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Institutions can provide incentives to enhance cooperation
in a population where this behaviour is infrequent.
This process is costly, and it is thus important to
optimize the overall spending. This problem can
be mathematically formulated as a multi-objective
optimization problem where one wishes to minimize
the cost of providing incentives while ensuring a
minimum level of cooperation, sustained over time.
Prior works that consider this question usually omit
the stochastic effects that drive population dynamics.
In this paper, we provide a rigorous analysis of
this optimization problem, in a finite population and
stochastic setting, studying both pairwise and multi-
player cooperation dilemmas. We prove the regularity
of the cost functions for providing incentives over
time, characterize their asymptotic limits (infinite
population size, weak selection and large selection)
and show exactly when reward or punishment is more
cost efficient. We show that these cost functions exhibit
a phase transition phenomena when the intensity of
selection varies. By determining the critical threshold
of this phase transition, we provide exact calculations
for the optimal cost of incentive, for any given
intensity of selection. Numerical simulations are
also provided to demonstrate analytical observations.
Overall, our analysis provides for the first time a
selection-dependent calculation of the optimal cost
of institutional incentives (for both reward and
punishment) that guarantees a minimum level of
cooperation over time. It is of crucial importance
for real-world applications of institutional incentives
since intensity of selection is often found to be non-
extreme and specific for a given population.
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1. Introduction

The problem of promoting the evolution of cooperative behaviour within populations of self-
regarding individuals has been intensively investigated across diverse fields of behavioural,
social and computational sciences (Han, 2013; Nowak, 2006b; Perc et al., 2017; Sigmund, 2010;
West et al., 2007). Various mechanisms responsible for promoting the emergence and stability
of cooperative behaviours among such individuals have been proposed. They include kin and
group selection (Hamilton, 1964; Traulsen and Nowak, 2006), direct and indirect reciprocities
(Han et al., 2012; Krellner and Han, 2020; Nowak and Sigmund, 2005; Ohtsuki and Iwasa, 2006;
Okada, 2020), spatial networks (Antonioni and Cardillo, 2017; Peña et al., 2016; Perc et al., 2013;
Santos et al., 2006), reward and punishment (Boyd et al., 2003, 2010; Fehr and Gachter, 2000;
Hauert et al., 2007a; Herrmann et al., 2008; Sigmund et al., 2001), and pre-commitments (Han et al.,
2013, 2016; Martinez-Vaquero et al., 2017; Nesse, 2001; Sasaki et al., 2015). Institutional incentives,
namely, rewards for cooperation and punishment of wrongdoing, are among the most important
ones (Chen et al., 2015; García and Traulsen, 2019; Góis et al., 2019; Han and Tran-Thanh, 2018;
Powers et al., 2018; Sigmund et al., 2001, 2010a; Vasconcelos et al., 2013; Wang et al., 2019; Wu
et al., 2014). Differently from other mechanisms, in order to carry out institutional incentives, it is
assumed that there exists an external decision maker (e.g. institutions such as the United Nations
and the European Union) that has a budget to interfere in the population to achieve a desirable
outcome. Institutional enforcement mechanisms are crucial for enabling large-scale cooperation.
Most modern societies implemented certain forms of institutions for governing and promoting
collective behaviors, including cooperation, coordination, and technology innovation (Bardhan,
2005; Bowles, 2009; Bowles and Gintis, 2002; Han et al., 2021; Ostrom, 1990; Scotchmer, 2004).

Providing incentives is costly and it is therefore important to minimize the cost while ensuring
a sustained level of cooperation over time (Chen et al., 2015; Han and Tran-Thanh, 2018; Ostrom,
1990). Despite its paramount importance, so far there have been only few works exploring this
question. In particular, Wang et al. (2019) use optimal control theory to provide an analytical
solution for cost optimization of institutional incentives assuming deterministic evolution and
infinite population sizes (modeled using replicator dynamics). This work therefore does not
take into account various stochastic effects of evolutionary dynamics such as mutation and
non-deterministic behavioral update (Hofbauer and Sigmund, 1998; Sigmund, 2010; Traulsen
et al., 2006). In a deterministic system consisting of cooperators and defectors, once the latter
disappear (for instance through strong institutional punishment), there is no further change to
the system and thus no further interference in it is required. When mutation is present, this
behaviour can however reoccur and become abundant over time, requiring institutions to spend
more budget on providing further incentives. Moreover, a key factor of behavioral update, the
intensity of selection (Sigmund, 2010)—which determines how strongly an individual bases her
decision to copy another individual’s strategy on their fitness difference—might strongly impact
an institutional incentives strategy and its cost efficiency. Its value is usually found to be specific
for a given population (Domingos et al., 2020; Rand et al., 2013; Traulsen et al., 2010; Zisis et al.,
2015) and thus should be taken into account when designing suitable cost-efficient incentives. For
instance, when selection is weak such that behavioral update is close to a random process (i.e.
an imitation decision is independent of how large the fitness difference is), providing incentives
would make little difference to cause behavioral change, however strong it is. When selection is
strong, incentives that ensure a minimum fitness advantage to cooperators would already ensure
a positive behavioral change.

