
ACTA
UNIVERSITATIS
UPSALIENSIS
UPPSALA
2012

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Medicine 848

Cost-Efficient Designs for
Assessing Work-Related
Biomechanical Exposures

MAHMOUD REZAGHOLI

ISSN 1651-6206
ISBN 978-91-554-8556-6
urn:nbn:se:uu:diva-185526





 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      To my wife Noushin  
  

 



 

 



 

List of publications: 

Paper I. Mahmoud Rezagholi, Svend Erik Mathiassen (2010). Cost-Efficient 
Design of Occupational Exposure Assessment Strategies – a Review. The 
Annals of Occupational Hygiene; 54: 858-868. 
   
Paper II. Mahmoud Rezagholi, Svend Erik Mathiassen, Per Liv (2012). Cost 
Efficiency Comparison of Four Video-based Techniques for Assessing Up-
per Arm Postures. Ergonomics; 55:350-360. 
  
Paper III. Mahmoud Rezagholi, Apostolos Bantekas (2012). Optimizing the 
Fraction of Expensive Direct Measurements in an Exposure Assessment 
Study. Submitted.  
   
Paper IV. Mahmoud Rezagholi (2012). Deriving Cost-Efficient Strategies 
for Observational Assessments of Postural Loads. Submitted.  

 
 

  



 

 



 

Contents 

Introduction ..................................................................................................... 9 

Aims .............................................................................................................. 15 

Methodologies .............................................................................................. 16 

Conceptual and methodological framework ............................................. 16 

Error and information .......................................................................... 16 

Statistical efficiency ............................................................................ 17 

Input-output relationship ..................................................................... 17 

Costs .................................................................................................... 19 

Cost efficiency analysis ....................................................................... 22 

Methodologies applied in Papers I–IV ..................................................... 25 

Results ........................................................................................................... 33 

Paper I: Cost-Efficient Design of Occupational Exposure 
Assessment Strategies – a Review ....................................................... 33 

Paper II: Cost Efficiency Comparison of Four Video-based 
Techniques for Assessing Upper Arm Postures .................................. 36 

Paper III: Optimizing the Fraction of Expensive Direct 
Measurements in an Exposure Assessment Study ............................... 38 

Paper IV: Deriving Cost-Efficient Strategies for Observational 
Assessments of Postural Loads ............................................................ 40 

Discussion ..................................................................................................... 43 

Assumptions regarding data distributions and methods for estimations ... 43 

Additional systematic sources of error ..................................................... 45 

The effect of errors on exposure value ..................................................... 46 

Precision versus accuracy ......................................................................... 47 

The choice between advanced measurement technique and large 
samples ..................................................................................................... 48 

Evaluation of measures for statistical performance .................................. 50 

Output of an exposure assessment study .................................................. 52 

Input costs in short-run and long-run production ..................................... 53 

Important issues regarding elasticities in economic decision-making ..... 54 

The simple and obscure cost-output relationship ..................................... 55 

Uncertainties in the cost efficiency analyses ........................................... 57 

Current position and recommendations for future research ..................... 60 



 

Conclusions ................................................................................................... 62 

Acknowledgements ....................................................................................... 63 

Bibliography ................................................................................................. 64 

Appendix ....................................................................................................... 69 

  



 9 

Introduction 

In many countries, musculoskeletal disorders (MSDs) are a major cause of 
increased sickness absences and disability, and thus a major cause of social 
costs (Lubeck, 2003; Punnett and Wegman, 2004; Piedrahita, 2006). They 
are also a substantial cause of reduced work quality and labour productivity 
(Eklund, 1995; Piedrahita, 2006). Researchers in the field have shown that 
biomechanical exposures at work, which are assessed by postures, move-

ments, and forces (van der Beek and Frings-Dresen, 1998; Burdorf and van 
der Beek, 1999; Ebersole and Armstrong, 2006), are significant causes of 
MSDs (Tousignant et al, 2002; Punnett and Wegman, 2004). Biomechanical 
exposures at work have therefore been extensively investigated in order to 
contribute both epidemiologic and occupational ergonomic research for re-
ducing the occurrence of work-related MSDs (van der Beek and Frings-
Dresen, 1998; Spielholz et al, 2001; Punnett and Wegman, 2004). 

