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Abstract—Recently, utility grids have emerged as a new model
of service provisioning in heterogeneous distributed systems. In
this model, users negotiate with providers on their required
Quality of Service and on the corresponding price to reach a
Service Level Agreement. One of the most challenging problems
in utility grids is workflow scheduling, i.e., the problem of
satisfying users’ QoS as well as minimizing the cost of workflow
execution. In this paper, we propose a new QoS-based workflow
scheduling algorithm based on a novel concept called Partial Crit-
ical Path. This algorithm recursively schedules the critical path
ending at a recently scheduled node. The proposed algorithm
tries to minimize the cost of workflow execution while meeting
a user-defined deadline. The simulation results show that the
performance of our algorithm is very promising.

Index Terms—grid computing, workflow scheduling, utility
grids, economic grids, QoS-based scheduling

I. INTRODUCTION

Many researchers believe that economic principles will

influence the grid computing paradigm to become an open

market of distributed services, sold at different prices, with

different performance and QoS [1]. This new paradigm is

known as utility grid, versus the traditional community grid

in which services are provided free of charge with best-

effort service. Although there are many papers that address

the problem of scheduling in traditional grids, there are only

a few works on this problem in utility grids. The multi-

objective nature of the scheduling problem in utility grids

makes it difficult to solve, specially in the case of complex

jobs like workflows. This has led most researchers to use time-

consuming meta-heuristic approaches, instead of fast heuristic

methods. In this paper we propose a new heuristic algorithm

for scheduling workflows in utility grids, and we evaluate its

performance on some well-known scientific workflows in the

grid context.

The main difference between community grids and utility

grids is QoS: while community grids follow the best-effort

method in providing services, utility grids guarantee the re-

quired QoS of users via Service Level Agreements (SLAs)

[2]. An SLA is a contract between the provider of resources

and the consumer of those resources describing the qualities

and the guarantees of the service provisioning. Consumers can

negotiate with providers on required QoS and the price to

reach an SLA. The price has a key role in this contract: it

encourages providers to advertise their services to the market,

and encourages consumers to define their required qualities

more realistically. Obviously, traditional resource management

systems for community grids are not directly suitable for utility

grids, and therefore, new methods have been proposed and

implemented in recent years [3].

Workflows constitute a common model for describing a

wide range of applications in distributed systems. Usually, a

workflow is described by a Directed Acyclic Graph (DAG)

in which each computational task is represented by a node,

and each data or control dependency between tasks is repre-

sented by a directed edge between the corresponding nodes.

Workflow scheduling is the problem of mapping each task to

a suitable resource and of ordering the tasks on each resource

to satisfy some performance criterion. As task scheduling

is a well-known NP-Complete problem [4], many heuristic

methods have been proposed for homogeneous [5] and hetero-

geneous distributed systems like grids [6], [7], [8], [9], [10],

[11]. These scheduling methods try to minimize the execution

time (makespan) of the workflows and as such are suitable for

community grids. However, in utility grids, there are many

potential other QoS attributes other than execution time, like

reliability, security, availability, and so on. Besides, higher QoS

attributes mean higher prices for the services. Therefore, the

scheduler faces a QoS-cost tradeoff in selecting appropriate

services.

In this paper we propose a new QoS-based workflow

scheduling algorithm, called the Partial Critical Paths (PCP)

algorithm. The objective function of the PCP algorithm is to

create a schedule that minimizes the total execution cost of a

workflow, while satisfying a user-defined deadline for the total

execution time. First, the PCP algorithm tries to schedule the

(overall) critical path of the workflow such that it completes

before the user’s deadline and the execution cost is minimized.

Then it finds the partial critical path to each scheduled task on

the critical path and executes the same procedure in a recursive

manner.

The remainder of the paper is organized as follows. Sec-

tion II describes our system model, including the application

model, the utility grid model, and the objective function.

The PCP scheduling algorithm is explained in Section III. A

performance evaluation is presented in Section IV, and Section

VI concludes.
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II. SCHEDULING SYSTEM MODEL

The proposed scheduling system model consists of an

application model, a utility grid model, and a performance

criterion for scheduling. An application is modeled by a

directed acyclic graph G(T,E), where T is a set of n tasks

{t1, t2, ..., tn}, and E is a set of arcs. Each arc ei,j = (ti, tj)
represents a precedence constraint that indicates that task ti
should complete executing before task tj can start. In a given

task graph, a task without any parent is called an entry task,

and a task without any child is called an exit task. As our

algorithm requires a single entry and a single exit task, we

always add two dummy tasks tentry and texit to the beginning

and the end of the workflow, respectively. These dummy tasks

have zero execution time and they are connected with zero-

weight arcs to the actual entry and exit tasks.

