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Cost-effective Gap Waveguide Technology Based on

Glide-Symmetric Holey EBG Structures
Mahsa Ebrahimpouri, Student Member, IEEE, Eva Rajo Iglesias, Senior Member, IEEE, Zvonimir Sipus, Senior

Member, IEEE, and Oscar Quevedo-Teruel, Member, IEEE

Abstract—We present a novel electromagnetic band-gap (EBG)
structure, which can be used to manufacture low-cost wave-
guiding structures at high frequencies. The unit-cell of the
proposed EBG consists of glide-symmetric holes in parallel plate
waveguide (PPW). Using this unit-cell in groove gap waveguide
technology has a number of advantages over pin-type EBG at
high frequencies, such as acquiring higher accuracy because of
larger periodicity as well as an easier and cheaper manufacturing
process. The performance of the proposed wave-guiding structure
is demonstrated using both a straight and a double 90

◦ bent lines
through simulation and measurement.

Index Terms—Glide symmetry, higher symmetries, gap waveg-
uide technology.

I. INTRODUCTION

METALLIC waveguides are one of the earliest types

of guiding structures implemented by electromagnetic

engineers. They have been broadly employed since they have

low losses and no leakage. Additionally, they can handle high

power and have cross-talk free characteristics [1]. However,

it is hard to manufacture waveguide components at higher

frequencies [2], [3] and they are bulky at lower frequencies.

In particular, it is important to ensure high-quality electrical

contact between the waveguide plates since each gap between

the adjacent layers causes extremely large transmission loss

due to serious leakage (see e.g. [3] where the problem of the

production of a waveguide feed-network is discussed). Further-

more, it is difficult to design complex circuitry in conventional

metallic waveguides and to integrate active components into

them.

In order to overcome these limitations at high frequencies,

substrate integrated waveguides (SIW) were proposed in 1994

[4]. SIW structures are compact and have a low-cost manufac-

turing process. Additionally, in SIW, a complete circuitry can

be integrated in one single plate. Nevertheless, the waves are

guided inside a dielectric slab, which may impose a significant

amount of losses, especially with the increase of the frequency.

Furthermore, at very high frequencies, when the dimensions

of the structure must be small, SIW requires very small

M. Ebrahimpouri and O. Quevedo-Teruel are with the Department of
Electromagnetic Engineering, School of Electrical Engineering, KTH Royal
Institute of Technology, SE-100 44, Sweden, e-mail: oscarqt@kth.se.

E. Rajo-Iglesias is with the Department of Signal Theory and Communi-
cation,University Carlos III of Madrid, 28911 Leganes (Madrid), Spain.

Z. Sipus is with the Faculty of Electrical Engineering and Computing,
University of Zagreb, 10000 Zagreb, Croatia.

Manuscript received... ; revised September...
This work has been partially funded by Swedish STINT Postdoctoral

Transition Grants programme PT2014-5813.

metallic vias with diminutive periodicity in order to minimize

the leakage [5], thus increasing the difficulty and price of

the manufacturing. Moreover, the power-handling capability

is reduced compared to classical rectangular waveguide (RW)

as they have a smaller cross section.

As an alternative to SIW, gap waveguide technology was

proposed in 2009 [2], [6]. In gap waveguide technology, the

waves are guided in air, reducing the losses with respect to

SIW structures [7]. Additionally, these structures do not re-

quire metallic contacts between upper and lower plates, which

is a relevant advantage in manufacturing process, and they can

be used in packaging to reduce unwanted coupling, radiation

losses and resonant mode influence [8]. Pin-type EBG [9]

has been commonly used in gap waveguide technology to

stop wave propagation in undesired areas [10]–[13]. Although

gap waveguide technology has valuable properties at high

frequencies, it requires the manufacturing of very thin and

tall metallic pins that increases the cost of the designs and

the difficulty of the manufacturing process. Recently, some

attempts were made to reduce the price and difficulty of this

manufacturing process. In [14], half-height pins are proposed

to be used in gap waveguide technology. In this work, a shorter

length of pins is employed, which makes fabrication of the pin

surface easier. However, an accurate manufacturing process is

still needed.