 
The assessment of MSD risk in different occupational groups, however, is 
dependent on access to reliable quantitative data on biomechanical exposures 
at work. Estimates associated with large error do not give sufficient infor-

mation about the exposures. Decisions must be made prior to designing as-
sessment studies for producing sufficient information about work-related 
biomechanical exposure variables. The main decisions when designing 
measurement studies of biomechanical exposures in workplaces are centred 
on the following three questions: 

 
1) Which technical method(s) should be used in collecting and ana-

lysing data on an exposure of interest? 

2) How many investigators (data collectors and data analysts) with 

which level of work intensity ought to be employed in exposure 

assessments? 

3) How many subjects and recordings per subject over time should 

be sampled? 

  

Answering the questions above will result in the respective identification of 
“appropriate” measurement technique(s), work design, and sampling strategy 
for the study. The capital (equipment and buildings), labour (investigators), 
and subjects used in an exposure measurement study are the inputs to the 
statistical production, while the information produced about biomechanical 
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exposure variables by using a specific combination of the inputs is the out-

put. 
  
To answer the first question, different techniques have been introduced in 
recent decades for assessing the biomechanical exposures, while acknowl-
edging different systematic sources of errors at different rates in using them 
(Winkel and Mathiassen, 1994; Burdorf and van Riel, 1996; Guangyan and 
Buckle, 1999; Burdorf and van der Beek, 1999; David, 2005; Stanton et al, 
2005; Takala et al, 2010). The measurement techniques introduced in these 
studies can be classified into three main groups: self-reports, observation 

methods, and direct technical methods. Each of these techniques is charac-
terized by a certain level of statistical and economic performance in expo-
sure measurement. Generally, self-reports such as questionnaires and inter-
views carry low costs (Trask et al, 2007) but also low statistical performance 
(Guangyan and Buckle, 1999; Spielholz et al, 2001). Direct measurement 
techniques are well-known for good statistical performance, but carry high 
costs both for equipment and for labour in terms of calibration and data 
analysis (David, 2005; Koppelaar and Wells, 2005). Observation methods, 
on the whole, are considered a “compromise” between the other two meth-
ods in terms of cost and statistical performances (Tousignant et al, 2002; 
David, 2005; Bao et al, 2009). Observational exposure assessments have 
therefore been widely used, from simple assessments by an expert at the 
worksite to advanced video-based techniques (De Looze et al, 1994; Juul-
Kristensen et al, 1997; Bao et al, 2007; Takala, 2010; Weir et al, 2011). 
Some observation methods are based on a work sampling approach, in which 
still images of the work are observed at certain time points (Watson and Mac 
Donncha, 2000; Weir et al, 2011), while others require the investigator to 
assess biomechanical exposures in a continuous sequence of work (Frans-
son-Hall et al, 1995; Burt and Punnett, 1999; Bao et al, 2007); obviously, the 
latter of these is more labour-intensive. These measurement techniques have 
also been evaluated and compared in terms of their appropriateness and 
agreement in assessment of different work-related biomechanical exposures, 
and thus their ability to produce information on the exposures (Winkel and 
Mathiassen, 1994; van der Beek and Frings-Dresen, 1998; Spielholz et al, 
2001; Tousignant et al, 2002; David, 2005; Bao et al, 2006; Teschke et al, 
2009; Dale et al, 2010; Gardner et al, 2010). Comparisons of these technical 
methods have also revealed that the methods can be complementary to each 
other in attempting to produce information on specific work-related biome-
chanical exposures (Kristensen et al, 2001; Village et al, 2009). Other meth-
ods of comparison are concerned with cost and feasibility (Trask et al, 2007; 
Trask et al, 2012). However, to date, techniques for producing information 
on work-related biochemical exposures have never been compared according 
to their ability to produce this information at low cost; that is, according to 
their cost efficiency. In evaluating and making decisions about a technical 
measurement method, neither its cost alone nor its statistical performance 
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alone is an important factor. The cost of implementing a technical method of 
exposure measurement should thus be evaluated in relation to its ability to 
produce information. 
  