A utility grid model consist of several Grid Service

Providers (GSPs), each of which provides some services to the

users. Each workflow task ti can be processed by mi services

Si =
{
s1i , s

2
i , ..., s

mi
i

}
from different service providers with

different QoS attributes. There are many QoS attributes for ser-

vices, like execution time, price, reliability, security, and so on.

In this study we use the most important ones, execution time

and price, for our scheduling model. The price of a service

usually depends on its execution time, i.e., shorter execution

times are more expensive. However, some service providers

may offer special services to special users, or in certain (off-

peak) times. We assume ET (ti, s) and EC(ti, s) to be the

estimated execution time and execution cost for processing

task ti on service s, respectively. Estimating the execution

time of a task on an arbitrary resource is an important issue

in grid scheduling. Many techniques have been proposed in

this area such as code analysis, analytical benchmarking/code

profiling, and statistical prediction [12], that are beyond our

discussion. Besides, there is another source of time and money

consumption: transferring data between tasks. We assume

TT (ei,j , s, r) and TC(ei,j , s, r) to be the estimated transfer

time and transfer cost of sending the required data along ei,j
from service s (processing task ti) to service r (processing

task tj), respectively. Estimating the transfer time can be done

using the amount of data to be transmitted, and the bandwidth

and latency information between services.

To obtain the available services and their information, the

scheduler should query a grid information service like the

Grid Market Directory (GMD)[13]. In a utility grid, GMD is

used to provide information such as the type, the provider,

and the QoS parameters (including price) for all services.

Each GSP has to register itself and its services with the

GMD, so that it can present and sell its services to users.

Whenever a scheduler accepts a workflow, it contacts the GMD

to query about available services for each task and their QoS

attributes. Then the broker directly contacts the service’s GSP

to gather detailed information about the dynamic status of the

service, especially the available time slots for processing tasks.

Using this information, the scheduler can execute a scheduling

algorithm to map each task of a workflow to one of the

available services. According to the generated schedule, the

broker contacts GSPs to make advance reservations of selected

services. This results in an SLA between the broker and the

GSP specifying the earliest start time, the latest finish time,

and the price of the selected service. Usually the SLA contains

a penalty clause in case of violation of the service level to

enforce service level guarantees.

The last parameter in our model is the performance crite-

ria. In community grids (traditional scheduling), users prefer

to minimize the completion time (makespan) of their jobs.

However, in utility grids, price is the most important factor.

Therefore, users prefer to utilize cheaper services with lower

QoS that satisfy their needs and expectations. Generally, a

user job has a deadline before which the job must be finished,

but earlier completion of the job only incurs more cost to

the user. Therefore, our performance criteria are to minimize

the execution cost of the workflow such that the workflow is

complete before the user’s specified deadline.

III. THE PROPOSED ALGORITHM

Critical Path heuristics are widely used in workflow schedul-

ing. The critical path of a workflow is the longest execution

path between the entry and exit tasks of the workflow. Most

of these heuristics try to schedule critical tasks (node), i.e.,

the tasks belonging to the critical path, first by assigning

them to the resources that process them earliest, in order

to minimize the execution time of the entire workflow. Our

proposed algorithm is based on a similar heuristic, to schedule

the critical nodes first, yet not to minimize the execution time,

but to minimize the price of executing the critical path before

the user-specified deadline. After scheduling all critical nodes,

each of them has a start time that is a deadline for its parent

nodes, i.e., its (direct) predecessors in the workflow. So then

we can carry out the same procedure by considering each

critical node in turn as an exit node with its start time as

a deadline, and creating a partial critical path that ends in the

critical node and that leads back to an already scheduled node.

In our Partial Critical Path (PCP) algorithm, this procedure

continues recursively until all tasks are scheduled successfully.

In the following sections, we elaborate on the details of the

PCP algorithm.

A. Basic Definitions

In our PCP scheduling algorithm, we want to find the critical

path of the whole workflow, and partial critical paths. In order

to find these, we need some (idealized, approximate) notion

of the start time of each workflow task before we actually

schedule the task. This means that we have two notions of

the start times of tasks, the earliest start time computed before

scheduling the workflow, and the actual start time computed

by our scheduling algorithm.

