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To compare “cost-effectiveness” of different
abatement methods, many studies estimate pro-
duction or cost functions and plot the marginal
cost curve for using each method to achieve
more abatement. Normally the cost is additional
outlay by the firm (e.g., added equipment, pro-
cess changes, or fuel switching). Each method
may have diminishing returns, however, so the
marginal cost of abatement (MCA) may start at
different points and rise at different rates.1 Then
efficiency requires the planner to pursue each
method to the point where all have the same
MCA. Or, as pointed out by Arthur C. Pigou
(1920), an emissions tax gives incentive for
firms to pursue each method until its MCA
equals the tax rate, which achieves the same
efficiency.

For vehicle emissions, the list of usual sus-
pects similarly includes the purchase of pollu-
tion-control equipment, process changes such as
driving at low and uniform speeds, and fuel
switching from leaded to unleaded gasoline and
to cleaner fuels. Perhaps the MCA curves for
those techniques could all be plotted to under-
take the same sort of analysis. Yet this analysis
for vehicle emissions faces four problems. First,
the abatement decisions are made by many dif-
ferent agents: manufacturers can include equip-
ment to achieve required rates for emissions per
mile (EPM), but consumers get to choose
whether to buy a car or sports utility vehicle
(SUV), whether to drive at low or uniform
speeds, and how many miles to drive. Second,
heterogeneity means that the efficient mix dif-
fers across drivers: some can switch from an

SUV to a car, others can buy a new vehicle with
low emission rate, others may change driving
style, and still others could change driving
amounts. The planning solution is not feasible,
and so policy must rely on incentives. Third,
however, the tax on emissions is not feasible
either, since the measurement technology is not
yet available.2 Fourth, while some of the costs
of abatement are extra outlays for equipment
included by manufacturers, or for the higher
cost of cleaner fuel, many costs would instead
come in the form of lost consumer surplus from
driving fewer miles and from driving in the
“wrong” vehicle: a car instead of an SUV, or a
newer car instead of an old car.

This paper deals with all four of these issues:
we use an estimated demand system that ac-
counts for heterogeneity to calculate the lost
consumer surplus from feasible policies such as
a higher tax on gasoline, a tax on distance, or a
subsidy for buying a newer car.3 To do this,
we introduce a somewhat new view of cost-
effectiveness, comparing policies instead of
technologies. A policy such as the gasoline tax,
for example, might induce some consumers to
drive less, some to switch from two vehicles to
one, some to buy a car instead of an SUV, and
some to do “all of the above.” Our model cap-
tures these behaviors. For each rate of tax, we
simulate the changes in all such choices and
how the new choices affect emissions. We also
calculate the lost consumer surplus, or equiva-
lent variation (EV), and subtract tax revenue to
get deadweight loss (DWL). Finally, we take
the added DWL over the additional abatement
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1 For the example of greenhouse gas (GHG) abate-
ment, see figures 20 –21 of U.S. EPA (2001 p. 23), where
the highest MCA curve is for U.S. CO2 emission reduc-
tion, followed by U.S. other GHG reduction, U.S. seques-
tration, and then other countries’ CO2 , other GHG, and
sequestration.

2 On-board diagnostic equipment is too costly because
millions of vehicles would need to be retrofitted (Winston
Harrington et al., 1994). Remote sensing is less expensive
and can measure average emissions, but it cannot distin-
guish emissions clearly enough to tax each car separately
(Sierra Research, 1994). And any tailpipe device would
entirely miss evaporative emissions.

3 Fullerton and Sarah West (2000) consider combina-
tions of gas taxes and car taxes that maximize welfare when
an emissions tax is not available, but they assume substitu-
tion elasticities and calibrate other parameters. Here we use
estimated parameters.
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as the social marginal cost of abatement
(MCA), and we plot this curve for several dif-
ferent tax policies.

