
Cost-Effective Graceful Degradation in Speculative Processor Subsystems:
The Branch Prediction Case∗

Sobeeh Almukhaizim, Thomas Verdel and Yiorgos Makris
Electrical Engineering Department

Yale University
{sobeeh.almukhaizim, thomas.verdel, yiorgos.makris@yale.edu}@yale.edu

Abstract

We analyze the effect of errors in branch predictors, a
representative example of speculative processor subsystems,
to motivate the necessity for fault tolerance in such subsys-
tems. We also describe the design of fault tolerant branch
predictors using general fault tolerance techniques. We then
propose a fault-tolerant implementation that utilizes the Fi-
nite State Machine (FSM) structure of the Pattern History
Table (PHT) and the set of potential faulty states to pre-
dict the branch direction, yet without strictly identifying the
correct state. The proposed solution provides virtually the
same prediction accuracy as general fault tolerant tech-
niques, while significantly reducing the incurred hardware
overhead.

1 Introduction

VLSI advances have led to great increases in processor
speeds. However, the overall computer system performance
has not improved proportionately to processor speeds. Sys-
tem performance is dominated by the performance of its
subsystems [1, 2]. Therefore, in an act to boost system per-
formance, various speculative enhancements have been pro-
posed. Data prefetching [3], cache management techniques
[4], value prediction techniques [5] and branch prediction
[6, 7, 8] are all examples of such speculative subsystems.

Speculative execution introduces a whole new set of chal-
lenges and opportunities in designing reliable and fault-
tolerant systems. The underlying principle is that specula-
tive subsystems do not always perform useful computation.
Often, speculation leads to invalid operation execution and
the corresponding results are discarded, thus not providing
any performance benefit. Nevertheless, functional correct-
ness is maintained through an inherent recovery mechanism.
Interestingly, such speculative execution complicates the be-
havior of a system in the presence of a fault [9, 10]. While
functional correctness is not be violated, the performance
benefit of speculative execution is lost. However, a reliable
system should ensure not only the correct functional opera-
tion of the design, but also its performance specifications.
Consequently, the general framework for providing fault-
tolerance needs to be reexamined when designing specula-
tive subsystems.

∗This work is partially supported through a fellowship from Kuwait
University.

In general, fault-tolerance methods explore the trade-off
between attained fault coverage and incurred hardware over-
head. Speculative subsystems add a third dimension to this
decision space, namely the level of performance that can be
maintained in the presence of a fault. Performance reduction
in a faulty speculative subsystem depends on the speculative
subsystem under consideration. In this work, we investigate
the effect of performance faults in the Branch Predictor (BP)
on the prediction accuracy. We propose a fault tolerant im-
plementation that utilizes the FSM structure of the branch
predictor and a set of potentially faulty states in order to
correctly predict the direction of the branch. As compared
to two general fault tolerant implementations, the proposed
solution identifies a more cost-effective point in the trade-off
space between hardware overhead and prediction accuracy.

The remainder of this paper is organized as follows: Tra-
ditional fault tolerant implementations of the BP are de-
scribed in section 2. The proposed method is outlined in
section 3. Experimental results are provided in section 4
and conclusions are drawn in section 5.

2 General Fault Tolerant BP Design

The general structure of a BP is shown in figure 1.a. The
operation of a BP can be divided into three stages: 1) ob-
tain branch history, 2) predict branch direction, and 3) up-
date branch history [11]. When a branch is encountered, the
BP indexes into a Pattern History Table (PHT) and obtains
the branch history stored in one of the PHT 2-bit counters.
The history is used to predict the direction of the branch.
The PHT counter used for prediction is updated depending
on the branch direction. We limit the added fault tolerance
power to the branch prediction stage, as it is the only exact
common stage in all BPs [6, 7, 8] and the dominant com-
ponent in terms of area. A straightforward triplication of
the indexing logic and the update logic, along with the addi-
tion of a majority voting function, would suffice to tolerate
a fault in these stages.

2.1 Triple Modular Redundancy

The idea of Triple Modular Redundancy (TMR) [12] is to
tolerate faults in a circuit by comparing the output behavior
of three identical circuit replicas. Since only one circuit is
assumed faulty, we can utilize a majority function to toler-
ate the effect and, therefore, continue to produce the correct
output behavior. Hence, the counter of every PHT entry is

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

10
10
01

00
11

PHT
00

Branches
History

Indexing
Hardware

Predict
Direction

Update
Counter

a. Original BP Stages b. TMR Added to the
 Branch History Stage

.

.

.

.

101010
101010
010101

000000
111111

PHT
000000

Branches
History

Indexing
Hardware

Majority
Function

Update
Counter

.

.

.

.