In a stochastic, finite population context, so far this problem has been investigated primarily
based on agent-based and numerical simulations (Chen et al., 2015; Cimpeanu et al., 2019,
2021; Han and Tran-Thanh, 2018; Han et al., 2018; Sasaki et al., 2012). Results demonstrate
several interesting phenomena, such as the significant influence of the intensity of selection
on incentive strategies and optimal costs. However, there is no satisfactory rigorous analysis
available at present that allows one to determine the optimal way of providing incentives. This
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is a challenging problem because of the large but finite population size and the complexity of
stochastic processes governing the population dynamics.

In this paper, we provide exactly such a rigorous analysis. We study cooperation dilemmas in
both pairwise (the Donation game) and multi-player (the Public Goods game) settings (Sigmund,
2010). They are among the most well studied models for studying the evolution of cooperative
behaviour where individually defection is always preferred over cooperation while mutual
cooperation is the preferred collective outcome for the population as a whole. Adopting a popular
stochastic evolutionary game approach for analysing well-mixed finite populations (Imhof et al.,
2005; Nowak, 2006a; Nowak et al., 2004), we derive the total expected costs of providing
institutional reward or punishment, characterize their asymptotic limits (namely, for infinite
population, weak selection and strong selection) and show the existence of a phase transition
phenomena in the optimization problem when the intensity of selection varies. We calculate the
critical threshold of phase transitions and study the minimization problem when the selection is
under and above the critical value. We furthermore provide numerical simulations to demonstrate
the analytical results.

The rest of the paper is organized as follows. In Section 2 we introduce the models and
methods, deriving mathematical optimization problems that will be studied. The main results
of the paper are presented in Section 3. In Section 4 we discuss possible extensions for future
work. Finally, detailed computations, technical lemmas and proofs the main results are provided
in the attached Supporting Information (SI).

2. Models and methods

(a) Cooperation dilemmas

We consider a well-mixed, finite population of N self-regarding individuals or players, who
interact with each other using one of the following one-shot (i.e. non-repeated) cooperation
dilemmas, the Donation Game (DG) or its multi-player version, the Public Goods Game (PGG).
In these games, a player can either choose to cooperate (i.e. a cooperator, or C player) or to defect
(i.e. a defector, or D player).

Let ΠC(i) and ΠD(i) be the average payoffs of a C player and a D player in a population with
i C players and N − i D players, respectively (see also Section 2.3 for more details). We show
below that the difference δ=ΠC(i)−ΠD(i) does not depend on i. For cooperation dilemmas, it
is always the case that δ < 0.

Donation Game (DG)

The payoff matrix of the DG (for row player) is given as follows

(

C D

C b− c −c

D b 0

)

,

where c and b represent the cost and benefit of cooperation, where b > c. DG is a special version
of the Prisoner’s Dilemma game (PD).

Denoting πX,Y the payoff of a strategist X when playing with strategist Y from the payoff
matrix above, we obtain

ΠC(i) =
(i− 1)πC,C + (N − i)πC,D

N − 1
=

(i− 1)(b− c) + (N − i)(−c)

N − 1
,

ΠD(i) =
iπD,C + (N − i− 1)πD,D

N − 1
=

ib

N − 1
.

Thus,

δ=ΠC(i)−ΠD(i) =−(c+
b

N − 1
).
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Public Goods Game (PGG)

In a PGG, players interact in a group of size n, where they decide to cooperate, contributing
an amount c > 0 to a common pool, or to defect and contributes nothing to the pool. The total
contribution in a group will be multiplied by a factor r, where 1< r < n (for the PGG to be a
social dilemma), which is then shared equally among all members of the group, regardless of
their strategy.

