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Abstract

The demand for indoor localization is becoming urgent, but the traditional location fingerprint approach takes a

lot of manpower and time to construct a fine-grained location fingerprint database. To address this problem, we

propose to use the approach of combining dynamic collection of fingerprint samples with Radial Basis Function

(RBF) interpolation. Specifically, the raw sparse fingerprint database is constructed from a small number of

fingerprints collected on a few paths, in which the pedestrian track correction algorithm improves the validity

and accuracy of the sparse fingerprint database. Then, the RBF interpolation approach is applied to enrich the

sparse fingerprint database, in which the Genetic Algorithm (GA) is used to optimize the free shape parameter

and the cut-off radius is determined according to the experimental results. Extensive experiments show that the

proposed approach guarantees high interpolation and localization accuracy and also significantly reduces the

effort of manual collection of fingerprint samples.
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1 Introduction

With the rapid development of intelligent terminals

and communication technologies, location-based ser-

vices have become an indispensable and important

element in daily life. Innovative services such as Didi

taxi and Mobike shared bicycles are closely related to

the development and application of localization tech-

nology. And intelligent transportation is based on the

Internet of Things (IoT) [1], 5G [2], and other tech-

nologies, which provide enormous connections of de-

vices and sensors with applications. Satellite

communications keep step with the quick develop-

ment of wireless terrestrial communications [3, 4],

such as Global Positioning System (GPS) [5], and can

provide good localization services. However, due to

the blockage of buildings in the indoor environment,

it is difficult to receive satellite signals. Therefore, the

upsurge of research and positioning has been

transferred to the indoor localization. The existing in-

door localization systems are mainly based on Wire-

less Local Area Network (WLAN) [6], Bluetooth Low

Energy (BLE) [7], Micro Electro Mechanical Systems

(MEMS) [8], Radio Frequency Identification (RFID)

[9], and Ultra Wideband (UWB) [10]. Working in the

same frequency band as WLAN, Bluetooth technology

has attracted extensive attention of researchers. With

the increasing integration degree of Bluetooth mod-

ules, a variety of Bluetooth-based indoor localization

methods [11] emergy, such as range detection-based

localization method, signal strength-based localization

method, and Cell-ID-based localization method. The

introduction of the Bluetooth 4.0 version enables

Bluetooth technology to exhibit lower power con-

sumption in data transmission, as well as advantages

such as low cost, low delay, and long effective con-

nection distance, which promotes the development of

Bluetooth in indoor localization.

The current mainstream fingerprint-based indoor

localization approach includes two phases [12], namely

offline and online phases. In the offline phase, site sur-

veys are conducted and the regions of interest are
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planned. Received Signal Strength (RSS) samples are col-

lected at each planning Reference Point (RP) and saved

to the location fingerprint database. In the online phase,

by matching the RSS measured at the point to be posi-

tioned with the location fingerprint database, the loca-

tion result of pedestrian is output. It can be seen that

the process of constructing location fingerprint database

in offline phase consumes a great deal of time and man-

power, and is vulnerable to changes in the environment,

such as the flow of crowd and Access Point (AP) change.

When the area is too large, the cost required for con-

structing the fingerprint database cannot withstand. The

above factors all limit the promotion and application of

this technology. In this paper, we aim to construct a fin-

gerprint database with significantly reduced workload as

well as guarantee high localization accuracy in the online

phase.

To achieve this goal, a new cost-efficient fingerprint

database construction approach via dynamical collection

approach and multi-quadric [13] RBF interpolation is

proposed. In concrete terms, at fingerprints collection

stage, we collect fingerprints on a few straight-line paths

dynamically and then add error correction factors into

pedestrian dead reckoning (PDR) part, to generate an ac-

curate sparse fingerprint database. In addition, we apply

multi-quadric RBF interpolation approach to interpolat-

ing each new fingerprints, and we also rely on GA [14]

to find better shape parameter to improve interpolation

accuracy.

All the experiments are conducted in a real-world in-

door BLE environment to demonstrate the system prac-

ticability. The three main contributions of this paper are

summarized as follows:

(a) The dynamic collection of fingerprint samples and

PDR error correction factors are considered to construct

an accurate raw sparse fingerprint database.

(b) The multi-quadric RBF interpolation algorithm is

applied to expand the sparse fingerprint database, in

which the impact of free shape parameter and cut-off ra-

dius on RSS estimation is studied also.

(c) The extensive experiments in a real-world indoor

BLE environment demonstrate the effectiveness and effi-

ciency of our system in terms of localization accuracy

and fingerprint database construction effort.