In this paper, we propose a novel cost-effective method to

manufacture integrated waveguide structures at high frequen-

cies. This method makes use of a truncated glide-symmetric

holey EBG structure [15]. The proposed EBG structure is

only made of holes, which makes the manufacturing process

much easier with respect to the pins. The periodicity of

the proposed unit cell is about 2.5 times bigger than the

conventional pins at the same frequency, and the optimum

depth of holes is shallower compared to the length of pins.

Therefore, the method results in higher accuracy and a lower

cost of manufacturing at high frequencies.

This paper is organized in five sections. In the second sec-

tion, the structure of glide-symmetric holey EBG is introduced.

In section III, the performance of the proposed waveguiding

structure is investigated through straight, double 90◦ bent, and

coupled waveguide lines. In section IV, the performance of

the proposed method is validated through measurements of

manufactured prototypes, and in section V, conclusions are

drawn.
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Fig. 1: Unit cells under study: (a) Holes only on one plate. (b) Glide-symmetric holes

on both plates.

II. HOLEY GLIDE-SYMMETRIC EBG STRUCTURE

A glide-symmetric periodic structure is constructed through

a translation and a mirroring. These structures, in their one-

dimensional configuration, were extensively studied in the 60s

through generalized Floquet theorem [16]. Two-dimensional

glide-symmetric holey metasurfaces were introduced for the

first time in [17]. In that work, the authors considered a

parallel-plate waveguide (PPW) consisting of two periodic pla-

nar structures in which one periodic structure is obtained from

another one by mirroring and translating it by half of the period

in both planar directions. The non-dispersive characteristic of

the first guiding mode was investigated to produce ultra-wide

band planar lenses. More recently, the interesting property

of these structures in removing frequency dependence of the

first guiding mode was studied [18]–[20]. Another appealing

property of glide-symmetric holey structure, which is that it

acts as an EBG at higher frequencies, is discussed in [21].

Fig. 1 and Fig. 2 represent unit cells of two different pe-

riodic structures and their corresponding dispersion diagrams.

As shown, in the case of holes on one single layer (Fig. 1(a)),

there is a very narrow stop-band. This structure was previously

introduced in [22], although only band-gap properties in one

direction were employed. Moreover, since the stop-band is

narrow, further studies have shown that when the diameter

of the holes is small with respect to the periodicity, there is

no full stop-band in the complete irreducible Brillouin zone.

Using glide-symmetric structures, as shown in Fig. 1(b), the

stop-band becomes considerably wider, as observed in the

dispersion diagram of Fig. 2(b). This unit-cell is composed of

two plates, which have holes that are a half-unit cell translated

in two directions. Identical grid of dense holes are used in both

the upper and lower plate.

(a)

(b)

Fig. 2: Dispersion diagrams for the unit cells described in Fig. 1 with dimensions: r =

1.4 mm, a = 5 mm, h = 2 mm, and g = 0.05 mm. (a) Holes only on one plate. (b)

Glide-symmetric holes on both plates.

In this work, the prototypes have been designed to operate in

the U-band (40-60 GHz). The parameters of the periodic glide-

symmetric holey structure have been optimized to maximize

the bandwidth of the stop-band in U-band following the

guidelines given in [15]. The obtained values are: r = 1.4

mm, a = 5 mm, h = 2 mm, with an air gap between the

upper and lower plate of g = 0.05 mm. As studied in [15], the

bandwidth of the bandgap increases when the air gap between

plates becomes smaller. In gap waveguide technology, this

gap is typically small enough to produce a large bandwidth

of operation. The attained stop-band with the implemented

dimensions goes from 40 GHz to 77 GHz. These dimensions

will be employed in the rest of the paper to design different

waveguide structures.

Following the studies presented in [2], the electric field at-

tenuation in the lateral direction, as a function of the frequency

is shown in Fig. 3. According to this figure, more than 60 dB

attenuation can be achieved by two periods of the proposed

EBG in the middle of the stop-band (Fig. 3(a)), while the
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E-field is not attenuated outside the stop-band (Fig. 3(b)).
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Fig. 3: Attenuation rate of the electric field in the proposed EBG structure for (a)

frequencies inside the stop-band. (b) frequencies outside the stop-band. (stopband: 40

GHz- 77 GHz)

III. GLIDE-SYMMETRIC EBGS FOR WAVEGUIDES

For frequencies above 30 GHz, due to the small dimen-

sions needed for waveguides, manufacturing hollow metallic

waveguide structures can be difficult, especially for compli-

cated circuits that cannot be easily manufactured in two parts

[2]. The manufacturing process in this range of frequencies

requires high accuracy and small perturbations in the walls

create significant losses in hollow metallic waveguides.