We obtain (Hauert et al., 2007b)

ΠC(i) =

n−1
∑

j=0

(

i− 1

j

)(

N − i

n− 1− j

)

(

N − 1

n− 1

)

(

(j + 1)rc

n
− c

)

=
rc

n

(

1 + (i− 1)
n− 1

N − 1

)

− c,

ΠD(i) =

n−1
∑

j=0

(

i

j

)(

N − 1− i

n− 1− j

)

(

N − 1

n− 1

)

jrc

n
=

rc(n− 1)

n(N − 1)
i.

Thus,

δ=ΠC(i)−ΠD(i) =−c

(

1−
r(N − n)

n(N − 1)

)

.

(b) Cost of institutional reward and punishment

To reward a cooperator (respectively, punish a defector), the institution has to pay an amount θ/a
(resp., θ/b) so that the cooperator’s (defector’s) payoff increases (decreases) by θ, where a, b > 0

are constants representing the efficiency ratios of providing the corresponding incentive. As we
study reward and punishment separately, without losing generality, we set a= b= 1 (Chen et al.,
2015; Sigmund et al., 2001). Thus, the key question here is: what is the optimal value of the individual

incentive cost θ that ensures a sufficient desired level of cooperation in the population (in the long run)

while minimizing the total cost spent by the institution?

Deriving the expected cost of providing institutional incentives

We adopt here the finite population dynamics with the Fermi strategy update rule (Traulsen
et al., 2006), stating that a player A with fitness fA adopts the strategy of another player B

with fitness fB with a probability given by, PA,B =
(

1 + e−β(fB−fA)
)−1

, where β represents
the intensity of selection (see details in Section (c)). We compute the expected number of times the
population contains i C players, 1≤ i≤N − 1. For that, we consider an absorbing Markov chain
of (N + 1) states, {S0, ..., SN}, where Si represents a population with i C players. S0 and SN

are absorbing states. Let U = {uij}
N−1
i,j=1 denote the transition matrix between the N − 1 transient

states, {S1, ..., SN−1}. The transition probabilities can be defined as follows, for 1≤ i≤N − 1:

ui,i±j = 0 for all j ≥ 2,

ui,i±1 =
N − i

N

i

N

(

1 + e∓β[ΠC(i)−ΠD(i)+θ]
)−1

,

ui,i = 1− ui,i+1 − ui,i−1.

(2.1)

The entries nij of the so-called fundamental matrix N = (nij)
N−1
i,j=1 = (I − U)−1 of the absorbing

Markov chain gives the expected number of times the population is in the state Sj if it is started
in the transient state Si (Kemeny and Snell, 1976). As a mutant can randomly occur either at S0

or SN , the expected number of visits at state Si is thus, 1
2 (n1i + nN−1,i).
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The total cost per generation is

θi =

{

i× θ in the case of institutional reward,

(N − i)× θ in the case of institutional punishment.

Hence, the expected total cost of interference for institutional reward and institutional
punishment are respectively

Er(θ) =
θ

2

N−1
∑

i=1

(n1i + nN−1,i)i and Ep(θ) =
θ

2

N−1
∑

i=1

(n1i + nN−1,i)(N − i). (2.2)

Cooperation frequency

Since the population consists of only two strategies, the fixation probabilities of a C (D) player
in a homogeneous population of D (C) players when the interference scheme is carried out are,
respectively,

ρD,C =

(

1 +

N−1
∑

i=1

i
∏

k=1

1 + eβ(ΠC(k)−ΠD(k)+θ)

1 + e−β(ΠC(k)−ΠD(k)+θ)

)−1

,

ρC,D =

(

1 +

N−1
∑

i=1

i
∏

k=1

1 + eβ(ΠD(k)−ΠC(k)−θ)

1 + e−β(ΠD(k)−ΠC(k)−θ)

)−1

.

Computing the stationary distribution using these fixation probabilities, we obtain the frequency
of cooperation (See Section 2.3)

ρD,C

ρD,C + ρC,D
.

