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Cost Effective, Reliable and Secure Workflow
Deployment over Federated Clouds

Zhenyu Wen, Jacek Cała, Paul Watson, and Alexander Romanovsky

Abstract—The significant growth in cloud computing has led to increasing number of cloud providers, each offering their service under

different conditions – one might be more secure whilst another might be less expensive or more reliable. At the same time user

applications have become more and more complex. Often, they consist of a diverse collection of software components, and need to

handle variable workloads, which poses different requirements on the infrastructure. Therefore, many organisations are considering

using a combination of different clouds to satisfy these needs. It raises, however, a non-trivial issue of how to select the best

combination of clouds to meet the application requirements.

This paper presents a novel algorithm to deploy workflow applications on federated clouds. Firstly, we introduce an entropy-based

method to quantify the most reliable workflow deployments. Secondly, we apply an extension of the Bell-LaPadula Multi-Level security

model to address application security requirements. Finally, we optimise deployment in terms of its entropy and also its monetary cost,

taking into account the cost of computing power, data storage and inter-cloud communication.

We implemented our new approach and compared it against two existing scheduling algorithms: Extended Dynamic Constraint

Algorithm (EDCA) and Extended Biobjective dynamic level scheduling (EBDLS). We show that our algorithm can find deployments that

are of equivalent reliability but are less expensive and meet security requirements. We have validated our solution through a set of

realistic scientific workflows, using well-known cloud simulation tools (WorkflowSim and DynamicCloudSim) and a realistic cloud based

data analysis system (e-Science Central).

Index Terms—Cloud Computing; Reliability; Security; Workflow; Scheduling; Cost

✦

1 INTRODUCTION

W Ith the advent of cloud computing, owners of large-
scale computing infrastructure (specifically, the cloud

providers) can rent out their computation power or stor-
age to individual users. The success of this approach is
demonstrated by the numerous cloud providers worldwide.
For example, CloudRFP.com [1] has compiled a database of
cloud hosting and related service providers, which includes
over 190 companies. In addition, users also may have access
to their own, private cloud infrastructure. Importantly, all
these various infrastructure providers offer services of dif-
ferent quality. For example, considering cloud security, data
centres must follow the privacy policy of the country where
the centre is located. That can sometimes force users to use
more expensive, or lower quality, providers for the sake of
compliance with their security requirements. Furthermore,
some cloud providers offer different type of clouds with
different security level; e.g. Microsoft Azure provides more
secure service called a private cloud.

With regards to the cloud reliability users have no
easier choice. Despite the fact that the SLA (service-level
agreement) for cloud computing is usually at the level of
99.95% availability for the compute service, cloud providers
are not always able to this level. In practice, this level of
availability means that the service can only be offline for
about 20 minutes in a month, or only about 250 minutes per
year. However, in early 2011 several high-profile technical
companies were landed in trouble when Amazon’s EC2
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service suffered an outage [2] which lasted for almost 11
hours. In a month it gives only 98.47% of availability and
in a year still only 99.87%. Similarly, the outage at the
GoDaddy cloud provider took down millions of web sites.1

With all this variety and uncertainty, application devel-
opers who decide to host their system in the cloud face the
issue of which cloud to choose to get the best operational
conditions in terms of price, reliability and security. And the
decision becomes even more complicated if their application
consists of a number of distributed components, each with
slightly different requirements. An answer to this need
might be combining together different cloud providers.

Cloud federation offers the ability to distribute a single
application on two or more cloud platforms, so that the
application can benefit from the advantages of each of them
[3]. The key challenge in attempting to realise this opportu-
nity is how to find the best distribution (or deployment)
of application components, which can yield the greatest
benefits. In this paper we tackle this problem and propose
an algorithm to partition a workflow-based application over
federated clouds in order to exploit the strengths of each
cloud. Our algorithm splits an application structured as a
workflow such that the security and reliability requirements
of each part are met, whilst the overall cost of execution is
minimised.

For the purpose of the algorithm we extended our se-
curity model presented previously in [4] and adapted it
to meet the new, multi-criteria requirements. The model,

1. K. Finley, “Godaddy outage takes down millions of sites, anony-
mous member claims responsibility,” http://techcrunch.com/2012
/09/10/godaddy-outage-takes-down-millions-of-sites.
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based on the Bell-LaPadula Multi-Level Security model [5],
[6], may be used to address the confidentiality of systems,
i.e. the absence of unauthorised disclosure of information
[7]. In this work we use the model as a driver to partition
workflows over a federated clouds to meet their security
requirements.

The basis for the new algorithm is a new method to
quantify the most reliable workflow deployments, which
applies Shannon’s information theory [8]. Using reliability
information for each application component and the under-
lying cloud platform, the method calculates the entropy of
a workflow deployment. The entropy value is then used as
a constraint in the optimisation problem. We argue that by
using entropy we can reduce the overall risk of workflow
failures caused by a small number of components being
deployed on less reliable clouds.

As there may be a number of deployments that meet
our security and reliability requirements, we search for
the option that minimises the monetary cost. Finding the
optimal deployment is, however, a NP-hard problem [9],
and so we need a heuristic algorithm to solve it. The two
most common approaches are: (1) to linearise the problem
by assigning weights to the criteria and then optimising
the weighted sum [10], or (2) to optimise one criterion and
keep the others constraints within predefined thresholds. In
the first approach the difficulty is not only in defining the
weights properly but also in the limitation of the simple,
linear model which may not be able to accurately represent
the complexity of the problem. Hence in this work we use
the second approach.

To handle this multi-criteria and NP-hard problem we
generate a valid initial solution and then apply a set of
refinement methods to approach the optimum. At the same
time we keep the time complexity of the algorithm as
polynomial.

The contributions of this paper as follows:

• A scheduling algorithm that minimises the monetary
cost of deployment of a workflow application across
federated clouds. The algorithm takes into account
security and reliability requirements as well as the
monetary cost incurred from three main sources in
the cloud: computation, data transfer and data stor-
age.

