
5456 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

Cost-Driven Off-Loading for DNN-Based
Applications Over Cloud, Edge,

and End Devices
Bing Lin , Yinhao Huang, Jianshan Zhang , Junqin Hu , Xing Chen ,

and Jun Li , Senior Member, IEEE

Abstract—Currently, deep neural networks (DNNs) have
achieved a great success in various applications. Tradi-
tional deployment for DNNs in the cloud may incur a pro-
hibitively serious delay in transferring input data from the
end devices to the cloud. To address this problem, the
hybrid computing environments, consisting of the cloud,
edge, and end devices, are adopted to offload DNN layers
by combining the larger layers (more amount of data) in
the cloud and the smaller layers (less amount of data) at
the edge and end devices. A key issue in hybrid com-
puting environments is how to minimize the system cost
while accomplishing the offloaded layers with their dead-
line constraints. In this article, a self-adaptive discrete par-
ticle swarm optimization (PSO) algorithm using the genetic
algorithm (GA) operators is proposed to reduce the system
cost caused by data transmission and layer execution. This
approach considers the characteristics of DNNs partition-
ing and layers off-loading over the cloud, edge, and end

Manuscript received July 31, 2019; revised November 12, 2019; ac-
cepted December 12, 2019. Date of publication December 24, 2019;
date of current version April 13, 2020. This work was supported
in part by the National Key R&D Program of China under Grant
2018YFB1004800, in part by the Natural Science Foundation of China
under Grant 61972165, Grant 61872184, Grant 61727802, and Grant
41801324, in part by the Natural Science Foundation of Fujian Province
under Grant 2019J01286 and Grant 2019J01244, in part by the Young
and Middle-aged Teacher Education Foundation of Fujian Province
under Grant JT180098, and in part by the Talent Program of Fujian
Province for Distinguished Young Scholars in Higher Education. Paper
no. TII-19-3472. (Corresponding authors: Xing Chen; Jun Li.)

B. Lin is with the College of Physics and Energy, Fujian Nor-
mal University, Fujian Provincial Key Laboratory of Quantum Ma-
nipulation and New Energy Materials, Fuzhou 350117, China,
and with the Fujian Provincial Collaborative Innovation Center for Op-
toelectronic Semiconductors and Efficient Devices, Xiamen 361005,
China, and also with the Engineering Research Center of Big Data Ap-
plication in Private Health Medicine, Fujian Province University, Putian,
Fujian 351100, China and also with the Fujian Provincial Collaborative
Innovation Center for Advanced High-Field Superconducting Materials
and Engineering, Fujian 350117, China (e-mail: WheelLX@163.com).

Y. Huang, J. Zhang, J. Hu, and X. Chen are with the College
of Mathematics and Computer Science, Fuzhou University, Fuzhou
350118, China, and also with the Fujian Provincial Key Laboratory
of Network Computing and Intelligent Information Processing, Fuzhou
350118, China (e-mail: fzuhyh@foxmail.com; zhangjs0512@163.com;
jackinhu@qq.com; chenxing@fzu.edu.cn).

J. Li is with the School of Electronic and Optical Engineering, Nan-
jing University of Science and Technology, Nanjing 210094, China, and
also with the School of Computer Science and Robotics, National Re-
search Tomsk Polytechnic University, 634050 Tomsk, Russia (e-mail:
jun.li@njust.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2019.2961237

devices. The mutation operator and crossover operator of
GA are adopted to avert the premature convergence of PSO,
which distinctly reduces the system cost through enhanced
population diversity of PSO. The proposed off-loading strat-
egy is compared with benchmark solutions, and the results
show that our strategy can effectively reduce the system
cost of off-loading for DNN-based applications over the
cloud, edge and end devices relative to the benchmarks.

Index Terms—Cloud computing, cost-driven off-loading,
deep neural networks (DNNs), edge computing, workflow
scheduling.

I. INTRODUCTION

C
ONTEMPORARILY, deep neural networks (DNNs) have
achieved a great success in various applications, such as

natural language processing, speech recognition, and computer
vision [1]. Meanwhile, the number of Internet of Things (IoT)
devices has increased dramatically. These end devices, equipped
with sensors (e.g., microphones, cameras, and gyroscopes) for
obtaining a large amount of environment data, are usually at-
tractive to machine learning (ML) applications [2].

However, these IoT devices with limited energy and
computing resources cannot afford computation-intensive tasks
(e.g., DNNs). Performing classification directly on the IoT
devices by simple ML model leads to low system accuracy [3].
As such, DNNs are conventionally deployed in the cloud with
powerful computation capability. This results in a prohibitively
serious delay when off-loading input data from sensors to
DNNs in the cloud, due to the long distance between the cloud
and IoT devices.

Mobile edge computing (MEC) is proposed as a promising
computing model for solving the problem by deploying servers
at the network edge close to the end devices [4], [5]. One solution
to reducing the system delay of off-loading for DNN-based
applications is to partition DNNs [6] in hybrid computing en-
vironments, consisting of the cloud, edge, and end devices, and
combine the larger layers (more amount of data) in the cloud
and the smaller layers (less amount of data) at the edge and
end devices. In this way, the traffic load of core network and
the transmission delay will be alleviated significantly, and the
overall system accuracy will be improved [3].

Off-loading for DNN-based applications in MEC has been
broadly studied [6]–[10]. These studies mostly focus on
off-loading DNN layers to the edge instead of to the cloud.
However, much less attention is paid to off-loading DNN layers

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5874-4748
https://orcid.org/0000-0002-3006-1328
https://orcid.org/0000-0002-1042-6297
https://orcid.org/0000-0001-9641-3528
https://orcid.org/0000-0002-6767-3328
mailto:WheelLX@163.com
mailto:fzuhyh@foxmail.com
mailto:zhangjs0512@163.com
mailto:jackinhu@qq.com
mailto:chenxing@fzu.edu.cn
mailto:jun.li@njust.edu.cn
http://ieeexplore.ieee.org

LIN et al.: COST-DRIVEN OFF-LOADING FOR DNN-BASED APPLICATIONS OVER CLOUD, EDGE, AND END DEVICES 5457

in hybrid computing environments [3]. It is a challenging
task to partition DNNs and schedule different layers to their
suitable servers for distinct applications while satisfying
each application’s deadline constraint. Moreover, when the
input/intermediate data is scheduled to different cloud/edge
servers, the cost of computation and transmission are also
different. Therefore, how to minimize the system cost while
accomplishing the offloaded layers within their deadlines in
hybrid computing environments is still an open issue.

