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Cost-effective 3D one-pass depth migration' 

A. Sollid' and B. Arntsen2 

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A crucial point in the processing of 3D seismic data is the migration step, both 
because of its 3D nature and the computational cost involved. The efficiency and 
accuracy of 3D migration are determined by the wavefield extrapolation technique 
employed. Wavefield extrapolation based on second-order differential operators of 
variable-length is very efficient and accurate at the same time. Compared to migra- 
tion based on the McClellan transform and operator splitting, the use of variable- 
length second-order differential operators offers significant advantages. The 3D 
migration operator has an almost perfect circular symmetry. No positioning errors 
in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45" azimuth between the in-line and cross-line directions are evident. The 
method is, in practice, only limited by spatial aliasing and does not require expen- 
sive interpolation of data to reduce numerical artifacts. This reduces the computa- 
tional cost of 3D one-pass depth migration by a large factor. 

Introduction 

The 3D seismic method was first widely used in the late 1970s and early 1980s. 
Although an expensive method, the rewards in terms of increased drilling success 
rates have been very encouraging. A crucial point in processing of 3D seismic data 
is the migration step, both because of its 3D nature and the computational cost 
involved. Thus, it is desirable that the algorithms employed in the migration step 
are both accurate and effective. This paper describes an accurate and efficient 
method for 3D migration. 

The use of effective migration algorithms is even more important when 3D pre- 
stack migration is considered. Promising results have been achieved in the imaging 
of subsalt fault systems by using 3D prestack migration methods based on asymp- 
totic ray theory (Western and Ball 1992). 

Since ray theory cannot adequately describe all aspects of seismic wave propaga- 
tion, it is expected that a method based on the full wave equation will yield even 
better results than those obtained by ray theory. Development of 3D prestack 
migration methods based on the full wave equation is not straightforward due to 
the massive computational power required. Shot-record migration of a realistic 
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data set would be too time consuming using present-day technology. However, 
Rietveld, Berkhout and Wapenaar (1992) describe a promising method using 
plane-wave decomposition along the shot-axis requiring a computational effort 
equivalent to a relatively small number of 3D post-stack migrations. The 3D 
migration method described in this paper could be used in such a 3D prestack 
scheme. 

A number of algorithms used in 2D depth migration have been difficult to 
extend to the 3D case. For instance the 45" finite-difference implicit migration 
scheme cannot be used effectively in 3D, since this method requires the solution of 
a large system of linear equations for each depth-step (Brown 1983). Instead, a 
large number of approximate techniques were developed, including two-pass 
migration (Gibson, Larner and Levin 1983) and the splitting method (Brown 
1983). These methods have well-known problems in terms of positioning errors for 
the splitting method and problems with handling lateral velocity variations for the 
two-pass method. 

Holberg (1988) proposed a new technique for 2D depth migration in the 
frequency-space domain based on optimized spatial convolutional operators. This 
technique is very accurate and cost-effective and is able to handle lateral velocity 
variations. Blaquitre et al. (1989) extended this method to 3D in a straightforward 
way, obtaining an accurate but very expensive method for 3D migration. Hale 
(1991) introduced a similar but much more effective method for 3D migration 
based on the McClellan transform. The method of Hale (1991) is comparable to 
operator splitting in terms of efficiency, but avoids some of the large positioning 
errors in the 45" direction between the in-line and cross-line directions. However, 
this method is still computationally very demanding partly due to the dense com- 
putational grid required to avoid numerical dispersion. Blaquitre (1991) improved 
on to the method devised by Hale (1991) by using optimized McClellan trans- 
forms. Recently Soubaras (1992) introduced a method closely related to that of 
Hale (1991), but based on an expansion of the wave extrapolator in second-order 
differential operators rather than employing the McClellan transform. Soubaras 
(1992) also used the Remez algorithm to design the coefficients for the expansion 
and the differential operators themselves. This method avoids the numerical dis- 
persion to a large degree and is comparable in terms of computational cost. 