• A novel method to quantify the reliability of a work-
flow deployment using entropy, which can reduce
the overall risk of workflow failures caused by a
small number of components being deployed on less
reliable clouds.

• An extension of our previous Bell-LaPadula Multi-
Level Security model to guarantee the security of
deploying a workflow over federated clouds.

• An evaluation of our work with both randomly
generated workflows simulated in a combination of
WorkflowSim [11] and DynamicCloudSim [12] envi-
ronments, and also an existing scientific workflow
running on e-Science Central [13], a cloud-based data
analysis platform.

The remainder of the paper is structured as follows. We
first introduce the notation and models used to represent
the reliability and security requirements and to calculate the

Symbol Meaning
Workflow
w a workflow application
S a set services of workflow w
si ith service in a workflow application
D a set of data of workflow w
di,j data dependency between si and sj
E the union of data dependencies, services and clouds
e one of the element of set E
wpi ith cloud of a set of clouds WP

d
wpi
i,j

, swpi
j

a set to represent di,j or sj , allocated in cloud wpi
Φ possible deployment solutions
φ one of the deployments solution of Φ
Reliability Model
REL required reliability of each service
RP reliability of a deployment solution
RE entropy value of a deployment solution
Ri the reliability rate of service si
Rmax the maximum reliability rate of the services
Security Model
D a finite set of ordered pairs∏

L′(e) the upper bound of e∐
L′(e) the lower bound of e

Cost Model
Ti,j storage time of data di,j
Storewpi cost of storing data on wpi in GB per hour
OUT the outgoing data dependencies of a cloud
Comwpi,wpj cost of transferring 1GB of data between clouds
IN the incoming data dependencies of a cloud
T

wpi
j

execution time of sj on wpi
Execwpi cost of using compute resources on wpi for one hour
SCOST data storage cost
CCOST communication cost
ECOST execution cost
COST total cost of a workflow deployment

TABLE 1: Notations

monetary cost of deployment. Next, in Section 3 we describe
the optimisation problem as described by the models. Then
we present a scheduling algorithm to search efficiently for
a suitable deployment option is presented. In Section 5 we
discuss the evaluation of our work. Finally, future work is
outlined and conclusions are drawn.

2 PROBLEM DESCRIPTION

With the increasing availability of public and private cloud
resources it is easy to deploy instances of the same service
in multiple places. We observe this tendency with our
e-Science Central data analysis system which, depending
on the use case, has been deployed in a variety of loca-
tions including private clouds at universities in Spain and
Brazil2 and public cloud resources such as Amazon AWS
and Microsoft Azure [13]. Each of these clouds has its own
advantages and thus we focus in this paper on how a single
workflow application might be deployed over a federated
clouds. By a federated clouds we consider in this paper a
set of workflow execution environments (such a e-Science
Central) running in different clouds, which we can manage
and use to run applications. Our goal is to partition a
workflow application in such a way that it can benefit from
the “best” combination of these environments.

The following subsections define the three concepts that
form the basis for our algorithm: the measure of reliability,

2. This work was conducted within the EUBrazil Cloud Connect
project; http://www.eubrazilcloudconnect.eu.
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the security rules and the cost model. Further, Table 1 shows
the key notations used through the paper.

2.1 Reliability

In this paper the target clouds consist of a set of PMs
(physical machines), and can be geographically distributed.
A single physical machine is able to contain a set of VMs
(virtual machines). Each VM can run 0 or more instances
of WP (workflow execution platform). Lastly, a WP can run
a number of services/workflow tasks (to put it simply, we
use service in the rest of paper) concurrently. We are not
considering fault tolerance [14] as a means for improving
reliability; this is outside of the scope of this paper.

2.1.1 Reliability Computing

By reliability we mean the readiness for correct service, for
example, the amount of time a device or service is actu-
ally operating as the percentage of total time it should be
operating. Therefore, reliability can be defined as: REL =
Fault-Free Time

Total Time
.

In this paper, we assume that a service itself is imple-
mented fault-free [15] and it is executed completely and
reliably on a workflow execution platform, iff the physical
machine, VM and WP which the service is running on are
fault-free during the service execution time.

Let t be a random variable which represents a point in
time when a failure happens, while f denotes the prob-
ability density function of t. We assume that failures are
occurring randomly in time and can be modelled by an
exponential distribution. Therefore, the exponential proba-
bility density function of WP is fwp(t) = λwpe

−λwpt, where
λwp is the failure rate of workflow platform wp. Then,
following [15], we can define the reliability function of wp
as:

Rwp(t) = 1−

∫ t

0
fwp(t)dt = e−λwpt (1)

We assume that the execution time of service si is ti and
Twpi

is the time since wpi is available but just before si is
launched. Thus we can have the following corollary.

Corollary. The reliability of execution of si in wpi is
Ri(ti) = Rwpi

(ti + Twpi
).

Proof. From the discussion above, reliability Rvmi
(t)

of vmi at time t depends on the reliability of the VM in-
stance itself, R′

vmi
(t), and the reliability of its host machine

Rpmi
(t+ Tpmi

), where Tpmi
is the time since pmi has been

available but just before vmi is started. We can denote
that as: Rvmi

(t) = R′

vmi
(t) · Rpmi

(t + Tpmi
). Similarly, the

reliability of wpi is Rwpi
(t) = R′

wpi
(t) · Rvmi

(t + Tvmi
),

where Tvmi
is the time since vmi has been available

but just before wpi is started. Consequently, we can state
that the reliability of running service si in the Cloud
is Ri(t) = R′

i(t) · Rwpi
(t + Twpi

). However, earlier we
assume that service si is implemented fault-free and so
Ri(t) = Rwpi

(t+ Twpi
).

