD. Extensive simulation results show that the heuristic

metric effectively approximates the true metric.

We use a direct-current (dc) power flow model to approx-

imate power flows in an alternating-current (ac) grid. This

approach is widely adopted and well justified in power system

research (e.g., [4], [7], [13]). Under the dc model, the OPF

cost corresponds mainly to the cost of generation dispatch.

Moreover, the sensor measurements are linearly related to the

system state through a measurement matrix, which in turn

depends on the power grid topology and the reactance of the

transmission lines. Naturally, perturbing a branch reactance

will alter the measurement matrix correspondingly. A key

observation in our analysis is that the MTD’s effectiveness

and operational cost are related to the separation between the

column spaces of the measurement matrices before and after

the MTD. While the effectiveness is enhanced by increasing

the separation between the two column spaces, the operational

cost increases. Therefore, different degrees of separation be-

tween the two spaces provide a spectrum of balance between

the two metrics.

We note that, in light of our deliberate cost analysis of the

MTD, the MTD can be viewed as a form of insurance against

possible FDI attacks. Such insurance requires an ongoing

payment of “premiums” irrespective of whether an attack

occurs or not. However, in the event of an attack, which may

be accumulatively extremely expensive if allowed to persist

indefinitely because of lack of detection, the insurance can

provide a much needed hedge against the damage. In actual

deployments, whether to procure such insurance (i.e., turn on

the MTD or not) is likely a matter of diverse factors such

as institutional policies (including the institution’s attitude

towards risk taking), estimated vulnerability to attacks or

likelihood of attacks, and the cost-benefit tradeoff specific to

the power grid in question. This paper sheds light on tradeoffs

in the key technical problem, which serves as an important

reference basis for the other questions. Nevertheless, it does

not attempt to answer all the questions, particularly policy

questions, that are also interesting.

The main contributions of the paper are summarized as

follows:

• We derive conditions for an MTD reactance perturbation

to ensure that no FDI attacks crafted based on the out-

dated (pre-perturbation) system configuration will remain

stealthy after the perturbation.

• When the reactance adjustment capability of D-FACTS is

insufficient for achieving the above condition, we present

heuristic design criteria for selecting MTD perturbations

that can still highly likely achieve effective attack detec-

tion.

• We characterize the tradeoff between the MTD’s effec-

tiveness and its operational cost in a constrained opti-

mization framework. Additionally, we present extensive

simulation results using the realistic MATPOWER sim-

ulator for benchmark IEEE bus systems to verify and

illustrate the tradeoff.

The remainder of this paper is organized as follows. Sec-

tion II reviews related work. Section III introduces the pre-

liminaries. Section IV explains the attacker and the defender

model. Sections V and VI analyze the MTD’s effectiveness

and its cost-benefit tradeoff. Section VII presents simulation

results. Section VIII concludes. The technical proofs can be

found in Appendices A,B and C.

II. PRIOR WORK

Recent work [4] analyzed the condition for bypassing the

BDD of SE and proposed a technique to construct BDD-

bypassing FDI attacks using complete knowledge of the power

grid topology and the branch reactances. Subsequent research

[16] showed that such attacks can be constructed using partial

knowledge of the power grid topology. However, the knowl-

edge of power grid topology is difficult to obtain in practice.

Recent work [17], [18] showed that BDD-bypassing attacks



can also be crafted using the eavesdropped measurement data

only. The impact of such stealthy FDI attacks on system

efficiency and safety were investigated. In particular, the

economic impact of FDI attacks were studied in [19] and [20].

Reference [6] showed that the attacker can drive the power

system frequency to unsafe levels by injecting a sequence of

carefully-crafted FDI attacks.
To address BDD’s vulnerability, defense mechanisms based

on protecting a strategically-selected set of sensors and their

data links were proposed [7], [8], [9]. The use of generalized

likelihood ratio test was proposed to detect FDI attacks when

the adversary has access to only a few meters in [21].

Reference [22] presented a sparse optimization based approach

to separate nominal power grid states and anomalies.
The concept of MTD was originally proposed for enterprise

networks based on changing the IT features of devices such

as end hosts’ IP addresses and port numbers, the routing

paths between nodes, etc. [23], [24]. More recent work has

proposed MTD in power systems by changing its physical

characteristics [11], [12], [13]. In particular, on-going FDI

attacks can be detected by introducing reactance perturbations

that are known only to the defender (SO) [11], since the

change in sensor measurements (after the perturbations) will

be different from its predicted value based on the power

flow model (due to the attack). It has also been shown that

stealthy FDI attacks can be precluded by actively perturbing

the branch reactances to invalidate the attacker’s knowledge

[13]. We similarly consider MTD for power systems in this

paper. Compared with the prior work, ours is the first to jointly

consider the MTD’s effectiveness and its operational cost. We

provide hitherto unavailable formal design criteria for selecting

effective MTD reactance perturbations, and expose important

tradeoffs between the effectiveness and operational cost.

III. PRELIMINARIES

Power Grid Model

We consider a power network that is characterized by a set

N = {1, . . . , N} of buses, L = {1, . . . , L} of transmission

lines (an example of the 4 bus power system is shown in

Figure 3). The line l ∈ L that connects bus i and bus j is

denoted by l = {i, j}. The time of operation is denoted by

t ∈ R.
At bus i, we denote the power generation and load at time

t by Gi,t and Li,t respectively and the reactance of link l by

xl,t. We adopt the dc power flow model [25], under which the

power flow on line l at time t denoted by Fl,t, is given by

Fl,t =
1

xl,t

(θi,t − θj,t),

where θi,t and θj,t are the voltage phase angles at buses i, j ∈
N respectively at time t. For safe operation, the branch flows

must be maintained within the power flow limits Fmax
k at all

time, i.e.,

−Fmax
k ≤ Fk,t ≤ Fmax

k , ∀t.

