
1

Cost-effective Resource Provisioning for MapReduce in a
Cloud

Balaji Palanisamy, Member, IEEE , Aameek Singh, Member, IEEE Ling Liu, Senior Member, IEEE

Abstract—This paper presents a new MapReduce cloud service model, Cura, for provisioning cost-effective MapReduce services in a
cloud. In contrast to existing MapReduce cloud services such as a generic compute cloud or a dedicated MapReduce cloud, Cura has
a number of unique benefits. Firstly, Cura is designed to provide a cost-effective solution to efficiently handle MapReduce production
workloads that have a significant amount of interactive jobs. Secondly, unlike existing services that require customers to decide the
resources to be used for the jobs, Cura leverages MapReduce profiling to automatically create the best cluster configuration for the jobs.
While the existing models allow only a per-job resource optimization for the jobs, Cura implements a globally efficient resource allocation
scheme that significantly reduces the resource usage cost in the cloud. Thirdly, Cura leverages unique optimization opportunities when
dealing with workloads that can withstand some slack. By effectively multiplexing the available cloud resources among the jobs based on
the job requirements, Cura achieves significantly lower resource usage costs for the jobs. Cura’s core resource management schemes
include cost-aware resource provisioning, VM-aware scheduling and online virtual machine reconfiguration. Our experimental results
using Facebook-like workload traces show that our techniques lead to more than 80% reduction in the cloud compute infrastructure
cost with upto 65% reduction in job response times.

Index Terms—MapReduce, Cloud Computing, Cost-effectiveness, Scheduling.

✦

1 INTRODUCTION

Cloud computing and its pay-as-you-go cost structure have

enabled hardware infrastructure service providers, platform

service providers as well as software and application service

providers to offer computing services on demand and pay per

use just like how we use utility today. This growing trend in

cloud computing, combined with the demands for Big Data

and Big Data analytics, is driving the rapid evolution of dat-

acenter technologies towards more cost-effective, consumer-

driven and technology agnostic solutions. The most popular

approach towards such big data analytics is using MapReduce

[1] and its open-source implementation called Hadoop [15].

Offered in the cloud, a MapReduce service allows enterprises

to analyze their data without dealing with the complexity

of building and managing large installations of MapReduce

platforms. Using virtual machines (VMs) and storage hosted

by the cloud, enterprises can simply create virtual MapReduce

clusters to analyze their data.

In this paper, we discuss the cost-inefficiencies of the

existing cloud services for MapReduce and propose a cost-

effective resource management framework called Cura that

aims at a globally optimized resource allocation to minimize

the infrastructure cost in the cloud datacenter. We note that the

existing cloud solutions for MapReduce work primarily based

on a per-job or per-customer optimization approach where the

optimization and resource sharing opportunities are restricted

within a single job or a single customer. For instance, in

existing dedicated MapReduce cloud services such as Amazon

Elastic MapReduce [13], customers buy on-demand clusters of

• Balaji Palanisamy is with the School of Information Sciences in the
University of Pittsburgh, USA. Aameek Singh is with IBM Research
Almaden and Ling Liu is with the College of Computing in Georgia Tech
E-mail: balaji@pitt.edu, Aameek.singh@us.ibm.com and
lingliu@cc.gatech.edu

VMs for each job or a workflow and once the MapReduce

job (or workflow) is submitted, the cloud provider creates

VMs that execute that job and after job completion the VMs

are deprovisioned. Here the resource optimization opportunity

is restricted to the per-job level. Alternately, one can lease

dedicated cluster resources from a generic cloud service like

Amazon Elastic Compute Cloud [14] and operate MapReduce

on them as if they were using a private MapReduce infrastruc-

ture. While this approach enables resource optimization at the

per-customer level, we argue that in such an approach, the size

of the leased dedicated clusters needs to be chosen based on

the peak workload requirements of each customer and hence,

the leased clusters are under-utilized for a large fraction of

the time leading to higher costs. Cura on the other hand is

designed to provide a cost-effective solution to a wide range

of MapReduce workloads with the following goals in mind:

First, we observe that existing solutions are not cost-

effective to deal with interactive MapReduce workloads that

consist of a significant fraction of short running jobs with

lower latency requirements. A recent study on the Facebook

and Yahoo production workload traces [29], [8], [34] reveals

that more than 95% of their production MapReduce jobs are

short running jobs with an average running time of 30 sec.

Unlike existing per-job services that require VMs to be created

afresh for each submitted job, Cura deals with such interactive

workloads using a secure instant VM allocation scheme that

minimizes the job latency. In addition, Cura results in higher

cost-effectiveness compared to an owned cluster in a generic

compute cloud that has high costs due to low utilization.

Secondly, as discussed earlier, existing cloud solutions are

largely optimized based on per-job and per-customer optimiza-

tion which leads to poor resource utilization and higher cost.

Additionally, their usage model requires users to figure out

the complex job configuration parameters (e.g. type of VMs,

number of VMs and MapReduce configuration like number of

mappers per VM etc.) that have an impact on the performance

2

and thus cost of the job. In contrast to existing cloud systems,

Cura leverages MapReduce profiling to automatically create

the best cluster configuration for the jobs and tries to optimize

the resource allocation in a globally cost-effective fashion.

Hence, Cura results in requiring much lesser cloud resources

than that consumed by the current models.

Finally, Cura’s usage model and techniques achieve higher

service differentiation than existing models as Cura incorpo-

rates an intelligent multiplexing of the shared cloud resources

among the jobs based on job requirements. MapReduce work-

loads often have a large number of jobs that do not require

immediate execution, rather feed into a scheduled flow - e.g.

MapReduce job analyzing system logs for a daily/weekly

status report. By leveraging such opportunities and by ac-

curately understanding each job’s performance requirements,

Cura multiplexes the resources for significant cost savings.

To the best of our knowledge, Cura is the first effort that is

aimed at developing a novel usage model and resource man-

agement techniques for achieving global resource optimization

in the cloud for MapReduce services. Cura uses a secure

instant VM allocation scheme that helps reduce the response

time for short jobs by up to 65%. By leveraging MapReduce

profiling, Cura tries to optimize the global resource allocation

in the cloud by automatically creating the best cluster config-

uration for the jobs. Cura’s core resource management tech-

niques include cost-aware resource provisioning, intelligent

VM-aware scheduling and online VM reconfiguration. Overall,

in addition to the response time savings, Cura results in more

than 80% savings in the cloud infrastructure cost. The rest of

the paper is organized as follows. In Section 2, we present

Cura’s cloud service model and system architecture. Section

3 discusses the technical challenges of Cura and presents

Cura’s resource management techniques namely VM-aware

scheduling and online VM reconfiguration including a formal

discussion of Cura’s scheduling and reconfiguration problems.

We present the experimental evaluation of Cura in Section 4.

We discuss related work in Section 5 and conclude in Section

6.

2 CURA: MODEL AND ARCHITECTURE

In this section, we present the cloud service model and system

architecture for Cura.

2.1 Cloud Operational Model

Table 1 shows possible cloud service models for providing

MapReduce as a cloud service. The first operational model

(immediate execution) is a completely customer managed

model where each job and its resources are specified by the

customer on a per-job basis and the cloud provider only

ensures that the requested resources are provisioned upon

job arrival. Many existing cloud services such as Amazon

Elastic Compute Cloud [15], Amazon Elastic MapReduce

[14] use this model. This model has the lowest rewards

since there is lack of global optimization across jobs as well

as other drawbacks discussed earlier. The second possible

model (delayed start) [44] is partly customer-managed and

partly cloud-managed model where customers specify which

resources to use for their jobs and the cloud provider has the

TABLE 1: Cloud Operational Models

Model Optimization Provider risk Potential benefits

Immediate execution Per-job Limited Low

Delayed start Per-job Moderate Low – Moderate

Cloud managed Global High High

flexibility to schedule the jobs as long as they begin execution

within a specified deadline. Here, the cloud provider takes

slightly greater risk to make sure that all jobs begin execution

within their deadlines and as a reward can potentially do

better multiplexing of its resources. However, specifically with

MapReduce, this model still provides low cost benefits since

jobs are being optimized on a per-job basis by disparate users.

In fact customers in this model always tend to greedily choose

low-cost small cluster configurations involving fewer VMs that

would require the job to begin execution almost immediately.

For example, consider a job that takes 180 minutes to complete

in a cluster of 2 small instances but takes 20 minutes to

complete using a cluster of 6 large instances1. Here if the job

needs to be completed in more than 180 minutes, the per-job

optimization by the customer will tend to choose the cluster of

2 small instances as it has lower resource usage cost compared

to the 6 large instance cluster. This cluster configuration,

however, expects the job to be started immediately and does

not provide opportunity for delayed start. This observation

leads us to the next model. The third model – which is

the subject of this paper – is a completely cloud managed

model where the customers only submit jobs and specify job

completion deadlines. Here, the cloud provider takes greater

risk and performs a globally optimized resource management

to meet the job SLAs for the customers. Typically, the

additional risks here include the responsibilities of meeting

additional SLA requirements such as executing each job within

its deadline and managing the allocation of resources for each

job. While the conventional customer-optimized cloud model

requires only VMs to be provisioned based on demand, a

completely cloud managed model introduces additional role

on the cloud provider for resource management. For instance,

an inefficient allocation of resources to a particular job can

result in higher cost for the cloud provider. Therefore, this

model brings higher risk to the cloud while it has high

potential cost benefits. Similar high-risk high-reward model

is the database-as-a-service model [10], [11], [12] where the

cloud provider estimates the execution time of the customer

queries and performs resource provisioning and scheduling to

ensure that the queries meet their response time requirements.