Current policies state maximum emission
rates for new vehicles. These have become
more stringent over time, and they are more
stringent for cars than for SUVs.4 We do not
simulate changes in these mandates; indeed
they are reflected in our data showing how
newer cars have lower EPM than older cars or
SUVs. Instead, we simulate additional policies
that would use incentives to get consumers to
buy those newer cars or to reduce their miles.

I. The Model

Each consumer has a discrete choice about
the number and types of vehicles and continu-
ous choices about vehicle miles traveled
(VMT). To capture all such choices simulta-
neously, and the way all such choices affect
emissions, we use estimated parameters from
Ye Feng et al. (2005). In their model, each
household first chooses the number of vehicles
(0, 1, or 2) and then for each vehicle chooses a
car or SUV. The result is six “bundles” (no
vehicle, one car, two cars, one SUV, two SUVs,
one of each). We have no need to model the
choice among hundreds of vehicle types, as in
prior studies of manufacturer product differen-
tiation. All cars in a given year are made to meet
a single emission rate standard, so the only
important choices for emissions are between car
and SUV and the age of the vehicle. We model
age as a continuous choice and estimate the
emission rates for cars of different age. After
the discrete choice among bundles, then, a two-
vehicle household makes four continuous
choices (the age of each vehicle and the miles to
drive each vehicle). The marginal price per mile
is

(1) pi � �pg � tg

MPGi
� teEPMi � td�

where i indexes the vehicle bundle, pg is the
price of gasoline, tg is the gas tax in dollars per
gallon, MPGi is miles per gallon, and EPMi is
grams of emissions per mile. The imposition of

a distance tax td in dollars per mile would add
directly to the cost per mile. If an emissions tax
were feasible, at rate te in dollars per gram, then
teEPMi would be the extra cost per mile.

Estimation requires a price for each good that
is independent of the amount chosen, just as the
price per mile above is independent of miles
chosen. We also have a choice of vehicle age,
but the “price” of holding a new car for one year
is higher than the price of holding an old car for
one year. We therefore make a nonlinear trans-
formation of age to define a quantity with a
linear price. If depreciation is exponential at
rate � per year, then (1 � �)age is the fraction
left, and we can define Wear � 1 � (1 � �)age

as the fraction depreciated. Consumers holding
a new or used car effectively make a continuous
choice about the amount of Wear, and they
receive a constant “reimbursement price” qi per
unit Wear accepted. Since this choice is sepa-
rate from the discrete choice, we define the
annualized price of bundle ri as the cost of a
brand new vehicle.

The household’s direct utility is a positive
function of VMT and another consumption
good ci, and it is a negative function of Wear.
Given income y, the budget constraint is

(2) piVMTi � qiWeari � ci � y � ri

where the price of ci is normalized to 1. The
indirect utility for bundle i is a function of
household income and prices, denoted as V(y �
ri, pi, qi). We use a standard log-linear demand
for VMT as a function of prices, income, and
observed demographic variables x:

(3) ln�VMTi� � �V
i � �p

i pi � �qqi

� �y � �1ki � x�� � �

where the coefficient on the price per mile is
bundle-specific, � is an agent-specific error
term, and ki is the capital cost of the bundle
(related to annual cost by �1ki � �ri). Then the
implied indirect utility function is

(4) Vi �
1

�
exp���0

i � �y � �1ki � x�� � ��

�
1

�p
i exp��p

i pi � �qqi� � �i .
4 For an overview of vehicle pollution policy, see Har-

rington and Virginia McConnell (2003).
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Using Roy’s Identity, this form for indirect util-
ity further implies that the demand for Wear is:

(5) ln�Weari� � �W
i � ln��q /�p

i � � �p
i pi � �qqi

� �y � �1 ki � x�� � �.

Finally, for two-vehicle households, direct util-
ity is U(VMTi1, VMTi2, Weari1, Weari2, ci).
The budget constraint contains all those quan-
tities (with prices pi1, pi2, qi1, and qi2). Indirect
utility and all four continuous demands have
more terms but are analogous to equations
(3)–(5).