2.1.2 Measure of Workflow Reliability

We assume that workflow w consists of n services s1, . . . , sn,
and the reliability of each service is Ri. Moreover, the

communication between related WPs and services are fault-
free. Therefore, the possibility that w is failure-free is:

RP (φ) =
n
∏

i=1

Ri = e
∑n

i=1
−λwpi

(ti+Twpi
) (2)

where φ is a deployment of w, λwpi
is the failure rate of

workflow platform which is used to deploy si (we assume
that λwpi

already includes the failure rate of the underlying
layers), and ti+Twpi

is the execution time of the WP since it
was started and until si finished. RP (power method there-
after) is the most common way to measure the reliability of
the execution of a workflow application [16], [17] and [18].

However, in this paper we propose an entropy-based
method to measure workflow reliability. Entropy [8] is a
widely used approach to capture the degree of dispersal or
concentration of a random variable. For a discrete random
variable X with probabilities p(xi) it is defined as:

H(X) = −
n
∑

i=1

p(xi) log p(xi) (3)

We deem p(xi) as reliability of service si and use the
entropy value as a measure of workflow reliability. Thus,
the reliability of workflow w can be calculated as:

RE(φ) = −
n
∑

i=1

Ri logRi (4)

In Appendix A, available in the online supplemental
material, we illustrate that entropy method has more ad-
vantages than the traditional power method. Furthermore,
we propose a constraint on the entropy value which can
guarantee not only the reliability of a workflow deploy-
ment, but also reduces the risk that a workflow includes
a service with relatively low reliability. If we assume that
the required reliability of deploying workflow w is R, then
using the power method we need RP (φ) ≥ R. However, the
corresponding entropy constraint is: RE(φ) ≤ −RM logR,
where RM = MAX(Ri) is the maximum reliability of the
workflow services.

2.2 Security Rules

A security model is needed to determine whether a deploy-
ment of services and data to a set of clouds meets organ-
isation’s security requirements. In this paper, we present a
novel security model which extends our previous work [4],
building on the Bell-LaPadula model [5] and incorporating
the security levels of the clouds, data and services. For
clarity, from now on we assume that each cloud runs only a
single instance of a workflow platform. This does not limit
our security and cost models but improves readability.

To model security we follow [19] and use security lattice
L = (L,≤) to represent the security levels of any entity
e ∈ E = (clouds, data and services). L denotes that set L
has a partial order relation (i.e. ≤). For this the lattice has
at least one least upper bound l (l ⊔ l′ ∈ L) and one lower
bound l′ (l′ ⊓ l ∈ L ). Furthermore, the subset L′ of L has a
strict partial order (i.e. (L′, <)), noting

∏

L′ (upper bound)
and

∐

L′ (lower bound).
We assign the security levels to each object e ∈ E , for

example, L′(e) ∈ L which means e is assigned multiple
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security levels from
∏

L′(e) to
∐

L′(e). A workflow w,
including D data and S services, is going to be deployed
on a set of WP . Φ is all possible distributions of objects:
Φ = E × L. Moreover, the dependency relation of data and
services, for example, is data di,j which is generated from
service si and consumed in service sj :

si → di,j → sj

(where arrow → is used to show data dependency, and
each block – service or data – is uniquely identified by the
subscript).
D is a finite set of ordered pairs, thus our security model

consists of three rules.
Rule 1 “no-write-down”: denotes that a service cannot

write data which has lowest security level (required security
level) that is lower than service own slef .

∀(si, di,j) ∈ D
∐

L′(si) ≤
∐

L′(di,j)

Rule 2 “no-read-up”: means a service cannot read data
if the data’s lowest security level is higher than the service’s
highest security level.

∀(di,j , sj) ∈ D
∐

L′(di,j) ≤
∏

L′(sj)

Rule 3 “security in cloud computing”: defines that the
lowest security level of a cloud must be greater than or equal
to the lowest security level of any service or data hosted by
this cloud.

∀(dwpi

i,j , s
wpi

j ) ∈ D
∐

L′(di,j) ≤
∐

L′(wpi) and
∐

L′(sj) ≤
∐

L′(wpi)

Where set d
wpi

i,j = {di,j , wpi} and s
wpi

j = {sj , wpi}
represent di,j and sj as allocated in wpi respectively. The
lowest security level of both must be less than or equal to
wpi’s lowest security level.

Based on the definition of the three security rules (not-
ing W thereafter), a secure workflow deployment can be
defined as:

φ ∈
∑

(Φ,W ) (5)

Where φ denotes a deployment of workflow w on a
set of WP which meets the security requirements of W ,
noting φ = {swpi

1 , ..., s
wpj

n }.
∑

represents a set of deploy-
ments which can meet the security rules W . In Appendix
B, available in the online supplemental material, we have
demonstrated how to apply the security rules to a simple
pipeline workflow.

2.3 Cost Model

In this section we introduce the cost model that plays a key
role in our algorithm. We assume that clouds are linked in a
fully connected topology and data can be freely transferred
between them. Additionally, a wp can run several services
at the same time.

To calculate the cost of executing a service in the feder-
ated clouds we define a set of cost functions. First is the data
storage cost:

SCOST (swpi

i ) =
∑

di,j∈OUT

di,j × Ti,j × Storewpi
(6)

Where s
wpi

i means service si is deployed on cloud
platform wpi. OUT is a set of data dependencies, repre-
senting that data are generated by si and transferred to its
immediate successor sj which is not deployed on platform
wpi (note that if all immediate successors of si are on wpi,
OUT = ∅). di,j represents the amount of data (in GB) which
is generated by si and consumed by sj . Ti,j denotes storage
time of data di,j , which is the time from the data being
generated until completion of the workflow execution (in
hr). Finally, Storewpi

is the cost of storing 1GB of data for 1
hour on wpi (in $/GB/hr).