The relationship between branch power flows and the voltage

phase angles can be compactly represented as ft = DtA
T
θt,

where the matrix A ∈ R
N×L

is the branch-bus incidence

matrix given by

Ai,j =





1, if link j starts at bus i,

−1, if link j ends at bus i ,

0 otherwise,

and Dt ∈ R
L×L

is a diagonal matrix of the reciprocal of link

reactances, i.e.,

Dt = diag

([
1

x1,t
,

1

x2,t
, . . . ,

1

xL,t

])
,

and ft = [F1,t, . . . , FL,t]
T (similarly gt, lt,θt denote the

vector forms of the corresponding quantities).

We assume that a subset of the links LD ⊆ L are equipped

with D-FACTS devices, and the reactances of these links can

be changed within the range [xmin,xmax], where xmin,xmax

are the reactance limits achievable by the D-FACTS devices.

Naturally, xmin
l = xmax

l = xl,t if l /∈ LD. Denote the vector

of branch reactances by xt.

State Estimation & Bad Data Detection Technique

SE is a technique of estimating the system state from

its noisy sensor measurements [25]. Under the dc power

flow model, the state at time t corresponds to the nodal

voltage phase angles θt, which are monitored by a set of

M measurements zt ∈ R
M
. The measurements correspond

to the nodal power injections, and the forward and reverse

branch power flows, i.e. zt = [p̃t, f̃t,−f̃t]
T . We note that the

measurements may be different from the actual values of pt

and ft due to sensor measurement noises or cyber-attacks. The

measurement vector and the state are related as

zt = Htθt + nt,

where nt is the measurement noise, which is assumed to

have Gaussian distribution. Ht ∈ R
M×N

is the measurement

matrix given by

H =




DtA
T

−DtA
T

ADtA
T


 .

The estimate of the system state, θ̂t, is computed using a

maximum likelihood (ML) estimation technique, given by

[25],

θ̂t = (HT
t WHt)

−1HT
t Wzt,

where W is a diagonal weighting matrix whose elements are

reciprocals of the variances of the sensor measurement noise.

A BDD is used to detect faulty sensor measurements. It

compares the residual defined by rt = ||zt − Htθ̂t|| against

a pre-defined threshold τ and raises an alarm if rt ≥ τ. The

detection threshold τ is determined by the SO to ensure a

certain false positive (FP) rate α, where α > 0 (usually a

small value close to zero).



Fig. 1: System block diagram.

Undetectable FDI Attacks

We consider FDI attacks against the SE, in which the

attacker injects an attack vector at ∈ R
M

into the sensor

measurements, i.e., zat = zt+at, where zat is the measurement

vector under an attack. In general, the BDD can detect

arbitrary FDI attack vectors. However, it is demonstrated [4]

that the BDD’s detection probability for attacks of the form

at = Htc, where c ∈ R
N
, is no greater than the FP rate α.

Such attacks are referred to as undetectable attacks.

Optimal Power Flow Problem

OPF is an optimization framework to adjust the power

flows in the network (by setting the generator dispatch and

the branch reactances) with the objective of minimizing the

generation cost for a given load vector lt ∈ R
N
, stated as

follows1:

COPF,t = min
gt,xt

∑

i∈N

Ci(Gi,t) (1a)

s.t. gt − lt = Btθt, (1b)

−fmax ≤ ft ≤ fmax, (1c)

gmin ≤ gt ≤ gmax, (1d)

xmin ≤ xt ≤ xmax, (1e)

where Ci(Gi,t) is the cost of generating Gi,t units of power

at node i ∈ N , the matrix Bt = ADtA
T . In (1), the first

constraint (1b) represents the nodal power balance constraint,

i.e., the power injected into a node must be equal to the power

flowing out of the node. Constraints (1c)-(1e) correspond to

the branch power flows, generator limits, and D-FACTS limits,

respectively. We denote g∗
t ,x

∗
t = argmaxgt,xt

OPF. We note

that the OPF cost depends on the branch reactances through

the matrix Bt (in addition to the loads).

IV. MOVING-TARGET DEFENSE IN POWER GRIDS

A. Attacker and the Defender Model

A block diagram of the system under study is shown

in Fig. 1. We consider a strong attacker who has access

to the measurement data communicated between the field

devices and the control center. Such access could be obtained

by exploiting vulnerabilities in power grid communication

1In the absence of D-FACTS devices installed within the grid, OPF
optimizes over the generator dispatch values only (which is the version of
OPF traditionally used [25]).

Pre-perturbation Post-perturbation

Time between MTD

Ht H′

t′
Measurement

Matrix

Time

Time between MTD

t t′Time

Fig. 2: MTD timeline. The vertical arrows indicate the times

at which the system is perturbed.

systems. For example, in modern-day power grids, the field

devices (such as remote terminal units) are often IP-accessible

[26]. We also assume that the attacker can learn the system’s

measurement matrix (using the eavesdropped measurements)

and craft undetectable FDI attacks accordingly (e.g., see [17],

[18]).

Under MTD, the defender (e.g., the SO) tries to thwart

the FDI attacks by actively perturbing the transmission line

reactances to invalidate the attacker’s prior knowledge. We

assume that at the time of introducing MTD perturbations,

there are no on-going FDI attacks. Note that the power system

under consideration is naturally dynamic (even without MTD)

since the branch reactances are optimized periodically to

reflect temporal changes in the system load (refer to the OPF

problem in (1)). However, these natural changes are usually

insufficient for effectively negating the attacker’s knowledge.