As MapReduce also lends itself well to prediction of execution

time [24], [5], [27], [28], [4], we have designed Cura on a

similar model. Another recent example of this model is the

Batch query model in Google’s Big Query cloud service [34]

where the Cloud provider manages the resources required for

the SQL-like queries so as to provide a service level agreement

of executing the query within 3 hours.

2.2 System Model: User Interaction

Cura’s system model significantly simplifies the way users deal

with the cloud service. With Cura, users simply submit their

jobs (or composite job workflows) and specify the required

1. Example adapted from the measurements in Herodotou et. al. paper[25]

3

service quality in terms of response time requirements. After

that, the cloud provider has complete control on the type and

schedule of resources to be devoted to that job. From the

user perspective, the deadline will typically be driven by their

quality of service requirements for the job. As MapReduce

jobs perform repeated analytics tasks, deadlines could simply

be chosen based on those tasks (e.g. 8 AM for a daily log

analysis job). For ad-hoc jobs that are not run per a set

schedule, the cloud provider can try to incentivize longer

deadlines by offering to lower costs if users are willing to

wait for their jobs to be executed2. However, this model does

not preclude an immediate execution mode in which case the

job is scheduled to be executed at the time of submission,

similar to existing MapReduce cloud service models.

Once a job is submitted to Cura, it may take one of the two

paths (Figure 1). If a job is submitted for the very first time,

Cura processes it to be profiled prior to execution as part of

its profile and analyze service. This develops a performance

model for the job in order to be able to generate predictions for

its performance later on. When making scheduling decisions,

performance predictions in terms of execution time are made

based on the input dataset size, VM types, cluster sizes and

job parameters. This model is used by Cura in optimizing the

global resource allocation. MapReduce profiling has been an

active area of research [24], [5], [4] and open-source tools such

as Starfish [24] are available to create such profiles. Recent

work had leveraged MapReduce profiling for Cloud resource

management and showed that such profiles can be obtained

with very high accuracy with less than 12% error rate for

the predicted running time [27]. Here we would like to note

that though Cura’s architecture and techniques may apply to

other HPC scheduling problems beyond just Map Reduce, we

have considered dedicated MapReduce Clouds as the target

scenario of Cura for the wide popularity of MapReduce and

the availability of several open source profile and analyze tools

for MapReduce.

Profiling and Analysis

VM Pool

Management

Cura’s Resource Management

MapReduce

Jobs

Performance

predictions

SLA

requirements

Fig. 1: Cura: System Architecture

2.3 System Architecture

The profile and analyze service is used only once when a

customer’s job first goes from development-and-testing into

production in its software life cycle. For subsequent instances

of the production job, Cura directly sends the job for schedul-

ing. Since typically production jobs including interactive or

long running jobs do not change frequently (only their input

2. Design of a complete costing mechanism is beyond the scope of this
work

data may differ for each instance of their execution), pro-

filing will most often be a one-time cost. Further, from an

architectural standpoint, Cura users may even choose to skip

profiling and instead provide VM type, cluster size and job

parameters to the cloud service similar to existing dedicated

MapReduce cloud service models like [14]. Jobs that skip

the one-time profile and analyze step will still benefit from

the response time optimizations in Cura described below,

however, they will fail to leverage the benefits provided by

Cura’s global resource optimization strategies. Jobs that are

already profiled are directly submitted to the Cura resource

management system.

Cura’s resource management system is composed of the

following components:

2.3.1 Secure instant VM allocation

In contrast to existing MapReduce services that create VMs on

demand, Cura employs a secure instant VM allocation scheme

that reduces response times for jobs, especially significant for

short running jobs. Upon completion of a job’s execution, Cura

only destroys the Hadoop instance used by the job (including

all local data) but retains the VM to be used for other jobs that

need the same VM configuration. For the new job, only a quick

Hadoop initialization phase is required which prevents having

to recreate and boot up VMs3. Operationally, Cura creates

pools of VMs of different instance types as shown in Figure 2

and dynamically creates Hadoop clusters on them. By default,

Cura runs the maximum number of pre-created VMs in the

cloud (limited by the number of servers) so that all workload

can be served instantly.

Pool of small

instances

Pool of Large

instances

Pool of extra

large instances

Fig. 2: VM Pool

When time sharing a VM across jobs it is important to en-

sure that an untrusted MapReduce program is not able to gain

control over the data or applications of other customers. Cura’s

security management is based on SELinux [20] and is similar

to that of the Airavat system proposed in [19] that showed

that enforcing SELinux access policies in a MapReduce cloud

does not lead to performance overheads. While Airavat shares

multiple customer jobs across the same HDFS, Cura runs

only one Hadoop instance at a time and the HDFS and

MapReduce framework is used by only one customer before

it is destroyed. Therefore, enforcing Cura’s SELinux policies

does not require modifications to the Hadoop framework and

3. Even with our secure instant VM allocation technique data still needs
to be loaded for each job into its HDFS, but it is very fast for small jobs as
they each process small amount of data, typically less than 200 MB in the
Facebook and Yahoo workloads [30].

4

requires creation of only two SELinux domains, one trusted

and the other untrusted. The Hadoop framework including the

HDFS runs in the trusted domain and the untrusted customer

programs run in the untrusted domain. While the trusted

domain has regular access privileges including access to the

network for network communication, the untrusted domain has

very limited permissions and has no access to any trusted files

and other system resources. An alternate solution for Cura’s

secure instant VM allocation is to take VM snapshots upon

VM creation and once a customer job finishes, the VM can

revert to the old snapshot. This approach is also significantly

faster than destroying and recreating VMs, but it can however

incur noticeable delays in starting a new job before the VM

gets reverted to a secure earlier snapshot.

Overall this ability of Cura to serve short jobs better is a key

distinguishing feature. However as discussed next, Cura has

many other optimizations that benefit any type of job including

long running batch jobs.

2.3.2 Job Scheduler

The job scheduler at the cloud provider forms an integral

component of the Cura system. Where existing MapReduce

services simply provision customer-specified VMs to execute

the job, Cura’s VM-aware scheduler (Section 3.1) is faced with

the challenge of scheduling jobs among available VM pools

while minimizing global cloud resource usage. Therefore,

carefully executing jobs in the best VM type and cluster size

among the available VM pools becomes a crucial factor for

performance. The scheduler has knowledge of the relative

performance of the jobs across different cluster configurations

from the predictions obtained from the profile and analyze

service and uses it to obtain global resource optimization.

2.3.3 VM Pool Manager

The third main component in Cura is the VM Pool Manager

that deals with the challenge of dynamically managing the

VM pools to help the job scheduler effectively obtain efficient

resource allocations. For instance, if more number of jobs in

the current workload require small VM instances and the cloud

infrastructure has fewer small instances, the scheduler will be

forced to schedule them in other instance types leading to

higher resource usage cost. The VM pool manager understands

the current workload characteristics of the jobs and is responsi-

ble for online reconfiguration of VMs for adapting to changes

in workload patterns (Section 3.2). In addition, this component

may perform further optimization such as power management

by suitably shutting down VMs at low load conditions.

2.4 Deployment challenges and Practical use

In this subsection, we discuss some basic challenges in de-

ploying a globally optimized resource management model like

Cura in a commercial cloud setting. First of all, a global opti-

mization model such as Cura brings additional responsibility

to the cloud provider in meeting the SLA requirements for

the jobs and to the customers. Though the proposed model is

not a must for cloud service providers to function, they can

obtain significant benefits by offering such a model. While

this model brings attractive cost benefits to both customers

and cloud providers, we would need appropriate incentive

models for both cloud providers and customers in order to

function symbiotically. The emergence of new cloud managed

models in commercial services (such as Google Big Query

[34]) suggests that the additional management overhead on

the cloud providers might be quite practical given the wide

range of cost benefits such models bring. Motivated by the

huge benefits of global resource management, similar models

have also been proposed in the context of database-as-a-service

[10], [11], [12] and have been shown to be practical. Another

key challenge in globally optimized resource management is

that the scheduling and resource allocation techniques need to

be highly scalable and efficient to work in even scenarios with

thousands of servers and with tens of thousands of customer

jobs. This calls for highly scalable scheduling techniques and

we believe there is many possible future work along this

direction. Finally, we also believe that resource pricing in

a globally optimized cloud can be quite a challenge and

needs attention from both business perspective as well as from

the resource management perspective. When pricing models

are closely integrated with resource management techniques,

there are huge opportunities for scheduling techniques where

resource management decisions are influenced by intimately

coupled pricing models. We believe such sophisticated models

will be interesting extensions to the Cura global resource

management model.

3 CURA: RESOURCE MANAGEMENT

In this section, we describe Cura’s core resource management

techniques. We first present Cura’s VM-aware job scheduler

that intelligently schedules jobs within the available set of VM

pools. We then present our reconfiguration-based VM pool

manager that dynamically manages the VM instance pools

by adaptively reconfiguring VMs based on current workload

requirements.

3.1 VM-aware Scheduling

The goal of the cloud provider is to minimize the infrastructure

cost by minimizing the number of servers required to handle

the data center workload. Typically the peak workload decides

the infrastructure cost for the data center. The goal of Cura

VM-aware scheduling is to schedule all jobs within available

VM pools to meet their deadlines while minimizing the

overall resource usage in the data center reducing this total

infrastructure cost. As jobs are incrementally submitted to the

cloud, scheduling requires an online algorithm that can place

one job at a time on an infrastructure already executing some

jobs. To better understand the complexity of the problem, we

first analyze an offline version which leads us to the design of

an online scheduler.