The time-driven data placement for a scientific workflow
combining edge computing and cloud computing [11], as well as
the cost-driven scheduling for deadline-based workflow across
multiple clouds [12], have been addressed respectively. Off-
loading DNN layers in hybrid computing environments and
workflow scheduling across multiple clouds are both NP-hard
problems with many similarities, such as the structure between
the DNNs and the workflow [13]. In this article, we propose
a self-adaptive particle swarm optimization (PSO) algorithm
using the genetic algorithm (GA) operators (PSO-GA) to reduce
the system cost caused by data transmission and layer execution,
with the deadline constraints of all DNN-based applications.
This approach considers the characteristics of DNNs partitioning
and layers off-loading over the cloud, edge, and end devices.

The main contributions of this article are summarized as
follows.

1) A cost-driven off-loading strategy based on PSO-GA is
proposed to optimize the system cost during DNN layers
off-loading over the cloud, edge, and end devices.

2) A preprocessing operation is proposed to compress the
number of layers in a DNN, which leads to reducing the
dimensions of a PSO particle.

3) An adjustment mechanism for the inertia weight of PSO-
GA is designed to adaptively adjust the search ability
according to the quality of current particle.

The remainder of this article is organized as follows. Section II
reviews the related work. Section III discusses the process of
cost-driven off-loading for DNN-based applications in hybrid
computing environments. Section IV presents the proposed
PSO-GA algorithm in detail. Section V compares our algorithm
with other state-of-the-art algorithms. Finally, Section VI con-
cludes this article.

II. RELATED WORK

DNNs achieve a great success in various fields, such as natural
language processing and computer vision. Mobile devices can-
not directly execute intelligent applications due to their limited
computation resources. Many work offloaded DNN-based appli-
cations in cloud computing. Fang et al. [14] designed a simple
heuristic scheduler for cloud-hosted DNN inference workloads,
which satisfied the requirement on processing throughput. In
addition, they proposed a deep reinforcement learning (RL)
scheduler, which was trained to maximize the quality of service
(QoS) including inference accuracy and response delay. This
work greatly reduced the scheduling overhead when perform-
ing inference workloads on demand. Qi et al. [15] designed
a DNN-based object detection system combining cloud and
mobile devices. They proposed a model scheduling algorithm
to adaptively select the execution platform (cloud or mobile

devices) based on the conditions of network and mobile devices.
This designed system had a better performance in running speed
and detection accuracy. The above work mainly focused on
off-loading DNN layers from end device to the cloud directly.
However, the long-distance network communication between
the cloud and end devices may cause a serious delay in execution,
which failed to satisfy the requirements of real-time response in
industry scenarios.

MEC is a novel computing model to solve the response
delay problem for DNN-based applications by off-loading DNN
layers from resource-constrained mobile devices to the edge.
It is a promising way to partition DNNs in hybrid computing
environments, and combine the larger layers in the cloud and the
smaller layers at the edge and end devices [3], [16]. Jeong [6]
proposed a lightweight off-loading system run on web-supported
devices to offload DNN computations to edge servers. He de-
signed a DNN partitioning algorithm to efficiently utilize the
edge resources and reduce the system response time. However,
this work ignored the difference in the computing capacity of
each edge server. Wu et al. [17] proposed a novel off-loading
partitioning algorithm to tackle the problem of dynamic applica-
tion partitioning in mobile environments. The algorithm could
arrive at the best tradeoffs between minimizing transmission
delay/costs and saving energy/time. Teerapittayanon et al. [3]
proposed a distributed computing hierarchy, consisting of the
cloud, the edge, and end devices, for deploying DNN-based
applications. This hierarchy exploited the geographical diversity
of sensors to reduce communication cost and improve the object
recognition accuracy of DNNs. However, they ignored the layer
execution cost which was an important part of the system cost.
Kang et al. [16] investigated DNN partitioning strategies that
effectively offloaded DNN layers on the mobile edge and the
cloud to achieve low energy consumption and latency. In addi-
tion, they proposed a lightweight scheduler called Neurosurgeon
to automatically partition DNNs between the cloud and mobile
edge. This work gave us inspiration, but it did not discuss
minimizing the system cost with the deadline constraints.

The works discussed above mostly focused on reducing the
system delay with the help of MEC [6], [9], [16]. There is little
work aiming to minimize the system cost with deadline con-
straints. The data transmission cost was considered in [3] while
deploying distributed DNNs in hybrid computing environments.
However, it ignored the layer execution cost.

A DNN and a scientific workflow have many similarities,
such as the overall structure, and the data dependencies between
each pair of computing nodes. Cui et al. [18] proposed a data
placement strategy based on GA for a scientific workflow to
reduce the amount of data movement in cloud environment.
They modified the mutation and crossover operator of GA to get
a good performance from a global perspective. Guo et al. [11]
have previously proposed a scheduling strategy for a deadline-
constrained scientific workflow across multiple clouds. This
strategy aimed to minimize the execution cost of a scientific
workflow within its deadline, which introduced the discrete PSO
technique. This work has specific guiding significance for our
work. However, it did not consider the impact of MEC.

In summary, previous studies have widely investigated the
off-loading strategies for DNN-based applications. However,

5458 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

TABLE I
SYMBOLS DEFINITION

it is still an open issue to optimize the system cost caused by
data transmission and layer execution, while off-loading DNN
layers within the corresponding deadlines in hybrid computing
environments.

III. PROBLEM DEFINITION AND ANALYSIS

The purpose of this article is to minimize the system cost
caused by data transmission and layer execution during DNN
layers off-loading while satisfying each DNN-based applica-
tion’s deadline constraint. Table I defines the symbols used in
this article.

A. Problem Definition

The problem definition includes the hybrid computing en-
vironments, some DNN-based applications, and an off-loading
strategy.

The hybrid computing environments C = {Ccld,Cedg,

Cdev} consist of the cloud, edge, and end devices. The cloud
Ccld = {s1, s2, . . . , sn} consists of n servers1 in a region, and
we only consider the off-loading process in one region. The
edge Cedg = {s1, s2, . . . , sm} consists of m servers in m dif-
ferent regions, i.e., each region has only one server. There are
r IoT devices Cdev = {s1, s2, . . . , sr}, and each device only
has a microserver. This study pursues an off-loading scheme,
therefore we focus on the computing power of each server and
ignore their storage capacity. A server si is expressed as

si =< pi, c
com
i , ti > (1)

where pi represents the computing power of server si, which
is usually measured by its CPUs [19]. ccom

i represents the
computation cost of si per second,2 which has a strong positive

1In order to have a unified expression for the computing resource in different
platforms, we use “server” instead of “virtual machine” to express the instances
in cloud.