In order to answer the second question, attention has been paid to appropri-
ate work designs in terms of the quantity and intensity of work required from 
the investigators participating in the exposure assessment studies, including 
the appropriate level of competence and experience (Ketota et al, 2001; Den-
is et al, 2002; Sullivan et al, 2002; Ebersole and Armstrong, 2006; Kazmier-
czak et al, 2006; Andrews et al, 2008). The question has been particularly 
topical since observation methods have been developed and widely used in 
exposure assessment studies. Appropriate work designs are then implement-
ed to reduce intra- and inter-observer uncertainties and thus increase the 
reliability of observational exposure assessments. However, a reduction of 
these uncertainties (i.e. an improvement of work design for exposure as-
sessment) can be achieved by employing skilled labour in the form of highly 
competent and experienced investigators and/or by increasing the compe-
tence and experience of the currently-employed observers. The quantity, 
quality, and intensity of the work performed by investigators in exposure 
assessments should thus be evaluated economically in the relevant studies. 
For this, the cost of labour in the exposure assessment studies is assessed and 
analysed in relation to the labour productivity; that is, the contribution of the 
investigators to the amount of information produced during exposure as-
sessments. 
  
In addition to measurement techniques and work designs, researchers in the 
field have attempted to provide appropriate sampling strategies in the expo-
sure assessment studies by answering the third research question. The aim 
was to determine an efficient number of subjects and exposure recordings 
per subject over time that would lead to reductions in important sources of 
random error in exposure assessments. Studies designing sampling strategies 
for measuring biomechanical exposures thus argue for the statistical power 
and precision provided by larger sample size at levels that are known with 
greater variability (Burdorf, 1995; Burdorf and van Riel, 1996; Hoozemans 
et al, 2001; Mathiassen et al, 2003; Nordander et al, 2004; Mathiassen and 
Paquet, 2010). Several important general guidelines for designing appropri-
ate sampling strategies have been presented and discussed (Burdorf and van 
Riel, 1996). A further method of optimizing sampling strategies is provided 
by equations that have been developed for determining the number of sub-
jects and the number of measurements per subject (Burdorf, 1995; Mathi-
assen et al, 2002), and for evaluating the precision of exposure means in 
terms of the variance between and within subjects (Mathiassen et al, 2003; 
Nordander et al, 2004; Jackson et al, 2009). The marginal effect of subject 
on the precision of the exposure mean estimate has also been addressed 
(Hoozemans et al, 2001). In addition, the ability of various sampling strate-
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gies to detect an intervention’s effect on the overall job exposure of an indi-
vidual worker has been assessed (Mathiassen and Paquet, 2010). However, 
the underlying strong assumption in these studies is that sampling at each 
stage has the same cost when the numbers of subjects and recordings are 
determined only by the between- and within-subject variances. The cost of 
sampling at each stage should thus be considered when strategies for biome-
chanical exposure assessments are assessed and/or optimized. Methodolo-
gies to optimize the allocation of resources between sampling units in differ-
ent stages have been available for a few decades (Cochran, 1977; Sukhatme 
PV et al, 1984). Further, when optimizing strategies devoted to assessing 
work-related biomechanical exposures by observation methods, the cost and 
statistical performance associated with work designs (i.e. the number of ob-
servers and their repeated assessments) should also be considered by re-
searchers in the field. 
        