Thus, the defender deliberately introduces an additional reac-

tance perturbation to ensure the MTD’s detection capability.

The defender implements the MTD reactance perturbations

by sending MTD control commands to the remote D-FACTS

devices in the grid. Unlike the sensor measurements that

support the grid’s normal operation (e.g., extensive SCADA

measurements collected every few seconds), these commands

are much less frequent (e.g., hourly, see the discussion below),

have much more restricted scope (i.e., between the control

center and the set of D-FACTS devices only), and do not

have stringent real-time constraints. Hence, we assume that

it is feasible to encrypt the MTD commands to ensure their

confidentiality.

We note that although the attacker cannot read the MTD

commands directly due to their encryption, in principle he may

still infer the MTD perturbations by monitoring their effects

on the eavesdropped sensor measurements and estimating the

new measurement matrix accordingly. Thus, the secrecy of

the MTD generally decays over time. In practice, however,

the learning will be time consuming since the attacker must

collect an informative sequence of the measurements over a

significant duration of time. In this paper, we assume that the

time interval between the MTD perturbations is sufficiently

small, so that during it the attacker’s gain in knowledge (of

the measurement matrix) is negligible.

A guiding principle to estimate the perturbation time in-

terval can be obtained from [17], in which it is shown that

FDI attacks against an IEEE 14-bus system require about

500−1000 measurements of the system to successfully bypass

the BDD, even if these measurements are assumed to have
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Fig. 3: 4 bus system under consideration. The loads are

indicated in MWs.

maximum information diversity in that they are i.i.d. Hence,

if we assume optimistically for the attacker that SCADA

measurements need to be only 5−10 seconds apart to achieve

the information diversity, their result suggests that the time

required by the attacker to learn the system sufficiently well

for stealthy attacks is on the order of a few hours. Accordingly,

hourly MTD perturbations might be realistic for practical

systems. Further, we note that utilities typically solve the OPF

more frequently, i.e., every 5− 10 minutes (whereas we only

need to update the MTD every hour or so). Thus, between the

MTD updates, the OPF will be solved as in (1).

The MTD timeline is illustrated in Fig. 2. We consider two

representative time instants t and t′ at which the reactances

are perturbed for MTD. We denote the branch reactances and

the measurement matrix after applying the MTD perturbations

by x′
t′ = [x′

1,t′ , . . . , x
′
L,t′ ]

T and H′
t′ respectively, and the

reactance perturbation vector by ∆xt,t′ = xt − x′
t′ . We note

that in the absence of MTD, the branch reactances and the

measurement matrix would be set to xt′ and Ht′ by solving

(1) at time t′.
In the rest of the paper, we address the question of how to

select MTD perturbations that are effective in detecting FDI

attacks crafted based on the outdated (i.e., pre-pertubation)

knowledge, and examine their cost-benefit tradeoff. We use

a′t′ to denote the value of a power system parameter at after

the MTD. E.g., θ′t′ denotes the nodal voltage phase angles

after the MTD. To motivate our inquisition, we now illustrate

an example to show that certain randomly selected MTD

perturbations will remain vulnerable to FDI attacks crafted

with the attacker’s pre-pertubation knowledge of the system.

B. A Motivating Example

We consider the 4-bus example shown in Fig. 3 [27]. For

simplicity, we assume that the system load is fixed (indicated

in Fig. 3) and does not change with time. Furthermore, the pre-

perturbation system state and the reactance settings xt (and

Ht) are adjusted by solving (1). The resulting branch flows,

generation values and OPF cost are listed in Table II. The

attacker is assumed to have learned the pre-perturbation matrix

Ht.

To implement the MTD, we consider four

reactance perturbation vectors respectively given by

∆x
(1)
t,t′ = η[x1, 0, 0, 0]

T , ∆x
(2)
t,t′ = η[0, x2, 0, 0]

T ,∆x
(3)
t,t′ =

r
′(1)

r
′(2)

r
′(3)

r
′(4)

Attack 1 2.82 2.87 0 0

Attack 2 0 0 2.87 2.82

TABLE I: BDD residual values.

Line Flow (MWs) Gen. (MWs) Cost($)

Line 1 Line 2 Line 3 Line 4 Gen 1 Gen 2
1.15×
104126.56 173.44 -43.44 -26.56 350 150

TABLE II: Pre-perturbation power flows, generator dispatch

and OPF cost for 4-bus system.

MTD Gen. (MWs) OPF Cost ($)

∆x1 337.37 162.62 1.1626× 104

∆x2 340.51 159.48 1.595× 104

∆x3 348.62 151.37 1.1514× 104

∆x4 345.95 154.02 1.154× 104

TABLE III: Post-perturbation generator dispatch and OPF

cost.

η[0, 0, x3, 0]
T , ∆x

(4)
t,t′ = η[0, 0, 0, x4]

T , where η is the

percentage change in the reactance relative to its initial value.

We assess each of the four MTD perturbations in terms of (i)

attack detection and (ii) operational cost.

For attack detection, we inject an attack of the form a =
Htc into the modified power network (after the MTD), and

examine its BDD residual. For illustration, we consider two

attacks – attack 1 in which c = [0, 1, 1, 1]T and attack 2 in

which c = [0, 0, 0, 1]T – and set η = 0.2. For simplicity,

we ignore measurement noises. The BDD residuals under the

four MTD perturbations are listed in Table I. Note that in

the absence of measurement noise, a non-zero value of the

residual indicates the presence of attack. We observe that for

each of the four perturbations, there exist attack vectors of the

form a = Htc, which continue to bypass the BDD for the

perturbed power network.

We also enlist the post-pertubration OPF cost in Table III.