For each unscheduled task ti we define its Earliest Start

Time EST (ti) as the earliest time ti can start its computation,

regardless of the actual service that will process the task

(that will be determined during scheduling). Clearly, it is

not possible to compute EST (ti) exactly, because a grid is
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Algorithm 1 The PCP Scheduling Slgorithm

1: procedure SCHEDULEWORKFLOW(G(T,E), deadline)
2: request available services for each task in G from GMD
3: query available time slots for each service from related GSPs
4: add tentry , texit and their corresponding edges to G
5: compute MET (ti) for each task according to formula 1
6: compute MTT (ei,j) for each edge according to formula 2
7: compute EST (ti) for each task in G according to formula 3
8: mark tentry and texit as scheduled
9: set AST (tentry)← 0, AST (texit)← deadline

10: if (ScheduleParents(texit) is successfull) then
11: make advance reservations for all tasks in G according to Schedule
12: else
13: return (failure)
14: end if
15: end procedure

a heterogeneous environment and the computation time of

tasks varies from service to service. Furthermore, the data

transmission time is also dependent on the selected services

and the bandwidth between their providers. Thus, we have to

approximate the execution and data transmission time for each

unscheduled task. Among the possible approximation options,

e.g., the average, the median, or the minimum, we select the

minimum execution and data transmission time. We define

the Minimum Execution Time MET (ti) and the Minimum

Transmission Time MTT (ei,j) as follows:

MET (ti) = min
s∈Si

ET (ti, s) (1)

MTT (ei,j) = min
s∈Si,r∈Sj

TT (ei,j , s, r) (2)

Having these definitions, we can compute the Earliest Start

Time for each unscheduled task, EST (ti), as follows:

EST (tentry) = 0 (3)

EST (ti) = max
tp∈parents ti

EST (tp) +MET (tp) +MTT (ep,i)

For each scheduled task we define the Selected Service

SS (ti) as the service selected for processing ti during

scheduling, and the Actual Start Time AST (ti) as the actual

start time of ti on that service. These attributes will be

determined during scheduling.

B. The PCP Scheduling Algorithm

Algorithm 1 shows the pseudo-code of the overall PCP

algorithm for scheduling a workflow. In line 4, two dummy

nodes tentry and texit have been added to the task graph, even

if the task graph already has only one entry or exit node. This

is necessary for our algorithm, but we won’t actually schedule

these two tasks. After computing the required parameters in

lines 5 - 7, dummy nodes tentry and texit are marked as

scheduled in line 8, and then the Actual Start Time of texit is

set to the user’s deadline. This enforces the parents of texit,
i.e., the actual exit nodes of the workflow, to be finished before

the deadline. Finally, in line 10 the function ScheduleParents is

called for texit. In order to show how the algorithm works, we

will trace its operation on the sample graph shown in Figure

1 (the numbers simply indicate node numbers, not execution
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Figure 1. A sample workflow

times). In this figure, tentry and texit have been shown with

S and E, respectively. In this stage, ScheduleWorkflow calls

ScheduleParents for node E.

C. The Parents Scheduling Algorithm

The pseudo-code for ScheduleParents is shown in algorithm

2. This algorithm receives a scheduled node as input and

tries to schedule all of its parents before the actual start time

of the input node itself. On success, it returns the desired

schedule, but on failure, it returns a task that causes this

failure and a suggested start time for this task that hopefully

makes its scheduling possible. First, ScheduleParents tries to

find the Partial Critical Path of unscheduled nodes ending at

the input node and starting at one of its predecessors that has

no unscheduled parent. For this reason, it uses the concept of

Critical Parent.

Definition 1. The Critical Parent of a node t is the unsched-
uled parent of t that has the latest data arrival time at t, that
is, it is the parent p of t for which EST (p) + MET (p) +
MTT (ep,t) is maximal.

We will now define the fundamental concept of the PCP

algorithm.

Definition 2. The Partial Critical Path of node t is:
i empty if t does not have unscheduled parents.

ii consists of the Critical Parent p of t and the Partial
Critical Path of p if t has unscheduled parents.

Algorithm 2 begins with the input node and follows the

critical parents until it reaches a node that has no unscheduled

parent, to form a partial critical path (lines 5-10). Note that in

the first call of this algorithm, it begins with texit and follows

back the critical parents until it reaches tentry, and so it finds

the overall real critical path of the complete workflow graph.