In the present work Soubaras' (1992) expansion in second-order differential 
operators is used, but it is shown how the expansion coefficients and the differen- 
tial operators can be designed using a least-squares approach rather than the 
Remez algorithm. Also the original method of Soubaras (1992) is improved upon 
by using a set of variable-length second-order differential operators. This set of 
operators has differing spectra and lengths to ensure that the resulting wave 
extrapolator is very effective and accurate at the same time. 

The next two sections detail the theory of the design of wave extrapolators. Then 
follows a section on numerical implementation and a section with application to 3D 
migration. Finally, the computational cost is considered. 
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Depth extrapolation of a seismic wavefield from depth level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz to depth level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA z  
can be performed in the frequency-wavenumber domain with the phase-shift 
method (Gazdag 1978), i.e. 

(1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(o, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,, 5, z)  is the seismic wavefield at depth level z as a function of 
temporal frequency o and the in-line and cross-line wavenumbers l, and 6, . The 
sampling interval in depth is denoted Az.  The phase-shift operator W is given by 

P(o, 6, , "j, z + Az) = W(O, L, , L, , Az)P(o, 6, , L, , z), 

W(w, k^, , k, , Az) = exp { i A z  [(:)' - k; - k:]"'}, 

where c is the wave-propagation velocity. 
As is well known, the depth extrapolation described by (1) is only valid for a 

horizontally layered medium without lateral changes in the wave velocity. This 
restriction can be approximately relaxed by considering wave extrapolation in the 
frequency-space domain by a Fourier transform of (1) over the wavenumbers lX 
and l,, such that 

(3) P ( 0 ,  x, YY = Az)  = W(WY XY Y) * P ( 0 ,  x, YY z). 

The '*' operation denotes 2D convolution along the in-line and cross-line direc- 
tions, and w is the inverse Fourier transform of the phase-shift operator given by 
(2). Lateral changes in wave velocity can be accommodated by allowing w to be 
space-variant. This can in practice be achieved by substituting w with space- 
variant convolutional operators f that are designed to fit the exact operator for a 
range of o / c  ratios. The operators f are optimized such that their Fourier trans- 
forms approximate the exact phase-shift operator given by (2) .  

3D wave extrapolators using second-order differential operators 

In the description of the operator design we have preferred to normalize the wave- 
numbers k, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAly by the in-line and cross-line sampling interval Ax  and Ay, such 
that 

k, = 6, AX 

and 

k, = 6, Ay. (4) 

It is assumed that the in-line and cross-line sampling intervals are equal. However, 
the method could, in principle, be generalized to allow different in-line and cross- 
line sampling intervals. The phase-shift function in (2) can be rewritten as 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

AZ 
E = -  

Ax ’ 
and the normalized local wavenumber k ,  is equal to 

o Ax 
k , = - .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C 

k is given by 

k2 = ;(k: + k;) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8) 

Note that k and the normalized wavenumbers k x ,  k,  and k ,  are all defined in the 
interval [0, E ] .  The wavefield extrapolator given by (5) can now be completely 
specified by the parameters k ,  and E .  

The design of the extrapolation operator is done in the frequency-wavenumber 
domain in order to approximate the exact phase-shift operator in (5). In Appendix 
A, it is shown that the Fourier transform of the depth extrapolation operator f may 
be expressed as the expansion 

N 

W ,  , k ,  , k J  = 2 f, H,(k, , k ,  , k,), (9) 
n = O  

where f, are complex coefficients and N is the half-length of the operator. The 
functions H ,  are computed by using the recursive formula for Chebyshev poly- 
nomials (Rottmann 1960), 

H, = 2HHn- ,  - H n p Z ,  n 2 2, (10) 

where Ho = 1 and H ,  = H. This technique is described in detail in Appendix A. 
The function H is written as 

(11) 

where D is the frequency response of a symmetrical finite impulse response (FIR) 
filter that approximates k: or k,” for wavenumbers less than or equal to k , .  With 
respect to k, ,  it is expressed as 

H(k,  J k ,  J ky) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP O  + P1 m k ,  Y kx) + D(k,  J k,)lY 