The ability of a measurement design to produce information can be im-
proved by using more advanced technical methods for recording and as-
sessing exposures, recruiting qualified investigators, and increasing the 
amount of measurement inputs. However, this improvement may have an 
unwelcome price in terms of increasing cost. Thus, when choosing meas-
urement technique(s), work design, and sampling strategy for recording and 
assessing biomechanical exposures, the amount of information produced (the 
output) should be compared with the cost of the measurement inputs. The 
optimal choice in each category should be a compromise between the quanti-
ties of cost used and the information produced during exposure measure-
ment. A measurement design concerned purely with statistical performance 
is not necessarily optimal even if it produces a large amount of information 
(low error). Reducing bias and uncertainty may add substantially to the total 
cost of the statistical production, and the size of the reduction in the total 
error may not be worth the increase in the cost. The desired level of infor-
mation or the limits of the research budget should thus be considered in de-
signing exposure assessment studies. The optimal choice should either yield 
a sufficient level of information produced at minimum cost (i.e. a fixed-
output cost-minimized measurement design) or produce the maximum in-
formation at a given measurement input (i.e. a fixed-cost output-maximized 
measurement design). There are few studies in this research area, and most 
were published more than ten years ago; in addition, they were aimed at 
providing cost-efficient designs for assessing exposures other than the bio-
mechanical kind (Spiegelman and Gray, 1991; Spiegelman, 1994; Stram et 
al, 1995; Armstrong, 1995 and 1996; Lemasters et al, 1996; Duan and Mage, 
1997; Shukla et al, 2005; Whitmore et al, 2005). There is also a pure theoret-
ical study attempting to optimize a sampling strategy based on both cost and 
variance components (Mathiassen and Bolin, 2011). 
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The cost efficiency studies described above have applied methodologies both 
for optimizing resource allocation between different uses in exposure as-
sessment studies (Spiegelman and Gray, 1991; Spiegelman, 1994; Stram et 
al, 1995; Duan and Mage, 1997; Whitmore et al, 2005; Mathiassen and 
Bolin, 2011) and for comparing cost efficiency in alternative non-optimal 
measurement designs (Armstrong, 1995 and 1996; Lemasters et al, 1996; 
Shukla et al, 2005). The methodologies applied for optimizing resource allo-
cation can be used to aid decision-makers in either maximizing the quantity 
of information produced using the available resources or minimizing the cost 
of producing a certain level of information. The methodologies applied for 
comparing cost efficiency in alternative non-optimal measurement designs, 
however, are aimed at identifying the relatively most cost-efficient design 
for exposure assessment studies. 
   
Economic decisions have been made for allocating limited resources be-
tween direct technical and indirect methods in exposure measurement (Duan 
and Mage, 1997), between studies devoted to epidemiological research 
(Spiegelman, 1994), and between different stages in exposure assessments 
(Stram et al, 1995; Whitmore et al, 2005; Mathiassen and Bolin, 2011). 
However, the problem of allocating resources between the number of inves-
tigators and the number of repeated assessments has yet to be resolved.  
Economic decisions have also been made to determine the highest point at 
which more investment in increased accuracy is worthwhile (Armstrong, 
1995 and 1996), and to identify the relatively most cost-efficient measure-
ment designs among many alternatives in order to save resources or reduce 
random error (Lemasters et al, 1996; Shukla et al, 2005). However, the ap-
plied methodologies do not estimate the cost of producing additional infor-
mation based on the available measurement inputs. 
   