Only a few researchers consider the data storage cost
when deploying workflows over a federated clouds. How-
ever, the following four reasons describe why it is worth tak-
ing into account: 1) it makes the cost model more complete
because cloud providers usually charge not only for com-
pute resources and data transfer but also for data storage;
2) for data intensive workflows the storage cost becomes
considerable, especially when data needs to be transmitted
between two clouds; 3) storing the output of a workflow
partition acts as a checkpoint which can reduce the loss in
the event of an outage in any clouds running the following
partitions; 4) such data checkpointing mechanisms are im-
plemented by some workflow management platforms. For
example, the e-Science Central cloud platform [13] implicitly
stores the data that need to be transferred between parti-
tions.

Next function, CCOST , is used to estimate the commu-
nication cost for services:

CCOST (swpi

j ) =
∑

di,j∈IN

di,j × Comwpi,wpj
(7)

It is the cost of the data transferred from the immediate
predecessors of service sj (denoted as IN ). Comwpi,wpj

represents the unit cost of transferring 1GB of data from
wpi to wpj (in $/GB). Note that if two services are de-
ployed on the same platform, the unit cost is zero, i.e.
∀wpi = wpj : Comwpi,wpj

= 0.
Finally, ECOST (swpi

j ) indicates the execution cost of
service sj on wpi. It is defined as:

ECOST (swpi

j ) = T
wpi

j × Execwpi
(8)

Where T
wpi

j is the execution time of sj on platform wpi
(in hr), and Execwpi

represents the cost of using compute
resources on wpi for 1 hour (in $/hr).

Based on these three functions, we can define the total
cost of deploying a workflow over a set of clouds:

COST (φ) =
∑

s
wpi
i

⊂φ

SCOST (swpi

i ) +

CCOST (swpi

i ) + ECOST (swpi

i )

(9)

Where φ is one of the deployment solutions, φ ∈ Φ.
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3 THE CHALLENGES

3.1 Multi-Objective Optimisation Problem

For a given φ which is a secure deployment of workflow
w over federated clouds WP , we propose to optimise two
parameters: i) minimise the value of entropy H(φ) which
results in a distribution that maximises the reliability of
the workflow, ii) minimise the value of COST (φ) to obtain
deployments with low cost of execution. We express this
problem as:

minimise (COST (φ), (H(φ))

subject to ∃φ ∈
∑

(Φ,W )

Φ = D × S ×WP × L

Finding a solution which optimises both COST (φ) and
H(φ) is challenging. Note that if we simplify our problem
to only one objective optimisation, e.g. finding deployment
φ which minimises cost, it can be directly mapped to the
skewed graph partitioning [20] which is a variant of classic
NP-complete graph partitioning [9].

In the skewed graph partitioning each vertex i has a de-
sire to be in set k denoted by dk(i). Given that, the problem
tries to minimise the cut edges (flow of data between sets)
and maximise the desires. If w(eij) is the weight associated
to the edge between vertices i and j and s(i) is the set to
which the vertex i is assigned, the problem tries to find
mapping s which minimises objective function:

minimise
∑

eij

{

w(eij), if s(i) 6= s(j)

0, otherwise
−

n
∑

i=1

ds(i)(i)

In our case vertices denote workflow services, weights
associated with edges represent the cost of data transfer
between services, set s(i) = wpi is the workflow platform
assigned to execute service si and, finally, desire ds(i)(i) is
the negative value of the execution and data storage cost
associated with running service si on platform wpi.

3.2 Trade-off problem

To have a better understanding of the trade-off between
entropy and the monetary cost of workflow deployments
we ran two sets of experiments. First we used the NCF
(Not Cheapest First) algorithm from our previous work [21]
to optimise deployment by cost. NCF is an approximate
greedy algorithm which can quickly find deployments of
workflows with security constraints. Then we implemented
another greedy algorithm to optimise deployment by its
entropy value. Finally, we ran these two algorithms to
deploy 300 different randomly generated workflows which
included from 2 to 30 services. Figure 1 shows the result.

Triangles represent the deployments which minimise
the monetary cost, whereas circles are deployments with
minimal entropy. Colours are related to axes with blue
showing the monetary cost of a deployment and red show-
ing its entropy. Clearly, the cost optimised deployments are
cheaper than the entropy optimal ones. However, they have
also greater entropy value. Conversely, the entropy optimal
deployments have lower entropy but result in more expen-
sive deployments. Also, as may be seen, the gap between
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Fig. 1: Cost and entropy optimal workflow deployments.

cost optimal and entropy optimal deployments increases
with the increasing number of services in a workflow, which
clearly indicates the trade-off between these values.

4 SCHEDULING ALGORITHM

The scheduling algorithm we propose can optimise the
deployment of a workflow over a set of clouds. It takes into
account user requirements against multiple criteria, namely
security, reliability and cost. The optimisation part of the
algorithm is an extension of the multiple-choice knapsack
problem (MCKP) [22].

Overall, our algorithm is executed following the three
steps: 1) setting a boundary on one of the two objectives,
2) searching for a deployment which minimises the other
objective while the first objective is within the boundary
set and 3) traversing the available options to optimise the
deployment found in step 2.

In the first step we set a bound C on entropy such that:

RE(φ) ≤ −nRmax log
n

√

RP (φL) +RP (φM )

2

= −Rmax log
RP (φ

L) +RP (φ
M )

2
= C

(10)

where φM is the deployment which has the maximum
reliability rate (see equation 2), and φL is the lower bound
deployment of monetary cost without considering reliability
constraint. Therefore, RP (φ

L) and RP (φ
M ) are the values of

the power method. Where Rmax is the service which has the
maximum reliability rate, deploying over federated clouds
and also meet the security requirements. n represents that
the target workflow includes n number of services. We could
also make a bound on cost, however, we need to guarantee
that the reliability rate is acceptable. We also do not set the
boundary on security because all candidate solutions we
generated meet the security requirements W .