L 

where ul are real coefficients and L is the operator half-length. The inverse Fourier 
transform d is an approximation to the ideal spatial second-order differential oper- 
ator. It follows that H in (11) is the frequency response of a spatial convolutional 
operator h composed of two differential operators d(x)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdCy) applied along the 
in-line and cross-line direction, respectively. The operator h is therefore cross- 
shaped, as shown in Fig. 1. By using two orthogonal second-order differential 
operators in the design of h, the frequency response H will be almost perfectly 
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Figure 1 .  Layout zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the filter h(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  with length L equal to 3. 

circularly symmetric for wavenumbers that correspond to propagating waves. The 
constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPO and PI (Soubaras 1992) in (1 1) are given by (A19) and (A20). They are 
chosen so that numerical stability is retained in the Chebyshev recursion. 

Equations (9)-(12) contain one set of unknown complex coefficients, f,,, and 
another set of unknown real coefficients, u l .  Both sets of coefficients could, in 
principle, be determined simultaneously by a least-squares optimization procedure, 
but the differential operator Coefficients u1 are related in a non-linear way to the 
response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, making least-squares optimization difficult. Instead, the problem is 
solved in two stages. The differential operator coefficients ul are determined first 
by solving a least-squares optimization problem. Secondly, the optimized differen- 
tial operator frequency response given by (12) is used in (11) to compute H, which 
is used to determine the complex coefficients f,, by another least-squares procedure. 

Least-squares dzfferential operator design 

The second-order differential operator d is designed by chosing the coefficients ul 

such that the difference between the Fourier transform D of d and the Fourier 
transform of the exact second-order differential operator is a minimum in a least- 
squares sense. This is expressed as minimizing the object function Z with respect to 
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k u  

I = II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,) - k: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 2 .  
k x = O  

For a given accuracy, the shortest possible operator half-length L is chosen. 

Least-squares 3 0  wave extrapolator design 

The coefficients f,, of the wavefield extrapolator F given by (9) are determined by 
minimizing the object-function 

with respect to the complex coefficients f,, subject to the constraint that 
I F(k,,  k) 1 I 1 for I k I I n. This constraint addresses the stability of the explicit 
operator. The maximum ripples in the amplitude response for k k,/$ must be 
kept sufficiently small to guarantee accurate and stable extrapolation. For a given 
accuracy and maximum angle of propagation, the shortest possible operator half- 
length N is chosen. Note that the minimization of the object-function in (14) is 
effectively carried out in the 45" azimuth direction that corresponds to the particu- 
lar combination k = k, = k, . The result is then used for all other combinations of 
k, and k,. This enables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus to use optimization software originally designed for 
optimizing 2D migration operators with very little modification. 

Numerical implementation 

Using (3) with the approximate wavefield extrapolator f substituted for w, the 
equation to be implemented for depth extrapolation of the wavefield p is 

P ( 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, Y ,  z + Az) = f ( k , ,  XY Y )  * P ( 0 ,  x, YY z), (15) 

wheref is given by the inverse spatial Fourier transform over k, and k, of (9), that 
is 

N 

f (k, > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX> Y> = 1 fn(kco)hn(x, Y>. (16) 

The overall scheme is similar to the recursion scheme used by Hale (1991) to 
implement wavefield extrapolation using the McClellan transform. It is shown 
schematically in a simplified form in Fig. 2. Equation (16) can easily be imple- 
mented by repeated application of the spatial filter h(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  to the data p ,  combined 
with multiplication of the complex coefficients f,, . 

As described in the previous section, the complex coefficients f,, and the real 
coefficients uI of the second-order differential operators depend in general on the 
normalized local wavenumber. In principle, one would like to optimize these coef- 

n = O  
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Figure 2. Computational scheme for the 3D migration based on second-order differential 
operators. 

ficients for each normalized local wavenumber k, . However, an approach based on 
spatially variant differential operators is difficult to implement efficiently on vector 
machines due to memory problems. Blaquii-re (1991) has devised a technique that 
eliminates the implementation problems and still retains sufficient accuracy. He 
applied the technique to the McClellan transform method, but a similar scheme is 
applicable to depth extrapolation using (16) : a limited number of second-order 
differential operators are optimized such that, for a given length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, the maximum 
wavenumber denoted ky is as large as possible for a specified accuracy. Table 1 
shows typical selected values of ky for half-lengths L from one up to seven. The 
corresponding frequency responses of the differential operators are shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. The coefficients can be computed once and for all and then be applied generally 
in the operator design. 