We observe that the OPF cost increases in each of the

four cases, compared to its pre-perturbation cost, and the

perturbation ∆x3 incurs the least cost.

C. MTD Perturbation Selection Challenges

Based on the above illustrating example, we make the

following conclusions. First, it is evident that a subset of

the attacks of the form a = Htc continue to bypass the

BDD after the MTD. Since the defender does not have prior

knowledge of the actual attack vector (note that c is chosen

by the attacker), he cannot make an informed choice of

which perturbation to adopt. Without such knowledge, the

defender must select the MTD that is capable of detecting

a largest subset of the possible attacks. The second design

criterion is the MTD’s operational cost, i.e., other things being

equal, the defender prefers a least-cost MTD. In the following



sections, we characterize formally the MTD’s effectiveness

and its operational cost, and present a framework for choosing

appropriate MTD perturbations that balance between the two

concerns.

V. MTD’S EFFECTIVENESS OF ATTACK DETECTION

In this section, we address the problem of selecting effective

MTD reactance perturbations from an attack detection point

of view. The goal is to select reactance perturbations within

the physical constraints of the D-FACTS devices to effectively

invalidate the attacker’s knowledge for bypassing the BDD.

The section is divided into two parts. In the first part, we

devise a metric to quantify the effectiveness of the MTD. In

the second part, we derive the conditions and propose design

criteria for MTD perturbations to preclude stealthy FDI attacks

in practice.

Henceforth, we use the notation “MTD H′
t′” to refer to a

reactance perturbation that changes the measurement matrix

from Ht to H′
t′ . We let A denote the set of all attack vectors

of the form a = Htc, i.e.,

A = {a : a = Htc, ||a|| ≤ amax, c ∈ R
N}.

For an attack vector a, we let P ′
D(a) denote its detection

probability under MTD H′
t′ , where P ′

D(a) = P(r′ ≥ τ).
We denote by A′(δ) ⊆ A the subset of attacks in A whose

detection probability under MTD H′
t′ is greater than a given

δ ∈ [0, 1], i.e.,

A′(δ) = {a : a = Htc, ||a|| ≤ amax, P
′
D(a) > δ, c ∈ R

N}.

A. Metric to Quantify MTD’s Effectiveness

First, we devise a metric to quantify the MTD’s effective-

ness. Intuitively, an MTD perturbation “A” is more effective

than a perturbation “B” if it can detect more FDI attacks in

the set A with high probability. However, A, a subset in the

n-dimensional space (R
n

), has infinitely many attack vectors.

For these sets, the Lebesgue measure generalizes the notion of

length (one-dimensional), area (two-dimensional), or volume

(three-dimensional) to n-dimensions [28]. The effectiveness of

an MTD H′
t′ for a given δ ∈ [0, 1], which we denote by η′(δ),

can be quantified as

η′(δ) =
λ(A′(δ))

λ(A)
, (2)

where λ(A′(δ)) and λ(A) denote the Lebesgue measures of

the respective sets. Intuitively, η′(δ) represents the ratio of

the number of attack vectors of the form a = Htc whose

detection probability under MTD H′
t′ is greater than δ to the

total number of attacks in the set A. Since A′(δ) ⊆ A, 0 ≤
η′(δ) ≤ 1.

Of particular interest are the sets A′(α) and A\A′(α), and

the latter is the set of undetectable attacks under MTD H′
t′

(refer to Section III for the definition of undetectable attacks).

An ideal MTD is one that admits no undetectable attacks of

the form a = Htc, i.e., A′(α) = A and η′(α) = 1. In the

following subsection, we derive conditions on the MTD H′
t′

that can ensure the property.

B. MTD Admitting No Undetectable Attacks

We start by characterizing the condition for an attack a =
Htc to remain undetectable under MTD H′

t′ .

Proposition 1. An attack of the form a = Htc is undetectable

under MTD perturbation H′
t′ if it satisfies the condition

rank(H′
t′) = rank([H′

t′ Htc]), where [H′
t′ Htc] is the

augmented matrix.

The proof of this proposition is presented in Appendix A.

Intuitively, the proposition implies that an attack vector of the

form a = Htc is undetectable under MTD H′
t′ if it lies in

the column spaces of both Ht and H′
t′ , since rank(H′

t′) =
rank([H′

t′ Htc]) for the attack vector a = Htc ∈ Col(H′
t′).

The result allows us to give conditions for the MTD H′
t′

to ensure no undetectable attacks of the form a = Htc. In

particular, to achieve the aforementioned property, MTD H′
t′

must be selected such that no attack vector a in the column

space of Ht lies in the column space of H′
t′ . The following

theorem states the condition.

Theorem 1. An MTD H′
t′ has no undetectable attacks of the

form a = Htc if Col(H′
t′) is the orthogonal complement of

Col(Ht). Furthermore, for a given attack vector a, such an

MTD achieves the maximum value of P ′
D(a) among all the

possible MTD perturbations.

The proof is presented in Appendix B. The first statement

of this theorem implies that for the MTD H′
t′ satisfying the

orthogonality condition, there are no attacks of the form a =
Htc for which P ′

D(a) is as low as the FP rate α (in general,

α is chosen by the SO to be a small value). However, this

result does not automatically imply that the attacks will also be

detected with high probability, which is the desired outcome.

But the second statement of Theorem 1 shows that this is

indeed the case, since such an MTD also maximizes P ′
D(a)

among all possible MTD perturbations.

From Theorem 1, we conclude that purely from an attack

detection point of view, an MTD perturbation should be se-

lected to achieve the stated orthogonality condition. However,

this may not always be feasible due to practical limitations,

e.g., the D-FACTS devices may only allow the reactances to

be perturbed within a certain range. In these cases, we require

an additional design criterion to select the MTD perturbations,

which is the subject of the following subsection.