3.1.1 Offline VM-aware Scheduling

In the offline VM-aware scheduling problem, we assume that

information about the jobs, their arrival time and deadlines are

known apriori and the goal of the algorithm is to schedule

all jobs to meet their deadline by appropriately provisioning

VM clusters and to minimize the overall resource usage in

the cloud. We assume each job, Ji is profiled when it first

5

goes to production and based on the profile it has a number of

predictions across various cluster configurations, Ck,n in terms

of instance types denoted by k and number of VMs denoted

by n. Let tarrival(Ji) and tdeadline(Ji) denote the arrival

time and deadline of job, Ji respectively. The running time

of the job, Ji using the cluster configuration, Ck,n is given by

trun(Ji, C
k,n) and it includes both execution time and the time

for loading data into the HDFS. Cost(Ji, C
k,n) represents the

resource usage cost of scheduling job, Ji using the cluster

configuration, Ck,n. Precisely, the cost, Cost(Ji, C
k,n) repre-

sents the product of the number of physical servers required to

host the virtual cluster, Ck,n and the running time of the job,

trun(Ji, C
k,n). If Rk represents number of units of physical

resources in VM type, k and if each physical server has M

units of physical resources4, the resource usage cost can be

computed as:

Cost(Ji, C
k,n) = trun(Ji, C

k,n)×
n×Rk

M

Handling prediction errors: Additionally, trun(Ji, C
k,n)

includes an error bound in the prediction to ensure that the job

will complete within its deadline even when there is prediction

error. This error can also account for deviations in predicted

running time due to interference among multiple MapReduce

jobs when they execute in parallel. If tactualrun(Ji, C
k,n)

represents the actual running time and if terror(Ji, Ck,n)
represents the error bound in the predicted running time, we

have

trun(Ji, C
k,n) = tactualrun(Ji, C

k,n) + terror(Ji, C
k,n)

This conservative estimate of trun(Ji, C
k,n) guarantees that

the job completes execution even when there is prediction

error.

Let tstart(Ji) be the actual starting time of the job, Ji and

therefore the end time of job, Ji is given by

tend(Ji) = tstart(Ji) +
∑

k,n

X
k,n
i × trun(Ji, C

k,n)

where X
k,n
i is a Boolean variable indicating if job, Ji is

scheduled using the cluster configuration, Ck,n and

∀i,
∑

k,n

X
k,n
i = 1

In order to ensure that all jobs get completed within their

deadlines, we have

∀i, tend(Ji) ≤ tdeadline(Ji)

The sum of concurrent usage of VMs among the running jobs

is also constrained by the number of VMs, Vk in the VM pools

where k represents the VM type. If St
i is a Boolean variable

indicating if job, Ji is executing at time, t, we have

St
i =

{

1 if tstart(Ji) ≤ t ≤ tend(Ji)
0 otherwise

∀t, ∀k,
∑

i

(St
i ×

∑

n

(Xk,n
i × n)) ≤ Vk

4. Though we present a scalar capacity value, VM resources may have
multiple dimensions like CPU, memory and disk. To handle this, our model
can be extended to include a vector of resources or compute dimensions can
be captured in a scalar value, e.g. the volume metric [13].

With the above constraints ensuring that the jobs get scheduled

to meet deadlines, now the key optimization is to minimize the

overall resource usage cost of all the jobs in the system.

Overallcost = min
∑

i,k,n

Cost(Ji, C
k,n)×X

k,n
i

An optimal solution for this problem is NP-Hard with a

reduction from the known NP-Hard multi bin-packing problem

[21] with additional job moldability constraints. Therefore, we

use a heuristics based VM-aware scheduler which is designed

to work in an online fashion.

3.1.2 Online VM-aware Scheduler

Given VM pools for each VM instance type and continually

incoming jobs, the online VM-aware scheduler decides (a)

when to schedule each job in the job queue, (b) which VM

instance pool to use and (c) how many VMs to use for the

jobs. The scheduler also decides best Hadoop configuration

settings to be used for the job by consulting the profile and

analyze service.

Depending upon deadlines for the submitted jobs, the VM-

aware scheduler typically needs to make future reservations on

VM pool resources (e.g. reserving 100 small instances from

time instance 100 to 150). In order to maintain the most agility

in dealing with incrementally incoming jobs and minimizing

the number of reservation cancellations, Cura uses a strategy

of trying to create minimum number of future reservations

without under-utilizing any resources. For implementing this

strategy, the scheduler operates by identifying the highest

priority job to schedule at any given time and creates a

tentative reservation for resources for that job. It then uses the

end time of that job’s reservation as the bound for limiting

the number of reservations i.e. jobs in the job queue that are

not schedulable (in terms of start time) within that reservation

time window are not considered for reservation. This ensures

that we are not unnecessarily creating a large number of

reservations which may need cancellation and rescheduling

after another job with more stringent deadline enters the queue.

A job Ji is said to have higher priority over job Jj if

the schedule obtained by reserving job Ji after reserving

job Jj would incur higher resource cost compared to the

schedule obtained by reserving job Jj after reserving Ji.

The highest priority job is chosen such that it will incur

higher overall resource usage cost if the highest priority job is

deferred as compared to deferring any other job. Concretely, if

Cost(Ji, Jj) denotes the resource usage cost of the schedule

obtained by reserving job Ji after reserving job Jj and Jlist

represents the job queue, then the highest priority job is chosen

as the job Ji that maximizes the following.

∑

Jj∈Jlist

Cost(Jj , Ji)− Cost(Ji, Jj)

For a job, the least cost cluster configuration (VM type, num-

ber of VMs)at a given time is found based on the performance

predictions developed for the job during the profile and analyze

phase. It is essentially the lowest cost cluster configuration

that can meet the jobs deadline and for which resources are

available.

6

0

10

20

30

40

0 200 400 600 800

0

10

20

30

40

0 200 400 600 800

2

0

10

20

30

40

0 200 400 600 800

Time units Time units Time units

N
o

 o
f

V
M

 ‐
1

N
o

 o
f

V
M

 ‐
2

N
o

 o
f

V
M

 ‐
310

1

7

11

9
6

3

12

14

5

4

8

15

13

(a) VM-aware schedule

0

50

100

150

200

0 200 400 600 800

Time units

N
o

 o
f

V
M

 ‐
1

0

10

20

30

40

0 200 400 600 800

Time units

N
o

 o
f

V
M

 ‐
2

0

10

20

30

40

0 200 400 600 800

Time units

N
o

 o
f

V
M

 ‐
3

6

5

7

8

3 12 14
4

15

2

1

10 9

11

13

(b) VM-aware schedule with Reconf-based VM pool management

Fig. 3: Scheduling in Cura

For each VM pool, the algorithm picks the highest priority

job, Jprior in the job queue and makes a reservation for it using

the cluster configuration with the lowest possible resource

cost at the earliest possible time based on the performance

predictions obtained from the profile and analyze service. Note

that the lowest resource cost cluster configuration need not

be the job’s optimal cluster configuration (that has lowest

per-job cost). For instance, if using the job’s optimal cluster

configuration at the current time cannot meet the deadline,

the lowest resource cost cluster will represent the one that

has the minimal resource usage cost among all the cluster

configurations that can meet the job’s deadline.

Once the highest priority job, Jprior is reserved for all VM

pools, the reservation time windows for the corresponding VM

pools are fixed. Subsequently, the scheduler picks the next

highest priority job in the job queue by considering priority

only with respect to the reservations that are possible within

the current reservation time windows of the VM pools. The

scheduler keeps on picking the highest priority job one by one

in this manner and tries to make reservations to them on the

VM pools within the reservation time window. Either when

all jobs are considered in the queue and no more jobs are

schedulable within the reservation time window or when the

reservations have filled all the resources until the reservation

time windows, the scheduler stops reserving.

Then at each time instance, the scheduler picks the reser-

vations for the current time and schedules them on the VM

pools by creating Hadoop clusters of the required sizes in

the reservation. After scheduling the set of jobs that have

reservation starting at the current time, the scheduler waits

for one unit of time and considers scheduling for the next

time unit. If no new jobs arrived within this one unit of time,

the scheduler can simply look at the reservations made earlier

and schedule the jobs that are reserved for the current time,

however, if some new jobs arrived within the last one unit

of time, then the scheduler needs to check if some of the

newly arrived jobs have higher priority over the reserved jobs

and in that case, the scheduler may require to cancel some

existing reservations to reserve some newly arrived jobs that

have higher priority over the ones in the reserved list.

If the scheduler finds that some newly arrived jobs take

priority over some jobs in the current reservation list, it first

tries to check if the reservation time window of the VM

pools need to be changed. It needs to be changed only when

some newly arrived jobs take priority over the current highest

priority job of the VM pools that decides the reservation

time window. If there exists such newly arrived jobs, the

algorithm cancels all reserved jobs and moves them back to

the job queue and adds all the newly arrived jobs to the job

queue. It then picks the highest priority job, Jprior for each

VM pool from the job queue that decides the reservation

time window for each VM pool. Once the new reservation

time window of the VM pools are updated, the scheduler

considers the other jobs in the queue for reservation within the

reservation time window of the VM pools until when either

all jobs are considered or when no more resources are left for

reservation. In case, the newly arrived jobs do not have higher

priority over the time window deciding jobs but have higher

priority over some other reserved jobs, the scheduler will not

cancel the time window deciding reservations. However, it will

cancel the other reservations and move the jobs back to the

job queue along with the new jobs and repeat the process

of reserving jobs within the reservation time windows from

the job queue in the decreasing order of priority. For a data

center of a given size, assuming constant number of profile

and analyze predictions for each job, it can be shown that the

algorithm runs in polynomial time with O(n2) complexity. We

present a complete pseudo-code for this VM-aware scheduler

in Appendix A.