In the example workflow of Figure 1, the real critical path is

shown with dotted arrows. Therefore, in this stage CriticalPath

will be set to 2-6-9.

Then the algorithm calls procedure SchedulePath, which

receives a path (an ordered list of nodes) and a list of start time

constraints for all nodes on the path as input. If SchedulePath

succeeds, it returns a schedule for this path with the minimum

price that satisfies the constraints list and ends before the start

time of the scheduled children of the last node in the path. If

it fails, it returns a task that causes this failure and a suggested

start time for it. Initially, all of the constraints of the nodes
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Algorithm 2 Parents Scheduling Algorithm

1: procedure SCHEDULEPARENTS(t)
2: if (t has no unscheduled parent) then
3: return (Success)
4: end if
5: ti ← t
6: CriticalPath← empty
7: while (there exists an unscheduled parent of ti) do
8: add CriticalParent(ti) to the beginning of CriticalPath
9: ti ← CriticalParent(ti)

10: end while
11: initialize Constraints to 0
12: while (CriticalPath is not scheduled) do
13: if (SchedulePath(CriticalPath, Constraints) is unsuccessful) then
14: set tfailure and SuggestedStartT ime and return (Failure)
15: end if
16: for all (ti ∈ CriticalPath) do
17: if (ScheduleParents(ti) is unsuccessful) then
18: if (tfailure ∈ CriticalPath) then
19: Constraints[tfailure]← SuggestedStartT ime
20: break out from for loop
21: else
22: set tfailure and SuggestedStartT ime and return (Failure)
23: end if
24: end if
25: end for
26: end while
27: return ScheduleParents(t)
28: end procedure

have been set to zero (line 11). If SchedulePath fails (lines

13-15), it will do so because of one of the nodes that have

been scheduled previously in higher levels (previous calls of

this algorithm). In other words, SchedulePath cannot schedule

a particular task of the path, because one of the the previously

scheduled children of this task has a start time that is to early

to be met. In this case ScheduleParents returns the previously

scheduled task that causes this failure with a suggested start

time for it.

If SchedulePath succeeds (lines 16-25), the algorithm starts

to schedule the parents of each node on the partial critical

path, from the beginning to the end of the path, by calling

ScheduleParents recursively. If one of these recursive calls

to ScheduleParents fails, there are two different situations:

either the task that causes this failure belongs to the current

partial critical path, or it does not1 (lines 17-24). In the former

case, we cancel all schedules until now and call SchedulePath

to schedule the partial critical path again, but with a new

constraint for the failed task. In the latter case, we can’t do

anything in this stage, so we return failure and the failed task

to the caller algorithm to reschedule it. This process continues

until all tasks on the partial critical path and their parents have

successfully been scheduled. At the end, ScheduledParents is

called once again for the input node (line 27) to schedule its

remaining unscheduled parents (if any exists).

Let’s now follow the algorithm on the example workflow

of Figure 1. After finding the critical path 2-6-9, it calls

SchedulePath to find the best schedule for this path. Then,

ScheduleParents will be called for each node on this path to

find its partial critical path:

• Node 2: has no unscheduled parent

1Remember the task causes this failure belongs to the previously scheduled
tasks, so it can be on the current partial critical path that has been scheduled
recently

Algorithm 3 Path Scheduling Algorithm

1: procedure SCHEDULEPATH(Path,Constraints)
2: bestSchedule ← null
3: t ← first task on the path
4: while (t is not null) do
5: s← next untried service ∈ St

6: if (s = Ø) then
7: t ← previous task on the path and continue while loop
8: end if
9: Compute ST (t, s) and C(t, s)

10: if (ST (t, s) < Constraintst) then
11: ST (t, s)← Constraintst
12: end if
13: for all (nodes sc ∈ Scheduled Children of t) do
14: if (Actual Start Time of sc can not be met) then
15: continue while loop
16: end if
17: end for
18: if (t is the last task on the Path) then
19: if (this schedule has a better cost than bestSchedule) then
20: set this schedule as the bestSchedule
21: t ← previous task on the path
22: end if
23: else
24: t ← next task on the path
25: end if
26: end while
27: if (an admissible schedule found) then
28: mark all nodes of Path as scheduled
29: set AST(t) ← ST (t, bestSchedulet) for all tasks t in Path
30: update EST for all unscheduled children of all tasks in Path
31: return (Success)
32: else
33: determine tfailure and a suggested start time for it
34: return (Failure)
35: end if
36: end procedure

• Node 6: its partial critical path consists of only node

3, so SchedulePath is called to schedule node 3. If

SchedulePath cannot schedule node 3, it returns failure

and the node responsible for this failure, which is node

6, and a suggested new start time for this node. Then

SchedulePath should schedule path 2-6-9 again with this

new constraint for node 6. But if SchedulePath succeeds,

the algorithm continues to the next node.