Hence, this frequency of cooperation can be maximized by maximizing

max
θ

(

ρD,C/ρC,D

)

. (2.3)

The fraction in Equation (2.3) can be simplified as follows (Nowak, 2006a)

ρD,C

ρC,D
=

N−1
∏

k=1

T−(k)

T+(k)
=

N−1
∏

k=1

1 + eβ[ΠC(k)−ΠD(k)+θ]

1 + e−β[ΠC(k)−ΠD(k)+θ]

= eβ
∑N−1

k=1
(ΠC(k)−ΠD(k)+θ)

= eβ(N−1)(δ+θ). (2.4)

In the above transformation, T−(k) and T+(k) are the probabilities to increase or decrease the
number of C players (i.e. k) by one in each time step, respectively.

We consider non-neutral selection, i.e. β > 0 (under neutral selection, there is no need to use
incentives). Assuming that we desire to obtain at least an ω ∈ [0, 1] fraction of cooperation, i.e.

ρD,C

ρD,C+ρC,D
≥ ω, it follows from Equation (2.4) that

θ≥ θ0(ω) =
1

(N − 1)β
log

(

ω

1− ω

)

− δ. (2.5)

Therefore it is guaranteed that if θ≥ θ0(ω), at least an ω fraction of cooperation can be expected.
From this condition it implies that the lower bound of θ monotonically depends on β. Namely,
when ω≥ 0.5, it increases with β while decreases for ω < 0.5.
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Optimization problems

Bringing all ingredients together, we obtain the following cost-optimization problems of
institutional incentives in stochastic finite populations

min
θ≥θ0(ω)

E(θ), (2.6)

where E is either Er or Ep, defined in (2.2), which respectively corresponds to institutional
reward and punishment. We show in Supporting Information (SI) that θ 7→E(θ) is a smooth
function on R.

(c) Methods: Evolutionary Dynamics in Finite Populations

We adopt in our analysis the Evolutionary Game Theory (EGT) methods for finite populations
(Imhof et al., 2005; Nowak, 2006a; Nowak et al., 2004). Herein, individuals’ payoff represents
their fitness or social success, and evolutionary dynamics is shaped by social learning (Hofbauer
and Sigmund, 1998; Sigmund, 2010), whereby the most successful players will tend to be imitated
more often by the other players. Here, social learning is modeled using the pairwise comparison
rule (Traulsen et al., 2006), that is, a player A with fitness fA adopts the strategy of another player
B with fitness fB with probability given by the Fermi function,

PA,B =
(

1 + e−β(fB−fA)
)−1

,

where β conveniently describes the selection intensity (β = 0 represents neutral drift while β →∞

represents increasingly deterministic selection).
In the absence of mutations or exploration, the end states of evolution are inevitably

monomorphic: once such a state is reached, it cannot be escaped through social learning. We
assume that, with a certain mutation probability, an individual switches randomly to a different
strategy without imitating another individual. In addition, we assume here the small mutation
limit (Fudenberg and Imhof, 2005; Imhof et al., 2005; Nowak et al., 2004). Thus, at most two
strategies are present in the population at a time. The evolutionary dynamics can be described
by a Markov Chain, where each state represents a homogeneous population and the transition
probabilities between any two states are given by the fixation probability of a single mutant
(Fudenberg and Imhof, 2005; Imhof et al., 2005; Nowak et al., 2004). The resulting Markov Chain
has a stationary distribution, which describes the average time the population spends in an
end state. The small mutation limit allows us to obtain an analytical form of the frequency of
cooperation (see below). It is noteworthy that although we focus here on the small mutation limit,
this approach has been shown to be widely applicable to scenarios which go well beyond the strict
limit of very small mutation rates (Domingos et al., 2020; Rand et al., 2013; Sigmund et al., 2010b;
Zisis et al., 2015).

The fixation probability that a single mutant A taking over a whole population with (N − 1)

B players is as follows (see e.g. references for details (Karlin and Taylor, 1975; Nowak et al., 2004;
Traulsen et al., 2006))

ρB,A =



1 +

N−1
∑

i=1

i
∏

j=1

T−(j)

T+(j)





−1

,

where T±(k) = N−k
N

k
N

[

1 + e∓β[ΠA(k)−ΠB(k)]
]−1

describes the probability to change the
number of A players by ± one in a time step. Specifically, when β = 0, ρB,A = 1/N , representing
the transition probability at neural limit.