While even a centralized VM-aware scheduler scales well

for several thousands of servers with tens of thousands of

jobs, it is also straight forward to obtain a distributed im-

plementation to scale further. As seen from the pseudocode,

the main operation of the VM-aware scheduler is finding the

highest priority job among the n jobs in the queue based on

pairwise cost comparisons. In a distributed implementation,

this operation can be distributed and parallelized so that if

there are n jobs in the queue, the algorithm would achieve

a speed up of x with x parallel machines, each of them

performing n
x

pairwise cost comparisons.

Figure 3(a) shows an example VM-aware schedule obtained

for 15 jobs using 40 VMs in each VM type, VM-1, VM-2 and

VM-3. Here we assume that jobs 1, 2, 5, 6, 7, 8, 9, 10, 11,

13, 15 have their optimal cluster configuration using VM-1 and

jobs 3, 12, and 14 are optimal with VM-2 and job 4 is optimal

with VM-3. Here, the VM-aware scheduler tries its best effort

to minimize the overall resource usage cost by provisioning the

right jobs in the right VM types and using the minimal cluster

size required to meet the deadline requirements. However,

when the optimal choice of the resource is not available

for some jobs, the scheduler considers the next best cluster

configuration and schedules them in a cost-aware manner. A

detailed illustration of this example with cost comparisons is

presented in Appendix B.

3.2 Reconfiguration-based VM Management

Although the VM-aware scheduler tries to effectively mini-

mize the global resource usage by scheduling jobs based on re-

source usage cost, it may not be efficient if the underlying VM

pools are not optimal for the current workload characteristics.

7

Cura’s reconfiguration-based VM manager understands the

workload characteristics of the jobs as an online process and

performs online reconfiguration of the underlying VM pools

to better suit the current workload. For example, the VM pool

allocation shown in Figure 2 can be reconfigured as shown in

Figure 4 to have more small instances by shutting down some

large and extra large instances if the current workload pattern

requires more small instances.

Pool of small

instances

Pool of Large

instances

Pool of extra

large instances

Fig. 4: Reconfiguration-based VM Management

The reconfiguration-based VM manager considers the re-

cent history of job executions by observing the jobs that ar-

rived within a period of time referred to as the reconfiguration

time window. For each job, Ji arriving within the reconfigu-

ration time window, the reconfiguration algorithm understands

the optimal cluster configuration, Copt(Ji). Concretely, the

running time of the jobs under a given cluster configuration

is predicted by the profile and analyze tool. Based on the

amount of resources in the cluster configuration (i.e number

of VMs and configuration of each VM) and the running time,

Cura computes the total resource cost as described in Section

3.1.1. Cura uses this information to find the optimal cluster

configuration as the one which minimizes this resource usage

cost while being able to complete the job within its deadline.

The reconfiguration manager understands the current demands

for each VM instance type in terms of the average number

of VMs required for each VM type in order to successfully

provision the optimal cluster configuration to the jobs observed

in the reconfiguration time window. At the end of the recon-

figuration time window period, the algorithm decides on the

reconfiguration plan by making a suitable tradeoff between the

performance enhancement obtained after reconfiguration and

the cost of the reconfiguration process. If Y
k,n
i is a Boolean

variable indicating if Ck,n is the optimal cluster configuration

for job, Ji, then the proportion of physical resources, Pk to

be allocated to each VM type k can be estimated based on the

cumulative resource usage in each VM pool computed as the

product of total running time of the jobs and the size of the

cluster used:

Pk =

∑

i,n(trun(Ji, Copt(Ji))× n× Y
k,n
i)

∑

i,k,n(trun(Ji, Copt(Ji))× n× Y
k,n
i)

The total physical resources, Rtotal in the cloud infrastructure

can be obtained as
Rtotal =

∑

k

Vk ×Rk

where Rk represents the physical resource in VM type, k, and

Vk is the number of VMs in the existing VM pool of type k.

Therefore, the number of VMs, V ′

k in the new reconfigured

VM pools is given by

V ′

k = Pk ×
Rtotal

Rk

Such reconfiguration has to be balanced against the cost of

reconfiguration operations (shutting down some instances and

starting others). For this, we compute the benefit of doing

such reconfiguration. The overall observed cost represents the

actual cumulative resource cost of the jobs executed during the

reconfiguration time window using existing VM pools. Here,

Z
k,n
i is a Boolean variable indicating if the job Ji used the

cluster configuration, C
k,n
i .

Overallcostobserved =
∑

i,k,n

Cost(Ji, C
k,n)× Z

k,n
i

Next, we compute the estimated overall cost with new VM

pools assuming that the jobs were scheduled using their opti-

mal cluster configurations, Copt(Ji). Reconfiguration benefit,

Reconfbenefit is then computed as the difference between the

two.

Overallcostestimate =
∑

i

Cost(Ji, Copt(Ji))

Reconfbenefit = Overallcostestimate −Overallcostactual

Assuming the reconfiguration process incurs an average re-

configuration overhead, Reconfoverhead that represents the re-

source usage spent on the reconfiguration process for each VM

that undergoes reconfiguration, the total cost of reconfiguration

is obtained as

Reconfcost =
∑

k

|(V ′

k − Vk)| ×Reconfoverhead

The algorithm then triggers the reconfiguration process only if

it finds that the estimated benefit exceeds the reconfiguration

cost by a factor of β, i.e., if Reconfbenefit ≥ β×Reconfcost
where β > 1. As Reconfbenefit only represents an estimate

of the benefit, β is often chosen as a value greater than 1.

When the reconfiguration process starts to execute, it shuts

down some VMs whose instance types needs to be decreased

in number and creates new VMs of the instance types that

needs to created. The rest of the process is similar to any

VM reconfiguration process that focuses on the bin-packing

aspect of placing VMs within the set of physical servers during

reconfiguration [13], [36].

Continuing the example of Figure 3, we find that the

basic VM-aware scheduler in Figure 3(a) without reconfig-

uration support schedules jobs 5, 6, 8, 13, 15 using VM-

2 and VM-3 types even though they are optimal with VM-

1, The reconfiguration based VM-aware schedule in Figure

3(b) provisions more VM-1 instances (notice changed Y-axis

scale) by understanding the workload characteristics and hence

in addition to the other jobs, jobs 5, 6, 8 13 and 15 also

get scheduled with their optimal choice of VM-type namely

VM-1, thereby minimizing the overall resource usage cost in

the cloud data center. The detailed schedule for this case is

explained in Appendix B for interested readers.

8

4 EXPERIMENTAL EVALUATION
We divide the experimental evaluation of Cura into two –

first, we provide detailed analysis on the effectiveness of Cura

compared to conventional MapReduce services and then we

present an extensive micro analysis on the different set of

techniques in Cura that contribute to the overall performance.

We first start with our experimental setup.

4.1 Experimental setup

Cluster Setup: Our profiling cluster consists of 20 CentOS

5.5 physical machines (KVM as the hypervisor) with 16 core

2.53GHz Intel processors and 16 GB RAM. The machines

are organized in two racks, each rack containing 10 physical

machines. The network is 1 Gbps and the nodes within a rack

are connected through a single switch. We considered 6 VM

instance types with the lowest configuration starting from 2

2 GHz VCPUs and 2 GB RAM to the highest configuration

having 12 2GHz VCPUs and 12 GB RAM with each VM

configuration differing by 2 2 GHz VCPUs and 2 GB RAM

with the next higher configuration.

Workload: We created 50 jobs using the Swim MapReduce

workload generator [30] that richly represent the character-

istics of the production MapReduce workload in the Face-

book MapReduce cluster. The workload generator uses a

real MapReduce trace from the Facebook production cluster

and generates jobs with similar characteristics as observed in

the Facebook cluster. Using the Starfish profiling tool [24],

each job is profiled on our cluster setup using clusters of

VMs of all 6 VM types. Each profile is then analyzed using

Starfish to develop predictions across various hypothetical

cluster configurations and input data sizes.

Simulation Setup: In order to analyze the performance and

cost benefits of Cura on a datacenter scale system, we devel-

oped a simulator in Java that uses the profiles and performance

predictions developed from the real cluster. The simulator

models a cloud datacenter with servers, each having a 16 core

2.53GHz processors with 16 GB RAM. It implements both

the VM-aware scheduling with the instant VM allocation and

the reconfiguration-based VM management techniques. The

execution time for each job in the simulation is assumed as

the predicted execution time (based on the profiles generated

from the profiling cluster) and a prediction error which could

be either a positive or negative error within an assumed error

bound.

Metrics: We evaluate our techniques on four key metrics

with the goal of measuring their cost effectiveness and

performance– (1) number of servers: techniques that require

more number of physical servers to successfully meet the

service quality requirements are less cost-effective; this metric

measures the capital expense on the provisioning of physical

infrastructure in the data center, (2) response time: techniques

that have higher response time provide poor service quality;

this metric captures the service quality of the jobs, (3) per-job

infrastructure cost - this metric represents the average per-

job fraction of the infrastructure cost; techniques that require

fewer servers will have lower per-job cost and (4) effective

utilization: techniques that result in poor utilization lead to

higher cost; this metric captures both the cost-effectiveness

and the performance of the techniques. It should be noted that

the effective utilization captures only the useful utilization that

represents job execution and does not include the time taken

for creating and destroying VMs.