Since the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,, coefficients depend on the second-order differential operators coef- 
ficients ul through (14), a separate set off,, coefficients are estimated for each set of 
second-order differential operator coefficients ul . The set of complex coefficients 

Table 1. The number of coefficients used in the second-order dif- 
ferential operators as a function of the maximum wavenumber. 

k y / n  0.17 0.36 0.50 0.62 0.72 0.82 0.90 

L 1 2 3 4 5 6 7 
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Figure 3. Frequency responses of seven second-order differential operators (solid lines) 
with half-length L decreasing from 7 to 1 (from top to bottom). The dashed line corresponds 
to the ideal second-order differential operator. 

f, is computed for all wavenumbers up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk r .  The number of complex coeffi- 
cients N is kept constant. The tables of coefficients are estimated once and stored 
in a file. 

Prior to the wave extrapolation, the coefficients fn are read into memory and 
linearly interpolated. The number of separate tables needed to store the complex 
coefficients is equal to the number of second-order differential operators used. For 
each depth slice (z-coordinate equal to a constant) in the extrapolation, the 
minimum velocity cmin must be found by scanning the velocity model. Given a 
frequency o, the ratio oAx/cmin decides the correct operator table and differential 
operator to be applied. The normalized local wavenumber k,, divided by the dis- 
cretization interval Aka, is used as an index for the actual table of complex coeffi- 
cients. 

Figure 4 shows contours of the frequency response of h(x, y) as a function of the 
wavenumbers k, and k, for L = 7. The bold lines are the frequency response of 
h(x, y), while the thin lines are the ideal circularly symmetric response. The fre- 
quency response is reasonably accurate, at least up to 90% of the Nyquist limit. 

As mentioned above, Hale (1991) described a method for 3D wave extrapolation 
based on the McClellan transform. The expression for the wavefield extrapolator F 
due to Hale (1991) is given in Appendix B and is similar to (9), with the main 
difference being a different expression for the function H.  The inverse Fourier 
transform of Hale’s H function is a filter with 17 points. The filter is fixed and is 
not optimized with respect to the local wavenumber. Figure 5 shows contours of 
the frequency response of this filter as a function of the wavenumbers k ,  and k,. 
Comparing the response (bold lines) with the exact response (thin lines), it can be 
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Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAContours of constant k for h(x, y )  based on a second-order differential operator 
with L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 (bold lines) compared to the ideal circular response (thin lines). 

seen that the filter response already starts to deviate from the ideal response at 
wavenumbers equal to half the Nyquist limit. Comparing Figs 4 and 5, it is clear 
that the approach based on second-order differential operators is significantly more 
accurate for high wavenumbers. 

Application to 3D migration 

The wavefield extrapolators described in the previous section are very suitable for 
application to 3D post-stack migration. The following four methods for 3D post- 
stack migration are tested and compared. 
1. 3D migration based on variable-length second-order differential operators. 
2. 3D migration based on a fixed second-order differential operator. 
3. 3D migration based on the improved McClellan transform method as 

described by Hale (1991). 
4. 3D migration based on the splitting approximation as described by Brown 

(1983). 
For the 3D migration based on variable-length second-order differential oper- 

ators, we used the design approach described in the previous section. The number 
of complex coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN in the expansion of the extrapolation operator was kept 
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Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAContours of constant k for h(x, y) based on Hale’s improved McClellan trans- 
form (bold lines) compared to the ideal circular response (thin lines). 

constant and equal to 19. The h function used filters of half-length L ranging from 
L = 1 to 7. The 3D migration based on a fixed second-order differential operator 
used the same approach as described for the optimized operator, except that the 
length L was kept constant and equal to 6,  and that the coefficients were fixed. The 
accuracy of this operator was reasonable up to k y  = 0.8571. The 3D migration 
based on the McClellan transform method was based on Hale’s improved 17-point 
filter for the h function. The number of complex coefficients was equal to 19 and 
was designed using Holberg’s (1988) method for 2D wave extrapolators. For the 
3D migration based on the splitting method, the same 2D operator was used. The 
splitting method consists of applying 2D extrapolation in the x-direction for all y, 
followed by extrapolation in the y-direction for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx for each depth level. 