The rest of the paper is organized as follows. Sec-

tion 2 shows some related works concentrating on in-

door Bluetooth localization and the way to reduce

fingerprints calibration effort. In Section 3, we intro-

duce the framework of the system, including using a

dynamic collection of fingerprint samples to construct

the sparse fingerprint database and using

multi-quadric RBF to interpolate the sparse finger-

print database in offline phase. It also includes BLE

localization in the online phase according to the

WKNN algorithm. Section 4 provides the experimen-

tal results, and finally, the conclusion of this paper is

given in Section 5.

2 Related work

2.1 Indoor Bluetooth localization

Indoor Bluetooth localization approaches can be di-

vided into three main categories, namely range detec-

tion, fingerprint matching, and propagation

model-based approaches. The range detection-based

approach makes use of the short distance transmis-

sion characteristics of the Bluetooth signal. When the

user carries the mobile device into the range of signal

coverage, the user’s location can be perceived that

achieves the range level localization accuracy. Ana-

stasi and Chawathe et al. [15, 16] put forward the

Cell-ID parameters to implement the Bluetooth

localization system. In the localization system, the

user’s movement and standing can be determined to

realize the room level localization. Signal intensity

based approaches are mainly divided into two cat-

egories, namely fingerprint matching and propagation

model-based approaches. Mo and Xiong et al. [17]

propose to classify the region according to the prox-

imity information of the signal to limit the search

range. The other parameter based localization ap-

proaches mainly use link quality information, query

feedback rate [18] and other parameters. Forno et al.

[19] propose that the Bluetooth power level can be

used to locate mobile users, and the surrounding

Bluetooth devices are obtained by filtering different

power levels to calculate the location of the user.

2.2 Collection effort reduction

To reduce the time and labor cost for fingerprint data-

base construction, many studies have been paid signifi-

cant attention to reducing the fingerprints collection

efforts. In [20], according to the auto-building system,

the authors construct the location fingerprint database.

In [21], based on the signal propagation model, the au-

thors estimate RSS at all new RPs. Ouyang et al. [22, 23]

apply the generative and discriminative semi-supervised

learning and use a few labeled RSS data and a large

number of unlabeled RSS data to construct and enrich

the fingerprint database. Liu et al. [24] propose to use

the compressed sensing theory to construct a fingerprint

database. Racko et al. [25] choose linear interpolation

for the purpose of reducing the time needed for radio

map creation and verify the approach in a corridor

which is a narrow environment. Kubota et al. [26]

propose an accurate interpolation for survey database,

part of fingerprints are estimated using a path loss

model containing wall attenuation. A novel approach to
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adapt temporal radio map is proposed in [27] by offset-

ting the varying environment factors.

Different from the studies above, we firstly determine

the capacity of fingerprint acquisition sample according

to the change characteristics of the BLE signal and

localization error of different percentile values of the fin-

gerprint database. Then, the sparse fingerprint database

is constructed by extracting dynamic sampling finger-

print samples and combining pedestrian movement pa-

rameters information. In addition, the multi-quadric

RBF interpolation approach is applied to estimate RSS

sequences of the new RPs, thus compensating the defi-

ciency of sparse fingerprint database localization accur-

acy. The cut-off area radius and shape parameter in

multi-quadric function are also studied and optimized,

which improves the interpolation accuracy of sparse fin-

gerprint database.

3 Methods
As shown in Fig. 1, the proposed fast construction ap-

proach of location fingerprint database in the offline

phase, that is, using MEMS sensors to assist in the dy-

namic collection of BLE fingerprints and applying the

RBF interpolation algorithm. First of all, using the

MEMS sensors to measure the pedestrian motion pa-

rameters and calculating the location of fingerprint

points, and then combining the BLE RSS, we construct

the sparse fingerprint database. Second, the RBF

interpolation algorithm is applied to enrich the sparse

fingerprint database by interpolating each new RP from

its neighbors. At the same time, in the online phase, the

Weighted K Nearest Neighbor (WKNN) algorithm is

used to realize the accurate localization, which reduce

the localization time.

3.1 Speed and heading angle estimation

According to the PDR algorithm [28], the pedestrian lo-

cation is calculated from the current speed, heading

angle, and location of a pedestrian at the last moment.

In this paper, based on the output data of accelerometer,

magnetometer, and gyroscope, the speed and heading

angle of the pedestrian are obtained by combining speed

estimation and heading angle calculation modules.