Before discussing the experimental results, we briefly dis-

cuss the set of techniques compared in the evaluation.

Per-job cluster services: Per job services are similar to ded-

icated MapReduce services such as Amazon Elastic MapRe-

duce [14] that create clusters per job or per workflow. While

this model does not automatically pick VM and Hadoop

parameters, for a fair comparison we use Starfish to create the

optimal VM and Hadoop configuration even in this model.

Dedicated cluster services: Dedicated clusters are similar

to private cloud infrastructures where all VMs are managed

by the customer enterprises and Hadoop clusters are formed

on demand when jobs arrive. Here again the VM and job

parameters are chosen via Starfish.

Cura: Cura incorporates both the VM-aware scheduler and

reconfiguration-based VM pool management. For the micro-

analysis, we also compare the following sub-techniques to

better evaluate Cura: 1) Per-job Optimization technique that

uses Cura’s secure instant VM allocation but always uses

the per-job optimal number of VMs and the optimal VM

type, 2) VM-aware scheduler described in Section 3.1 and 3)

Reconfiguration based VM Management (Section 3.2).

4.2 Experimental Results

We first present the experimental evaluation of Cura by com-

paring with the existing techniques for various experimental

conditions determined by distribution of the job deadlines,

size of the MapReduce jobs, number of servers in the system

and the amount of prediction error in the profile and analyze

process. By default, we use a composite workload consisting

of equal proportion of jobs of three different categories: small

jobs, medium jobs and large jobs. Small jobs read 100 MB of

data, whereas medium jobs and large jobs read 1 GB and 10

GB of input data respectively. We model Poisson job arrivals

with rate parameter, λ = 0.5 and the jobs are uniformly

distributed among 50 customers. The evaluation uses 11,500

jobs arriving within a period of 100 minutes. Each of the

arrived job represents one of the 50 profiled jobs with input

data size ranging from 100 MB to 10 GB based on the job

size category. By default, we assume that jobs run for the

same amount of time predicted in the profile and analyze

process, however, we dedicate a separate set of experiments to

study the performance of the techniques when such predictions

are erroneous. Note that a job’s complete execution includes

both the data loading time from the storage infrastructure to

the compute infrastructure and the Hadoop startup time for

setting up the Hadoop cluster in the cluster of VMs. The data

loading time is computed by assuming a network throughput

of 50 MBps per VM 5 from the storage server and the Hadoop

startup time is taken as 10 sec.

4.2.1 Effect of job deadlines

In this set of experiments, we first study the effect of job

deadlines on the performance of Cura with other techniques

5. Here, the 50 MBps throughput is a conservative estimate of the through-
put between the storage and compute infrastructures based on measurement
studies on real cloud infrastructures [22].

9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 300 400 500 600 700 800 900 1000

N
o

of
 S

er
ve

rs

Deadline

Dedicated cluster
Per-job cluster

Cura

(a) Number of Servers

 0

 100

 200

 300

 400

 500

 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
tim

e
(s

ec
)

Deadline

Dedicated cluster
Per-job cluster

Cura

(b) Response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 200 300 400 500 600 700 800 900 1000

C
os

t

Deadline

Dedicated cluster
Per-job cluster

Cura

(c) Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800 900 1000
E

ffe
ct

iv
e

U
til

iz
at

io
n

Deadline

Dedicated cluster
Per-job Cluster

Cura

(d) Effective Utilization

Fig. 5: Effect of Job-deadlines

(Figure 5) and then we analyze the performance of Cura in

terms of the contributions of each of its sub-techniques (Figure

6). Figure 5(a) shows the performance of the techniques for

different maximum deadlines with respect to number of servers

required for the cloud provider to satisfy the workload. Here,

the deadlines are uniformly distributed within the maximum

deadline value shown on the X-axis. We find that provision-

ing dedicated clusters for each customer results in a lot of

resources as dedicated clusters are based on the peak require-

ments of each customer and therefore the resources are under-

utilized. On the other hand, per-job cluster services require

lower number of servers (Figure 5(a)) as these resources are

shared among the customers. However, the Cura approach in

Figure 5(a) has a much lower resource requirement having up

to 80% reduction in terms of the number of servers. This is

due to the designed global optimization capability of Cura.

Where per-job and dedicated cluster services always attempt

to place jobs based on per-job optimal configuration obtained

from Starfish, resources for which may not be available in the

cloud, Cura on the other hand can schedule jobs using other

than their individual optimal configurations to better adapt to

available resources in the cloud.

We also compare the approaches in terms of the mean

response time in Figure 5(b). To allow each compared tech-

nique to successfully schedule all jobs (and not cause failures),

we use the number of servers obtained in Figure 5(a) for

each individual technique. As a result, in this response time

comparison, Cura is using much fewer servers than the other

techniques. We find that the Cura approach and the dedicated

cluster approach have lower response time (up to 65%).

In the per-job cluster approach, the VM clusters are created

for each job and it takes additional time for the VM creation

and booting process before the jobs can begin execution

leading to the increased response time of the jobs. Similar

to the comparison on the number of servers, we see the

same trend with respect to the per-job cost in Figure 5(c)

that shows that the Cura approach can significantly reduce

the per-job infrastructure cost of the jobs (up to 80%). The

effective utilization in Figure 5(d) shows that the per-job clus-

ter services and dedicated cluster approach have much lower

effective utilization compared to the Cura approach. The per-

job services spend a lot of resources in creating VMs for every

job arrival. Especially with short response time jobs, the VM

creation becomes a bigger overhead and reduces the effective

utilization. The dedicated cluster approach does not create

VMs for every job instance, however it has poor utilization

because dedicated clusters are sized based on peak utilization.

But the Cura approach has a high effective utilization having

up to 7x improvement compared to the other techniques as

Cura effectively leverages global optimization and deadline-

awareness to achieve better resource management.

Micro Analysis: Next, we discuss the performance of the

sub-techniques of Cura and illustrate how much each sub-

technique contributes to the overall performance under dif-

ferent deadlines. Figure 6(a) shows that with only per-job

optimization (which only leverages instant VM allocation), it

requires up to 2.6x higher number of servers compared to us-

ing reconfiguration-based VM pool management scheme with

the VM-aware scheduler. The per-job optimization scheduler

always chooses the optimal VM type and the optimal number

of VMs for each job and in case the optimal resources are

not available when the job arrives, the scheduler keeps on

queuing the job until the required optimal resource becomes

available when some other jobs complete. It drops the request

10

 0

 200

 400

 600

 800

 1000

 1200

 200 300 400 500 600 700 800 900 1000

N
o

of
 S

er
ve

rs

Deadline

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(a) Number of Servers

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
tim

e
(s

ec
)

Deadline

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(b) Response time

Fig. 6: Effect of Job-deadlines

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50 60 70

N
o

of
 S

er
ve

rs

Prediction error percentage

Dedicated cluster
Per-job cluster

Cura

(a) Number of Servers

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e
(s

ec
)

Prediction error percentage

Dedicated cluster
Per-job cluster

Cura

(b) Response time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70

C
os

t

Prediction error percentage

Dedicated cluster
Per-job cluster

Cura

(c) Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

E
ffe

ct
iv

e
U

til
iz

at
io

n

Prediction error percentage

Dedicated cluster
Per-job Cluster

Cura

(d) Utilization

Fig. 7: Effect of Prediction Error

when it finds out that the job cannot meet its deadline if the

optimal resources are provisioned. However, with the VM-

aware approach, the scheduler will be able to still schedule

the job by provisioning higher resources in order to meet

the deadline. Second, with the per-job optimization scheduler,

even when some sub-optimal resources are available when the

job is waiting, they remain unused as the job is expecting to

be scheduled only using the optimal resources. Therefore the

per-job optimization results in poor performance. The number

of servers required by the VM-aware approach is significantly

reduced by up to 45% servers by efficient reconfiguration-

based VM management that dynamically manages the VMs

in each VM pool. Figure 6(b) shows the mean response time

of the jobs for various sub-techniques. We find that the sub-

techniques have similar response times except for the per-job

optimization case that has up to 11% higher mean response

time. As per-job optimization scheduler keeps the jobs waiting

until it finds their optimal resources, it leads to higher queuing

time that causes this increase.

4.2.2 Effect of Prediction Error

This set of experiments evaluates the techniques by studying

the effect of inaccuracies in the performance prediction. As

accurate performance predictions may not always be available,

it is important that the techniques can tolerate inaccuracies

in performance prediction and yet perform efficiently. Figure

7 shows the comparison of the techniques while varying

the error rate from 0 to 70%. Here, the mean deadline of

the jobs is taken as 800 second. The error rate means that

accurate running time of the jobs can be anywhere within

the error range on both sides of the predicted value. The

comparison of number of servers in Figure 7(a) shows that

all the techniques require more number of servers when the

prediction error increases. The Cura approach on an average

requires 4% additional number of servers for every 10%

increase in prediction error. Note that even the per-job cluster

and dedicated cluster schemes require increased number of

servers as they also decide the resource requirements based

on the performance predictions of the jobs across different

11

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70

N
o

of
 S

er
ve

rs

Prediction error percentage

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(a) Number of Servers

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

R
es

po
ns

e
tim

e
(s

ec
)

Prediction error percentage

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(b) Response time

Fig. 8: Effect of Prediction Error

 0

 20

 40

 60

 80

 100

 120

 140

 500 1000 1500 2000 2500

S
uc

ce
ss

 r
at

e

No of Servers

Dedicated cluster
Per-job Cluster

Cura

(a) Success Rate

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500

R
es

po
ns

e
tim

e
(s

ec
)

No of Servers

Dedicated cluster
Per-job Cluster

Cura

(b) Response time

Fig. 9: Effect of servers

cluster configurations.