As mentioned above, our optimisation is an extension of
MCKP. MCKP is used to optimise a set of decisions SET =
{set1, . . . , setn}within a defined constraint. In our scenario,
SET represents the set of deployments Φ, where seti is a
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mapping of each workflow object e onto a cloud platform
wp, seti = {e

wpi

1 , . . . , e
wpj

m }. Our algorithm aims to find the
optimised seti.

To realise this goal, firstly, we generate the φL (lower
bound) and φM (most reliable) deployments that both sat-
isfy security requirements. Then, we set C as the reliability
constraints and invoke a set of optimisation mechanisms to
improve φM . Thus, our algorithm consists of two phases:
initial deployment and deployment optimisation.

4.1 Initial Deployment

The goal of the initial deployment is to generate quickly,
in linear time, a solution which can be a seed to find the
optimal deployment. First, we produce the cost optimised
deployment φL by applying the NCF algorithm from our
previous work [21]. That algorithm works as follows: (1) a
greedy-based function determines a deployment which ac-
counts for the costs related to running on a cloud, with each
service considered in isolation; (2) the algorithm then takes
into account direct links between services and redeploys
services such that the influence of the data transfer costs
is minimised. In both steps services’ security requirements
are guaranteed.

Given φL generated by NCF, we compare its entropy
value with constraint C. If RE(φ

L) < C, φL will be the
optimal solution returned by our algorithm. Otherwise, we
apply a greedy algorithm to nd the most reliable solution
φM using the power method. The algorithm takes a list of
the workow services and assigns each service to the most
reliable cloud that meets the security constraints of that
service. Once all services are assigned, φM becomes the seed
for the next phase.

Note that φM is optimal, and can be generated by a
greedy algorithm because calculating the reliability of a
workow using the power method has the optimal substruc-
ture property if we assume fault-free connections between
services; by maximising the reliability of a single service we
obtain the optimal solution if the reliability of remaining ser-
vices is also maximised. For the proof please see Appendix
C available in the online supplemental material.

4.2 Deployment Optimisation

If φL does not meet the reliability constraint, we use φM as
the initial solution and the seed to find less costly options
(cf. lines 1–2 in Algorithm 1). We limit the search to find
t deployment options. Each new deployment is generated
by function Change(φ,Cloud,M) (see Algorithm 3) and
stored in M (lines 4–6). Once the loop is finished, M is
sorted in the descending order by the cost and thus the best
solution found is the last on the list.

Finding t valid options was the key challenge in de-
signing the algorithm because of the huge search space. To
address it we observe the contribution of each cloud for each
service taking into account its predecessors. To calculate
the cost of deploying a service on a specific cloud we use
the COD function (Eq. 11). COD is calculated by adding
the computing cost of service si and the transmission and
storage cost of data sent from all si immediate predecessor
services that are not in the same cloud.

Algorithm 1 Deployment Optimisation

Input:

φM the power method optimal deployment;
t the maximum number of deployments to search

for;
Cloud a two dimensional array of clouds available for

each service;

Output:

M valid deployments, cheapest last;

1: M [0]← φM

2: φ← φM

3: for i ∈ 1...t do
4: φNEW ← Change(φ,Cloud,M);
5: φ← φNEW

6: M [i]← φNEW

7: sort M by cost, descending
8: return M [t]

Algorithm 2 Rank clouds by COD

Input and variables:

φ a deployment of workflow w;
Cloud a two dimensional array of clouds available for

each service in w;
Tmp a list of key-value pairs 〈cloud, COD〉, one for

each cloud available for a service;

Output:

Cloud the array of clouds with the reordered list of
clouds for each service;

1: function Rank(φ,Cloud)
2: for si ∈ topsort(φ) do
3: for p ∈ Cloud[si] do
4: Tmp[p]← 〈p, COD(spi )〉
5: sort Tmp in the ascending order by the COD value
6: Cloud[si]← keys(Tmp)
7: return Cloud

COD(spi ) =SCOST (spi ) + CCOST (spi )

+ ECOST (spi )
(11)

We use the COD value in Algorithm 2 to rank valid
clouds for each service; clouds are sorted by COD in the
ascending order. Function topsort(φ) in line 2 returns a
topological order of workflow w. Lines 3–5 are used to
calculate an ordered list of COD values for clouds available
for service si. Finally, in line 6 the Cloud array is updated
with an ordered list of clouds available for service si (keys
from the Tmp list), and returned in line 7.

The Rank function is used by Change (shown in Algo-
rithm 3) to alter the given deployment. It moves a randomly
selected service s (line 4) to another cloud (line 5). The
choice of the cloud is also random but with the help of
the Benford function. This function is a transformation of
Benford’s law [23] defined as:
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Algorithm 3 Change deployment

Input:

φ a deployment of workflow w;
Cloud a two dimensional array of clouds available for

each service;
M an array of valid deployments;

Output:

φNEW a new deployment of w;

1: function Change(φ,Cloud,M )
2: Cloud← Rank(φ,Cloud)
3: while true do
4: s← {Choose a random service from φ}
5: φNEW ⇐ replace(φ, s, Cloud[s][Benford(s)]);
6: if φNEW 6∈M and φNEW is secure and

H(φNEW ) ≤ C then
7: return φNEW

Benford(s) = ⌊
1

10b − 1
⌋

b = random(log10(1 +
1

len(Cloud[s])
), log102)

(12)

where len(Cloud[s]) denotes the number of valid clouds for
service s.

We used randomisation in the selection of the cloud
because the optimal option is not always composed of the
clouds which minimise the COD value. By applying the
Benford function, the clouds on the front of the ranking
have higher chances to be selected but we also avoid the
situation that some clouds are never chosen.

The last two lines of the algorithm (6–7) break the loop
and return new deployment φNEW iff it is unique among
deployments already found (array M ) and meets the criteria
with regards to security and reliability.