• Node 9: its partial critical path is 5-8, which will be

scheduled by calling SchedulePath. Again, if Sched-

ulePath cannot schedule this path, it returns failure,

forcing path 2-6-9 to be rescheduled.

Now ScheduleParents finishes the scheduling of the partial

critical path for node E. Then it calls itself again to schedule

the unscheduled parents of node E (line 27). There is only

one unscheduled parent remaining for E, which is node 7,

and finding its partial critical path results in 1-4-7, that

will be scheduled by calling SchedulePath. If the scheduling

is successful, the algorithm finishes. Otherwise, it returns

failure, causing the previous stages to be rescheduled with

new constraints.

D. The Path Scheduling Algorithm

The last algorithm, SchedulePath, which is shown in algo-

rithm 3, is based on a Backtracking strategy. It starts from the

first task in the path and moves forward to the last task, at
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each step selecting an untried available service for that task

(line 5). If the selected service creates an admissible (partial)

schedule, then it moves forward to the next task, otherwise

it selects another untried service for that task. If there is no

available untried service for that task left, then it backtracks to

the previous task on the path and selects another service for it

(lines 6-8). After selecting a service for the current task t, say

service s, the algorithm computes the start time ST(t,s) and

the actual cost C(t,s) of running task t on service s; ST(t,s) is

computed by considering the data arrival time of the scheduled
parents of t and the free time slots of s. The algorithm finds

a free slot of length at least equal to the execution time of t
on s that begins after receiving all the required data from the

scheduled parents of t at s. The actual cost C(t,s) is computed

by summing three parts:

• the execution cost of t on s

• the cost of the data transmission between selected ser-

vices for scheduled parents of t (including its parent on

the path) and s

• the cost of the data transmission between s and selected

services for scheduled children of t

Then the start time constraint for current task is checked (line

10). After that, the algorithm checks the admissibility of the

current (partial) schedule (lines 13-17) by checking whether

the actual start times of the scheduled children of the current

task can be met. Finally, if the scheduling was successful, the

AST for the scheduled task and the EST for the children of

them are updated and the algorithm returns success with the

corresponding schedule (lines 27-31). Otherwise, the task that

causes the failure and its Suggested Start Time are returned

(lines 32-34), the details has been omitted for the sake of

brevity.

IV. PERFORMANCE EVALUATION

In this section we will present our simulations of the Partial

Critical Path algorithm.

A. Experimental Setup

We have used GridSim [14] for simulating the utility

grid environment for our experiments. We simulate a grid

environment like DAS-3[15] which is a multicluster grid in

the Netherlands. It consists of five clusters, and comprises 272

dual-processor AMD Opteron compute nodes. The constitutive

clusters are: Vrije University with 85 nodes, University of

Amsterdam with 41 nodes, Delft University with 68 nodes,

MultimediaN with 46 nodes and Leiden University with 32

nodes. The average inter-cluster bandwidth is between 10 to

512 MB/s. Unfortunately the processor speeds are very close

(between 2.2 to 2.6 GHz), so we have changed them to make

a 10 times difference between the fastest (Leiden University)

and the slowest (U. of Amsterdam) cluster. Besides, as DAS-3

is not a utility grid, we assigned fictitious prices (between 0.5

to 50 G$ per second) to each cluster that follow the rule that

a faster cluster has a higher price.

We test our algorithm using five synthetic workflow applica-

tions that are described in [16]. These workflows are based on

real scientific workflows: Montage, CyberShake, Epigenomics,

LIGO and SIPHT. These applications have different structural

properties in terms of their basic components (pipeline, data

aggregation, data distribution and data redistribution) and their

composition. Furthermore, there are four different sizes for

each workflow application in terms of total number of tasks,

from which we select three sizes: small (about 30 tasks),

medium (about 100 tasks) and large (about 1000 tasks). We

assume that all services are installed on all clusters, such that

each task can be executed on every cluster. In addition, we

assume that all clusers are empty in the beginning.