Figure 7(b) shows that the response time of the techniques

decreases with increase in the error rate. While the Cura

and dedicated cluster approaches have a decrease of 4.2%

and 3.7% respectively, the per-job cluster approach has a

decrease of only 1.4% for every 10% increase in error rate

as the major fraction of the response time in these services

is due to the VM creation process. As error rate increases,

the techniques provision more resources to ensure that even

in the worst case, when the jobs run for the maximum possible

time within the error range, the jobs complete within the

deadline. Therefore, in cases where the job completes within

the maximum possible running time, these additional resources

make the job complete earlier than its deadline and therefore

it speeds up the execution resulting in lower response time.

The cost trend shown in Figure 7(c) also shows that the

techniques that require fewer servers result in lower per-job

cost. Similarly the effective utilization comparison in Figure

7(d) shows similar relative performance as in Figure 5(d)

We compare the performance of the sub-techniques of

Cura under different error rates in Figure 8. We find that

the number of servers in Figure 8(a) shows a similar relative

performance among the sub-techniques as in 7(a). Here again,

the response time as shown in Figure 8(b) shows that the per-

job optimization scheduler leads to higher response time due to

queue wait times and the response time of the sub-techniques

increases with increase in error rate.

4.2.3 Varying number of Servers

We next study the performance of the techniques by varying

the number of servers provisioned to handle the workload.

Figure 9(a) shows the success rate of the approaches for

various number of servers. Here, the success rate represents the

fraction of jobs that successfully meet their deadlines. We find

that the Cura approach has a high success rate even with 250

servers, whereas the per-job cluster approach obtains close to

100% rate only with 2000 servers. Figure 9(b) shows that the

response time of successful jobs in the compared approaches

show a similar trend as in Figure 5(b) where the Cura approach

performs better than the per-job cluster services.

4.2.4 Varying job sizes

This set of experiments evaluates the performance of the

techniques for various job sizes based on the size of input data

read. Note that small jobs process 100 MB of data, medium

jobs process 1 GB of data and large and extra large jobs

process 10 GB and 100 GB of data respectively. Also small,

medium and large jobs have a mean deadline of 100 second

and the extra large jobs have a mean deadline of 1000 second

as they are long running. We find that the performance in terms

of number of servers in Figure 10(a) has up to 9x improvement

for the short and medium jobs with Cura approach compared

to the per-job cluster approach. It is because in addition

to the VM-aware scheduling and reconfiguration-based VM

management, these jobs benefit the most from the secure

instant VM allocation as these are short jobs. For large and

extra large jobs, the Cura approach still performs significantly

better having up to 4x and 2x improvement for large and extra

large jobs compared to the per-job cluster services. The dedi-

cated cluster service requires significantly higher resources for

large jobs as the peak workload utilization becomes high (its

numbers significantly cross the max Y-axis value). This set

of experiments show that the global optimization techniques

in Cura are not only efficient for short jobs but also for long

running batch workloads.

12

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Small Medium Large Extra large

N
o

of
 S

er
ve

rs

Job type

Per-job Cluster
Cura

Dedicated cluster

(a) Number of Servers

 0

 200

 400

 600

 800

 1000

Small Medium Large Extra large

R
es

po
ns

e
tim

e
(s

ec
)

Job type

Per-job Cluster
Cura

Dedicated cluster

(b) Response time

 0

 0.5

 1

 1.5

 2

Small Medium Large Extra large

C
os

t

Job type

Per-job Cluster
Cura

Dedicated cluster

(c) Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

Small Medium Large Extra large
E

ffe
ct

iv
e

U
til

iz
at

io
n

Job type

Per-job Cluster
Cura

Dedicated cluster

(d) Effective Utilization

Fig. 10: Effect of Job type

The response time improvements of Cura and dedicated

cluster approach in Figure 10(b) also show that the improve-

ment is very significant for short jobs having up to 87%

reduced response time and up to 69% for medium jobs. It

is reasonably significant for large jobs with up to 60% lower

response time and extra large jobs with up to 30% reduced

response time. The cost comparison in Figure 10(c) also shows

a similar trend that the Cura approach, although is significantly

effective for both large and extra large jobs, the cost reduction

is much more significant for small and medium jobs.

The sub-technique comparison of Cura for various job types

in terms of number of servers is shown in Figure 11(a).

We find that the sub-techniques have impact on all kind of

jobs irrespective of the job size. While secure instant VM

allocation contributes more to the performance of the small

jobs compared to large jobs, the sub-techniques in Cura have

equal impact on the overall performance for all job categories.

The response time comparison of the sub-techniques in Figure

11(b) shows that the sub-techniques have similar response

time, however, for large and extra large jobs, the per-job

optimization leads to increased response time by up to 24.8%

as large jobs in the per-job optimization require incur longer

waiting time in the queue as they often request more resources

that may not be immediately available.

4.3 Effect of deadline distribution

In Figure 12, we study the effect of different distributions

of deadline on the performance of Cura for different mean

deadlines. In Figure 12(a), we find that both the Poisson

and uniform distributions require similar number of servers

whereas the exponential deadline distribution requires up to

30% additional servers as there are more jobs with shorter

deadlines in the exponential distribution. The response time

comparison in Figure 12(b) shows that irrespective of the

deadline distribution, the jobs have more or less similar

response time.

5 RELATED WORK

Resource Allocation and Job Scheduling: There is a large

body of work on resource allocation and job scheduling in

grid and parallel computing. Some representative examples of

generic schedulers include [37], [38]. The techniques proposed

in [39], [40] consider the class of malleable jobs where

the number processors provisioned can be varied at runtime.

Similarly, the scheduling techniques presented in [41], [42]

consider moldable jobs that can be run on different number

of processors. These techniques do not consider a virtual-

ized setting and hence do not deal with the challenges of

dynamically managing and reconfiguring the VM pools to

adapt for workload changes. Therefore, unlike Cura they do

not make scheduling decisions over dynamically managed VM

pools. Chard et. al present a resource allocation framework for

grid and cloud computing frameworks by employing economic

principles in job scheduling [45]. Hacker et. al propose tech-

niques for allocating virtual clusters by queuing job requests

to minimize the spare resources in the cloud [46]. Recently,

there has been work on cloud auto scaling with the goal of

minimizing customer cost while provisioning the resources

required to provide the needed service quality [43]. The

authors in [44] propose techniques for combining on demand

provisioning of virtual resources with batch processing to

increase system utilization. Although the above mentioned

systems have considered cost reduction as a primary objective

of resource management, these systems are based on either

13

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Small Medium Large Extra large

N
o

of
 S

er
ve

rs

Job type

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(a) Number of Servers

 0

 100

 200

 300

 400

 500

 600

 700

Small Medium Large Extra large

R
es

po
ns

e
tim

e
(s

ec
)

Job type

Per-job Opt
VM-aware sched

Reconf-based VM Mgmt

(b) Response time

Fig. 11: Effect of Job type

 0

 100

 200

 300

 400

 500

 600

 700

 100 150 200 250 300 350 400 450 500

N
o

of
 S

er
ve

rs

Mean Deadline

Uniform
Exponential

Poisson

(a) Number of Servers

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 150 200 250 300 350 400 450 500

R
es

po
ns

e
tim

e

Mean Deadline

Uniform
Exponential

Poisson

(b) Response time

Fig. 12: Effect of Deadline Distribution

per-job or per-customer optimization and hence unlike Cura,

they do not lead to a globally optimal resource management.

MapReduce task placement: There have been several efforts

that investigate task placement techniques for MapReduce

while considering fairness constraints [32], [17]. Mantri tries

to improve job performance by minimizing outliers by making

network-aware task placement [3]. Similar to Yahoo’s capacity

scheduler and Facebook’s fairness scheduler, the goal of these

techniques is to appropriately place tasks for the jobs running

in a given Hadoop cluster to optimize for locality, fairness and

performance. Cura, on the other hand deals with the challenges

of appropriately provisioning the right Hadoop clusters for the

jobs in terms of VM instance type and cluster size to globally

optimize for resource cost while dynamically reconfiguring the

VM pools to adapt for workload changes.

MapReduce in a cloud: Recently, motivated by MapReduce,

there has been work on resource allocation for data intensive

applications in the cloud context [18], [33]. Quincy [18] is

a resource allocation system for scheduling concurrent jobs

on clusters and Purlieus [33] is a MapReduce cloud system

that improves job performance through locality optimizations

achieved by optimizing data and compute placements in an

integrated fashion. However, unlike Cura these systems are

not aimed at improving the usage model for MapReduce in a

Cloud to better serve modern workloads with lower cost.

MapReduce Profile and Analyze tools: A number of MapRe-

duce profiling tools have been developed in the recent past

with an objective of minimizing customer’s cost in the cloud

[4], [23], [5], [28], [29]. Herodotou et al. developed an

automated performance prediction tool based on their profile

and analyze tool Starfish [24] to guide customers to choose

the best cluster size for meeting their job requirements [26].

Similar performance prediction tool is developed by Verma.

et. al [29] based on a linear regression model with the goal

of guiding customers to minimize cost. Popescu. et. al devel-

oped a technique for predicting runtime performance for jobs

running over varying input data set [28]. Recently, a new tool

called Bazaar [27] has been developed to guide MapReduce

customers in a cloud by predicting job performance using

a gray-box approach that has very high prediction accuracy

with less than 12% prediction error. However, as discussed

earlier, these job optimizations initiated from the customer-

end may lead to requiring higher resources at the cloud.