5 RESULTS OF THE EXPERIMENTS AND EVALUA-

TION

In order to evaluate our algorithm we set up two exper-
iments. First, we conducted a series of simulation experi-
ments on a number of real scientific workflow applications.
In the second experiment we applied our algorithm over
federated clouds to deploy a scientific workflow from one
of the projects we have been involved in. Note that in
this work, workflows are defined as directed acyclic graphs
where vertices represent services and arcs between them
represent data dependencies.

5.1 Simulation Environment

In this work, the experiments require to be repeatable in
order compare and analyse different types of algorithms.
Therefore, to evaluate our algorithm we combined together
two simulation environments WorkflowSim and Dynamic-
CloudSim. WorkflowSim can simulate execution of work-
flows of the Pegasus workflow management system [24],
whereas DynamicCloudSim adds to the cloud simulation

Workflow app. Medium Large Very large

CyberShake 30 100 1000
Montage 25 100 1000
LIGO 30 100 1000
Epigenomics 24 100 997

TABLE 2: Number of services in each Pegasus workflow for the
three different sizes.

VM Loc. Exec Store In Out Start-up Time
(/hour) (/hour/GB) (/GB) (/GB) (hour)

C1 0 0.40 0.10 0 0.02 5.0
C2 2 2.20 0.60 0.03 0.01 3.0
C3 1 1.23 0.30 0.14 0.07 4.5
C4 2 3.70 0.60 0.10 0.05 2.5
C5 3 4.50 0.90 0.14 0.05 1.5
C6 4 5.50 1.30 0.14 0.13 0.5

TABLE 3: Cloud Pricing and Security Levels

instability and service failures. This combination can more
realistically simulate workflow execution in dynamic cloud
environments.

5.1.1 Experimental Setup

To evaluate our algorithm we consider four workflow ap-
plications available in the Pegasus project and in Work-
flowSim: CyberShake (earthquake risk characterisation),
Montage (generation of sky mosaics), LIGO (detection of
gravitational waves), and Epigenomics (bioinformatics).3

For each of these applications we selected three sizes:
medium, large and very large, which determine the number
of services the workflows include (Table 2). The full char-
acterisation of these workflow applications can be found in
[25]. In our simulation, however, we only need to consider
the execution time, input and output data, and security
level of each service. As the data privacy information for
the workflows is unavailable, we randomly generated the
security levels for the services.

To represent a federation of workflow platforms we
created six VMs in six different data centres each with
a random security level in range 0–4. Note that usually
more secure clouds are also more expensive. Table 3 shows
details of the platform setup with the cloud security level
(Location) and cost of computation, storage, and incoming
and outgoing communication. Additionally, Start-up Time
indicates a randomly generated time when each WP has
become available.

We compare our algorithm EMCK (extended multiple-
choice knapsack) with DCA [26] and BDLS [17] which repre-
sent two existing and widely used multi-criteria scheduling
algorithms. DCA and our algorithm both extend MCKP.
However, DCA is focused on a single computing resource,
and does not take into account the cost of data transfer and
storage, so we adapted DCA to our model and called the
extended version EDCA. BDLS is a list scheduling algorithm
that schedules services according to a priority list of service–
resource pairs. For the purpose of the experiment, we had
to extend and adapt BDLS as follows: (1) we applied the
ranking mechanism similar to Algorithm 3 to build a cost
list; (2) we added another list with entropy constraint for

3. The XML description files of the workflows are available via the
Pegasus project pages at ‘https://confluence.pegasus.isi.edu/display/
pegasus/WorkflowGenerator’.
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each service. As a result the services using extended BDLS
(EBDLS) were assigned to the cloud which minimised the
cost and also met the entropy requirement.

The experiment results presented below are the average
values of 1000 deployments generated by each algorithm.
The observed outputs are normalised against the results of
the EMCK algorithm.

5.1.2 Monetary cost and time complexity evaluation

Figure 2, 3 and 4 depict the normalised monetary cost for
all twelve application setting with four types of workflows
in three sizes mentioned previously. There are five different
deployment solutions: EMCK, EBDLS, EDCA, lowerBound
and mReliable. EMCK, EBDLS and EDCA represent the
deployment solutions generated by the corresponding algo-
rithms, whereas lowerBound (φL) and mReliable (φM ) are
cost optimised and most reliable deployments, respectively.

The results show that EMCK almost always generates
the cheapest deployment when compared with the other
two algorithms. For one case (the large CyberShake work-
flow) it even produced deployments which were cheaper
than our lowerBound result. The reason is that NCF, the
algorithm used to generate the lowerBound solutions, is
a heuristic-based algorithm [27] that can generate deploy-
ments based on cost and security yet it cannot guarantee
the cheapest solution.

The performance of EBDLS is significantly influenced by
the type and size of the workflow. For small and medium
size workflows the cost of deployment solutions generated
by EMCK and EBDLS is very close. However, for large
CyberShare and Epigenomics workflows EMCK can save
nearly 10% of cost when compared with EBDLS. Further-
more, for the very large Montage workflow EMCK yields
18% cost savings.

Figure 5 shows the normalised time consumption of
generating a deployment solution for different algorithms.
EBDLS is hundreds times faster than EMCK and with the
increasing size of the workflow the gap is also increasing.
Similarly, EDCA is tens times faster. Although our algorithm
is much slower than the two others, the time to generate a
deployment, even for very large workflows, is less than one
minute, which is acceptable for our use.

5.1.3 Reliability evaluation

In order to simulate failures during workflow execution we
combined WorkflowSim with DynamicCloudSim. Dynamic-
CloudSim introduces a basic failure model which simulates
the service fail during service execution. Whenever a service
is assigned to a VM and its execution time is computed,
DynamicCloudSim determines whether the service is bound
to succeed or fail. This decision is based on the average rate
of failure specified by the user [12].