The speed and heading angle estimation process are as

shown in Fig. 2. In speed estimation module, the gait de-

tection is completed by using the periodic characteristics

of the acceleration when the human body walks, and

then the step length empirical model is applied to output

the real-time step value. According to the correspond-

ence between step length and step frequency and accel-

eration variance, the BP neural network is used to train

model parameters. Finally, the speed is calculated based

on the acceleration change form and step length infor-

mation per second. In heading angle calculation module,

according to the complementary characteristics of the

three sensors, we use complementary filtering algorithm

to optimize the output data of gyroscope and then up-

date the quaternion based on Extended Kalman Filter

(EKF) [29].

3.1.1 Speed estimation

The acceleration of pedestrians changes in the form of a

sinusoidal wave during walking [30]. In this paper, the

acceleration value of a pedestrian is collected by the

Fig. 1 Framework of system
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acceleration sensor, we calculate the modulus of

three-axis acceleration to estimate the speed of pedes-

trian and detect the gate and steps of a pedestrian by

using the periodic variation of acceleration during walk-

ing, in which acceleration modulus Acctotali is obtained

by

Acctotali ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

axi
� �2

þ a
y
i

� �2
þ azi
� �2

q

ð1Þ

where axi , a
y
i , and azi are acceleration at the i-th moment,

in X axis, Y axis, and Z axis respectively.

Next, we estimate the pedestrian step length. Pedes-

trian step length is usually related to height, walking

speed, and other factors [6]. To reasonably estimate the

pedestrian step length, we select the nonlinear step

length estimation model, which is an appropriate step

length estimation model. Moreover, by using the calibra-

tion coefficient in the training model, the applicability

and accuracy of the step length model are improved.

The step length Lk can be expressed as

Lk ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

acckmax‐acc
k
min

q

� �1=4

ð2Þ

where acckmax and acckmin are the maximum and mini-

mum acceleration detected in k-th step. ρ is the calibra-

tion parameter, which is the ratio of true step length and

estimated step size and can be obtained based on the

neural network algorithm.

Finally, it is known that the sampling frequency of the

sensor is fs, the number of sampling points between two

effective peaks is ΔN, and the step length of k-th step is

Lk, we estimate the speed as

vk ¼
Lk f s
ΔN

ð3Þ

3.1.2 Heading angle

Based on the output data of accelerometer, magnetom-

eter, and gyroscope, we calculate the attitude angle,

including the direction angle φ, roll angle γ, and pitch

angle θ.

Assuming that the pedestrian is stationary and the

handheld terminal is placed horizontally at the begin-

ning, we initialize the filter. The output vector of

three-axis accelerometer is expressed as

ax ay az
� �T

¼ Cb
n 0 0 g½ �T ð4Þ

where [ax ay az]
T is the output vector of gravity acceler-

ation in the carrier coordinate system, g is local acceler-

ation and directional cosine matrix C
b
n is calculated by

Cb
n ¼

cosγ 0 sinγ
sinθ sinγ cosθ − sinθ cosγ

− cosθ sinγ sinθ cosθ cosγ

0

@

1

A ð5Þ

Based on formulas (4) and (5), we have

γ ¼ arctan
ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2y þ a2z

q

θ ¼ arctan
−ay

az

8

>

>

<

>

>

:

ð6Þ

Thus the three-axis magnetometer data is decomposed

to horizontal direction as

Hx ¼ mx cosθ þmz sinθ
Hy ¼ mx cosγ þmy sinγ sinθ−mz cosθ sinγ

	

ð7Þ

where [mx my mz]
T is the output vector of the magnet-

ometer in the carrier coordinate system. Hx and Hy are

the components of magnetic in the NES navigation co-

ordinate system. Based on Hx and Hy, the heading angle

can be calculated by

φ ¼ arctan
Hx

Hy

ð8Þ

After the initialization process, next, we solve the

real-time attitude angle and set the quaternion as the

state variable of the filter, we have

Fig. 2 Speed and heading angle estimation
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X ¼ q1 q2 q3 q4½ �T ð9Þ

In addition, in order to estimate the attitude angle

more accurately, we select the output values of acceler-

ometer and magnetometer to be as the observation, such

that

Z ¼ ax ay az mx my mz

� �T
ð10Þ

According to the principle of the quaternion in the in-

ertial navigation system, we define the state equation as

Ẋ ¼

1

2

0 − ωx−wxð Þ
ωx−wxð Þ 0
ωy−wy

� �

− ωz−wzð Þ
ωz−wzð Þ ωy−wy

� �

2

6

6

4

− ωy−wy

� �

− ωz−wzð Þ
ωz−wzð Þ − ωy−wy

� �

0 ωx−wxð Þ
− ωx−wxð Þ 0

3

7

7

5

X

ð11Þ

where ωx, ωy, and ωz are the output of gyroscope and

wx, wy, and wz are measurement noise.