The input data consisted of a single band-limited spike located at x = 0, y = 0 
and time 0.9 seconds. The largest frequency component in the input data was 50 
Hz, while the spatial sampling intervals were Ax = Ay = 10 m. The temporal sam- 
pling interval was At = 10 ms and the velocity was equal to 2000 m/s. The numeri- 
cal examples shown thus involve wavenumbers up to the Nyquist limit. 

Figures 6, 7, 8 and 9 show horizontal cross-sections at depth z = 350 m of the 
migrated images for the 3D migration based on variable-length second-order dif- 
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Figure 6. Impulse response of 3D migration based on variable-length second-order differ- 
ential operators at depth z = 350 m. 
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Figure 7. Impulse response of 3D migration based on a fixed second-order differential 
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Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAImpulse response of 3D migration based on Hale’s improved McClellan trans- 
form at the depth z = 350 m. 
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Figure 9. Impulse response of 3D migration based on splitting at depth z = 350 m. 
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ferential operators, 3D migration based on a fixed second-order differential oper- 
ator, 3D migration based on the improved McClellan transform and the splitting 
method, respectively. Figures 10, 11, 12 and 13 show the vertical cross-sections. 

The 3D migration based on a fixed second-order differential operator yields 
more numerical dispersion in the in-line and cross-line directions than the 3D 
migration based on variable-length second-order differential operators, as is 
evident when comparing Figs 7 and l l a  with Figs 6 and 10a. The numerical arti- 
facts are due to the fact that the applied second-order differential operator is not 
sufficiently accurate. By increasing the length of the second-order differential oper- 
ator, and thus increasing the computational cost, the artifacts can be reduced. 

Comparing Figs 6 and 8, it is seen that the McClellan transform method exhibits 
considerable. aktifacts due to numerical dispersion. This is particularly evident in 
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Figure 10. Impulse response of 3D migration based on variable-length second-order dif- 
ferential operators taken (a) in the in-line direction at y = 0 and (b) diagonally between the 
in-line and cross-line directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = y). 
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Figure 11. Impulse response of 3D migration based on a fixed second-order differential 
operator taken (a) in the in-line direction at y = 0 and (b) diagonally between the in-line and 
cross-line directions (x = y) .  

the 45" azimuth between the in-line and cross-line directions, as can be seen in Fig. 
12b. The numerical dispersion seen in the 3D migrated image when using the 
McClellan transform method can be understood by considering Fig. 5. The con- 
tours of the 2D h-filter show the largest deviation with increasing k for k ,  = k , .  

Comparing Figs 6 and 9, the splitting method is seen to exhibit large positioning 
errors, particularly in the 45" azimuth between the in-line and cross-line directions. 

Computational cost 

Due to the simple cross-shaped filters h of variable size and the application of the 
recursive Chebyshev structure, the scheme is very efficient. The number of 
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Figure 12. Impulse response of 3D migration based on Hale's improved McClellan trans- 
form taken (a) in the in-line direction at y = 0 and (b) diagonally between the in-line and 
cross-line directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = y). 

floating-point operations for each grid point q expressed as a function of the 
number of complex coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN and the number of differential operator coeffi- 
cients L, is estimated to be 

(17) 

For a 70" operator, we apply differential operators of half-lengths L ranging from 
L = 1 to 7, and the mean value of L is estimated to be 3.6. For L x 3.6, (17) 
reduces to 

q(N, L )  = N[lOL + 121 + 6. 

q(N) x 48N. (18) 