Following McFadden’s random utility hy-
pothesis, vehicle bundle i is chosen if and
only if Vi 	 Vj for all j � i. We let the
random variable �i have a generalized ex-
treme value distribution, so that the discrete-
choice part becomes the familiar nested logit
model. Prior literature estimates discrete and
continuous demands sequentially, using the
predicted shares from the discrete part to cor-
rect for endogeneity of vehicle choice in
VMT demands.5 As pointed out by Feng et al.
(2005), however, the same � and � parame-
ters enter both the indirect utility for estima-
tion of discrete choices and in the continuous
demands. In the sequential procedure, esti-
mated parameters of continuous demands are
not constrained to match the same parameters
in the estimated discrete-choice model. Often
they are quite different.

Feng et al. (2005) introduce a procedure to
estimate both parts simultaneously, and they
obtain a single set of � and � parameters. They
also use the estimated parameters to calculate
various elasticities, for interpretation, but they
do not undertake any simulations or welfare
analysis. Here, we use the estimated parameters
from Feng et al. in the indirect utility function to
measure the dollar value of utility changes from
simulated changes in tax rates.

Data from the 1996–2001 Consumer Expen-
diture Survey (CEX) for 9,027 households
include demographic characteristics, total ex-
penditures, gas expenditure, vehicle type, make,
and year. Fuel prices for each year and region
are taken from the ACCRA cost-of-living indi-
ces. Assuming 20-percent depreciation per year,
Wear is calculated by the formula above, and
current market value of each vehicle (ki) is
calculated from original purchase price and
year. Hedonic regressions are used to impute
missing values, and to calculate qi (the price of
Wear). Data from the California Air Resources
Board (CARB) on 672 vehicles of various types
and ages are used to estimate MPGi and EPMi
as functions of vehicle type, age, and number of
cylinders. Estimated parameters are used to im-
pute MPGi and EPMi for each vehicle in the
CEX. Then for each vehicle, VMT is calculated
by MPG times gallons (gas expenditure over
price pg).

II. Results

The estimates for price and income coeffi-
cients in Feng et al. (2005) all have the expected
signs, though they differ in magnitude and sig-
nificance. Because the coefficients themselves
are difficult to interpret, we turn to elasticities.
A 1-percent increase in the price per mile af-
fects all discrete vehicle shares, but the largest
shifts are 0.8 percent less for the car-and-SUV
bundle and 0.7 percent more for the two-car
bundle. For any given bundle, this 1-percent
higher price per mile also reduces miles, but to
small extents ranging only from 0.02 percent to
0.07 percent. A 1-percent higher reimbursement
price for Wear changes bundle shares slightly;
given a bundle, desired Wear and VMT each
rise by 0.12–0.14 percent. Higher income raises
the fraction of households with both a car and
an SUV. Some capital cost elasticities seem too
large. For example, a 1-percent increase in the
cost of an SUV leads to a 7-percent reduction in
the one-SUV share and 14-percent reduction in
the car-and-SUV share (which means that this
share falls from 14.5 percent to 12.5 percent of
all households).

Here, we calculate implications for emis-
sions. For simplicity, calculations are based on
the average household with average income and
demographic characteristics, but this consumer
holds the predicted shares of all six bundles. We

5 Jeffrey A. Dubin and Daniel L. McFadden (1984)
introduce the sequential procedure for a logit model
with two appliances (and continuous usage hours). It is
used for vehicle choice and miles by Fred Mannering
and Clifford Winston (1985), Kenneth Train (1986),
Pinelopi K. Goldberg (1998), and West (2004). W. Mi-
chael Hanemann (1984) estimates discrete and continu-
ous choices simultaneously, but without unobserved
heterogeneity.
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first calculate total emissions in the baseline as
the sum over all vehicles of EPM � VMT. We
then calculate the changes in behavior from
successive increases the gas tax tg, from the
introduction of a distance tax td, or from an
emissions tax te. This last tax is not realistic, but
it is useful for comparison. Equation (1) shows
how those taxes affect the price per mile. We
also simulate a Wear tax tq (which might shift
consumers into new vehicles with low EPM).
We calculate the dollar value of changes in
utility.