2Although the computation cost in cloud is measured in an hour, the execution
time of DNN is usually at the millisecond level. Therefore, we use “second”
instead of “hour” to measure the computation cost of each server.

proportional relationship with pi. ti = {0, 1, 2} represents the
category that the server si belongs to. When ti = 0, si belongs
to the cloud, and it has strong computing power. When ti = 1, si
belongs to the edge, and it has general computing power. When
ti = 2, si belongs to the end devices, and it has poor computing
power. The computing power of each server is assumed to be
known and not fluctuant.

Formula (2) represents the bandwidth across different servers

B =

⎡

⎢

⎢

⎢

⎢

⎣

b1,1 b1,2 · · · b1,|C|

b2,1 b2,2 · · · b2,|C|

...
... · · ·

...

b|C|,1 b|C|,2 · · · b|C|,|C|

⎤

⎥

⎥

⎥

⎥

⎦

(2)

bi,j =< ℓi,j , c
tran
i,j , ti, tj > (3)

where bi,j is the bandwidth between server si and server
sj . ℓi,j represents the value of bandwidth bi,j , where ∀i, j =
1, 2, . . . , |C| and i �= j. We do not consider ad hoc net-
works [20], therefore, there is no direct connection between two
end devices (i.e., if ti and tj are both equal to 2, ℓi,j is 0). ctran

i,j

represents the data transmission cost per MB from server si to
server sj . In addition, end devices connect to the edge via WIFI,
so that the servers belong to IoT devices only communicate
with the servers belong to the edge within a certain range of
WIFI radiation. The bandwidth is assumed to be known and not
fluctuant.

There are many DNNs G = {G1,G2, . . . ,Gq} from dif-
ferent end devices. A DNN is modeled as a directed acyclic
graphGi = (Li,Ei,Di) [21], whereLi = {l1i , l

2
i , . . . , l

s
i } rep-

resents a finite set of nodes containing s layers in Gi, Ei =
{e1,2

i , e
1,3
i , . . . , e

j,k
i } represents the data dependencies between

each pair of layers, andDi = {d1
i , d

2
i , . . . , d

n
i } represents all the

datasets including input data, intermediate data, and output data
in Gi. Each DNN has a corresponding deadline D(Gi), and
an off-loading strategy is called feasible solution if the DNN is
completed within its deadline.
e
j,k
i = (lji , l

k
i) denotes a data dependency between layer l

j
i

and layer lki , where layer lki is the direct successor of layer lji ,

and layer lji is the direct precursor of layer lki . In the process of
off-loading DNN layers, a layer cannot start executing until all
of its precursors have been completed.

For a layer lji =< a
j
i , i

j
i , o

j
i >, aji is the calculated amount

of lji , iji is the input datasets of lji , and o
j
i is the output datasets

of lji . Serial processing model [22] is adopted in the execution
process, which means that a server can only execute one layer at
the same time and the whole layer is executed on the same server.
Therefore, the execution timeTexe(l

j
i , sk) of offloaded layer lji to

a ready server sk is calculated as (4). The layers and datasets are
many-to-many correspondence (i.e., a layer may require many
input datasets from different servers, and a dataset may be used
by many layers) shown as GoogleNet [1].

Texe(l
j
i , sk) =

a
j
i

pk
. (4)

For a dataset dji =< ∂
j
i ,Ω

j
i , f

j
i >, ∂j

i is the dataset size, Ωj
i

is the original server storing d
j
i , and f

j
i is the final server using

LIN et al.: COST-DRIVEN OFF-LOADING FOR DNN-BASED APPLICATIONS OVER CLOUD, EDGE, AND END DEVICES 5459

d
j
i . Therefore, the data transmission time Ttrans(d

j
i , sk, sr) for

transferring dataset dji from server sk to server sr is calculated as

Ttrans

(

d
j
i , sk, sr

)

=
∂
j
i

ℓk,r
. (5)

The purpose of our off-loading strategy is to minimize the
system cost caused by data transmission and layer execution,
with the deadline constraints of all DNN-based applications.
Any layer execution has to satisfy both conditions: (1) The layer
has been offloaded to a specific server; (2) the datasets required
by this layer have been transferred to the same server. The off-
loading strategy for DNN-based applications is defined as O =
(C,Li,Di,M , T

compl
i , Ctotal), where M =

⋃

i=1,2,...,|C|{<

l
j
i , ss > ∪ < d

j
i , sk, sr >} represents the map set from DNN

layers Li and datasets Di to hybrid computing environments
C. < l

j
i , ss > represents that the layer lji is offloaded to server

ss, and < d
j
i , sk, sr > represents that dataset dji is transferred

from server sk to server sr. If all < l
j
i , ss > sets are determined,

then all < d
j
i , sk, sr > sets are determined. Therefore, the map

set can be modified as M =
⋃

i=1,2,...,|C|{< l
j
i , ss >}. T compl

i

represents the completion time of DNNGi, andCtotal represents
the total system cost for executing all DNN layers

T
compl
i = max

l
j

i
∈Li

{Tcompl(l
j
i)} (6)

Ctotal =

|C|
∑

i = 1

ccom
i

· (Toff(si)− Ton(si))

+

|C|
∑

j=1,Ωm
l
=j

|C|
∑

k=j+1,fm
l

=k

ctran
j,k · ∂j

i (7)

where Tcompl(l
j
i) is the completion time of layer lji , Toff(si) is

the turn-OFF time of server si, and Ton(si) is the turn-ON time of
server si. Assuming that a server is turned on immediately with
no delay when its first layer arrives on it. A server is turned off
immediately with no delay when its last layer on this server is
completed.

The problem of the cost-driven off-loading for DNN-based
applications over the cloud, edge, and end devices can be for-
malized as (8). Its core purpose is to pursue a minimum total
system cost while satisfying the deadline constraints for each
DNN-based application.

Minimize Ctotal

subject to ∀i, T compl
i ≤ D(Gi). (8)

B. Problem Analysis

Fig. 1(a) is a sample of off-loading for a DNN Gi,
which includes four layers {l0i , l

1
i , l

2
i , l

3
i}, and four datasets

{d1
i , d

2
i , d

3
i , d

4
i}with size {1, 1, 0.5, 0.5 MB}. The deadline ofGi

is 3.7 s. Note that layer l0i must be executed on the end device (i.e.,
s0). There are six servers in hybrid computing environments.
Table II shows the execution time of each layer on the six servers.
Table III shows the computation cost per hour of six servers.

Fig. 1. Sample of cost-driven off-loading for a DNN.