After the above data preparation, the optimal quater-

nion of the state variable is obtained by updating the

EKF model. According to the conversion relationship

[31] between quaternion and the Euler angle, the

real-time heading angle is calculated as

ψ ¼ arctan
−2 q1q2 þ q0q3ð Þ

q20 þ q21−q
2
2−q

2
3ð Þ

ð12Þ

3.2 Fingerprint database construction

In this paper, we use a dynamic fingerprint database

construction algorithm based on MEMS sensors assisted

BLE. The user holds the tag board containing MEMS

sensors and BLE module, collects fingerprints on prede-

termined paths in the indoor area, and synchronizes the

sensor data and BLE data of each moment by using time

label. Then, the location information can be obtained by

calculating pedestrian motion parameters such as speed

and heading angle, and with the BLE RSS sequences

obtained at the RPs, a sparse location fingerprint data-

base can be constructed.

Figure 3 shows the paths of fingerprint collection. For

each path, the process is described as follows.

Step 1: According to the starting and ending point of

the path L and the pre-set RP interval, the coordinates

of standard location fingerprint database are obtained as

X i ¼ x0 þ i�Lstep x

Y i ¼ y0 þ i�Lstep y

	

ð13Þ

where i∈ð1; 2;⋯; xend−x0
Lstep x

Þ , (Xi,Yi) is the i-th RP coordi-

nates, (x0, y0) and (xend, yend) are the starting point and

ending point, and Lstep _ x and Lstep _ y are the pre-set RP

interval.

Step 2: The disadvantage of MEMS localization algo-

rithm is the cumulative error in the long-time period

[28], which leads to large localization error. To address

this problem, we add the error correction parameters to

the PDR formula, such that

x j ¼ x0 þ
X j

n¼1
vxn þ εx j

y j ¼ y0 þ
X j

n¼1
vyn þ εy j

8

<

:

ð14Þ

where (xj, yj) is the location of a pedestrian at the j-th

moment, and vxj and vyj are the two components of

walking speed at the j-th moment, which is calculated by

vx j ¼ v j sin head j

� �

vy j ¼ v j cos head j

� �

	

ð15Þ

where headj is heading angle at the j-th moment.

And correction factors εxj and εyj are defined as

εx j ¼
vx j

Pend
n¼1vxn

xend−Lxpdr
� �

εy j ¼
vy j

Pend
n¼1vyn

yend−Lypdr
� �

8

>

>

<

>

>

:

ð16Þ

where Lxpdr ¼
Pend

n¼1vxn and Lypdr ¼
Pend

n¼1vyn are the

projection length of PDR result on X and Y axes.

Step 3: According to step 2, we obtain the coordinates

of the pedestrian at each moment, and the

Fig. 3 Schematic diagram of fingerprint collection paths
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corresponding RSS sequence is also obtained. Next, we

match the estimated pedestrian coordinates with stand-

ard fingerprint database coordinates according to the

Nearest Neighbor (NN) algorithm [32].

As shown in Fig. 4, there are N locations near the

path. For each location, calculating the Euclidean dis-

tance between the location and all standard coordinates,

and matching to the corresponding standard coordinates

in accordance with the NN algorithm. Taking the stand-

ard coordinates Pi as an example, the RSS is calculated

by

RSSn ¼

PM
i¼1rssii

M
ð17Þ

where RSSn is the corresponding RSS on this point, and

M is the total number of times that the point is stored

in RSS sequence.

Step 4: The coarse location fingerprint database is gen-

erated in step 3, which is constructed by pedestrians lo-

cation information and RSS at each moment. The

walking speed of the pedestrian is about 1.3 m per sec-

ond, so there are many fingerprint holes in each collec-

tion path, such as point Pi + 1. To address this problem,

the distance-based spatial fingerprints interpolation algo-

rithm is selected, that is to calculate the mean RSS of

adjacent RPs and assign it to RPs that without RSS.