To understand these results, first note that the
calculated EPM is 1.89 grams/mile for the av-
erage car and 3.56 for the average SUV. It also
increases to 6.94 grams/mile for a very old
vehicle (with Wear � 1). Thus, any shift from
SUV to car or to a newer car will affect emis-
sions, even with no change in miles. Second,
note that the estimated elasticities for discrete
choices are larger than for continuous choices.
A higher gas tax raises the price per mile more
in an SUV than in a car (because a car has
higher MPG). It has small effect on miles but
induces many consumers to switch from an
SUV to a car (with lower EPM). Thus we ex-
pect that a gas tax can reduce emissions by more
than a tax purely on distance.

For any tax, deadweight loss (DWL) gener-
ally starts at zero and rises with the square of the
tax rate. The marginal cost of abatement (MCA)
is defined as the change in DWL over the
change in emissions, so one might expect the
MCA to start at zero and to rise at an increasing
rate. Figure 1 shows the MCA curve for each
tax, and all curves are increasing as expected.6

Perhaps surprisingly, the MCA curves do not
start near zero. The explanation is that the base-
line in our model starts with a gasoline tax of
$0.374/gallon, so consumers already have DWL
from reduced VMT and altered vehicle choices.
Any additional tax that further changes those
choices starts with positive costs. In Figure

1, the marginal cost of raising the existing gas
tax is almost $0.02 for the first additional gram
of abatement, and it rises as choices become
further distorted.

Moreover, the cost of the existing gas tax is
the consumer surplus lost from reduced driving,
and that cost is exacerbated by any tax that
further affects distance—such as the tax on dis-
tance (td) or on emissions (te). The MCA is
lowest for the tax on emissions, as predicted by
theory. Compared to the distance tax, the gas
tax has lower MCA because it raises the price
per mile more for any vehicle with low MPG
(shifting consumers out of SUVs with high
EPM).

Older cars have higher emissions rates, and
the tax on Wear (tq) discourages holding older
cars.7 Also, Feng et al. (2005) estimate that the
elasticity of VMT with respect to the reimburse-
ment price is 0.12–0.14, so the lower reim-
bursement price means driving fewer miles.
Both those changes should reduce emissions.
This tax has the highest MCA in Figure 1, how-
ever, so it is not very effective in reducing
emissions. Overall, if a tax on emissions is not

6 Observed emissions are 52,228 grams per household
per year, using weights from Fullerton and West (2000) to
average over hydrocarbons, NOx, and carbon monoxide. To
get comparable abatement, one curve increases te from zero
to $25 per 1,000 grams (collecting $483 per household per
year); one increases tg from $0.374 to $1.50 per gallon
($725); another raises td from zero to $0.10 per mile ($970);
and one raises tq from zero to $5,000 per unit of Wear
($2,565).

7 It is equivalent to a subsidy for newer vehicles in our
model, because it changes relative prices.

FIGURE 1. THE MARGINAL COST OF ABATEMENT (MCA)
FOR EACH POLICY
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feasible, Figure 1 indicates that the gas tax is
more cost-effective than these other taxes.

Figure 1 does not compare these taxes to
other policies, however. Further research would
be necessary to calculate costs of other taxes or
even of further mandates like those already in
place. For example, future requirements reduce
emission rates for SUVs. Given the currently
higher SUV emission rates, this model could be
used to simulate the effects of an annual tax just
on older sports utility vehicles (or subsidy for
their retirement). More generally, a tax could be
collected annually on any vehicle at a rate that
is proportional to its emission rate. Finally, if
the ideal emissions tax is not feasible, a cost-
effective policy might combine this vehicle-
EPM tax to change discrete choices of vehicles
and a gas tax to change continuous choice of
miles driven.
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