B. Experimental Results

First, to get a better idea of the required time and cost

for each workflow application, we simulate their execution

using three scheduling algorithms: HEFT [6], a well-known

makespan minimization algorithm, Fastest, that submits all

tasks to the fastest cluster, and Cheapest, that submits all

tasks to the cheapest (and slowest) cluster. Note that the

last two algorithms submit all tasks to one cluster (fastest or

cheapest), therefore some tasks have to wait for free resources,

particularly in the case of large workflows. Furthermore, since

a large set of workflows with different attributes is used, it is

important to normalize the total cost and makespan of each

workflow execution. So we define the Normalized Cost (NC)

and the Normalized Makespan (NM) of a workflow execution

as follows:

NC =
total schedule cost

CC
(4)

NM =
schedulemakespan

MH
(5)

where CC is the cost of executing the same workflow with

the Cheapest strategy and MH is the makespan of executing

the same workflow with the HEFT strategy. The results of

executing workflow applications using these three scheduling

policies are shown in Figure 2. Obviously, the normalized cost

and the normalized makespan are the same for the HEFT and

Fastest strategy for small workflows, because the number of

tasks is less than the fastest cluster’s resources. But they are

slightly different in medium workflows, and in large workflows

they have a meaningful difference because the HEFT strategy

tries to send some tasks to slower resources rather than waiting

for the fastest resource to finish the currently assigned tasks.

This strategy decreases the makespan and cost at the same

time. The price of the fastest resource is 10 times more than

the slowest resource, so the maximum normalized cost is 10.

To evaluate our PCP scheduling algorithm, we need to

assign a deadline to each workflow. Clearly this deadline

must be greater than or equal to the makespan of scheduling

the same workflow with the HEFT strategy. In order to set

deadlines for workflows, we define the deadline factor α, and

we set the deadline of a workflow to the time of its arrival

plus α ·MH . In our experiments, we let α range from 1.5 to

5.
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Figure 2. Normalized Makespan (left) and Normalized Cost (right) of scheduling workflows with three scheduling policies: HEFT, Fastest and Cheapest
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Figure 3. Normalized Makespan (left) and Normalized Cost (right) of scheduling of small workflows with Partial Critical Paths algorithm
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Figure 4. Normalized Makespan (left) and Normalized Cost (right) of scheduling of medium workflows with Partial Critical Paths algorithm
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Figure 5. Normalized Makespan (left) and Normalized Cost (right) of scheduling of large workflows with Partial Critical Paths algorithm

The normalized makespan and the normalized cost are

shown in Figure IV-A for small workflows. As can be seen,

the PCP algorithm meets the deadline in all cases and the

normalized cost decreases with the deadline increase. How-

ever, in some cases, increasing the deadline does not change

the schedule, and the cost remains the same, e.g., when going

from α = 3 to α = 3.5 for the LIGO and Montage workflows.

In these cases, the deadline increase is not sufficient to assign

tasks to slower resources, so the algorithm prefers to keep the

previous schedule. Although some workflows have a better

performance improvement in the first step, e.g., the normalized

cost of CyberShake decreases from 10 to 6 when the deadline
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Figure 6. Normalized Cost of scheduling of the large workflows with PCP and Yu’s algorithm

increases from MH to 1.5MH , in the end all the workflows

have an almost similar normalized cost. This means that when

we increase the deadline about 5 times from MH to 5MH ,

the normalized cost decreases to slightly less than twice CC ,

which is a promising performance.

Figures 4 and 5 show the normalized makespan and the nor-

malized cost for the medium and large workflows, respectively.

For the medium workflows, the charts are more or less similar

those for the small ones, but for the large workflows things are

completely different for some workflows. The Epigenomics

workflow has the worst performance with a decrease in the

normalized cost only to 4.5, while the SIPHT workflow has

the best performance with a decrease of the normalized cost

to 1.39 (even better than its small and medium versions)

for α = 5. This shows that in large workflows with huge

numbers of tasks (about 1000), the structural properties of

the workflows influence the scheduling process more than for

small and medium ones.