Our experiment was set up as follows. Firstly, we set the
initial reliability rate of each cloud to 99.95% (The authors
in [28] observed that a large proportion of fail events occur
within 2 days in Google Cloud environment). Next, the VMs
were initialised with security and cost parameters as shown
in Table 3. The table includes also the start-up time of each
VM, which is the time when a platform was started and is
needed to calculate its reliability value at the moment when
a workflow deployment occurs. Given the start-up time, the

reliability rate of service si (or service in DynamicCloudSim)
was e−0.0005·t, where t was the start-up time of the VM
assigned to execute si plus the execution time of si.

In this experiment we ran 1000 executions of the Pe-
gasus workflows deployed using EMCK and NCF which
generates cost optimised deployments (“lowerBound”). The
results are presented in Figure 6 as the ratio of successful
executions between these two algorithms. As shown, de-
ployments generated by EMCK were always more reliable
than the cost optimised ones. Furthermore, as workflows
with more services have more chances to fail, with the
increasing size of the workflows the ratio was more in
favour of EMCK. For example, for the very large size of the
“Epigenomics” workflow, EMCK avoided 80% of failures
when compared with deployments generated by NCF.

Importantly, workflow reliability was also influenced
by the structure of the workflow. The “LIGO” workflow
includes mostly short running services executed in parallel,
whereas “Epigenomics” consists of chains of long running
services. As a result, “Epigenomics” has much more chance
to fail and so for this workflow the benefits of using EMCK
were most prominent.

5.2 Realistic System

To evaluate our algorithm in conditions closer to a produc-
tion use we applied it to schedule scientific workflows in
e-Science Central [13]. e-Science Central (e-SC) is a cloud-
based data analysis system that can run on a range of pub-
lic and private clouds including Amazon AWS, Microsoft
Azure and OpenShift. e-SC is a SaaS and PaaS, it offers a
web user interface but also provides a range of APIs to allow
users to control the system from code. For example, the
storage subsystem API allows users to upload, download
and manipulate data, whereas the workflow API enables
them to execute, terminate and monitor workflow invoca-
tions. We used the APIs to create a tool that can orchestrate
invocations of a single workflow partitioned over a number
of e-SC instances.

5.2.1 Tool Design

Figure 7 shows the architecture of our deployment tool. It
consists of four core components: Planner assigns workflow
partitions to Federated Clouds using the algorithm discussed
above. The Federated Clouds consists of a set of e-Science Cen-
tral instances running in different clouds. Monitor observes
the status of each instance, detects failures, and provides the
information about available instances to the Planner. Finally,
Failure Generator is used to simulate failures by shutting
down the e-SC instances with a predefined probability.

5.2.2 Experiment Setup

To verify our algorithm we selected one of the workflows
used in the Cloud e-Genome project [29] (see Figure 8).
The project implements a whole exome sequencing pipeline
using e-Science Central workflows deployed on Microsoft
Azure.

Guaranteeing that human genomic data can be securely
processed on the cloud is very important. Therefore, we
modelled the security requirements of a selected Cloud
e-Genome workflow by assigning security levels as shown
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Fig. 3: Cost for the large size workflows.
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Fig. 5: Time ratio of EMCK to the other two algorithms

Medium Large Very Large

Ratio EMCK/lowerBound

T
h

e
 r

a
ti
o

 o
f 
s
u

c
c
e

s
s
fu

l 
e

x
e

c
u

ti
o

n
 

0

0.5

1.0

1.5

2.0

CyberShake LIGO Montage Epigenomics

Fig. 6: Comparing successful executions between two types of
deployments of workflows for different size

in Tables 4 and 5. Note that the size of data transferred
between blocks and the execution time of each block are
actual values taken from provenance logs collected by e-SC.
Other work, e.g. [30], [31], [32], describe how the size and
time may be estimated using execution logs and workflow
input data.

Table 5 shows data sizes in GB, where 0 denotes less than
1 MB of data. The pricing shown in Table 6 is collected from
two major cloud providers and is based on the equivalent
VM configurations. Also one of the providers offered a
private cloud service and we include its pricing in the table.

To simulate this environment we set up three virtual

machines each running a single instance of the e-SC system.
VM1 was hosted on a personal PC and represented the
private cloud. Two other VMs were hosted in our University
virtualised environment and played the role of public cloud
providers Pu1 and Pu2.

As previously, to test our algorithm the platform’s start-
up time must be defined. We set it for VM1, VM2 and VM3
as 1.7h, 2.4h and 3.5h, and their initial reliability as 0.95,
0.93 and 0.90, respectively. In this experiment failure rates
had to be unrealistically high because we wanted workflows
to fail frequently. Otherwise, we would need to run the
experiments for a prohibitively long time. Also, for the
purpose of the experiment we reduced the execution time
of given workflow to about 30 seconds by scaling down the
amount of input data shown in Table 5 by a factor of 2400.

5.2.3 Results and Discussion

Based on the presented experiment setup we generated
two deployments: “lowerBound” produced by the NCF
algorithm and one generated by EMCK (Table 7). The cost
of the workflow execution was 69.832 for the “lowerBound”
and 128.897 for EMCK. Although nearly twice as costly as
the cost optimised solution, the deployment produced by
our algorithm improved reliability by about 25% (Figure 9).

One may challenge that the failure rate for both deploy-
ments were too high (about 40%). This is, however, the
result of the high initial failure rate set for each VM. If
the initial rate of each VM was set as the realistic value,
there are lack of failures during the execution of the given
workflow. This is not only because of the size of workflow
is too small, but also the start-up time of each VM is just a
few hours. However, the experiment in which we simulate
more realistic reliability conditions were presented in the
previous section, whereas in this experiment we show that
our algorithm can be adapted to the real system and can
generate correct deployments.