Considering the set of two strategies C and D (see (Fudenberg and Imhof, 2005; Imhof et al.,
2005) for the calculation for any number of strategies). Their stationary distribution is given by the
normalised eigenvector associated with the eigenvalue 1 of the transposed of a matrix (Fudenberg
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and Imhof, 2005; Imhof et al., 2005)

M =

(

1− ρC,D ρC,D

ρD,C 1− ρD,C

)

,

which is { ρD,C

ρD,C+ρC,D
,

ρC,D

ρD,C+ρC,D
}. The first term is the frequency of cooperation and the second

one is that of defection.

3. Main results

The present paper provides a rigorous analysis for the expected total cost of providing
institutional incentive (2.2) and the associated optimization problem (2.6). In this section, we
state our main analytical results, Theorems 3.1, 3.2 and 3.3, and provide numerical simulations
to illustrate the analytical results. The proofs of these results, which require a delicate analysis of
the cost functions, are presented in SI.

In the following theorems, E denotes the cost function either for institutional reward, Er , or
institutional punishment, Ep, as obtained in (2.2). Also, HN denotes the well-known harmonic
number

HN :=

N−1
∑

j=1

1

j
. (3.1)

Our first main result provides qualitative properties and asymptotic limits of E.

Theorem 3.1 (Qualitative properties and asymptotic limits of total cost functions).
(I) (finite population estimates) The expected total cost of providing incentive satisfies the following

estimates for all finite populations of size N

N2θ

2

(

HN +
1

N − 1

)

≤E(θ)≤N(N − 1)θ
(

HN + 1
)

. (3.2)

(II) (infinite population limit) The expected total cost of providing incentive satisfies the following

asymptotic behaviour when the population size N tends to +∞

lim
N→+∞

E(θ)
N2θ
2 (lnN + γ)

=

{

1 + e−β|θ−c| for DG,

1 + e−β|θ−c|eβc
r
n for PGG,

(3.3)

where γ = 0.5772... is the Euler-Mascheroni constant.

(III) (weak selection limit) The expected total cost of providing incentive satisfies the following asymptotic

limit when the selection strength β tends to 0

lim
β→0

E(θ) =N2θHN . (3.4)

(IV) (strong selection limit) The expected total cost of providing incentive satisfies the following

asymptotic limit when the selection strength β tends to +∞

lim
β→+∞

Er(θ) =















N2

2 θ
(

1
N−1 +HN

)

for θ <−δ,

N2θHN for θ=−δ,
N2

2 θ
(

1 +HN ) for θ >−δ.

(3.5)

lim
β→+∞

Ep(θ) =















N2θ
2

(

1 +HN

)

for θ <−δ,

N2θHN for θ=−δ,
N2θ
2

(

HN + 1
N−1

)

for θ >−δ.

(3.6)

The lower and upper bounds obtained in part (I) of the theorem suggest the total expected
cost function E for both reward and punishment behaves asymptotically in order of (N2HN )× θ
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population size, N 

β=1 β=5 

population size, N 

Figure 1. Large population size limit. We calculate numerically the expected total cost of incentive E for reward and

punishment, varying population size N , for different values of θ and β. The dashed lines represent the corresponding

theoretical limiting values obtained in Theorem 3.1 for the large population size limit, N →+∞. We observe that

numerical results are in close accordance with those obtained theoretically. Results are obtained for DG with b= 2,

c= 1.
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Figure 2. Weak and strong selection limits. We calculate numerically the total expected cost of incentive E for reward

and punishment, for varying the intensity of selection, for different values of N and β. The dashed lines represent the

corresponding theoretical limiting values obtained in Theorem 3.1 for weak and strong selection limits. We observe that

numerical results are in close accordance with those obtained theoretically. Results are obtained for DG with b= 2, c= 1.

for sufficiently large N . It is confirmed in part (II), noting that HN ∼ lnN . We also show that the
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leading asymptotic coefficient of E depends on the game (i.e., DG or PGG) and its parameters.
Hence, it is important to adopt a precise optimal value of θ (e.g., obtained by solving the
optimization problem (2.6)), as a small increase of this individual incentive cost can lead to
significant increase in E, especially when the population size is large. Figure 1 numerically
demonstrates this asymptotic limit.