Cura while leveraging existing profiling research, addresses

the challenge of optimizing the global resource allocation at

the cloud provider-end with the goal of minimizing customer

costs. As seen in evaluation, Cura benefits from both its

cost-optimized usage model and its intelligent scheduling and

online reconfiguration-based VM pool management.

6 CONCLUSIONS

This paper presents a new MapReduce cloud service model,

Cura, for data analytics in the cloud. We argued that existing

cloud services for MapReduce are inadequate and inefficient

for production workloads. In contrast to existing services,

Cura automatically creates the best cluster configuration for

the jobs using MapReduce profiling and leverages deadline-

awareness which, by delaying execution of certain jobs, allows

the cloud provider to optimize its global resource allocation

efficiently and reduce its costs. Cura also uses a unique secure

instant VM allocation technique that ensures fast response time

guarantees for short interactive jobs, a significant proportion of

modern MapReduce workloads. Cura’s resource management

14

techniques include cost-aware resource provisioning, VM-

aware scheduling and online virtual machine reconfiguration.

Our experimental results using jobs profiled from realistic

Facebook-like production workload traces show that Cura

achieves more than 80% reduction in infrastructure cost with

65% lower job response times.

7 ACKNOWLEDGMENTS

This research is partially supported by an IBM PhD Fellowship

for the first author and grants from NSF CISE NetSE program,

SaTC program, I/UCRC and a grant from Intel ICST on Cloud

Computing.

REFERENCES

[1] B. Igou “User Survey Analysis: Cloud-Computing Budgets Are Growing and
Shifting; Traditional IT Services Providers Must Prepare or Perish”. Gartner
Report, 2010

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI, 2004.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha
and E. Harris. Reining in the Outliers inMap-Reduce Clusters using Mantri. In
OSDI, 2010.

[4] K. Kambatla, A. Pathak and H. Pucha. Towards Optimizing Hadoop Provisioning
in the Cloud. In HotCloud, 2009.

[5] K. Morton, A. Friesen, M. Balazinska, D. Grossman. Estimating the Progress
of MapReduce Pipelines. In ICDE, 2010.

[6] Pig User Guide. http://pig.apache.org/.
[7] A. Thusoo et. al. Hive - A Warehousing Solution Over a MapReduce Framework

In VLDB, 2009.
[8] D. Borthakur et al. Apache Hadoop goes realtime at Facebook In SIGMOD,

2011.
[9] S. Melnik et al. Dremel: interactive analysis of web-scale datasets In VLDB,

2010.
[10] C. Curino, E. P. C. Jones, R. Popa, N. Malviya, E. Wu, S. Madden, H.

Balakrishnan, N. Zeldovich Relational Cloud: A Database-as-a-Service for the
Cloud In CIDR, 2011.

[11] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, J. Rittinger Multi-Tenant Databases
for Software as a Service: Schema-Mapping Techniques In SIGMOD, 2008.

[12] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, H. Hacigumus ActiveSLA: A
Profit-Oriented Admission Control Framework for Database-as-a-Service Providers
In SOCC, 2011.

[13] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif Black-box and Gray-box
Strategies for Virtual Machine Migration. In NSDI, 2007.

[14] Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/

[15] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/

[16] Hadoop. http://hadoop.apache.org.
[17] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica. Improving

MapReduce Performance in Heterogeneous Environments. In OSDI, 2008.
[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.

Quincy: fair scheduling for distributed computing clusters. In SOSP, 2009.
[19] I. Roy, Srinath. Setty, A. Kilzer, V. Shmatikov, E. Witchel Airavat: Security

and Privacy for MapReduce NSDI, 2010.
[20] SELinux user guide. http://selinuxproject.org/page/Main Page.
[21] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman. ISBN 0-7167-1045-5.
[22] S. L. Garfinkel An Evaluation of Amazon’s Grid Computing Services: EC2,

S3 and SQS . Technical Report, TR-08-07, Harvard University, available at:

ftp://ftp.deas.harvard.edu/techreports/tr-08-07.pdf

[23] F. Tian and K. Chen Towards Optimal Resource Provisioning for Running
MapReduce Programs in Public Clouds In CLOUD, 2011

[24] H. Herodotou and S. Babu On Optimizing MapReduce Programs / Hadoop Jobs.
In VLDB, 2011.

[25] H. Herodotou et. al Starfish: A Selftuning System for Big Data Analytics. In
CIDR, 2011.

[26] H. Herodotou, F. Dong and S. Babu No One (Cluster) Size Fits All: Automatic
Cluster Sizing for Data-intensive Analytics. In SOCC, 2011.

[27] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, A. Rowstron Bazaar: Enabling
Predictable Performance in Datacenters MSR Cambridge, UK, Technical Report

MSR-TR-2012-38.
[28] A. Popescu, V. Ercegovac, A. Balmin, M. Branco, A. Ailamaki Same Queries,

Different Data: Can we Predict Runtime Performance? SMDB, 2012.
[29] A. Verma, L. Cherkasova, and R. H. Campbell Resource Provisioning Framework

for MapReduce Jobs with Performance Goals In Middleware, 2011.
[30] Y. Chen, A. Ganapathi, R. Griffith, R. Katz The Case for Evaluating MapReduce

Performance Using Workload Suites In MASCOTS, 2011.
[31] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan An Analysis of Traces from a

Production MapReduce Cluster In CCGrid, 2010.
[32] T. Sandholm and K. Lai. Mapreduce optimization using dynamic regulated

prioritization. In ACM SIGMETRICS/Performance, 2009.
[33] B. Palanisamy, A. Singh, L. Liu and B. Jain Purlieus: locality-aware resource

allocation for MapReduce in a cloud. In SC, 2011.
[34] Google BigQuery . https://developers.google.com/bigquery/.

[35] Y. Chen, S. Alspaugh, D. Borthakur and R. Katz Energy Effciency for Large-
Scale MapReduce Workloads with Significant Interactive Analysis In EUROSYS,
2012.

[36] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage virtualization:
Integration and load balancing in data centers. In SC, 2008.

[37] A. Mu’alem , D. Feitelson, Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling. In TPDS, 2001

[38] J. Skovira, W. Chan, H. Zhou, D. Lifka The EASY - LoadLeveler API Project
In IPPS, 1996.

[39] S. Anastasiadis , K. Sevcik Parallel Application Scheduling on Networks of
Workstations. In JPDC, 1997

[40] E. Rosti , E. Smirni , L. Dowdy , G. Serazzi , B. Carlson Robust Partitioning
Policies of Multiprocessor Systems. In Performance Evaluation, 1993.

[41] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, P. Sadayappan
Effective Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs. In
HIPC, 2002.

[42] W. Cirne Using Moldability to Improve the Performance of Supercomputer Jobs.
Ph.D. Thesis. UCSD, 2001

[43] M. Mao, M. Humphrey Auto-Scaling to Minimize Cost and Meet Application
Deadlines in Cloud Workflows. In SC, 2011.

[44] B. Sotomayor, K. Keahey, I. Foster Combining Batch Execution and Leasing
Using Virtual Machines In HPDC, 2007.

[45] K. Chard, K. Bubendorfer, P. Komisarczuk High Occupancy Resource Allocation
for Grid and Cloud systems, a Study with DRIVE. In HPDC, 2010.

[46] T. Hacker, K. Mahadik Flexible Resource Allocation for Reliable Virtual Cluster
Computing Systems. In SC, 2011

Balaji Palanisamy is an assistant professor in
the School of Information Science in University
of Pittsburgh. He received his M.S and Ph.D.
degrees in Computer Science from the college
of Computing at Georgia Tech in 2009 and 2013
respectively. His primary research interests lie in
scalable and privacy-conscious resource man-
agement for large-scale Distributed and Mobile
Systems. At University of Pittsburgh, he co-
directs research in the Laboratory of Research
and Education on Security Assured Information

Systems (LERSAIS), which is one of the first group of NSA/DHS
designated Centers of Academic Excellence in Information Assurance
Education and Research (CAE CAE-R). He is a recipient of the Best
Paper Award at the 5

th International Conference on Cloud Computing,
IEEE CLOUD 2012. He is a member of the IEEE and he currently serves
as the chair of the IEEE Communications Society Pittsburgh Chapter.

Aameek Singh is a Research Manager in IBM
Research - Almaden. His research interests are
enterprise systems management, cloud comput-
ing and distributed systems. He received his
PhD from Georgia Institute of Technology and a
Bachelors from IIT Bombay, India.

Ling Liu is a full Professor in Computer Science
at Georgia Institute of Technology. She directs
the research programs in Distributed Data In-
tensive Systems Lab (DiSL), examining various
aspects of large scale data intensive systems.
Prof. Ling Liu is an internationally recognized ex-
pert in the areas of Cloud Computing, Database
Systems, Distributed Computing, Internet Sys-
tems, and Service oriented computing. Prof. Liu
has published over 300 international journal and
conference articles and is a co-recipient of the

best paper award from a number of top venues, including ICDCS 2003,
WWW 2004, 2005 Pat Goldberg Memorial Best Paper Award, IEEE
Cloud 2012, IEEE ICWS 2013. Prof. Liu is also a recipient of IEEE
Computer Society Technical Achievement Award in 2012 and an Out-
standing Doctoral Thesis Advisor award in 2012 from Georgia Institute
of Technology. In addition to services as general chair and PC chairs of
numerous IEEE and ACM conferences in data engineering, very large
databases and distributed computing fields, Prof. Liu has served on
editorial board of over a dozen international journals. Currently Prof.
Liu is the editor in chief of IEEE Transactions on Service Computing,
and serves on the editorial board of ACM Transactions on Internet
Technology (TOIT), ACM Transactions on Web (TWEB), Distributed
and Parallel Databases (Springer), Journal of Parallel and Distributed
Computing (JPDC).