6 RELATED WORK

Workflow scheduling has been a classic research topic for
decades and has developed together with changes in the
technology. In the last decade, most work has focused on
workflow mapping problems using DAG scheduling heuris-
tics such as [33], [34] and [35], to name just a few. However,
these algorithms are all based on single computing resources
such as “free” grid resources, and thus aim to minimise
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Fig. 7: The Architecture of the Deployment Tool

Service Name Clearance Location Time(/h)
Sample Name S1 1 0 1
ImportF ile S2 1 0 1.5

Sample V aule Info S3 1 0 3
HG19 S4 1 0 0.1
Filter S5 2 0 10

Exome − Regions S6 1 0 7
Intervalpadding S7 0 0 20
ColumnJoin S8 2 0 0.1

AnnotateSample S9 2 0 5
Export S10 1 0 0.3

TABLE 4: Services representation and security and execution
time

Data Location Size (GB)
S1,8 1 0
S2,5 0 1.1
S3,8 2 0.01
S4,5 0 0.005
S4,7 0 0.005
S5,7 0 6.2
S6,7 0 10.3
S7,9 1 3.6
S8,9 0 0
S9,10 0 0.05

TABLE 5: Data security and size.

Cloud Pr1 Pu1 Pu2
Security 2 1 0

CPU 3.41(/h) 2.40(/h) 1.28(/h)
Pr1 0 0.1 0.11
Pu1 0.13 0 0.09
Pu2 0.07 0.02 0

TABLE 6: Basic attributes of the three clouds used in the exper-
iment: security level, cost of computing resources, cost of data
transfer between clouds (e.g. Pr1 → Pu1 = 0.1)

Service lowerBound EMCK
S1 Pr1 Pu1
S2 Pu2 Pu2
S3 Pr1 Pr1
S4 Pu2 Pu2
S5 Pu2 Pu1
S6 Pu2 Pu2
S7 Pu2 Pu2
S8 Pr1 Pr1
S9 Pu2 Pu2
S10 Pu2 Pr1

TABLE 7: Two deployments

Fig. 8: A selected workflow from the Cloud e-Genome project.
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Fig. 9: The execution results of two deployments

reliability and performance. Song et al. introduces in [36] a
version of a genetic algorithm to assign jobs based on risk-
resilient strategies to provide security assurance of trusted
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Grid computing. The algorithm in [37] tolerates processor
failure by means of primary/backup techniques to allocate
two copies of each service to different processors.

In [38] Xie and Qin model the security needs of the
real-time application on clusters, design and implement a
scheduling algorithm, including the security-aware heuris-
tic strategy. In contrast, in our work we consider a problem
with three objectives in which we optimise monetary cost,
whilst reliability and security are maintained according to
the user requirements.

Multi-objective optimisation has been explored previ-
ously in heterogeneous computing. The authors of paper
[18] minimise the makespan and failure probability by
combining both objectives into a single cost function to
form a new matching and scheduling algorithm. In paper
[39], the authors distinguish the reliability maximisation and
execution time minimisation mappings and then provide a
method for converting workflow scheduling heuristics on
heterogeneous clusters into heuristics that take reliability
into account. The work in [17] presents two algorithms to
address the trade-off between makespan and reliability. One
is based on a dynamic level scheduling algorithm and the
other is a version of a genetic algorithm. Instead, our work
presents a technique to deploy workflows on federated
clouds where the monetary cost plays a crucial role, and
none of the mentioned algorithms considers this.

Research related to federated clouds or multi-cloud en-
vironments is still new with little literature available. For
example, in [40] the authors introduced a pricing model and
truthful mechanism for scheduling workflow applications
to different clouds. They consider a scheduling problem
with respect to two objectives: makespan and monetary
cost. However, the reliability and security are not taken into
account. Moreover, Tang et al. addressed in [41] the relia-
bility of a distributed workflow application. It uses a linear
utility function to represent the problem and then optimises
this function. However, as we mention in Introduction, we
follow the other approach: to optimise one criteria and keep
others at an acceptable level.

In [42] Fard et al. attempt to optimise more than two
objectives but, similarly to BDLS, their algorithm uses a
heuristic based on list scheduling. Using priority list is
very effective when applied to a set of independent tasks.
However, for a workflow of interdependent tasks it shows
limitations (cf. Section 5.1.2 and Figures 2, 3, 4). Addition-
ally, the authors use the power method to measure reliabil-
ity, whereas we introduce and utilise a more advantageous
entropy-based method.

Finally, Web Services has been developed for about two
decades and resulted in a number of service selection algo-
rithms that are related to our work, such as [14], [43] and
[44] to list a few. Although service selection and workflow
deployment are similar problems, the former focuses on
grouping business processes, whereas we address deploy-
ment of scientific workflows. Scientific workflows often
require large amount of data to be transferred and thus
factors such as the cost of data transfer between clouds
require careful consideration. Moreover, our security model
inspired by the Bell-LaPadula model makes it different from
other work in this area.

7 CONCLUSIONS

Driven by the popularity of moving to cloud, increasing
number of workflow based applications are hosted in cloud.
However, the variety and dynamics of cloud environments
with security, reliability and price, which make the users
struggle in choosing a best cloud for deploying their ap-
plications. In this paper, we presented a new algorithm to
address the problem of deploying workflow applications
over federated clouds meeting the reliability, security and
monetary cost requirements. We have shown the trade-off
between reliability and cost, and the optimisation problem is
NP-hard problem. Our algorithm guarantees that the secu-
rity and reliability constraints are met while optimising the
monetary cost. The algorithm has been evaluated using re-
alistic scientific workflows on both simulated environment
and a real world cloud based platform. Experimental results
show that our solutions can guarantee the security and
reduce 25% failures while generating the cheapest solution
comparing with other algorithms.

Future work will address remaining opportunities in-
cluding: how to include performance requirements, and
how to benefit from new cloud resources that become avail-
able during workflow execution? Performance and scal-
ability are among the main factors that attract users to
cloud computing, and so incorporating mechanisms and
algorithms that address these aspects of cloud is our next
focus.
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