In the process of constructing the database, we consid-

ered the shielding factors of the human body for BLE

signal. At the same time, we consider the location fin-

gerprints of different paths including the heading angle

information, so we construct a multidirectional location

fingerprint database. For example, if the heading angle

of the path is 45° to 135°, the 90° direction database is

set. Accordingly, 0°, 180°, and 270° direction databases

are set up in turn. The RSS vector is expressed as

ψk
i ¼ ϕk

i;1;⋯;ϕk
i; j;⋯;ϕk

i;M

h iT

ð18Þ

where ϕk
i; jð1≤ i≤P

k ; 1≤ j≤M; 1≤k≤4Þ indicates the RSS

value from j-th anchor received at the i-th RP. Pk is the

number of RPs for the k-th direction database, and M is

the number of anchor in the indoor area. The fingerprint

database in the k direction can be expressed as

Λ
k ¼

ψ
k
1 ψ

k
2 ⋯ ψ

k
Pk

x1 x2 ⋯ xPk

y1 y2 ⋯ yPk

2

4

3

5

T

ð19Þ

Because of the particularity of environment, the num-

ber of RPs in each direction fingerprint database is dif-

ferent, and the interpolation process behind is based on

each direction database.

3.3 Fingerprint database interpolation

For convenience, we collect fingerprint data along the

tile side line of the site and the length of a square tile is

0.8 m. We collect fingerprints by two tiles, that is, the

particle size is 0.8 × 1.6 m2. Then, we continue to

interpolate the sparse fingerprint database, so that the

interval between the fingerprint database reference

points is 0.8 m, that is, to get a smaller fingerprint data-

base with smaller granularity.

Fig. 4 Fingerprint matching diagram

Fig. 5 Flowchart of the interpolation method
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3.3.1 Interpolation model construction

The general function approximation approach mainly in-

cludes polynomial interpolation [33], Kriging model [34],

neural network [35], and the RBF interpolation. The

RBF approach receives extensive attention because of its

advantages of less setting parameters and simple applica-

tion. In this paper, the RBF interpolation approach is

used to estimate RSS from the same anchor of RP in a

given area. In addition, we especially study the impact of

cut-off radius and shape parameter on interpolation pre-

cision. By optimizing the optimal values of the two pa-

rameters, the estimation error of new RPs RSS is

reduced.

The radial basis function is defined as a monotonic

function of the distance from any point x to center c in

space, which is express as

ψ x−cð Þ ¼ φ x−ck kð Þ ð20Þ

In this system, the Euclidean distance is applied to cal-

culate the distance between two RPs. The function space

composed of formula (20) and its linear combination

can approximate any object function.

The approach of constructing the RBF interpolation

model is described as follows. We set fx j;y jg
n

j¼1
∈Rd � R

as a sampling point coordinate set, the RBF interpolation

model is expressed as

f xð Þ ¼
X

N

j¼1

λ jϕ x−x j













� �

; x∈Rd ð21Þ

where λj is the weight coefficient of each sample point.
PN

j¼1 λ jϕðkx−x jkÞ is the base function.

Based on the coordinates set of sampling points, the

base function matrix is expressed as

ϕn�n ¼

ϕ x1−x1k kð Þ ϕ x2−x1k kð Þ
ϕ x1−x2k kð Þ ϕ x2−x2k kð Þ

⋮ ⋮

ϕ x1−xnk kð Þ ϕ x2−xnk kð Þ

0

B

B

@

⋯ ϕ xn−x1k kð Þ
⋯ ϕ xn−x2k kð Þ
⋱ ⋮

⋯ ϕ xn−xnk kð Þ

1

C

C

A

ð22Þ

According to ϕnxn and the RSS sequence of the same

anchor received at each sampling point, the weight coef-

ficient matrix (λ1λ2⋯λn) can be calculated by

Fig. 6 Floor plan of the target environment

Fig. 7 Photos of tag board and BLE anchor
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λ1
λ2
⋯