TABLE II
EXECUTION TIME OF EACH LAYER ON DIFFERENT SERVERS

TABLE III
COMPUTATION COST PER HOUR OF SIX SERVERS

TABLE IV
BANDWIDTH BETWEEN TWO SERVERS IN DIFFERENT CATEGORIES

AND THE CORRESPONDING COST PER MB

Table IV shows the bandwidth between two servers in different
categories and the corresponding cost per MB.

Fig. 1(b) is the off-loading result according to the greedy
strategy [23]. The completion time ofGi is 3.65 s, and the system
cost is 0.0044013 with greedy strategy. Fig. 1(c) is the optimal
off-loading result. The completion time of Gi is 3.41 s, and
the system cost is 0.0036517. The system cost with the optimal
strategy is 18.18% less than the former. The greedy off-loading
strategy offloads each layer to the server with the lowest cost step
by step within the corresponding deadline. However, Fig. 1(b)
shows that each off-loading step with a greedy choice fails to
achieve the best result from a local perspective. In this study, we
need a suitable approach to effectively offload all DNN layers
from a global perspective.

5460 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

IV. OFF-LOADING STRATEGY BASED ON PSO-GA

For an off-loading strategy O = (C,Li,Di,M , T
compl
i ,

Ctotal), its core purpose is to find a map from all Li to C

that has minimum system total cost Ctotal while each DNN
completion time T

compl
i is not more than their corresponding

deadline D(Gi). Finding the best map from all Li to C is
an NP-hard problem [24]. Therefore, an off-loading strategy
based on PSO-GA algorithm to optimize the system total cost is
proposed from a global perspective in hybrid computing envi-
ronments. To improve the efficiency of our off-loading strategy,
a preprocessing for a DNN is designed to compress the amount
of layers and data transmission. This section mainly describes
the preprocessing for a DNN in [25], and PSO-GA algorithm as
follows.

A. PSO-GA

The details of traditional PSO and the effect of relevant
parameters are described in [25].

PSO has been widely used to solve continuous optimization
problems. Off-loading DNN layers in hybrid computing en-
vironments is a discrete problem, and it needs a new coding
approach. In addition, a suitable strategy for particle update
should be introduced to avoid the premature convergence of
traditional PSO. In this article, PSO-GA is proposed to solve
the above shortages of traditional PSO. The off-loading strategy
based on PSO-GA for DNNs is described as follows.

1) Problem Encoding: A good encoding strategy can en-
hance the search efficiency and improve the performance of
PSO-based algorithm, which usually satisfies the following three
principles [26].

Definition 1. (Completeness): Each candidate solution can
be encoded as a particle in the problem space.

Definition 2. (Nonredundancy): Each candidate solution has
only one corresponding encoded particle in the problem space.

Definition 3. (Viability): Each encoded particle represents a
candidate solution in the problem space.

Designing an encoding strategy that simultaneously satisfies
the three principles is difficult. Inspired by [27], we adopt a
server-order nesting strategy to encode the layers off-loading
problem. A particle represents a candidate solution of cost-
driven off-loading for all DNNs in hybrid computing environ-
ments, and the ith particle in the tth iteration is described as (9)

Xt
i = (xt

i1, x
t
i2, . . . , x

t
ip) (9)

xt
ik = (sj , ϕj)

t
ik (10)

where p is the total number of layers from all DNN-based
applications. xt

ik(k = 1, 2, . . . , p) indicates the final server sj
for executing the kth layer with ϕj order in the tth iteration in
(10). It means that the kth layer is offloaded to server sj with a
specified orderϕj , whose value ranges from 0 to p−1. The order
of each layer in the same particle is different from each other,
and the layer with smaller order is processed earlier when there
are more than two concurrent layers on the same server. The
concurrent layers mean that there is no direct or indirect data
dependency between them. Therefore, the particle dimension

Fig. 2. Encoded particle corresponding to the off-loading for a DNN.

is twice the total number of layers. Fig. 2 shows an encoded
particle corresponding to the off-loading for a DNN in Fig. 1(c).

Property 1: The encoding strategy meets completeness and
nonredundancy principles, but it may not meet the viability
principle.

After DNN layers off-loading, each layer is offloaded to the
corresponding server with a specified order. A layer can be
offloaded to any server with any order under the data dependence
constraints, and the corresponding dimension in a particle can
be the corresponding value of server and order. Therefore, each
off-loading strategy has the corresponding particle, which meets
the completeness principle. An off-loading strategy for DNNs
corresponds to a 2p-dimensional particle. The value of the
kth dimension in a particle is the server number processing
the kth layer and the specified process order. Therefore, an
off-loading strategy only corresponds to a specified particle,
which meets the nonredundancy principle. However, some can-
didate solutions corresponding to the particles may not meet the
deadline constraints. For example, if the final offloaded servers
of layers in Fig. 1 is (0, 0, 2, 3), then layer l0i and layer l1i
are offloaded to end device s0. The completion time of this
DNN is more than 4 s, which exceeds its deadline (i.e., 3.7 s).
Therefore, the encoding strategy may not meet the viability
principle.

2) Fitness Function: The fitness function is used to evaluate
the performance of all particles. In general, a particle with
smaller fitness represents a better candidate solution. This work
pursues minimum system cost for off-loading DNN layers while
satisfying their deadline constraints. Therefore, a particle with
lesser system cost can be considered as a better solution. How-
ever, the encoding strategy designed in this article fails to meet
the viability principle.

All particles can be divided into two categories: feasible
particle and infeasible particle, whose definitions are described
as follows.

Definition 4. (Feasible particle): A particle that corresponds
to a DNN layer off-loading strategy meets all deadline con-
straints.

Definition 5. (Infeasible particle): A particle that corre-
sponds to a DNN layer off-loading strategy fails to meet deadline
constraints (i.e., at least one DNN’s completion time exceeds its
corresponding deadline).

The definition of fitness function that compares two candi-
date solutions has to be modified according to three different
situations.