Predict
Direction

c. ECC Added to the
 Branch History Stage

11001
11001
00111

00000
11110

PHT
00000

Branches
History

Indexing
Hardware

Encode
Process

Decode
Counter

.

.

.

.

Predict
Direction

Figure 1. Original BP and General Fault Tolerant Variations.

triplicated, as shown in figure 1.b. The prediction is made by
taking a majority vote among the three counters. The update
process of the 2-bit counter is slightly modified in order to
reflect the update on all three counters.

The area cost of the fault tolerant BP using TMR is al-
most three times the cost of the original design, as the size
of the PHT, the dominant component of the BP in terms
of area, is triplicated. The BP is a component on the criti-
cal path of application execution, thus careful consideration
of the added delay should be taken. Nonetheless, the time
taken by the majority function can be typically hidden in the
same cycle required to obtain the prediction.

2.2 Error Correcting Codes

Hamming code bits [13], are added to the information
bits of the PHT counters to encode the states such that a
distance of 3 is enforced between the code words. Decoding
hardware is utilized to determine the error location, and con-
sequently, flip the erroneous bit to obtain the correct result.
In this case, each entry in the PHT now contains 5 bits, i.e.
2 information bits and 3 code bits, to represent the encoded
counter state. Once a branch is encountered, the encoded
history is fed into a decoder to check whether there exists
a fault. If a fault is present, the history is corrected and the
direction of the branch is predicted. When the branch direc-
tion is resolved, the PHT counter used for the prediction is
updated and the new state is encoded and stored back into
the PHT entry. A fault tolerant BP using Hamming code is
illustrated in figure 1.c.

Compared to the 4 additional bits of TMR, ECC require
only 3 additional bits. The encoding latency does not affect
the critical path operation as it takes place after predicting
the branch. The decoding process, however, affects the crit-
ical path as the state must be decoded to predict the branch
direction; nonetheless, it can also be typically hidden in the
same cycle required to obtain the prediction.

3 Proposed Fault Tolerant Design

A BP does not require a strict identification of the correct
state; rather, only the correct prediction that should be made.

Furthermore, the set of possible next states depends on the
current state and branch direction; therefore, the counter can
only be set to a value in the set of reachable next states. We
will demonstrate how to utilize the FSM structure to reduce
the area overhead at a minor performance loss.

3.1 Overview

We replicate the counter once, thus storing two 2-bit
counters in each entry. The new FSM of the counter is de-
scribed in figure 2.a; states C1 and C4 represent the strongly
not taken and taken predictions, while states C2 and C3 rep-
resent the weakly not taken and taken predictions, respec-
tively. Following the transitions in the FSM, we obtain the
set of faulty states at a distance of one from the final state,
assuming a single-bit error. The sets of faulty states between
the correct states of the FSM counter are shown in figure 2.a.
We notice that, based on the prediction to be made, the sets
are disjoint. This is further illustrated in the Karnaugh map
of figure 2.b. F1 and F2 states are the faulty states that can
be reached when the correct state should be C1 or C2; F3
and F4 are similarly defined. The prediction, when the cur-
rent state is C1, C2, F1 or F2 (C3, C4, F3 or F4), should be
0 (1), regardless of whether the state is correct or faulty.

The operation of the proposed method is identical to the
standard operation if a fault is not present. When a fault is
detected, the correct prediction is made and the history must
be updated with the branch outcome. However, setting the
next state to any state might result in an overlap between the
sets of faulty states. The only states where the associated
sets of faulty states are disjoint are states C2 and C3. Con-
sequently, when a fault is present, the next state is set to C2
or C3 depending on the branch direction. Based on this new
set of next states, the counter will behave as a 1-bit counter
with C2 and C3 corresponding to predict-0 and predict-1.

3.2 Implementation

Figure 3 illustrates the prediction identification, predict
direction and update counter stages of the BP. When a state
is read from the PHT entry, a prediction is made based on the
function described in the Karnaugh map of figure 2.b; the
corresponding hardware is illustrated in the lower right part

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

0100
0001 0010

1110
1000
1011

1011
1110

1011
11100100

0001

1101
0001
0111
0100

1

Predict 1 Predict 1

10

Predict 0 0 Predict 0 0 0

11

0000 0101 1010 1111

Possible Faulty States:

Possible Faulty States:

C1 C2 C3 C4

C1

C2

C4F2

F3

F2

X

X

X

X11

01

00

00 01 11 10

10

S3S2

S1S0

C3F3 F3−F4

F3−F4

F1−F2

F1−F2

a. New Counter FSM with all Possible Single Faults. b. Karnaugh Map Illustrating the Faulty States Behavior.

Figure 2. New Counter FSM and a k-map Explanation of its Behavior.

Hardware
Indexing

Direction
S2
S3

.....