Parts (III) and (IV) of the theorem provide theoretical estimations of E under the weak (β → 0)
and strong (β →+∞) selection limits. For the weak selection limit, the expected total costs are the
same for reward and punishment, i.e. Er(θ) =Ep(θ). For the strong selection limit, Er is smaller,
equal or greater than Ep depending on whether θ is smaller, equal, or greater than −δ. Figure 2
provides numerical validation of the theoretical weak and strong selection asymptotic behaviors
of E, for different population sizes N . We can observe that, for a given individual incentive cost
θ, the range of E increases significantly for larger N .

Our second main result concerns the optimization problem (2.6). We show that the cost
function E exhibits a phase transition when the selection intensity β varies.

Theorem 3.2 (Optimization problems and phase transition phenomenon).
(I) (phase transition phenomena and behaviour under the threshold) Define

F ∗ =

{

min{F (u) : P (u)> 0} in the reward case,

min{F̂ (u) : P̂ (u)> 0} in the punishment case,

where P (u) and F (u) as well as P̂ and F̂ are defined in the Supporting Information (See Section 1

and Section 2 there, respectively). There exists a threshold value β∗ given by

β∗ =−
F ∗

δ
> 0,

such that θ 7→E(θ) is non-decreasing for all β ≤ β∗ and is non-monotonic when β > β∗. As a

consequence, for β ≤ β∗

min
θ≥θ0

E(θ) =E(θ0). (3.7)

(II) (behaviour above the threshold value) For β > β∗, the number of changes of the sign of E′(θ) is at

least two for all N and there exists an N0 such that the number of changes is exactly two for N ≤N0.

As a consequence, for N ≤N0, there exist θ1 < θ2 such that for β > β∗, E(θ) is increasing when

θ < θ1, decreasing when θ1 < θ < θ2 and increasing when θ > θ2. Thus, for N ≤N0,

min
θ≥θ0

E(θ) =min{E(θ0), E(θ2)}.

The proof of Theorems 3.1 and 3.2 for the case of reward and punishment are given in Section
1 and Section 2 in the SI, respectively. We also provide explicit computations for N = 3 and N = 4

to illustrate these theorems in Section 3 in the SI. Based on numerical simulations, we conjecture
that the requirement that N ≤N0 could be removed and Theorem 3.2 is true for all finite N . In
SI (Figure S2), using numerical calculation we have shown that N0 = 100 satisfies the conjecture,
ensuring the validity of the numerical examples below. Theorem 3.2 gives rise to the following
algorithm to determine the optimal value θ∗ for N ≤N0.

Algorithm 3.1 (Finding optimal cost of incentive θ⋆).

Inputs: i) N ≤N0: population size, ii) β: intensity of selection, iii) game and parameters: PD (c and

b) or PGG (c, r and n), iv) ω: minimum desired cooperation level.

(1) Compute δ
{

in PD: δ=−(c+ b
N−1 ); in PGG: δ=−c

(

1− r(N−n)
n(N−1)

)}

.

(2) Compute θ0 =
1

(N−1)β
log
(

ω
1−ω

)

− δ;
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(3) Compute

F ∗ =

{

min{F (u) : P (u)> 0} in the reward case,

min{F̂ (u) : P̂ (u)> 0} in the punishment case,

where P (u) and F (u), as well as P̂ and F̂ are defined in the Supporting Information.

(4) Compute β∗ =−F∗

δ .

(5) If β ≤ β∗:

θ∗ = θ0, minE(θ) =E(θ0).

(6) Otherwise (i.e. if β > β∗)

(a) Compute u2 that is the largest root of the equation F (u) + βδ= 0 for the reward case or that of

F̂ (u) + βδ= 0 for the punishment case.

(b) Compute θ2 =
log u2

β − δ.

• If θ2 ≤ θ0: θ∗ = θ0, minE(θ) =E(θ0);

• Otherwise (if θ2 > θ0):

– If E(θ0)≤E(θ2): θ
∗ = θ0, minE(θ) =E(θ0);

– if E(θ2)<E(θ0): θ
∗ = θ2, minE(θ) =E(θ2).

Output: θ∗ and E(θ∗).
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Figure 3. Using Algorithm 3.1 to find optimal θ that minimizes E(θ) (for institutional reward) while ensuring a minimum

level of cooperation ω. We use as examples a small population size (N = 3, top row) and a larger one (N = 50, bottom

row), for DG (b= 1.8, c= 1).