Case 1: Both particles are feasible. The particle with lesser
system cost is selected, and the fitness function is defined as
follows:

F (Xi) = Ctotal(Xi). (11)

LIN et al.: COST-DRIVEN OFF-LOADING FOR DNN-BASED APPLICATIONS OVER CLOUD, EDGE, AND END DEVICES 5461

Case 2: One particle is feasible, and the other one is infeasi-
ble. The feasible particle is selected, and the fitness function is
defined as follows:

F (Xi) =

{

0, if ∀i, T compl
i (Xi)

≤ D(Gi)

1, else
. (12)

Case 3: Both particles are infeasible. The particle with lesser
total completion time is selected, and this particle is more likely
to become a feasible particle after update operations. The fitness
function is defined as follows:

F (Xi) = max{T compl
i (Xi)

}. (13)

3) Update Strategy: PSO has three main parts: Inertia, indi-

vidual cognition, and social cognition. The iterative update of
each particle is affected by both its personal best position and
the global best position in current generation [28]. Prematurely
falling into a local optimum is a major defect of traditional
PSO. To enhance the search ability of our algorithm and avoid
premature convergence, the crossover operator and mutation
operator of GA are introduced for particle update. The iterative
update of the ith particle at the tth iteration is shown as (14),
where Cg() and Cp() represent crossover operators, and Mu()
is mutation operator. In addition, the value of order ϕj for each
layer remains the same. It means that only the value of servers
for each layer in a particle is updated.

Xt
i = c2 ⊕ Cg

× (c1 ⊕ Cp(w ⊕Mu(X
t−1
i), pBestt−1

i), gBestt−1),
(14)

For individual cognition component and social cognition

component, the crossover operator of GA is introduced to refresh
the corresponding component, which is described as (15) and
(16), respectively

Bt
i = c1 ⊕ Cp(A

t
i, pBestt−1)

=

{

Cp(A
t
i, pBestt−1) r1 < c1

At
i else

(15)

Ct
i = c2 ⊕ Cg(B

t
i , gBestt−1)

=

{

Cg(B
t
i , gBestt−1) r2 < c2

Bt
i else

(16)

where r1 and r2 are both random factors, whose value is between
0 and 1. Cp() (or Cg()) is crossover operator. It randomly
chooses two locations in a particle to be updated, and then
replaces server value of the segment between the two locations
with the same interval in pBest (or gBest) particle. The crossover
operator for individual (or social) cognition component is shown
as Fig. 3(a). It randomly chooses ind1 and ind2 locations in an
old particle, and then replaces the segment between ind1 and
ind2 with the pBest (or gBest) particle in the same interval.

Property 2: A particle can change from infeasible to feasible
after crossover operator, and vice versa. More details are given
in [25].

Fig. 3. Update operation. (a) Crossover operator for individual (social)
cognition component. (b) Mutation operator for inertia component.

For inertia component, the mutation operator of GA is in-
troduced to refresh the corresponding component, which is
described as

At
i = w ⊕Mu(X

t−1
i) =

{

Mu(X
t−1
i) r3 < w

Xt−1
i else

(17)

where r3 is a random factor, whose value is between 0 and 1.
Mu() is mutation operator. It randomly chooses a location in
a particle, and then alters the corresponding server value in the
range of |C|. Fig. 3(b) illustrates the mutation operator for inertia

component. It randomly chooses ind3 location, and then alters
the value of ind3 from 0 to 1.

Property 3: A particle can change from infeasible to feasible
after mutation operator, and vice versa. More details are given
in [25].

4) Map From a Particle to DNN Layers Off-Loading: The
pseudocode of mapping a particle to cost-driven off-loading for
DNNs in hybrid computing environments is given in [25].

5) Parameter Settings: The inertia weight w affects the con-
vergence and search ability of PSO [29]. Formula (18) represents
an adjustment mechanism for the inertia weight [30]

w = wmax − iterscur ×
wmax − wmin

itersmax
(18)

where wmin and wmax are the given minimum and maximum of
w in the initialization phase. iterscur and itersmax are the current
number and the maximum number of iterations, respectively.
Therefore, the algorithm focuses on the global search at the
beginning of execution. With the increase of iterations, the value
of w reduces linearly and the algorithm gradually focuses on the
local search.

The adjustment mechanism in (18) fails to meet the nonlinear
characteristics of DNN layers off-loading. Therefore, we design
an adjustment mechanism that can adaptively adjust the search
ability according to the quality of current particle in (19)

w = wmax − (wmax − wmin)× exp

(

d(Xt−1
i)

d(Xt−1
i)− 1.01

)

(19)

d(Xt−1) =
div(gBestt−1, Xt−1)

|C|
(20)

where div(gBestt−1, Xt−1) indicates the number of coordinate
difference between the global best particle gBestt−1 and the
current particle Xt−1. This mechanism can adaptively adjust
its search ability according to the difference between the global

5462 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

TABLE V
CONFIGURATIONS AND THE COST FOR ALL SERVERS

best particles and current particle. When div(gBestt−1, Xt−1) is
small, it means that there is a small gap between gBestt−1 and
Xt−1, and the algorithm prefers to enhance the local search and
accelerate the convergence to find an optimal solution.

The other two acceleration coefficients (i.e., c1 and c2) are
given in [31]. Note that cstart1 and cend1 are the start value and
end value of c1. cstart2 and cend2 are the start value and end value
of c2.

6) Algorithm Flowchart: More details about algorithm
flowchart are given in [25].

V. EXPERIMENT RESULTS AND ANALYSIS

All the simulation experiments were conducted on a Win8
64-bit operating system with a G3250 3.20 GHz Intel Pentium
processor and 8 GB RAM. The corresponding parameters of
PSO-GA were set based on [30]: Spop = 100, itersmax = 1000,
wmax = 0.9, wmin = 0.4, cstart1 = 0.9, cend1 = 0.2, cstart2 = 0.4,
and cend2 = 0.9.

A. Experimental Setup

We conducted our experiments using four types of DNNs:
AlexNet, VGG19, GoogleNet, and ResNet101. The structure,
datasets, and computing amount in each type of DNN are differ-
ent. The basic layer execution time, data transmission amount
between two layers, and the overall structure for our tested DNNs
is recorded in a file which is available online.3

The hybrid computing environments have 20 servers
{s1, s2, . . . , s20}, which are divided into three categories. The
first 10 servers belong to the end devices, the last 5 servers
belong to the cloud, and the other five servers belong to the
edge. The processing capacity of a server in the same category is
roughly proportional to its cost. We assume that the end servers
have the lowest configurations and execute DNN layers without
charging. Table V shows the configurations and the cost for
all servers. In this article, each end server is connected to two
nearby edge servers. Table IV shows the bandwidth between
two servers in different categories and the corresponding data
transmission cost.

Finally, each DNN needs a specific deadline to verify whether
an off-loading strategy is feasible or not. We set five different
deadlines for each DNN as

Dj(Gi) = rj ·H(Gi), rj = {1.2, 1.5, 3, 5, 8} (21)

whereH(Gi) is the execution time of a DNNGi based on HEFT
algorithm [32].