C. Heuristic Design Criteria for Selecting MTD Perturbation

Intuitively, if the reactance adjustment capability of D-

FACTS is insufficient to meet the orthogonality condition

of Theorem 1, the MTD perturbation should be selected to

make Col(H′
t′) as orthogonal to Col(Ht) as possible within

the constraints of the D-FACTS device. To formalize this

notion, we introduce the concept of principal angle between

subspaces, defined as follows:



Fig. 4: Orientation of Col(H ′
t′) with respect to Col(Ht), (a) γ(Ht,H

′
t′) = 0 (perfectly aligned column spaces), (b) 0 ≤

γ(Ht,H
′
t′) ≤ π/2, and (c) γ(Ht,H

′
t′) = π/2 (orthogonal column spaces).

Definition V.1 ([29]). The smallest principal angle (SPA) 0 ≤
θ ≤ π/2 between the subspaces F ,G ⊆ C

N
is defined as

cos(θ) = max
u∈F,u∈G

||u||=1,||v||=1

|uHv|.

The SPA generalizes the concept of angle between a pair of

vectors to a pair of n-dimensional subspaces. Let γ(Ht,H
′
t′)

denote the SPA between Col(Ht) and Col(H′
t′). We conjec-

ture that MTD perturbations with a higher value of γ(Ht,H
′
t′)

are more effective in terms of attack detection. Thus, SPA

can be utilized as a design criterion for selecting good MTD

perturbations.

The conjecture is based upon the following observations. (i)

In Appendix C, we present arguments which suggest that the

attack detection probability P ′
D(a) increases as we select MTD

perturbations with higher γ(Ht,H
′
t′). (ii) In the following, we

give some observations to suggest that the measure of the set of

undetectable attacks decreases by selecting MTD perturbations

with higher γ(Ht,H
′
t′).

We examine MTD perturbations in two extreme cases as

illustrated in Fig. 4. First, consider MTD H′
t′ = (1 + η)Ht,

for which it can be verified that γ(Ht,H
′
t′) = 0. For such an

MTD, the column spaces of the matrices Ht and H′
t′ are per-

fectly aligned. Hence all attacks of the form a = Htc remain

undetectable after the MTD (i.e., A′(α) = ∅ and λ(A′(α)) =
0). Thus, an MTD perturbation with γ(Ht,H

′
t′) = 0 is the

least effective in detecting FDI attacks. Second, for MTD

H′
t′ satisfying the orthogonality condition of Theorem 1, it

can be verified that γ(Ht,H
′
t′) = π/2. As shown in the

previous subsection, in this case, A′(α) = A and there are

no undetectable attacks of the form a = Hc.

These arguments suggest that MTD perturbations for which

γ(Ht,H
′
t′) is closer to π/2 are more effective in detecting FDI

attacks, a trend that is also confirmed by our simulation results

using the IEEE 14-bus system (see Section VII). A natural

follow up question is how to select the reactance perturbation

vector ∆xt,t′ to achieve the aforementioned design criteria.

In the next section, we present an optimization framework to

numerically compute ∆xt,t′ while also considering the MTD’s

operational cost.

VI. MTD’S COST-BENEFIT TRADEOFF

Thus far, we have investigated the MTD from an attack

detection point of view only. In this section, we formally define

the operational cost of MTD in an optimization framework.

MTD Operational Cost

We quantify MTD’s cost in terms of the increase in OPF

cost due to the MTD relative to its value without MTD, i.e.,

CMTD,t′ =
C ′

OPF,t′ − COPF,t′

COPF,t′
, (3)

where COPF,t′ is the OPF cost of the system corresponding to

the measurement matrix Ht′ computed using (1) (at time t′),
and C ′

OPF,t′ is the OPF cost of the system with MTD (corre-

sponding to the measurement matrix H′
t′ ). Note that CMTD,t′

is always non-negative since the additional perturbation due

to MTD will increase the OPF cost.

From (3), we note that CMTD,t′ depends on the separation

between the column spaces of Ht′ and H′
t′ . In particular, if

the two matrices are identical, then CMTD,t′ is zero. As the

separation between the column spaces of the two matrices

γ(Ht′ ,H
′
t′) is increased, the power flows within the two

systems and the corresponding generation dispatch will be

different (due to the reactance perturbation). Consequently, the

OPF cost in the system with MTD perturbation will increase.

Our observation is that γ(Ht,H
′
t′) closely approximates

γ(Ht′ ,H
′
t′). Hence, MTD’s operational cost increases as we

choose perturbations with higher γ(Ht,H
′
t′). The approxi-

mation can be explained as follows. Recall that Ht and Ht′

differ only due to temporal variations in the system load. Since

the power system load is temporally correlated, the matrices

Ht and Ht′ will not differ significantly and their column

spaces are nearly aligned. Thus, γ(Ht,H
′
t′) can be used as an

approximate measure of the SPA between the column spaces

of Ht′ and H′
t′ . Extensive simulation results driven by real-

world data load traces presented in Section VII confirm the

validity of this approximation.