To illustrate Theorem 3.2 and Algorithm 3.1, we focus on the case of reward. Figure 3 shows
the cost function Er as a function of θ, for different values of N , β and ω for illustrating the phase
transition when varying β, in a DG. We can see that in all cases, these numerical observations are
in close accordance with theoretical results. For example, with N = 3 (see top row), we found β⋆ =

f⋆/δ= 10.9291/1.9 = 5.752. For β < β⋆, E(θ) are increasing functions of θ. Thus, the optimal cost
of incentive θ⋆ = θ0, for a given required minimum level of cooperation ω. For example, with N =

3, for β = 1 to ensure at least 70% of cooperation (ω= 0.7), then θ⋆ = θ0 = 2.32. When β ≥ β⋆ one
needs to compare E(θ0) and E(θ2). For example, with N = 3, β = 10: for ω= 0.25 (black dashed
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Figure 4. Using Algorithm 3.1 to find optimal θ that minimizes E(θ) while ensuring a minimum level of cooperation ω,

for PGG (r= 3, n= 5, c= 1) with N = 50. Similar observations to those in DG, are obtained.

line), then E(θ0) = 23.602< 25.6124 =EC(θ2), so θ⋆ = θ0 = 1.845; for ω= 0.7 (green dashed line),
then E(θ0) = 26.446> 25.6124 =EC(θ2), so θ⋆ = θ2 = 2.16 (red solid line); for ω= 0.999999 (blue
dashed line), since θ2 < θ0, θ⋆ = θ0 = 2.59078.

Similarly, with a larger population size (N = 50, see Figure 1 in the SI, bottom row), we
obtained β⋆ = 3.15/1.03673 = 3.039. In general, similar observations are obtained as in case of
a small population size N = 3. Except that when N is large, the values of θ0 for different non-
extreme values of minimum required cooperation ω (say, ω ∈ (0.01, 0.99)) is very small (given
the log scale of ω/(1− ω) in the formula of ω0). This value is also smaller than θ0, with a cost
E(θ0)>E(θ2), making θ2 the optimal cost of incentive. Similar results are obtained for PGG (see
Figure 4). When ω is extremely high (i.e. greater than 1− 10−k, for a large k) (we don’t look at
extremely low value since we would like to ensure at least a sufficient level of cooperation), then
we can also see other scenarios where the optimal cost is θ0 (see Figure 1 in the SI, bottom row).
We thus can observe that for ω ∈ (0.01, 0.99), for sufficiently large population size N and large
enough β (β > β⋆ + a bit more), then the optimal value of ω is always θ2. Otherwise, θ0 is the
optimal cost.

Our last result provides a comparison of the expected total costs for providing institutional
reward and punishment, for different individual incentive cost θ.

Theorem 3.3 (reward vs punishment costs). The difference between the expected total costs of reward

and punishment is given by

(Er − Ep)(θ) =















< 0, for θ <−δ,

= 0, for θ=−δ,

> 0, for θ >−δ.

(3.8)

As a consequence, when β ≤min{β∗
r , β

∗
p} we have

E∗
r =Er(θ0), E∗

p =Ep(θ0).

In this case,

(E∗
r − E∗

p) =Er(θ0)− Ep(θ0) =















< 0 for ω < 0.5,

= 0 for ω= 0.5,

> 0 for ω > 0.5.

(3.9)

The proof of Theorem 3.4 is given in Section 3 in the SI. Numerical calculation in Figure
5 shows the expected total costs for reward and punishment (DG), for varying θ. We observe
that reward is less costly than punishment (Er <Ep) for θ <−δ and vice versa when θ >−δ.
It is exactly as shown analytically in Theorem 3.3. This analytical result is confirmed here for
different population size N and intensity of selection β. Figure 6 also confirms the second part of
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Figure 5. Compare the total costs E for reward and punishment as a function of θ, for different values of N and β.

Reward is less costly than punishment (Er <Ep) for small θ and vice versa otherwise. The threshold of θ for this change

was obtained analytically (see Theorem 1), which is exactly equal to −δ. Results are obtained for DG with b= 2, c= 1.