3[Online]. Available: https://github.com/LinBin403/dataset-for-our-research

B. Competitive Algorithms

To verify the effectiveness of PSO-GA, we modified the
GA [18] and the Greedy [23] to adapt the cost-driven off-loading
strategy for DNNs in hybrid computing environments.

GA adopts a binary encoding strategy, and its fitness function
is according to [25]. The map from an encoded chromosome to
a cost-driven off-loading solution should not only consider the
computation cost for each layer, but also the transmission cost
for each dataset.

Greedy offloads each layer to the cheapest server within the
corresponding deadline. If a layer offloaded to the cheapest
server cannot meet the deadline constraint, then the layer has
to be offloaded to the second cheapest server. It follows these
operations and iterates over.

Finally, prePSO is selected as another comparison algo-
rithm, which is the PSO-GA with preprocessing discussed in
Section IV.

C. Experimental Results and Analysis

GA, PSO-GA, and prePSO belong to the metaheuristic
algorithms. In the experiments, they are terminated if they
maintain the same value in 50 continuous iterations. The
off-loading results may be different with the same configurations
in each experiment. Therefore, the system cost is measured as the
average of 50 repeated experiments. If there are infeasible parti-
cles (solutions) and feasible particles (solutions), the system cost
corresponding to the infeasible solutions is ignored. It means that
we only consider the average system cost of feasible solutions
when there is at least one feasible solution in the 50 repeated
experiments. If there is no feasible particle (solution) after 50
repeated experiments, its system cost is represented as a negative
value. In the experiments, the off-loading results corresponding
to the negative system cost for DNNs are all the infeasible
solutions.

Fig. 4 shows the system cost of different strategies for one
DNN per end device. In these experiments, there is only one
DNN on each end device originally. It means that there are ten
DNNs on ten end devices. In general, the system cost becomes
less and less as the deadline is gradually loose for all off-loading
strategies. With the looser deadline constraints, more layers can
be offloaded to the cheaper servers under the same situation.
The reasons of the performance difference on the four types
of DNNs are that they have different overall structure, basic
layer execution time, and data transmission amount between two
layers. For VGG19, all layers in it are almost serially executed,
and the data transmission amount is more than other three types
of DNNs. Therefore, the same off-loading strategy has to spend
more time or cost on off-loading each layer of VGG19 than
other three types of DNNs. For GoogleNet, many layers can be
processed in parallel, and it has a larger number of layers than
AlexNet and VGG19. Although the data transmission amount
of GoogleNet is similar to that of VGG19, the same off-loading
strategy can spend less time or cost on off-loading each layer
of GoogleNet than VGG19. This is mainly due to the parallel
processing of layers in GoogleNet.

PSO-GA has the best performance due to that it evolves
iteratively from a global perspective. Greedy is an extreme

LIN et al.: COST-DRIVEN OFF-LOADING FOR DNN-BASED APPLICATIONS OVER CLOUD, EDGE, AND END DEVICES 5463

Fig. 4. System cost of different strategies for one DNN per end device. (a) AlexNet. (b) VGG19. (c) GoogleNet. (d) ResNet101.

strategy, which cannot find a feasible solution when the deadline
is tight. GA’s search scope is relatively limited at each iteration,
and it does not adaptively adjust according to the performance of
the current chromosome. For VGG19 and ResNet101, prePSO
compresses all the layers into one layer in a DNN. Therefore, it
offloads all layers of a DNN on its corresponding end devices,
and its performance is similar to that of Greedy for VGG19
and ResNet101. For GoogleNet, there is a big gap between
PSO-GA and prePSO after D3(G). The reason is that the
preprocessing influences the final off-loading result discussed
in [25]. The compressed layers have larger computation amount,
which have to be offloaded on the servers with more computing
power.

Fig. 4(a) shows the system cost of different strategies for one
AlexNet per end device. The strategies in Fig. 4(a) have less
system cost compared with that in Fig. 4(b) and (d). This is
mainly due to that the number of layers, the average amount
of each dataset, and the average execution time of each layer in
AlexNet are much less than that in VGG19 and ResNet101. This
leads to that the system cost among the three figures is not an
order of magnitude. In Fig. 4(c), there is no strategy offering
a feasible solution before D3(G). Although the deadline is
approximately 1.5 times the completion time of HEFT algorithm
for each DNN, each layer has to be executed according to the
serial processing model on the same server.

Fig. 5 shows the system cost of different strategies for three
DNNs per end device. It means that there are three DNNs on
each end device originally. From Fig. 4, we find that almost
all off-loading strategies have no feasible solution in D1(G)
and D2(G). The number of DNN layers in Fig. 5 is three
times that of the corresponding DNNs in Fig. 4. In order to
decrease the generation of infeasible solutions, the deadlines in
the experiments in Fig. 5 are twice that in Fig. 4.

In general, the system cost in Fig. 5 is almost four times
that in Fig. 4. It is obvious that the system cost becomes less
as the deadline is gradually loose for all off-loading strategies.
Greedy has the worst performance due to that it is an extreme
strategy from a local perspective. It prioritizes each layer on the
cheapest server step by step within the corresponding deadlines.
As the total number of DNN layers increase, the heavier layers
usually fails to be completed within their deadlines by Greedy
strategy. Through an overview of Fig. 5, we find that Greedy
achieves feasible solutions within looser deadlines (i.e.,D5(G))
for AlexNet and ResNet101. PSO-GA has the best performance.
It averts the premature convergence of PSO and improves the
diversity of population. This leads to that layers with larger
amount of computation are offloaded to the cloud, and layers
with larger amount of data transmission are offloaded to the
edge and end devices within their deadlines. The overall trend
of different strategies for system cost in Fig. 5 is similar to that in

5464 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

Fig. 5. System cost of different strategies for three DNN per end device. (a) AlexNet. (b) VGG19. (c) GoogleNet. (d) ResNet101.

Fig. 4. From the experiments, we find that data transmission cost
accounts for the majority of the total system cost for GoogleNet
and ResNet101. The reason for this result is that they have more
layers, and the amount of layer execution is relatively smaller
compared with AlexNet, whose number of layers is 11.

Fig. 5(a) shows the system cost of different strategies for three
AlexNets per end device. From Figs. 4(a) and 5(a), you can find
that Greedy strategy becomes extremely unsuitable as the total
number of AlexNet layers increases. Although PSO-GA has the
best performance, it cannot offload all layers to the end devices
to achieve 0 system cost until inD5(G) of Fig. 5(a). In Fig. 5(b),
all off-loading strategies except GA achieve 0 system cost after
D3(G). It means that all layers in a VGG19 are offloaded to
its original end device. In Fig. 5(d), PSO-GA and PSO both
achieve the feasible solutions from D1(G) to D5(G). Greedy
and prePSO cannot find any feasible solution until D5(G).
prePSO compresses all the layers into one layer in a ResNet101,
and offloads all layers in a ResNet101 to its original end device
when the corresponding deadline is loose enough.