MTD Tradeoff

Following the above arguments, we note that the defender

faces conflicting objectives. On the one hand, for the MTD to

be effective from an attack detection point of view, the column

spaces of the matrices Ht and H′
t′ should be as orthogonal

as possible. On the other hand, the MTD’s operational cost

increases with γ(Ht,H
′
t′). Thus, there exists a trade-off be-

tween the MTD’s effectiveness and its operational cost. To

balance the two aspects, we formulate the MTD reactance

selection problem as a constrained optimization problem with

the objective of minimizing the operational cost subject to a

constraint on the MTD’s effectiveness. The problem is stated

as:

C ′
OPF,t′ = min

g′

t′
,x′

t′

∑

i∈N

Ci(G
′
i,t′) (4a)

s.t. γ(Ht,H
′
t′) ≥ γth, (4b)

g′
t′ − lt′ = B′

t′θ
′
t′ , (4c)

−fmax ≤ f ′t′ ≤ fmax, (4d)

gmin ≤ g′
t′ ≤ gmax, (4e)

xmin ≤ x′
t′ ≤ xmax. (4f)

In (4), the SPA between the column spaces of Ht and H′
t′

is used as a heuristic metric to approximate the effectiveness

of the attack detection η′(δ) (based on the conjecture stated

in Section V-C). In (4b), we impose a constraint on the

SPA, where γth ∈ [0, π/2] is a threshold that must be tuned

numerically (see Section VII for more details). Simulation

results show that different values of the threshold γth provide

a spectrum of trade-offs between the MTD’s effectiveness and

its operational cost. We propose to solve (4) numerically using

existing constrained non-linear optimization solvers (e.g., the

fmincon function of MATLAB).

Note that the attacker does not have sufficient information

to solve (4) and thus cannot anticipate the MTD perturbations.

In particular, at time t′, the attacker does not know Ht, since

there is not sufficient time to learn it given the frequency of

perturbations (see the discussion in Sec. IV-A). Hence, the

secrecy of the MTD is satisfied.

VII. SIMULATION RESULTS

In this section, we present simulation results to evaluate the

MTD’s effectiveness and its operational cost.

A. Simulation Settings & Methodology

The simulations are carried out in MATLAB. All the

constrained optimization problems involved in the simulations

are solved using the fmincon function of MATLAB with the

MultiStart algorithm.

We perform simulations using the IEEE 14-bus system. The

bus topology is shown in Fig. 5. We obtain its configuration

data from the MATPOWER package [27]. As shown in Fig. 5,

the generators are installed at buses 1, 2, 3, 6, 8 and their

parameters are listed in Table IV. We use the linear generation

cost model given by Ci(Gi,t) = ciGi,t. We assume that

D-FACTS devices are installed on 6 branches indexed by

Fig. 5: IEEE 14-bus system. (Figure source: [30])

TABLE IV: Generator parameters.

Gen. bus 1 2 3 6 8

Pmax (MWs) 300 50 30 50 20

ci ($/MWh) 20 30 40 50 35

LD = {1, 5, 9, 11, 17, 19}. The D-FACTS limits are set to

xmin = (1− ηmax)x and xmin = (1+ ηmax)x, where x is the

default values (obtained from the IEEE 14-bus case file) and

ηmax is set to 0.5. Further, the branch flow limits are chosen

to be 160 MWs for link 1, and 60 MWs for all other links of

the power system. The rest of the settings are obtained from

the MATPOWER configuration case file.

B. Simulation Results with Static Load

In the first set of simulations, we assume that the system

load is static (we use default values from the IEEE 14-bus

MATPOWER case file). The pre-perturbation reactances xt

(and Ht) are adjusted by solving (1). The defender designs

MTD H′
t′ assuming that the attacker has acquired the knowl-

edge of Ht, and that he injects attacks of the form a = Htc.
Effectiveness of Attack Detection: First, we examine the

MTD’s effectiveness (η′(δ)) for different values of γ(H,H′).
We choose γ(Ht,H

′
t′) ∈ [0, 0.45] radians in steps of 0.05

radians. For each value of γ(Ht,H
′
t′), we solve the optimiza-

tion problem (4) by setting γth to the corresponding value,

and evaluate η′(δ) using Monte Carlo simulations as follows.

We consider 1000 attack vectors of the form a = Htc,
where the vector c is chosen as a random vector drawn from

the Gaussian distribution, and scale its magnitude such that

||a||1/||z||1 ≈ 0.08 (the scaling adjusts the magnitude of

attack injections to be relatively small in comparison to the

actual measurements). We then evaluate P ′
D(a) for each of

the attack vectors (the details will be presented shortly), and

count the fraction of attack vectors for which P ′
D(a) ≥ δ,

for a given value of δ ∈ [0, 1]. For each attack vector, the

detection probability P ′
D(a) is computed by generating 1000
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Fig. 6: MTD effectiveness for different values of γ(Ht,H
′
t′) (radians). FP rate is set to 5× 10−4.

instantiations of measurement noise (according to the Gaussian

distribution), and counting the number of times the BDD alarm

is triggered. The BDD threshold is adjusted such that the FP

rate is set to 5× 10−4. We note that MTD does not alter the

FP rate of the BDD.

In Fig. 6 (a), we plot the variation of η′(δ) as a function

of γ(Ht,H
′
t′) for different values of δ. In this figure, the y-

axis represents the fraction of attacks for which P ′
D(a) ≥ δ,

for a given γ(Ht,H
′
t′). We observe that η′(δ) monotonically

increases with γ(Ht,H
′
t′), thus confirming our intuition that

MTD perturbations with higher values of γ(Ht,H
′
t′) are more

effective in attack detection. E.g., for γ = 0.44, 97% of the

attacks have a detection probability greater than 0.95. In prac-

tice, the defender can run these simulations to determine an

appropriate γth for meeting a desired level of attack detection.

Comparison With Existing Work: We also perform simu-

lations to compare our MTD selection approach with state

of the art [11], [12], [13]. Similar to the related work, we

implement MTD by selecting random MTD perturbations that

are constrained to be within 2% of the optimal value. We

plot η′(δ) as a function of δ for five such randomly-chosen

perturbations in Fig. 7. It can be seen that η′(δ) exhibits high

variability across the trials, implying that the randomly chosen

MTD perturbations cannot always guarantee effective attack

detection.