λn

0

B

B

@

1

C

C

A

T
ϕ x1−x1k kð Þ ϕ x2−x1k kð Þ
ϕ x1−x2k kð Þ ϕ x2−x2k kð Þ

⋮ ⋮

ϕ x1−xnk kð Þ ϕ x2−xnk kð Þ

0

B

B

@

⋯ ϕ xn−x1k kð Þ
⋯ ϕ xn−x2k kð Þ
⋱ ⋮

⋯ ϕ xn−xnk kð Þ

1

C

C

A

¼

y1
y2
⋯

yn

0

B

B

@

1

C

C

A

T ð23Þ

The condition for formula (23) to be solvable is that

ϕn × n is reversible. It has been proved that the above

equations have unique solutions when the sampling

points are different from each other [36]. Thus, formula

(23) can be further expressed as

λ1
λ2
…

λn

0

B

B

@

1

C

C

A

T

¼

y1
y2
…

yn

0

B

B

@

1

C

C

A

T
ϕ x1−x1k kð Þ
ϕ x1−x2k kð Þ

⋮

ϕ x1−xnk kð Þ

0

B

B

@

ϕ x2−x1k kð Þ ⋯ ϕ xn−x1k kð Þ
ϕ x2−x2k kð Þ ⋯ ϕ xn−x2k kð Þ

⋮ ⋱ ⋮

ϕ x2−xnk kð Þ ⋯ ϕ xn−xnk kð Þ

1

C

C

A

−1 ð24Þ

After obtaining the weight coefficient matrix, we bring

it into formula (21). By setting the coordinates of new

RPs as input, the RSS values of the corresponding an-

chor can be solved.

3.3.2 Parameter optimization

The commonly used radial basis function includes Gauss

distribution function of the Kriging method,

multi-quadric function of Hardy, and the inverse

multi-quadric function of Hardy. It has been proved in

[36] that linear equation (23) have unique solvability

when the kernel function is multi-quadric function, so

multi-quadric function is used as kernel function in this

paper. The base function formula can be expressed as

ϕ xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ xk k2
q

ð25Þ

where c is shape parameter, and ‖x‖ is Euclidean dis-

tance between two points.

The shape parameter mainly affects the value of the

base function. The authors in [37, 38] study the selection

of shape parameter. However, these methods are based

on the values of the sampling points, giving an empirical

formula or a direct assignment. At the same time, the

influence of condition number on the stability of the

basis function matrix is not considered.

In this paper, we use the two criteria of root mean

square error (RMSE) and the Pearson correlation coeffi-

cient Ppear [39] to select the optimized shape parameter

value. For the selected new sampling points, we measure

the real RSS sequences and obtain the RSS sequences es-

timated by using multi-quadric RBF interpolation algo-

rithm. The RMSE is the objective function, and

condition number of matrix is used as a constraint con-

dition, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

y xið Þ−s xi; cð Þð Þ2

n
¼ f cð Þ

v

u

u

u

t

ð26Þ

where y(xi) is real measured RSS value of point xi, s(xi, c)

is the estimated RSS value of point xi based on

interpolation approach, n is the total number of selected

sampling points, and c is shape parameter. The

optimization process is expressed as formula (27), and

the condition number is less than 1015 [40]. When the

above conditions are satisfied, c corresponding to the

max Ppear is selected.

(a)

(b)

Fig. 8 RSS change trend during the tests. a RSS change trend of

Anchor 2. b RSS change trend of Anchor 6
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argc min f cð Þ
cond ϕð Þ < 1015

	

ð27Þ

3.3.3 Interpolation process description

In this paper, the optimized multi-quadric RBF is

used to approximate the target function of RSS of

sampling RPs, so as to achieve the purpose of

expanding the sparse fingerprint database, as

shown in Fig. 5. We take the fingerprint samples

in one direction as an example. First of all, coordi-

nates and RSSs are extracted from sparse finger-

print database. Coordinates of non-sampling RPs

are determined based on interpolation interval.

Second, the optimal shape parameter is found

through GA, and cut-off area radius is obtained

(a) (b)

(c)

(e)

(d)

Fig. 9 RSS surfaces corresponding to different radius. a R = 3m. b R = 4m. c R = 5m. d R = 6m. e R = 7m
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based on the sampling fingerprints. Third, the cir-

cle cut-off area range is set with each

non-sampling RP as a center. In the cut-off area,

according to RBF interpolation approach, we con-

struct an RSS surface of all sampling points from

an anchor. Then we estimate RSSs of

non-sampling RPs from the same anchor. By tra-

versing all anchors, we can estimate the RSS se-

quence of a non-sampling RP. According to the

above process, the RSS sequence of each

non-sampling RP is estimated in turn. Coordinates

of non-sampling RPs and the corresponding RSS

sequences are combined stored into sparse finger-

print database.

4 Experimental results and analysis
4.1 Environmental layout

We select the first floor of an office building in school as

the target environment (with demensions of 65 m by 17

m). As shown in Fig. 6, area 1, area 2, and area 3 are test

areas, and the grey part is the non-test area. The target

environment is a typical office environment composed

of a corridor, a hall, and many indoor rooms. A total of

7 anchors are arranged in the environment, and the

location of the anchor is shown in the location of the

red small tower.