More details about experimental results are given in [25].

D. Industrial Applications

Road traffic applications, such as vehicle identification, have
to rely on computer vision, whose core is DNNs. Traffic cameras

have limited process capacity, and the vehicle identification
application usually has deadline constraint. With the hybrid
computing environments, consisting of the cloud, edge, and
end devices, the larger layers (more amount of data) with
high business intelligence are offloaded to the cloud, while
the smaller layers (less amount of data) are offloaded to the
edge and cameras. These three platforms collaborate with each
other and execute the layers of DNNs with low system cost and
latency.

Traffic cameras periodically shoot traffic conditions, and the
configurations of the hybrid computing environments usually
keep the same for a long time. The off-loading strategy based on
PSO-GA will make the same decision when the configurations
keep the same after the first execution. Otherwise, it has to be
re-executed to adapt to the new configurations of the hybrid
computing environments.

VI. CONCLUSION

A cost-driven off-loading strategy based on PSO-GA for
DNN-based applications over the cloud, edge, and end devices
was proposed in this article. The experimental results showed
that the off-loading strategy effectively reduced the system cost
within each DNN’s corresponding deadline relative to the bench-
marks. With the looser deadline constraints, more layers can be

LIN et al.: COST-DRIVEN OFF-LOADING FOR DNN-BASED APPLICATIONS OVER CLOUD, EDGE, AND END DEVICES 5465

offloaded to the cheaper servers under the same situation. There-
fore, looser deadline constraints will lead to the system cost
decrease. Moreover, all layers can be offloaded in their original
end devices with no data transmission when their corresponding
deadlines are loose enough.

In the future, we will consider the “load balancing” issue for
all the participated servers, which may have a major impact on
the system cost. In addition, each layer in the real environment
has different price/performance ratios for different servers, and
the bandwidth may fluctuate due to the changes in data traffic.
Therefore, we will comprehensively optimize the system cost
while considering the bandwidth fluctuation and the different
price/performance ratios for different servers.

REFERENCES

[1] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “MCDNN: An approximation-based execution frame-
work for deep stream processing under resource constraints,” in Proc. 14th

Annu. Int. Conf. Mobile Syst., Appl. Services, Singapore, 2016, pp. 123–
136. [Online]. Available: http://dx.doi.org/10.1145/2906388.2906396

[2] H. Chen, C. Yang, and Y. Du, “Machine learning-assisted analysis of
polarimetric scattering from cylindrical components of vegetation,” IEEE

Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 155–165, Jan. 2019.
[3] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural

networks over the cloud, the edge and end devices,” in Proc. 37th Int. Conf.

Distrib. Comput. Syst., Atlanta, GA, USA, 2017, pp. 328–339. [Online].
Available: http://dx.doi.org/10.1109/ICDCS.2017.226

[4] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[5] H. Wu, “Multi-objective decision-making for mobile cloud offloading: A
survey,” IEEE Access, vol. 6, pp. 3962–3976, 2018.

[6] H. J. Jeong, “Lightweight offloading system for mobile edge computing,”
in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops, Kyoto,
Japan, 2019, pp. 451–452.

[7] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN surgery
for inference acceleration on the edge,” in Proc. IEEE INFOCOM, Paris,
France, 2019, pp. 1423–1431.

[8] H. J. Jeong, I. Jeong, H. J. Lee, and S. M. Moon, “Computation offloading
for machine learning web apps in the edge server environment,” in Proc.

Int. Conf. Distrib. Comput. Syst., Vienna, Austria, 2018, pp. 1492–1499.
[Online]. Available: http://dx.doi.org/10.1109/ICDCS.2018.00154

[9] C. Lo, Y. Y. Su, C. Y. Lee, and S. C. Chang, “A dynamic deep neural
network design for efficient workload allocation in edge computing,” in
Proc. 35th IEEE Int. Conf. Comput. Design, Boston, MA, USA, 2017,
pp. 273–280.

[10] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in Proc. 3rd

ACM/IEEE Symp. Edge Comput., Bellevue, WA, USA, 2018, pp. 90–102.
[11] W. Guo, B. Lin, G. Chen, Y. Chen, and F. Liang, “Cost-driven scheduling

for deadline-based workflow across multiple clouds,” IEEE Trans. Netw.

Service Manage., vol. 15, no. 4, pp. 1571–1585, Dec. 2018.
[12] B. Lin et al., “A time-driven data placement strategy for a scientific

workflow combining edge computing and cloud computing,” IEEE Trans.

Ind. Informat., vol. 15, no. 7, pp. 4254–4265, Jul. 2019.
[13] J. Liu et al., “Online multi-workflow scheduling under uncertain task

execution time in IaaS clouds,” IEEE Trans. Cloud Comput., vol. 1,
pp. 1–10, 2019.

[14] Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta, “QoS-aware scheduling
of heterogeneous servers for inference in deep neural networks,” in Proc.

Int. Conf. Inf. Knowl. Manage., Singapore, 2017, pp. 2067–2070. [Online].
Available: http://dx.doi.org/10.1145/3132847.3133045

[15] B. Qi, M. Wu, and L. Zhang, “A DNN-based object detection system
on mobile cloud computing,” in Proc. 17th Int. Symp. Commun. Inf.

Technologies, Cairns, Australia, 2017, pp. 1–6. [Online]. Available: http:
//dx.doi.org/10.1109/ISCIT.2017.8261188

[16] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proc. Int. Conf. Architectural Support Program.

Languages Operating Syst., Xi’an, China, 2017, pp. 615–629. [Online].
Available: http://dx.doi.org/10.1145/3037697.3037698

[17] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application parti-
tioning algorithm in mobile environments,” IEEE Trans. Parallel Distrib.

Syst., vol. 30, no. 7, pp. 1464–1480, Jul. 2019.
[18] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A genetic algorithm

based data replica placement strategy for scientific applications in clouds,”
IEEE Trans. Services Comput., vol. 11, no. 4, pp. 727–739, Jul./Aug. 2018.

[19] Y. He et al., “Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,” IEEE

Trans. Veh. Technol., vol. 66, no. 11, pp. 10 433–10 445, Nov. 2017.
[20] N. Zhao, X. Liu, F. R. Yu, M. Li, and V. C. M. Leung, “Communications,

caching, and computing oriented small cell networks with interference
alignment,” IEEE Commun. Mag., vol. 54, no. 9, pp. 29–35, Sep. 2016.