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

0.2 0.4 0.6 0.8 1.0

10500
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Figure 6. Compare the total costs E for reward and punishment at the optimal value θ⋆ (obtained using Algorithm

3.1), for varying the minimum required level of cooperation, ω. Reward is more cost efficient for small ω, while punishment

is more cost efficient when ω is larger. In both cases, the threshold is around ω= 0.5. Other parameters: β = 1, DG with

b= 2, c= 1.

the theorem, where for small β, if one can choose the type of incentive to use, either reward or
punishment, then the former can provide a lower cost when requiring less than 50% cooperation
at minimum and the later otherwise. This is in line with previous work showing that reward
mechanisms work very well to promote cooperation in environments in which it is rare, while
punishment mechanisms are better at maintaining high levels of cooperation (see e.g., (Chen et al.,
2015; Sasaki et al., 2012; Wang et al., 2019)).

4. Discussion

Institutional incentives such as punishment and reward provide an effective tool for promoting
the evolution of cooperation in social dilemmas. Both theoretical and experimental analysis
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has been made (Baldassarri and Grossman, 2011; Bardhan, 2005; Dong et al., 2019; García and
Traulsen, 2019; Gürerk et al., 2006; Sasaki et al., 2012; Wu et al., 2014). However, past research
usually ignores the question of how institutions’ overall spending, i.e. the total cost of providing
these incentives, can be minimized, while at the same time guaranteeing a minimum desired level
of cooperation over time. Answering this question allows one to estimate exactly how incentives
should be provided, that is how much to reward a cooperator and how severely to punish a
wrongdoer. Existing works that consider this question usually omit the stochastic effects that
drive population dynamics, namely, when the intensity of selection varies.

Resorting to a stochastic evolutionary game approach for finite, well-mixed populations, we
have provided theoretical results for the optimal cost of incentives that ensure a desired level
of cooperation while minimizing the total budget, for a given intensity of selection, β. We show
that this cost strongly depends on the value of β, due to the existence of a phase transition in
the cost functions when β varies. This behavior is missing in works that consider a deterministic
evolutionary approach (Wang et al., 2019). The intensity of selection plays an important role in
evolutionary processes. Its value differs depending on the payoff structure (i.e., scaling game
payoff matrix by a factor is equivalent to dividing β by that factor) and is usually found to
be specific for a given population, which can be estimated through behavioral experiments
(Domingos et al., 2020; Rand et al., 2013; Traulsen et al., 2010; Zisis et al., 2015). Thus, our analysis
provides a way to calculate the optimal incentive cost for a given population and game payoff
matrix at hand.

As of theoretical importance, we characterized asymptotic behaviors of the total cost functions
for both reward and punishment (namely, in the limits of large population, weak selection and
strong selection) and compared these functions for the two types of incentive. We show that
punishment is alway more costly for a small (individual) incentive cost (θ) but less so when this
cost is above a certain threshold. We provided an exact formula for this threshold. This result
provides insights into the choice of which type of incentives to use.

In the context of institutional incentives modelling, a crucial issue is the question of how
to maintain the budget of incentives providing (Hilbe et al., 2014; Sigmund et al., 2010b). The
problem of who pays or contributes to the budget is a social dilemma itself, and how to escape this
dilemma is critical research question. In this work we focus on the question of how to optimize
the budget used for provided incentives.

There are several simplifications made for the theoretical analysis to be possible. First, in order
to derive analytical formula for the frequency of cooperation, we assumed the small mutation
limit. Despite the simplified assumption, this small mutation limit approach has been shown to
be widely applicable to scenarios which go well beyond the strict limit of very small mutation
rates (Rand et al., 2013; Sigmund et al., 2010b; Zisis et al., 2015). Relaxing this assumption would
make the derivation of a close form for the frequency of cooperation intractable.

Second, we focused in this paper on two important cooperation dilemmas, the DG and the
PGG. They have in common a useful property that the difference in (average) payoff between a
cooperator and a defector, δ=ΠC(i)−ΠD(i), does not depend on i, the number of cooperators in
the population. This property allows us to simplify the fundamental matrix to a tridiagonal form
and apply techniques matrix analysis to obtain a close form of its inverse matrix (see SI). In games
with more complex payoff matrices such as the Prisoner’s dilemma in its general form and the
collective risk game (Santos and Pacheco, 2011), the difference δ depends on i and our technique
in this paper can not be directly applied. We might consider other approaches to approximate the
inverse matrix exploiting its block structure.
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