Our system consists of a portable tag board, several

BLE anchors, a server, and a gateway. Tag board embed-

ded CC2640 chip, including BLE module and sensor

module. BLE anchor takes CC2640 as the core chip, in-

cluding Bluetooth signal transmitting antenna. The ser-

ver is a computer. The photos of the tag board and BLE

anchor are shown in Fig. 7.

4.2 Parameter determination

4.2.1 Fingerprint sample capacity

There are seven anchors in the test environment, of

which Anchor 2 is in the corridor and Anchor 6 is in

the lobby. With Anchor 2 and Anchor 6 as representa-

tives, Fig. 8a and b show changes of pedestrian receiving

the RSS of the Anchor 2 and Anchor 6 respectively.

From this figure, we can find that the BLE fingerprints

collected dynamically by BLE platform have more stable

characteristics, besides the signal jitter. Therefore, we

Table 1 The difference between the estimated value and

measured value of RSS (dBm)

Coordinates Radius (m)

3.0 4.0 5.0 6.0 7.0

(41.8, 6.6) 5.3 5.2 1.9 2.0 2.0

(42.6, 6.6) 3.1 1.6 1.9 2.0 2.0

(45.0, 6.6) 0.2 4.2 3.2 4.0 3.9

(45.8, 6.6) 0.5 1.9 2.2 2.3 2.4

(37.0, 5.0) 2.2 7.7 0.5 0.5 0.4

(37.8, 5.0) 5.3 7.8 8.8 8.8 8.8

(40.2, 5.0) 1.4 5.2 1.5 1.5 1.5

(41.0, 5.0) 0.9 0.6 0.5 0.6 0.6

(42.6, 5.0) 3.2 1.4 1.4 1.5 1.4

(43.4, 6.6) 4.1 5.2 4.2 5.3 5.2

(44.2, 6.6) 3.7 1.9 1.9 1.9 1.9

(46.6, 6.6) 0.5 5.0 1.0 1.0 1.0

(38.6, 3.4) 3.0 3.1 2.8 2.9 2.8

(39.4, 3.4) 3.8 2.4 2.5 2.5 2.6

(40.2, 3.4) 2.1 2.2 2.3 2.3 2.4

(41.8, 3.4) 1.7 5.9 1.2 1.2 1.2

(42.6, 3.4) 1.2 6.3 2.1 2.2 2.2

(43.4, 3.4) 1.9 1.6 1.8 1.8 1.9

(45.0, 3.4) 5.8 5.6 4.2 5.2 5.1

(45.8, 3.4) 1.3 8.2 0.8 0.8 0.7

Fig. 10 CDFs of errors in localization under different cut-off radius

Fig. 11 Change curve of matrix condition number and RMSE
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only walk one way back and forth on the

pre-determined straight path, that is, collecting two dir-

ection fingerprint sequences on each path.

4.2.2 Cut-off radius

The multi-quadric RBF interpolation approach is se-

lected to estimate RSS values of new sampling points.

To verify the validity of this approach, we randomly se-

lect a sampling point that the coordinates is (37.8, 6.6)

and the measured RSS is − 61.09 dBm. Based on the co-

ordinates of sampling points and RSS of Anchor 7, we

obtain RSS surface. Figure 9 shows RSS surfaces corre-

sponding to radius of 3 m, 4 m, ⋯, and 7 m. From this

figure, the estimated RSS values for the reference point

are − 57.82 dBm, − 58.03 dBm, − 58.3 dBm, − 58.38 dBm,

and − 58.49 dBm respectively. Therefore, it is feasible to

estimate the RSS value of the new RPs by using RBF

interpolation algorithm within a certain range.

In order to select the cut-off area radius suitable for esti-

mating RSS values for most new RPs, we randomly se-

lected 20 test points to estimate the difference between

the RSS values and measured RSS values of these RPs, as

shown in Table 1. It can be seen that when the radius is 3

m and 4m, there exist large errors, and when the radius is

5m, 6m, and 7m, the estimation errors are similar and

the whole estimated errors are smaller. In addition,

through the statistical analysis of localization results of

several sets of test data, we get the CDFs of localization er-

rors, as shown in Fig. 10. We can find from this figure that

the interpolated fingerprint database is superior to the

non interpolated fingerprint database in localization per-

formance, so it is necessary to interpolate the sparse fin-

gerprint database. And when the cut-off radius is 5 m, the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 Correlation coefficients corresponding to different free parameters. a c = 0.01. b c = 1. c c = 5. d c = 10. e c = 20. f c = 30. g c = 40. h c = 50
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(a) (b)

(c) (d)

(e)

Fig. 13 Estimated locations by using different types of fingerprint database
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localization accuracy performs best, the probability of er-

rors within 3m is 76.58%.