[21] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, Feb. 2018.

[22] M. Zorzi, “Serial processing in reading aloud: No challenge for a parallel
model,” J. Exp. Psychol. Human Perception Perform., vol. 26, pp. 847–856,
2000. [Online]. Available: http://dx.doi.org/10.1037//0096-1523.26.2.847

[23] C. Jiang, Z. Chen, R. Su, and Y. C. Soh, “Group greedy method for sensor
placement,” IEEE Trans. Signal Process., vol. 67, no. 9, pp. 2249–2262,
May 2019.

[24] D. S. Hochba, “Approximation algorithms for NP-hard problems,”
SIGACT News, vol. 28, pp. 40–52, 1997. [Online]. Available: http://doi.
acm.org/10.1145/261342.571216

[25] B. Lin, X. Chen, and J. Li, “Cost-driven offloading for DNN-based
applications over cloud, edge and end devices,” Tech. Rep., 2019. [Online].
Available: http://github.com/LinBin403/Paper_Online

[26] J. S. Su, W. Z. Guo, C. L. Yu, and G. L. Chen, “Fault-tolerance clustering
algorithm with load-balance aware in wireless sensor network,” Jisuanji

Xuebao/Chinese J. Comput., vol. 37, pp. 445–456, 2014. [Online]. Avail-
able: http://dx.doi.org/10.3724/SP.J.1016.2014.00445

[27] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds,” IEEE Trans.

Cloud Comput., vol. 2, no. 2, pp. 222–235, Apr./Jun. 2014.
[28] H. Li, D. Yang, W. Su, J. Lu, and X. Yu, “An overall distribution particle

swarm optimization MPPT algorithm for photovoltaic system under partial
shading,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 265–275, Jan. 2019.

[29] D. O’Neill, A. Lensen, B. Xue, and M. Zhang, “Particle swarm optimisa-
tion for feature selection and weighting in high-dimensional clustering,”
in Proc. IEEE Congr. Evol. Comput., Rio de Janeiro, Brazil, 2018, pp. 1–8.

[30] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.

IEEE Int. Conf. Evol. Comput., Anchorage, USA, 1998, pp. 69–73.
[31] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, “A survey of PSO-

based scheduling algorithms in cloud computing,” J. Netw. Syst. Manage.,
vol. 25, pp. 122–158, 2017. [Online]. Available: http://dx.doi.org/10.1007/
s10922-016-9385-9

[32] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.

Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

Bing Lin received the B.S. and M.S degrees in
computer science and the Ph.D. degree in com-
munication and information system from Fuzhou
University, Fuzhou, China, in 2010, 2013, and
2016, respectively.

He is currently an Assistant Professor with the
College of Physics and Energy, Fujian Normal
University, Fujian, China. He is also the Aca-
demic Secretary of CCF YOCSEF in Fuzhou.
He has authored or coauthored over 20 journals
and conference articles, such as IEEE TRANS-

ACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, and Concurrency and Computation: Prac-
tice and Experience. His research interests include parallel and dis-
tributed computing, computational intelligence, and data center resource
management.

http://dx.doi.org/10.1145/2906388.2906396
http://dx.doi.org/10.1109/ICDCS.2017.226
http://dx.doi.org/10.1109/ICDCS.2018.00154
http://dx.doi.org/10.1145/3132847.3133045
http://dx.doi.org/10.1109/ISCIT.2017.8261188
http://dx.doi.org/10.1145/3037697.3037698
http://dx.doi.org/10.1037//0096-1523.26.2.847
http://doi.acm.org/10.1145/261342.571216
http://github.com/LinBin403/Paper_Online
http://dx.doi.org/10.3724/SP.J.1016.2014.00445
http://dx.doi.org/10.1007/s10922-016-9385-9

5466 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 16, NO. 8, AUGUST 2020

Yinhao Huang received the B.S. degree in soft-
ware engineering in 2018 from Fuzhou Univer-
sity, Fujian, China, where he is currently working
toward the M.S. degree in technology of com-
puter application with the College of Mathemat-
ics and Computer Science.

Since September 2018, he has also been a
student of the Fujian Key Laboratory of Net-
work Computing and Intelligent Information Pro-
cessing at Fuzhou University. His current re-
search interests include deep neural network,

edge computing, and cloud computing.

Jianshan Zhang received the M.S. degree
in material engineering from the College of
Physics and Energy, Fujian Normal University,
Fujian, China, in 2018. He is currently working
toward the Ph.D. degree in computer science
and technology with the College of Mathemat-
ics and Computer Science, Fuzhou University,
Fujian.

His current research interests include edge
computing, computational intelligence, and
cloud computing.

Junqin Hu received the B.S. degree in com-
puter science and technology in 2019 from
Fuzhou University, Fujian, China, where he is
currently working toward the M.S. degree in
computer software and theory with the College
of Mathematics and Computer Science.

Since September 2019, he has also been a
student of the Fujian Key Laboratory of Network
Computing and Intelligent Information Process-
ing at Fuzhou University. His current research
interests include computation offloading, edge

computing, and cloud computing.

Xing Chen received the B.S. and Ph.D. degrees
in computer software and theory from Peking
University, in 2008 and 2013, respectively.

Upon completion of the Ph.D. degree, he
joined Fuzhou University where held the rank of
Associate Professor since 2016. Now he is the
Deputy Director of Fujian Provincial Key Lab-
oratory of Network Computing and Intelligent
Information Processing, Fuzhou University, and
leads the Systems research group. His current
projects cover the topics from self-adaptive soft-

ware, computation off-loading, model driven approach, and so on. He
has authored or coauthored over 30 journal and conference articles,
and has won the first Provincial Scientific and Technological Progress
Award in 2018. His research interests include the software systems and
engineering approaches for cloud and mobility.

Jun Li (M’09–SM’16) received Ph.D. degree in
electronic engineering from Shanghai Jiao Tong
University, Shanghai, P. R. China, in 2009.

From January 2009 to June 2009, he worked
with the Department of Research and Innova-
tion, Alcatel Lucent Shanghai Bell. From June
2009 to April 2012, he was a Postdoctoral Fel-
low with the School of Electrical Engineering
and Telecommunications, the University of New
South Wales, Australia. From April 2012 to June
2015, he was a Research Fellow with the School

of Electrical Engineering, the University of Sydney, Australia. Since June
2015, he has been a Professor with the School of Electronic and Optical
Engineering, Nanjing University of Science and Technology, Nanjing,
China. His research interests include network information theory, ultra-
dense wireless networks, and mobile edge computing.