One way to produce low-cost metallic waveguides at high

frequency is to fabricate them in two parts and to use EBG

structures at the side walls in order to prevent any leakage

in the operating frequency band of the EBG (the working

principle of the gap waveguides [23]), without requiring

electrical contact between the two parts of the waveguide

afterwards. Here, we investigate that technique. However,

instead of using the conventional bed of nails, we make use of

glide-symmetric holey metasurfaces. A standard RW (WR19),

made from two metallic plates, is considered as the base

waveguiding structure and a glide-symmetric holey EBG is

used at the side walls of the RW to reduce the leakage. If

full contact is achieved between the upper and lower plate, the

structure will resemble a perfect RW. However, in the practical

implementation, it is hard to assess good plate flatness and to

avoid screwing errors, which causes air gaps between the parts

of the waveguide structure. The proposed glide-symmetric

holey EBG reduces significantly the potential leakage created

by those unpredictable gaps.

In this section, to validate the performance of the proposed

waveguiding structure, a straight waveguide, a double 90◦ bent

waveguide, and coupled waveguide lines are designed and

investigated through simulations.

A. Straight Waveguide

In order to study the performance of the glide-symmetric

holes, a 25 cm (around 42λ0 at 50 GHz) straight integrated

waveguide made of aluminum is considered here. The dimen-

sions of the waveguide correspond to WR19 (4.77 mm x 2.39

mm) for the U-band (40-60 GHz). A very long waveguide

is chosen to increase the amount of losses and to reduce the

uncertainties in the posterior measurement process.

g

(a)

(b) 

(c) 

p

w

p

Fig. 4: RW made of two layers with an air gap in between: (a) One row of glide-

symmetric holes at the location of gap. (b) Two rows of glide-symmetric holes at the

location of gap. (c) No holey structure at the location of gap.

Three different waveguide structures with an air gap be-

tween the two waveguide parts are considered: the standard

one and the ones with one row and two rows of glide-

symmetric holey structure (as shown in Fig. 4). In these

structures, the first row of holes is located at a distance p =

2.8 mm from the walls of the waveguides, which is essential

to prevent reflections from holes, since a part of the lateral

parallel plate waveguide contributes to transmission in the

case of having an air gap. It should be noted that, in order to
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Fig. 5: Comparison of S21 parameters corresponding to the three waveguiding structures

shown in Fig. 4, and a reference RW with no air gap.

accommodate the glide-symmetric holey structure at both sides

of the waveguide, the unit-cell shown in Fig. 1 has been rotated

45 degrees and the half holes have been removed to prevent

unwanted resonances. These structures will be compared with

a standard shielded RW and a standard RW with an air gap at

the side walls (Fig. 4 (c)). The gap on the side walls is kept

at g = 0.05 mm following the examples in previous sections.

Fig. 5 contains a comparison of the calculated S-parameters

of the four considered aluminum made waveguides. The S21

parameter of the RW with air gap and without holes is around

-4 dB in the whole U-band. This demonstrates that small gaps

in the waveguide walls excite parallel plate modes and, thus,

create leakage. It must be noted the leakage amount grows

when the size of the structure increases. The S21 parameters

of the proposed waveguide structures with one and two rows

of glide symmetric holes are very similar, in the range of -

0.6 dB to -0.8 dB. Therefore, we can assume that only one

row of the glide-symmetric holey structure provides acceptable

shielding for a straight line. The S21 parameter of the both

structures is close to the S21 parameter of a perfectly shielded

RW made of aluminum, which falls in the range of -0.35

dB to -0.55 dB. It should be noted that these losses are due

to the fact that aluminum is considered instead of a perfect

electric conductor. In these simulations, the total width of the

considered structures is w = 35 mm.