Based on the above experimental results, we set the

cut-off area radius as 5 m.

4.2.3 Free shape parameter

Figure 11 shows the relationship between the matrix

condition number of base function matrix and shape

parameter and the relationship between RMSE of RSS

estimation and shape parameter. It can be seen that

when the range of changes in c is 0.01 to 50, RMSE in-

creases with the increase of c, and oscillates after c is 14.

The matrix condition number is more than 1015 when c

is 14. Figure 12 shows that when c equals to different

values, the Pearson correlation coefficient between the

estimated RSS values and the measured RSS values of 52

RPs. It can be seen that when c is 0.01, the overall cor-

relation coefficient is larger, that is, the estimated RSSs

is closer to the real RSSs. In addition, in order to deter-

mine the specific shape parameter, we determine that

the range of c is from 0.001 to 5 and we select a genetic

algorithm to optimize the shape parameter. By setting

the popsize 50, crossover probability 0.8, mutation prob-

ability 0.04, and number of iterations 200, the output

shape parameter is set to be 0.07.

4.2.4 Localization result

In the target environment, we complete the collection

work of Static Single Direction (SSD) database, Static

Multi Direction (SMD) database, Dynamic Multi Direc-

tion (DMD) database, Static Multi Direction based RBF

Interpolated (SMD-RI) database, and Dynamic Multi

Direction based RBF Interpolated (DMD-RI) database

proposed in this paper and analyze the localization per-

formance of the 5 fingerprint database through dynamic

test data. The test path starts from point A, along

Anchor 3 to point B, then to point C, point D, and point

E in turn, along the corridor to point F, and finally back

to point A along the original path. Figure 13 shows the

estimated locations using several fingerprint databases.

To further prove the result, the corresponding CDFs of

errors are shown in Fig. 14. From this figure, we can find

that the proposed fingerprint database is superior to

DMD, SMD-RI, and SSD fingerprint databases and

slightly poorer than SMD fingerprint database in terms

of localization performance.

4.2.5 Time cost for fingerprints collection

To compare the time cost of the five kinds of fingerprint

database construction approaches, we select 3 indoor

environments with different size, i.e., environment 1

with 256 m2, environment 2 with 374 m2, and environ-

ment 3 with 288 m2. As shown in Fig. 15, it can be seen

that the time cost for DMD-RI approach that proposed

in this paper is less than that of other approaches. By

taking environment 1 as an example, the proposed

DMD-RI approach requires collecting two direction RSS

samples on 5 paths in the hall and 1 long path in the

corridor, which cost 290(=5 × 16 × 2 + 65 × 2) s. In DMD

approach, the time cost is 1350(=10 × 3 × 16 × 2 + 65 ×

2 × 3) s, in which two direction RSS samples on 10 paths

in the hall and 1 long path in the corridor are collected

3 times. In the SSD approach, the time cost is

4160(=208 × 20) s, in which 20 RSS samples at each of

the 88 labeled RPs are collected. In SMD-RI approach,

the time cost is 7040(=88 × 20 × 4) s, in which 20 RSS

samples in 4 directions at each of the 88 labeled RPs are

collected. At last, the time cost for SMD fingerprint

database construction is 16640(=208 × 4 × 20) s, in which

20 RSS samples in 4 directions at each of the 208 labeled

RPs are collected (Fig. 15).

Fig. 14 CDF of errors under different approaches Fig. 15 Time cost corresponding to different approaches
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5 Conclusion
In this paper, we have proposed a new approach of redu-

cing the effort of fingerprint database construction for

indoor BLE localization by decreasing RSS sample cap-

acity, collecting the fingerprints dynamically and inter-

polating raw sparse fingerprint database by the proposed

DMD-RI approach. In the process of constructing a

sparse fingerprint database, the PDR result is more ac-

curate by adding error correction factors, and the accur-

acy of directional fingerprint database is better by

adding the heading angle. In the interpolation process,

we first optimize shape parameter and cut-off area ra-

dius and then use multi-quadric RBF approach to esti-

mate RSSs of new RPs, which makes the interpolation

accuracy higher. Extensive experimental results show

that the proposed approach is able to reduce much time

cost for fingerprints collection while maintaining high

localization accuracy. In the future, we will study the

construction of an accurate multi-directional fingerprint

database by extracting accurate crowdsourcing data.
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