1

1 APPENDIX A: VM-AWARE SCHEDULING

ALGORITHM

Algorithm 1 VM-aware Scheduling

1: Wlist: jobs that are waiting to be reserved or scheduled
2: Nlist: jobs that arrived since the last time tick
3: Rlist: jobs that have a tentative reservation
4: window(V): reservation time window of VM type V
5: twindow : is the set of time windows of all the VM types
6: CostV M (Ji, Jj , V): lowest possible resource usage cost of scheduling jobs Ji

and Jj by reserving Ji before job Jj in VM type V
7: Cost(Ji, Jj): lowest possible cost of scheduling jobs Ji and Jj on any VM type
8: Costtwindow(Ji, Jj): lowest possible cost of scheduling Ji and Jj by reserving

Ji before Jj such that they both start within the time window of the VM pools
9: Sched(Ji, twindow): determines if the Job Ji is schedulable within the current

time window of the VM pools
10: All cost calculations consider only cluster configurations that can meet the job’s

deadline
11: procedure VMAWARESCHEDULE(Wlist, Nlist, Rlist)
12: Assign redo reserve = true if ∃Jn ∈ Nlist, ∃Jr ∈ Rlist such that

Cost(Jn, Jr) ≥ Cost(Jr, Jn)
13: Assign redo timewindow = true if ∃Jn ∈ Nlist, ∃Jr ∈ Rlist such

that Cost(Jn, Jr) > Cost(Jr, Jn) and Jr is a time window deciding job
14: if (redo reserve == false) then
15: return
16: end if
17: if (redo timewindow == true) then
18: CJlist = Rlist ∪ Nlist ∪ Wlist

19: Cancel all reservations
20: for all V ∈ VMtypes do
21: Pick and reserve job Ji that maximizes
22:

∑
Jj∈CJlist

Cost(Jj , Ji) − CostV M (Ji, Jj , V))

23: twindow(V) = min(tend(Ji), tbound)
24: end for
25: else
26: CJlist = Rlist ∪ Nlist

27: Cancel all reservations except twindow deciding ones
28: end if
29: while (∃Ji ∈ CJlist|sched(Ji, twindow) == true) do
30: Pick and reserve job Ji that maximizes
31:

∑
Jj∈CJlist

Costtwindow(Jj , Ji) − Costtwindow
(Ji, Jj)

32: end while
33: Run jobs having reservations start at the current time
34: end procedure

2 APPENDIX B: VM-AWARE SCHEDULE EX-

AMPLE

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 900 1500 562.5 1875 321.42 2142.85

20 473.68 1578.94 296.05 1973.68 169.17 2255.63

30 333.33 1666.66 208.33 2083.33 119.04 2380.95

40 264.70 1764.70 165.44 2205.88 94.53 2521.00

TABLE 1: Job type -1: Optimal with virtual machine type -1 (VM-1)

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 1250 2083.33 500 1666.66 357.14 2380.95
20 657.89 2192.98 263.15 1754.38 187.96 2506.26
30 462.96 2314.81 185.18 1851.85 132.27 2645.50
40 367.64 2450.98 147.05 1960.78 105.04 2801.12

TABLE 2: Job type -2: Optimal with virtual machine type -2 (VM-2)

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 5000 8333.33 2187.5 7291.66 875 5833.33
20 2631.57 8771.92 1151.31 7675.43 460.52 6140.35
30 1851.85 9259.25 810.18 8101.85 324.07 6481.48
40 1470.58 9803.92 643.38 8578.43 257.35 6862.74

TABLE 3: Job type -3: Optimal with virtual machine type -3

Table 5 shows a simple workload of 15 jobs scheduled

using the VM-aware scheduler. The workload consists of 4

types of jobs. Tables 1, 2, 3 and 4 show the performances

predictions of these 4 job types made across 3 VM types.

VM-1 is assumed to have 2 GB memory and 2 VCPUs and

VM-2 and VM-3 are assumed to have 4 GB memory and 4

VCPUs and 8 GB memory and 8 VCPUs respectively. The

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 250 416.66 156.25 520.83 89.28 595.23
20 131.57 438.59 82.23 548.24 46.99 626.56
30 92.59 462.96 57.87 578.70 33.06 661.37
40 73.52 490.19 45.95 612.74 26.26 700.28

TABLE 4: Job type -4: Optimal with virtual machine type -1

tables compare 4 different cluster configurations for each VM

type by varying the number of VMs from 10 to 40. The

running time of the job in each cluster configuration is shown

as trun and the resource utilization cost is shown as Cost. We

find that job type 1 is optimal with the VM-1 and incurs 20%

additional cost with VM-2 and 30% additional cost with VM-

3. Similarly, job type 2 is optimal with VM-2 and incurs 20%

additional cost with VM-1 and 30% additional cost with VM-

3. Job type 3 is optimal for VM-3 and incurs 30% additional

cost with VM-1 and 20% additional cost with VM-2. Job type

4 is similar to job type-1 which is optimal for VM-1, but it

has shorter running time.

In Table 5, the arrival time and the deadline of the jobs

are shown. Now, the scheduler’s goal is to choose the number

of virtual machines and the virtual machine type to use for

each job. At time t = 0, we find jobs, 1, 2, 3, 4 and 5 in the

system. Based on the type of the jobs and by comparing the

cost shown in Tables 1 - 4, jobs 1, 2 and 5 are optimal with

VM-1 whereas job 3 is optimal with VM-2 and job 4 is optimal

with VM-3. The VM-aware scheduler chooses job 1 as the

time window deciding job for VM-1 based on the cost-based

priority and chooses jobs 3 and 4 as the time window deciding

jobs for VM-2 and VM-3 respectively. Once the time windows

are decided, it reserves and schedules job 2 in VM-1 based

on the cost-based priorities by referring to the performance

comparison tables. Similarly it reserves and schedules job 5

in VM-3, however job 5 is optimal only with VM-1. As there

is not enough resources available in the VM pool of VM-1, the

scheduler is forced to schedule it in VM-3 although it knows

that it is less efficient.

At time t = 5, job 6 arrives and it is scheduled in VM-2

within the reservation time window as the other permissible

cluster configurations using the VM types can not meet its

deadline. When job 7 arrives at time, t = 105 it is reserved

and scheduled in VM-1 within its reservation time window. At

time t = 160 When job 8 arrives, the scheduler identifies that

it is optimal with VM-1, however as there is not enough VMs

in VM-1, it schedules it in VM-3 as the reservation of job

8 starts within the current reservation time window of VM-

3. When job 9 arrives, it gets reserved on VM-1 to start at

t = 225 as it is optimal with VM-1. However, when job 10

arrives at t = 220 it overrides job 9 by possessing higher

priority and hence job 9’s reservation is cancelled and job 10

is reserved and scheduled at t = 225.

After job 11 arrives at time t = 230 and gets scheduled

at t = 250, the reservation time window needs to be updated

for VM-1. The scheduler compares the priority based on the

cost and identifies job 11 as the time window deciding job and

schedules it at time t = 250. Subsequently, job 9’s reservation

is also made at the earliest possible, t = 357 within the new

reservation time window. When job 12 arrives, the scheduler

identifies that it is optimal with VM-2 and it is reserved at the

earliest possible time t = 302 and at that time the reservation

2

time window for VM-2 is also updated with job 12. We note

that job 13 is optimal with VM-1, however it gets reserved

and scheduled only with VM-3 as it has stronger deadline

requirements that only VM-3 can satisfy given the available

resources in the other pools. Job 14 arrives at t = 430 and

gets reserved and scheduled at t = 450 which also updates the

reservation time window of VM-2. However, Job 15 which is

optimal with VM-1 needs to be scheduled with VM-3 due

to lack of available resources in VM-1 pool. Thus the VM-

aware scheduler minimizes the overall resource usage cost

even though some jobs violate their per-job optimality.
Job id type arrival

time
deadline VM No

VMs
start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 3 20 0 170
6 1 5 310 2 20 0 302
7 1 105 250 1 30 132 225
8 1 160 500 3 10 170 492
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 40 302 450
13 1 400 800 3 10 461 783
14 2 430 730 2 20 450 714
15 4 460 700 3 20 492 662

TABLE 5: VM-aware schedule
Job id type arrival

time
deadline VM No

VMs
start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 1 70 0 172
6 1 5 310 1 40 0 270
7 1 105 250 1 30 132 225
8 1 160 510 1 30 172 502
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 20 264 529
13 1 400 800 1 30 400 734
14 2 480 730 2 20 529 773
15 4 460 700 1 20 460 592

TABLE 6: Schedule with Reconfiguration-based VM Management

VM-aware Schedule with Reconfiguration-based VM man-

agement: For the same workload shown in Table 5, with the

reconfiguration-based VM pool management, the allocation

of the VMs in each pool is based on the current workload

characteristics. For the example simplicity, we do not show the

reconfiguration process in detail, instead we assume that the

reconfiguration is performed and illustrate the example with

the efficient schedule obtained by the VM-aware scheduler

with the reconfigured VM pools. In Table 6, we note that all

the jobs of job type 1 and job type 4 are scheduled using their

optimal VM type VM-1. Similarly type 2 and type 3 jobs also

obtain their optimal VM types VM-2 and VM-3 respectively.

	main
	Appendices-Final