B. Double 90◦ Bent Waveguide

In order to demonstrate the shielding feasibility of the

proposed method, an aluminum made waveguide with a double

90◦ bent is designed (see Fig. 6) and the calculated results

are compared with a conventional RW. The length of this

structure is L = 28 cm, which is approximately 47λ0 at 50

GHz, and the same gap between the two plates is considered

as before. Additional studies demonstrate that for a bent

line, at least two rows of the glide-symmetric holey EBG

structure at the location of the gap are required to ensure

acceptable shielding. The comparison of the S-parameters of

the considered structure and the double 90◦ bent aluminum

ideal RW is represented in Fig. 7. The S21 parameter of the

proposed EBG bent waveguide takes a value between -0.7 dB

and -1.5 dB, whilst the S21 parameter of the bent aluminum

ideal RW is between -0.4 dB and -0.7 dB in the U-band.

Fig. 6: Structure of a double 90
◦ bent waveguide with two rows of glide-symmetric

holey EBG at the location of the gap on side walls.

Fig. 7: Comparison of S21 parameters for a double 90
◦ bent waveguide structure with

glide-symmetric EBG and air gap, and RW without air gap.

The electric field distributions of a double 90◦ bent alu-

minum RW, an RW with an air gap of g = 0.05 mm, and

an RW with the lateral glide-symmetric holey EBG at the

location of the air gap are represented in Fig. 8. As discussed in

Section III.A, and demonstrated in Fig. 8 (b), even a very small

gap on side walls excites parallel plate modes and produces

a significant leakage. However, by placing two rows of glide-

symmetric holey EBG at side walls, we can have almost

perfect transmission in the operation frequency range of the

EBG structure that covers all the U-band.

C. Coupled Lines

Since the waveguides in the proposed technology are not

completely shielded, we study here the cross-talk characteristic
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Fig. 8: Normalized electric field distribution of (a) a double 90
◦ bent aluminum RW,

(b) a waveguide with an air gap on the side walls, (c) the proposed waveguide structure

with a glide-symmetric holey EBG.

between different waveguides sharing a common structure

[24]. This cross-talk is analyzed in terms of mutual coupling

of two waveguides placed side-to-side. Two structures, one

with an air gap and another one with an air gap and one row

of glide-symmetric holey EBG in between are considered (see

Fig. 9). The distance between the two waveguides is d = 4.7

mm.

Port 1 
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Fig. 9: Structure of the two waveguides placed side by side when: (a) an air gap is located

on side walls. (b) one row of glide-symmetric holey EBG is placed at the location of

gap.

The calculated S-parameters of the structure shown in Fig.

9 (a), with the air gap of g=0.05 mm, are represented in Fig.

10. These results demonstrate the conclusion drawn before

regarding the fact that a small gap on the side walls of the

waveguide excites parallel plate modes and reduces the trans-

mission. By placing only one row of glide-symmetric holey

Fig. 10: S-parameters of the two waveguides placed side by side of Fig. 9 (a) when an

air gap of 0.05 mm is located on the side walls.

(a)

(b)

(c)

Fig. 11: S-parameters of the two waveguides placed side by side of Fig. 9 (b) when one

row of glide-symmetric holey EBG is placed at the location of gap. (a) S21. (b) S41.

(c) S11 and S31 parameters are shown with black and blue lines respectively.

EBG at the location of the gap, cross-talk free transmission

is achieved up to a certain gap size, as demonstrated in Fig.

11. The parametric study on the size of air gap shows that

S21 and S41 parameters remain above -1.5 dB and below -10

dB, respectively in whole working frequency range up to the

air gap of g=0.07 mm. It should be noted the gap of 0.09

mm is electrically large, i.e. it is about 4% of the smaller side
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of inner dimensions of the rectangular waveguide in U-band

(4.7752 mm×2.3876 mm).

IV. EXPERIMENTAL RESULTS

In order to validate the performance of the proposed gap

waveguide structure, two sets of integrated waveguides, one

with the glide-symmetric holey EBG (Fig. 12) and one without

EBG (Fig. 13), have been manufactured. These prototypes

were manufactured in two pieces and joined together with

screws to reduce manufacturing costs as discussed in previous

sections.

Fig. 12: Integrated circuit for verifying the performance of straight and double 90
◦ bent

waveguide lines with the proposed method. Glide-symmetric holey EBG is drilled at the

location of the junction.