Note that in practice this function expresses the worst case. Figure 14 illustrates 
this : as the velocity tends to increase with depth, the average half-length L and the 
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Figure 13. Impulse response of 3D migration based on splitting taken (a) in the in-line 
direction at y = 0 and (b) diagonally between the in-line and cross-line directions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x = y).  

computational cost will be reduced significantly. This is due to the fact that for 
waves dominated by small wavenumbers, mainly small-sized differential operators 
are used. Furthermore, Fig. 14 shows that 3D migration based on a fixed second- 
order differential operator is more expensive than 3D migration based on opti- 
mized second-order differential operators. 

The corresponding expression for the scheme proposed by Hale (1991), using 
the improved McClellan transform is 

r(N) = 52N + 6.  (19) 

For comparison, the corresponding expression for operator splitting is 

s(N) = 20N + 12. (20) 
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Figure 14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComputational cost for the 3D migration methods used in the numerical exam- 
ples. The cost is measured in floating point operations per output sample (FOS) as a func- 
tion of the lowest velocity c allowed in the model predicted by the Nyquist limit. In 
addition, the ‘equivalent’ number of FOS for the improved Hale-McClellan method is 
shown (marked ‘*’), where we have assumed a denser computational grid with 2.5 times as 
many grid points as used in the other methods. 

From (18), (19), (20) and Fig. 14, it is seen that the scheme based on variable- 
length differential operators is slower than operator splitting, but somewhat faster 
than the improved McClellan transform. However, as was shown in the previous 
section, the scheme based on variable-length differential operators is significantly 
more accurate than both the improved McClellan scheme and operator splitting. 

From the numerical examples it is evident that the 3D migration based on 
second-order variable-length differential operators, is, in practice, only limited by 
spatial aliasing, and not by numerical dispersion. Compared to 3D migration based 
on the McClellan transform method, this offers a significant advantage in terms of 
computational cost. For 3D migration based on the McClellan transform method 
to perform well on the example shown in Figs 6 to 13, it would have been neces- 
sary to use a larger number of grid points per shortest wavelength. This results in 
an increase of the computational load by a factor of approximately 2.5 compared to 
3D migration based on second-order differential operators. This is shown clearly in 
Fig. 14. 

Conclusions 

It has been shown how an accurate 3D wave extrapolation operator can be 
expressed as an expansion in second-order differential operators. The expansion is 
similar to an expansion derived by Soubaras (1992), but uses variable-length differ- 
ential operators and a least-squares design approach. The method has the following 
advantages : 
1. The 3D wavefield extrapolator is almost perfectly circularly symmetric. 
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2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe problem of numerical dispersion for high wavenumbers is avoided. The 
method is thus limited only by spatial aliasing and not by numerical dispersion. 

3. A coarse computational grid can thus be used. Compared to the McClellan 
transform method, this translates into reduction in the computational load by a 
factor of more than two. 

The use of variable-length second-order differential operators is essential, as the 
use of a fixed second-order differential operator leads to more numerical disperson 
or to a significantly higher computational cost. 

Considering future application to full-wave prestack 3D depth migration, it is 
essential to use a highly effective wave extrapolation algorithm. A scheme with 
variable-length second-order differential operators ensures both correct wave 
extrapolation and efficiency. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix A 

Series expansion of the 3D phase-shift operator 

In this appendix it is shown how the 3D phase-shift operator is given by ( 5 )  can be 
written as a series expansion in powers of the horizontal normalized wavenumbers 
k ,  and k,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. Equation (5) reads 

where 

o Ax 
k , = - - - ,  

C 

and 

E = Az/Ax. (A41 

A Taylor expansion of the phase-shift operator in (AI) leads to the expression 
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Using the series expansion (Rottman 1960) 

x 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ . . .  n(2 - n) 
(1 - 2~)"" = 1 - nx + - 

2! 
m 

= amxmy 
m = O  

where 

n(2 - n)(4 - n) . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(m - 1)2 - n]  

m !  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, = (- 1)" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 

in (AS) and substituting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = (k/k,)', we get 

Equation (A8) may be rearranged as 

By defining coefficients y, as 

(A9) may be written as 

Equation (A l l )  is important since it shows that the phase-shift operator W given 
by (Al) can be expressed as an expansion in even powers of the normalized 'wave- 
number' k .  