PHT

Branches
History

1111

0000

0101

1111

1010

1010

0000

S3
S2
S1
S0

Direction

ParityMux_3

Next StateTo PHT
Using Indexing
Methodology

Parity
C1C2C1C3C2C4C3C4

Mux_2

C3 C2

S3‘
S1‘

S3‘
S2
S1‘
S0

Prediction

Mux_1

Figure 3. Proposed fault tolerant branch predictor.

of figure 3. An XOR gate identifies any change in the parity
of a state, as all correct states have even parity. In fault-free
operation, the update stage utilizes Mux 2 to select the next
state following the FSM description of figure 2.a. If a fault
is present, Mux 1 is used to set the next state to C2 or C3.
All the BP stages can be implemented using 17 gates only.
The ECC and TMR implementations can predict in the exact
same way as a fault-free BP would. The proposed method-
ology, however, starts making predictions based on a 1-bit
saturated counter. Nevertheless, the experimental results in-
dicate that a 1-bit counter for the faulty entry has minimal
effect on the overall branch prediction accuracy.

4 Experimental Results

We compare the fault tolerant implementations in terms
of area overhead and branch prediction accuracy. We imple-
mented all three fault tolerant BPs using SimpleScalar [14]
and simulated the SPEC 95 integer benchmarks suite using
the gshare [6] and global [7] BPs. In order to investigate
the worst case degraded BP accuracy, a single-bit error was
injected in the most heavily used PHT entry.

The area required for the proposed implementation is half
the TMR area and two thirds the ECC area. The increase in
misprediction rate is zero for the ECC and TMR implemen-
tations as a fault is always corrected. The gshare BP accu-
racy is illustrated in the first major heading of Table 1 for
various PHT sizes. The increase in misprediction accuracy,
when an error is injected in the most used PHT entry, is il-
lustrated in the second major heading. As expected, increas-
ing the PHT size has little effect on reducing the increased
misprediction rate since the most used entry is still used fre-
quently to predict biased branches. The third major head-
ing illustrates the increase of the misprediction accuracy for
the proposed scheme. The average misprediction increase
is less than 1% of the misprediction increase in the original
implementation. In some cases, the branch prediction accu-
racy of the proposed method is higher than the prediction
accuracy of the original gshare predictor. The prediction ac-
curacy for these cases increases because the prediction of a
1-bit counter outperforms the prediction of a 2-bit counter
for the faulty entry. The results when a global BP is used are
very similar as illustrated in table 2.

The proposed scheme requires twice the area as the orig-
inal BP. A question that arises is whether the area spent to
make the BP fault tolerant is better spent in doubling the
PHT size. Although doubling the PHT size increases the
branch prediction accuracy, it does not increase the accuracy
of the BP enough to offset the diminished accuracy of a fault
in the BP. As an example, quadrupling the PHT size of the
gshare BP from 4K to 16K increases the prediction accuracy
by 2.27% on average. A fault, however, might increase the
misprediction accuracy by 57.55% on average. Clearly, the
area is better utilized in order to make the BP fault tolerant.

5 Conclusions

A cost-effective fault-tolerant design method for BPs
is described and compared to general fault tolerant ap-

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Benchmark Branch Prediction Accuracy Increase in Misprediction Rate Increase in Misprediction Rate
Name (gshare Predictor) (gshare Predictor) (Proposed Method)

PHT Size 1K 4K 16K 64K 1K 4K 16K 64K 1K 4K 16K 64K

compress 92.16 93.78 94.43 94.78 20.92 23.52 22.79 25.16 0.00 0.00 0.00 0.00
gcc 80.01 85.19 88.56 90.76 3.60 4.54 5.67 5.85 −0.05 0.07 0.08 0.11
go 71.54 73.26 78.16 83.67 2.64 2.31 2.31 2.74 0.04 0.04 0.04 0.12
ijpeg 90.06 91.00 92.06 92.64 101.71 109.69 121.58 128.26 1.81 2.11 2.27 2.58
li 93.81 96.75 97.36 97.62 27.67 48.22 59.41 61.56 0.00 0.00 0.00 0.00
m88ksim 94.13 96.08 96.82 97.23 115.10 160.24 184.32 198.02 1.19 1.79 2.52 2.17
perl 87.18 94.46 97.24 98.15 4.08 9.44 18.07 23.15 0.00 0.00 0.00 0.00
vortex 90.98 95.55 97.89 98.76 50.60 102.42 212.75 360.38 0.22 0.00 0.47 0.00
Average 87.48 90.76 92.82 94.20 40.79 57.55 78.33 100.77 0.40 0.50 0.66 0.62

Table 1. Performance of the Proposed Method on SPEC95 Integer Benchmarks, gshare predictor.