Fig. 13: Integrated circuit for verifying the performance of straight and double 90
◦ bent

waveguide lines. There is no EBG structure at the location of the junction.

Since the air gap produced by plate flatness tolerances and

manufacturing errors cannot be measured in practice and it

depends on the manufacturing technique and accuracy, in the

simulations, a constant and well-defined gap size was con-

sidered. To produce a fair comparison, we have manufactured

two identical prototypes with and without holes and compared

with each other to distinguish the effect of glide-symmetric

holey EBG at the location of gap. In order to have acceptable

manufacturing tolerances, only one screw every 10 centimeters

has been used to attach the two plates together. Two alignment

pins have also been employed to ensure the relative position

between upper and lower plates. The integrated waveguides

have been excited using conventional transitions, since the

dimensions of the manufactured rectangular waveguides are

standard ones. This is an advantage of the proposed waveguid-

ing structure, since to design transitions to/from the proposed 
structure is not required.

The comparison of the measurement results of S-parameters 
corresponding to the integrated straight waveguides with and 
without EBG is presented in Fig. 14. The conclusions derived 
in the study via simulations are clearly validated here; the 
transmission level when the EBG structures is used is very 
high compared to the case without EBG.

Concerning the effect of the number of rows to be em-

ployed, Fig. 15 represents the comparison of S21 parameter 
of the two 25 cm straight aluminum made waveguides with 
one and two rows of the glide-symmetric holey EBG ( the 
prototypes are shown in Fig. 12). Here again, the measurement 
result agrees well with the conclusion obtained in part A 
of section III that one row of glide-symmetric holey EBG 
provides similar results as two rows for straight versions.

Finally, the transmission levels using a 28 cm long alu-

minum made double 90◦ bent waveguide with and without the 
proposed EBG structure are represented in Fig. 16. According 
to these measurements, when we do not use the lateral EBG 
structure, the S21 parameter is below -10 dB in all the 
passband. To have an acceptable transmission, two rows of 
glide-symmetric holes at both sides of the integrated bent 
waveguide are needed as experimentally demonstrated in the 
same figure. I t s hould b e n oted t hat t he a luminum l osses as 
well as losses created by the surface roughness of these long 
waveguides have considerable effect on the S-parameters.

Fig. 14: Comparison of S-parameters corresponding to straight waveguides with and

without glide-symmetric holey EBG at the location of the junction. Solid and dashed

lines correspond to the cases with and without glide-symmetric holey EBG at the location

of the junction, respectively.

Fig. 15: Comparison of S21 parameter corresponding to the straight waveguide with one

and two rows of glide-symmetric holey EBG at the sides.
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Fig. 16: Comparison of S-parameters corresponding to the double 90
◦ bent waveguides

with and without glide-symmetric holey EBG at the location of the junction. Solid and

dashed lines correspond to the cases with and without glide-symmetric holey EBG at

the location of the junction, respectively.

V. CONCLUSION

In this work, a cost-effective solution for manufacturing in-

tegrated metallic waveguides at high frequencies is presented.

Using the proposed method, metallic waveguides at high

frequencies can be manufactured in two parts and joined by

screws. A glide-symmetric holey EBG structure at the location

of the connection provides appropriate shielding. The proposed

method is similar to groove gap waveguide technology in

which pin-type EBGs were used to provide shielding. In

all different methods of manufacturing such as EDM die

sinking, molding and casting, and CNC milling, manufacturing

glide-symmetric holey EBG is potentially cheaper and easier

than pin-type EBG at the same operational frequency. The

periodicity of our proposed structure is about 2.5 times larger

than pins. Therefore, a lower accuracy for manufacturing

may be employed. Our proposed method is suitable for mass

production. For example, in the CNC milling case, drilling

shallow holes is easier than drilling tall and thin pins. For

making pins, one would need to drill grooves between the

pins, which is more complicate, especially for non-regular

distribution of pins. Moreover, if the pins are thin, they can

easily break during the drilling process. In this paper, in order

to demonstrate the feasibility of the proposed waveguiding

structure, straight, double 90◦ bent, and coupled waveguides

have been designed and simulated. The performance of the

designed structures has been tested through measurement.
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