In some workflows, the normalized cost decreases smoothly,

while in the others it remains constant for a while and then

decreases suddenly. This is because of the structural properties

of each workflow. For example, in the Epigenomics workflow

a sudden decrease in the normalized cost is visible. This

workflow consists of many parallel pipelines with four tasks

each. The first three tasks have very small runtimes (less than

a second) but the fourth is very time consuming (about 942

seconds on the fastest machine on average). So, when this

workflow executes, there are many instances of the fourth

task that are executing at the same time. When we have a

tight deadline, all of these instances are submitted to the fast

resources. Sending even one of these tasks to a slow (and

also cheap) resource, drastically increases the makespan of the

workflow. So, small increases in the deadline don’t change the

schedule until the deadline reaches a limit that can send all

(or most) of the instances of the fourth task to the slower (and

cheaper) resources. At that point, the total cost of the schedule

suddenly reduces.

In summary, we can conclude that the PCP algorithm has

a promising performance in decreasing the normalized cost

of the workflows when the deadline increases for small and

medium workflows (less than or equal to 100 tasks), but that

in large workflows (about 1000 tasks) its performance depends

on the structural properties of the workflows.

Some readers may concern about the runtime of our algo-

rithm because if the algorithm fails to schedule a path, it has

to reschedule some previously scheduled paths. Fortunately

rescheduling occures rarely. We run the PCP algorithm on a

two cores 2.1 GHz Intel CPU. The runtime is less than a

second for the small and medium workflows. For the large

workflows, it takes about 5 to 15 seconds, depending on the

workflow and the deadline.

C. Comparing to Other Algorithms

In this section, we have compared the PCP algorithm with

one of the most cited algorithms in this area, that has been

proposed by Yu et al. [17]. They divided the workflow into

partitions and assigned each partition a sub-deadline according

to the minimum execution time of each task and the overall

deadline of the workflow. Then they try to minimize cost

of each partition execution under sub-deadline constraint. We

repeat the same experiments of section IV-B for this algorithm.

Figure 6 compare the Normalized Cost that has been generated

by each algorithm for the large workflows. It can be seen

that in most cases our algorithm has a better performance

(lower cost) than Yu’s algorithm. Table I shows the minimum,

maximum and average of the percentage of the cost decrease

for each workflow. The Epigenomics workflow is the only

one that has a negative improvement for our algorithm, this
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Workflow Min Max Average

CyberShake 2.01 19.63 7.57
Epigenomics -10.64 11.90 -0.0048

LIGO 3.61 15.99 11.04
Montage 3.20 33.26 13.14
SIPHT 0.28 34.60 12.19

Table I
RANGE OF COST DECREASE PERCENTAGE OF THE PCP OVER THE YU’S

ALGORITHM

is because of the problem that we have discussed in section

IV-B. As both algorithms manage to end before the specified

deadline, we omit the makespan charts. The results are mostly

similar for the small and medium workflows.

V. RELATED WORK

There are few works addressing workflow scheduling with

QoS in the literature, most of them consider the execution

time of the workflow as the major QoS attribute. We have

already mentinoned the algorithm proposed by Yu et al. [17]

for minimizing the cost of workflow execution under deadline

constraints. Sakellariou et al. [18] proposed two scheduling

algorithm for a different performance criterion: minimizing

the execution time under budget constraints. In the first algo-

rithm, they initially try to schedule workflows with minimum

execution time, and then they refine the schedule until its

budget constraint satisfied. In the second algorithm, they

initially assign each task to the cheapest resource, and then

try to refine the schedule to shorten the execution time under

budget constraints. Other methods like Integer Programming

[19], Mixed-Integer Non-Linear Programming [20], and Game

Theory [21] are also used for this problem. In addition, some

researchers use Metahuristics like Genetic Algorithm [2], Ant

Colony Optimization [22], Tabu Search, Simulated Annealing

and Guided Local Search [23], and Multiobjective differential

evolution [24] to solve this problem.

VI. CONCLUSIONS

Utility grids enable users to obtain their desired QoS (such

as deadline) by paying an appropriate price. In this paper

we propose a new algorithm for workflow scheduling in

utility grids that minimizes the total execution cost while

meeting a user-defined deadline. We evaluate our algorithm by

simulating it with synthetic workflows that are based on real

scientific workflows with different structures, and the results

show that it has a promising performance in small and medium

workflows, but that its performance in large workflows is

variable and depends on the structure of the workflow. In the

future, we will extend our algorithm to support other economic

grid models and also try to enhance it for the cloud computing

model.
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