Further, out of 500 such randomly chosen perturbations

(known also as the keyspace [11], [12]), we count the fraction

of perturbations which satisfy η′(δ) ≥ 0.9 for different

values of δ, and plot the results in Fig. 8. We observe that

less 10% of the randomly-selected MTD perturbations satisfy

η′(0.9) ≥ 0.9. In contrast, the MTD perturbations chosen

according to our approach can always guarantee a certain

effectiveness, once the subspace angle threshold γth is adjusted

to an appropriate value. This highlights the importance of

designing the MTD according to the formal design criterion

advanced in this work.

To show the scalability of the proposed approach to larger

bus systems, we plot the η′(δ) as a function of γ(Ht,H
′
t′) for

the IEEE 30-bus system in Fig. 6 (b). We use default settings

provided in the MATPOWER case file. We observe results

similar to those for the IEEE 14-bus system, i.e., perturbations
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Fig. 7: MTD effectiveness under five randomly chosen MTD

perturbations in IEEE 14-bus system. FP rate is set to 5×10−4.
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Fig. 8: Fraction of randomly-chosen MTD perturbations that

satisfy η′(δ) ≥ 0.9.

which have a higher value of γ(Ht,H
′
t′) are more effective

in terms of attack detection.

C. Simulation Results With Dynamic Load

In the next set of simulations, we consider dynamic load.

We use a load data trace from New York state for one day

(25-JAN-2016) [31] sampled hourly, and feed it to the IEEE

14-bus system. The simulations are performed every hour. At

each hour, COPF,t is computed by solving (1) with the load

input of the corresponding hour. On the other hand, C ′
OPF,t′ is

computed by solving (4) assuming that the attacker’s knowl-
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Fig. 9: Tradeoff between MTD’s effectiveness and operational

cost in IEEE 14-bus system. The data corresponds to 6 PM.

edge is outdated by 1 hour. For example, while computing the

MTD H′
t′ at 9 AM, we assume that the attacker has acquired

the knowledge of the measurement matrix Ht at 8 AM. (Recall

from our previous discussion in Sec. IV-A that hourly MTD

perturbations are realistic for practical systems.)

MTD Tradeoff: In Fig. 9, we plot of the tradeoff between

η′(δ) and the operational cost for data corresponding to 6 PM.

We make the following observations. For low values of η′(δ),
the operational cost is nearly zero. However, as γ(Ht,H

′
t′)

and consequently η′(δ) is increased, the MTD incurs a non-

trivial operational cost. In particular, the cost increases steeply

for values of η′(δ) very close to 1. E.g., for δ = 0.9, an

increase in the value of η′(δ) from 0.8 to 0.9 changes the MTD

operational cost from 0.96% to 2.31%. These results suggest

that the defender must carefully choose an appropriate level

of attack detection while taking into account the increase in

operational cost.

MTD Operational Cost Over a Day: We also perform

simulations to show how the cost varies over the day. At each

hour, we adjust the subspace angle threshold γth numerically

such that the MTD perturbation achieves effectiveness of

η′(0.9) ≥ 0.9. The corresponding value of γ(Ht′ ,H
′
t′) is

shown in Fig. 11. The rest of the bus settings is identical

to the previous simulation. The variation of MTD operational

cost and the aggregate load are shown in Fig. 10. It can be

observed that the MTD operational cost increases at higher

load. This can be explained as follows. When the system load

is low, there will be a significant buffer capacity between the

branch power flows and the corresponding flow limits. If the

difference in power flows between the two systems (with and

without MTD) is within the buffer capacity, then the generator

dispatch in the two systems will be identical (or close to each

other). Thus, the corresponding MTD cost is low. At higher

loads, the power system is significantly congested, and the

branch power flows of the two systems (with and without

MTD) will differ significantly. Consequently the generator

dispatch in the two systems will be different leading to an

increase in the OPF cost.

We also plot the quantities γ(Ht,Ht′) and γ(Ht′ ,H
′
t′) for

every hour in Fig. 11. We observe that γ(Ht,Ht′) is nearly

zero for all the simulation instants. This is because the matrices
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Fig. 10: MTD operational cost over a day computed using

New York state hourly load data trace (25-JAN-2016).
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Fig. 11: Smallest principal angle (in radians) between pre-

perturbation and post-perturbation measurement matrices.

Ht and Ht′ do not differ significantly due to the temporal

correlation of the system load between different simulation in-

stants and their column spaces are nearly aligned. These results

also validate the approximation γ(Ht,H
′
t′) ≈ γ(Ht′ ,H

′
t′).

D. Discussion

To put the MTD operational cost in perspective, we can

compare it against the potential cost of damage due to a

BDD-bypassing attack. For example, prior work [5], [20]

suggests that such an attack can increase the OPF cost by

up to 28%, and additionally cause transmission line trips

(considering IEEE 14-bus system with similar simulation

settings). Our numbers suggest that the MTD’s operational cost

is comparatively significantly smaller. In practice, based on

its own deployment scenario and other factors like estimated

likelihood of attacks, the SO can make similar comparisons to

assess the merits of adopting the MTD defense.

VIII. CONCLUSIONS

We addressed the problem of selecting MTD reactance

perturbations that are truly effective in thwarting stealthy FDI

attacks against SE in power grids. We devised a novel metric

to quantify the MTD’s effectiveness, and identified key design

criteria to compute effective MTD perturbations in practice.

We also showed that the effective MTD may incur a non-

trivial operational cost, and provided analysis to expose the

cost-benefit tradeoff of the MTD in an OPF framework. Our

result offers MTD to system operators as an insurance against



possible FDI attacks, and minimizes the cost of such insurance

subject to an effectiveness constraint.
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APPENDIX A: PROOF OF PROPOSITION 1

To simplify notation, in this appendix, we drop the time

subscripts t and t′ from the relevant quantities.