It is desirable to rewrite (A l l )  as an expansion in terms of cosines. We first 
express y, as 

by the choice of suitable coefficients w,. By substituting (A12) into (A l l )  and 
rearranging we get 

(nk)zm m m 

W@, Y k, Y k,) = 2 W,(Ek,) (- 1)" -y 
n = O  m = O  m! 

m 

W(k, k ,  k,) = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 w,(~k,) cos (nk). 
n = O  



774 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASollid and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Arntsen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Equation (A12) shows that the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, are a function of the local wavenum- 
ber k ,  , regarding E as a constant i.e. 

wn = wn(k,)* (A151 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An approximation to W can be derived as follows: By truncating the right-hand 

side of (A13) after N terms we get 
N 

W(k,, k,, ky)  w 2 c w,(k,) cos (nk). 
a = O  

Equation (A16) is computationally advantageous since cos(nk) can be computed 
recursively by the Chebyshev recursion 

COS (nk) = 2 COS k COS [ ( n  - 1)k] -COS [ (n  - 2)kl.  (A17) 

cos (k )  can be approximated in the interval [0, 7c] by the expression (Soubaras 
1992) 

COS (k )  w H(k)  = P O  + D(k), (A181 

BO = (Dmax + Dmin)/(Dmax - Dmin), (A191 

B1 = -2/(Dmax - Dmin). 

where D(k) is an approximation to k2. The coefficient PO is given by 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1 is given by 

(A201 

Here Dmin and D,,, are the minimum and maximum magnitudes of D(k), respec- 
tively. Equation (A18) is a desirable expression since k2 according to (A3)  separates 
into independent terms for k: and k,” which can be approximated by D(k,) and 
D(k,), giving 

(A2 1 )  W k )  = P O  + B13CD(kx) + D(k31. 

H(nk) = 2H(k)H[(n - 1)k] - H[(n - 2)k], 

Inserting (A21) into (A17) we get a recursive expression for H :  

n 2 2. (A221 

Now, using H(nk) in (A16) instead of cos(nk) and optimizing w, in a least-squares 
sense, we get 

which approximates to Win  (Al). 

frequency-space domain expression f for F is 
By an inverse Fourier transform of (A23) over the wavenumbers k, and k,, the 
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where 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘*’ operation denotes 2D convolution along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx- and y-directions. h is the 
inverse Fourier transform of (1 1) over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, and k, : 

h(x, Y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB o  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI tCd(x) + db)l. (A271 

Here, the Fourier transforms of d(x) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(y) are least-squares approximations to 
the normalized second-order differential operators k: and k: . The spatial impulse 
responses are written as (Holberg 1987) 

L 

d(x) = u , [ G ( x  - Ax) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(x + Ax)], 
l = O  

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
db) = c %C&Y - AY) + &Y + AY)]. 

t = o  

The coefficients ul are real valued. 

Appendix B 

Relationship with the McClellan transform method 

In the following it is shown how the McClellan transform method as described by 
Hale (1991) can be obtained from the series expansion of the 3D phase-shift oper- 
ator. 

The McClellan transform method mainly consists of applying the same deriva- 
tion as outlined in Appendix A. The phase-shift operator is written as 

Proceeding as in Appendix A up to (A17), but instead of approximating cos (k) 
with a second-order polynomial in k, the following approximation is used (Hale 
1991): 

COS (&k) = COS (JW) z H’(k) = - 1 + 4(1 + COS (k,))(l + COS (k,)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 

- - (1 - cos 2k,)( 1 - cos 2k,). (B2) 2 

c is equal to 0.0255. The expression for the extrapolation operatorf’ is of the same 
form as that given in (1 6) ,  
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but with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh equal to the inverse Fourier transform of (B2). The coefficientsf; are 
the same as those applied in 2D migration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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