Benchmark Branch Prediction Accuracy Increase in Misprediction Rate Increase in Misprediction Rate
Name (global Predictor) (global Predictor) (Proposed Method)

PHT Size 1K 4K 16K 64K 1K 4K 16K 64K 1K 4K 16K 64K

compress 84.89 85.35 85.73 85.93 14.16 14.36 15.29 12.65 1.46 1.43 1.47 0.00
gcc 75.29 77.68 79.05 80.05 17.77 17.87 17.83 17.65 0.61 0.45 0.38 0.50
go 70.60 72.13 74.96 77.33 13.04 11.70 10.78 10.26 0.99 0.79 0.76 0.66
ijpeg 78.81 79.00 79.69 79.79 62.78 56.92 54.66 52.33 2.03 1.29 1.23 0.79
li 83.63 84.45 84.98 84.97 20.70 20.82 20.36 20.34 0.06 0.00 0.00 0.00
m88ksim 85.97 86.48 86.59 86.69 66.61 66.39 64.11 61.81 1.28 1.33 1.42 1.43
perl 79.26 81.59 82.76 83.42 5.70 4.18 4.79 4.63 0.15 0.00 0.00 0.00
vortex 82.01 83.31 84.03 84.52 32.01 33.62 33.91 34.27 0.50 0.48 0.25 0.07
Average 76.31 81.25 82.22 82.84 29.10 28.23 27.72 26.74 0.88 0.72 0.69 0.43

Table 2. Performance of the Proposed Method on SPEC95 Integer Benchmarks, global predictor.

proaches. Although in the presence of a fault the proposed
scheme does not necessarily identify the correct state, it still
yields the correct prediction. In essence, an error in a PHT
FSM reduces the 2-bit counter to a 1-bit counter, but only
for the faulty PHT entry. Experimental results indicate that
the proposed method gracefully degrades the effectiveness
of the BP in the presence of faults: while only a minor im-
pact on the overall prediction accuracy is observed, the in-
curred hardware overhead is significantly reduced as com-
pared to general fault tolerant approaches.

Acknowledgement

We would like to acknowledge the guidelines of Daniel
Friendly, Yale University, on the experiments needed to
evaluate the proposed technique. The first author would like
to thank Ozgur Sinanoglu and Alex Orailoglu, University of
California at San Diego, for their insights on this project.

References

[1] J. Ousterhout, “Why aren’t operating systems getting faster
as fast as hardware?,” in USENIX, 1990, pp. 247–256.

[2] T. Anderson, H. Levy, B. Bershad, and E. Lazowska, “The
interaction of architecture and operating system design,” in
Proc. of 4th ASPLOS, 1991, pp. 108–120.

[3] N. P. Jouppi, “Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers,” in Proc. of 17th ISCA, May 1990, pp. 364–
373.

[4] D. Kroft, “Lookup-free instruction fetch/prefetch cache or-
ganization,” in Proc. of 8th ISCA, May 1981, pp. 81–87.

[5] K. Wang and M. Franklin, “Highly accurate data value pre-
diction using hybrid predictors,” in Proc. of 30th MICRO,
1997, pp. 281–290.

[6] S. McFarling, “Combining branch predictors,” Tech. Rep.
TN-36, DEC, June 1993.

[7] T. Y. Yeh and Y. N. Patt, “Alternative implementations of
two-level adaptive branch prediction,” in Proc. of 19th ISCA,
May 1992, pp. 124–134.

[8] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, “The agree
predictor: A mechanism for reducing negative branch history
interference,” in Proc. of 24th ISCA, May 1997, pp. 284–291.

[9] S. Almukhaizim, P. Petrov, and A. Orailoglu, “Low-
cost, software-based self-test methodologies for perfor-
mance faults in processor control subsystems,” in Proc. of
CICC, May 2001, pp. 263–266.

[10] S. Almukhaizim, P. Petrov, and A. Orailoglu, “Faults in pro-
cessor control subsystems: Testing correctness and perfor-
mance faults in the data prefetching unit,” in Proc. of ATS,
November 2001, pp. 319–324.

[11] D. A. Patterson and J. L. Hennessey, Computer Architecture:
A Quantitative Approach, chapter 4, Morgan Kaufmann Pub-
lishers, Inc, second edition, 1996.

[12] J. Neumann, “Probabilistic logics and the synthesis of reli-
able organisms from unreliable components,” 1956, pp. 43–
98, Princeton University Press.

[13] P. W. Hamming, “Error detecting and correcting codes,”
Tech. Rep., Bell Syst. Tech. J., 1950.

[14] D. Burger and T. M. Austin, “The simplescalar tool set,
version 2.0,” Tech. Rep. 1342, University of Wisconsin-
Madison, Computer Sciences Department, June 1997.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