A sketch of the proof is as follows. First, we express the

residual r′ as the sum of two components, a noise component

r′n and an attack component r′a, given by r′ = ||r′n + r′a||.
We then show that for attacks that satisfy the condition of

Proposition 1, r′a = 0, and hence their detection probability

is no greater than the FP rate.

We proceed with the first step of the proof. Recall the

expression of r′ = ||z′ −H′
θ̂
′||, where z′ = H′

θ
′ + n+Hc,

θ̂
′ = (H′TWH′)−1H′TWz′. It can be simplified as

r′ = ||z′ −H′(H′TWH′)−1H′TWz′||

= ||H′
θ
′ + n+Hc

−H′(H′TWH′)−1H′TW(H′
θ
′ + n+Hc)||

= ||(I− Γ′)n+ (I− Γ′)Hc||, (5)

where Γ′ = H′(H′TWH′)−1H′TW. We note that r′ consists

of two components, a noise component r′n
△

= (I− Γ′)n, and

an attack component r′a
△

= (I − Γ′)Hc. If r′a = 0, then the

detection probability of a is no greater than the FP rate α, and

hence, the attack is undetectable under the MTD perturbation

H′. Note that for all the attacks a = Hc ∈ Col(H′), r′a = 0.
In other words, the system of equations Hc = H′c′ must be

consistent, for some c′ ∈ R
N
. This condition holds true if and

only if rank(H′) = rank([H′ Hc]) [32].

APPENDIX B: PROOF OF THEOREM 1

A sketch of the proof is as follows. We prove the first

statement by showing that for an MTD H′ satisfying the

orthogonality condition, r′a = 0 if an only if c = 0. Thus it

follows that there are no non-zero attacks that are undetectable

under such an MTD. To prove the second statement, we show

that P ′
D(a) increases as we increase ||r′a||. Furthermore, we

show that ||r′a|| achieves its maximum value under the MTD

perturbation that satisfies the conditions of Theorem 1.

We begin with the proof of the first statement of Theorem 1.

If Col(H′) is the orthogonal complement of Col(H), then



H′TWHc = 0, ∀c ∈ R
N
, since Hc ∈ Col(H). In this case,

r′a becomes

r′a = Hc−H′(H′TWH′)−1H′TWHc = Hc.

Recall that an attack is undetectable if r′a = 0. For MTD

H′ that satisfies the orthogonality condition, substituting for

r′a from (6), we have that Hc = 0. Since H is a full rank

matrix, the set of equations Hc = 0 has a unique solution

c = 0 [32]. Hence, there are no non-zero undetectable attacks

of the form a = Hc.
Next, we prove the second statement of Theorem 1. First,

note that under any MTD H′, ||r′a|| can be bounded as 0 ≤
||r′a|| ≤ ||a||. The lower bound is true in a straightforward

manner. The upper bound follows from

||r′a|| = ||(I− Γ′)a|| ≤ ||(I− Γ′)|| ||a|| = ||a||, (6)

where the last equality is due to the fact that I − Γ′ is a

projection matrix and hence has unit norm. Furthermore, under

any MTD H′, r′ = ||r′n+r′a|| follows a noncentral chi-square

distribution [33] with its noncentrality parameter equal to ||r′a||
(since r′n + r′a is a Gaussian random variable with r′a as its

mean).
For a non-central chi-square distributed random variable X ,

P(X ≥ τ) increases by increasing the noncentrality parameter.

Hence, we can conclude that the quantity P ′
D(a) = P(r′ ≥

τ) increases by increasing ||r′a||. For an attack vector a, the

quantity ||r′a|| depends on the choice of MTD H′. Thus, we

can conclude that MTD perturbations that yield a greater value

of ||r′a|| can detect the attack vector a with higher probability

(i.e., P ′
D(a) is higher).

In particular, for MTD H′ that satisfies the conditions of

Theorem 1, from (6), we note that ||r′a|| = ||a||, which is

also the maximum value of ||r′a||. Therefore, such an MTD

achieves the maximum possible value of P ′
D(a).

APPENDIX C: CONJECTURE OF SECTION 5.3

In this appendix, we present arguments that the attack

detection probability P ′
D(a) increases as we select MTD

perturbations with higher γ(H,H′). We use the short-hand

notation f(u,v) to represent the quantity max
u∈F,u∈G

||u||=1,||v||=1

|uHv|.

The conjecture can be argued by examining the dependence

of ||r′a|| on γ(H,H′) in the following three cases:

• Case 1: When Col(H′) is the orthogonal complement

of Col(H), we have that f(u,v) = 0 (since uHv =
0, ∀u ∈ Col(H),v ∈ Col(H′)), and γ(H,H′) =
cos−1(0) = π/2. From the arguments in Appendix B,

recall that in this case, ||r′a|| = ||a||.
• Case 2: When Col(H) and Col(H′) are identical (e.g.

when H′ = (1 + η)H), we have that f(u,v) = 1, and

γ(H,H′) = cos−1(1) = 0. In this case, after straightfor-

ward simplification, it can be shown that ||r′a|| = 0.
• Case 3: For 0 ≤ γ ≤ π/2, from reference [16], we have

the following bound

||r′a|| ≤ sin(γ(H,H′))||a||. (7)

Note that the bound of (7) increases as γ(H,H′) in-

creases, which suggests that ||r′a|| also increases.

The conjecture can be justified from the observation in these

three cases and using the fact that P ′
D(a) increases as ||r′a||

increases (Appendix B).