In economic decision-making on inputs to exposure assessments, three basic 
concepts are used: opportunity cost, efficiency, and marginalism. These are 
related to scarcity of resources, choices of different input combinations, and 
changes in exogenous economic parameters such as costs. Scarcity is related 
to the fact that the available resources are not sufficient to support all the 
activities we would like to use them for. Thus, we have to choose between 
the different ways of using the scarce (limited) resources in exposure meas-
urement. However, in choosing one way to use the resources we forgo other 
opportunities to use them; this is in fact a cost, namely the opportunity cost. 
Thus, we should allocate the scarce resources efficiently between different 
uses in an exposure assessment study. The concept of marginalism, for ex-
ample the cost of producing additional information on exposure or recruiting 
additional measurement input, is another important issue for economic deci-
sion-making. The quantity of inputs to exposure measurement such as in-
struments, equipment, laboratories, offices, investigators, materials, and 
subjects are the scarce resources that should be determined in order to im-
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prove statistical and economic performances. For this, decision-makers in 
the field need information about changes in costs as well as information on 
opportunity costs, for example the benefits forgone in statistical performance 
when the scarce resources are used on one specific design rather than anoth-
er design. The basic economic principles of opportunity cost, efficiency, and 
marginalism should always be followed when attempting to answer the three 
previously-mentioned research questions in designing exposure assessment 
studies. The derived solution can involve at most one of the following: 1) 
minimizing the cost of producing a predetermined quantity of information on 
the exposure, 2) maximizing the information produced for a given research 
budget, or 3) reducing cost and/or error by selecting the relatively most cost-
efficient design. By developing the theories and methodologies applied in 
the available cost efficiency studies, the important problems in providing 
cost-efficient designs for assessing work-related biomechanical exposures 
can be resolved. Appropriate methodologies are needed for examining the 
possibilities to reduce statistical error or to save economic resources by se-
lecting the relatively most cost-efficient design among alternative non-
optimal measurement designs. Appropriate methodologies are also required 
for optimizing resource allocation between direct technical methods and 
subjective methods in exposure assessments, between subjects and record-
ings per subject in a sampling strategy, and between the number of investiga-
tors and the number of repeated assessments in a work design.  
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Aims 

The overall aim of this doctoral thesis was to provide cost-efficient designs 
for assessing work-related biomechanical exposures by efficiently allocating 
the scarce resources to different uses in the exposure assessment studies. The 
specific aims for each study were: 
 

Paper I. To develop the theories and methodologies applied in the 
studies identified in a literature search through a critical re-
view, in order to gather guidelines for providing cost-efficient 
designs for work-related biomechanical exposure assess-
ments.  

Paper II. To compare the cost efficiency of four video-based techniques 
in assessing upper arm postures in order to identify the rela-
tively most cost-efficient assessment technique. 

Paper III. To optimize the fraction of expensive direct measurements in 
an exposure assessment study by resolving a precision-
requiring cost minimization problem. 

Paper IV. To optimize the cost and precision of a measurement strategy 
consisting of a two-stage sampling strategy and a two-stage 
work design devoted to observational assessments of postural 
loads at work.      
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Methodologies 

The basic quantities, concepts, issues, and tools used to resolve different 
decision problems in designing assessment studies of work-related biome-
chanical exposures are introduced below. They are first described generally, 
and then matched to the solution of each specific problem in Papers I–IV.  

Conceptual and methodological framework   

Error and information  
Biomechanical exposure data is the intermediate product to provide infor-

mation on the exposure. The exposure data is a set of objective facts about 
events at work that without further refinement has no value in occupational 
ergonomic researches. Exposure data is often incorrectly collected, and it is 
associated with error. Each statistical product, for example the exposure 
mean estimate, thus consists of unwanted error and wanted information. The 
quantity of information produced on the biomechanical exposure is consid-
ered to be high when the quantity of error in the exposure assessments is 
low. 
 
The error of an exposure assessment is the distance between the true expo-
sure and its approximate measure. The distance is caused partly by random 

sources of error, and partly by systematic sources of error. Random error is a 
result of taking only a sample of an occupational group instead of investigat-
ing the whole of the occupational group. Systematic error on the other hand, 
defined as constant deviation from actual value, consists of all errors that 
have sources other than sample estimation, such as improper application of 
measurement techniques, omission of variance components in assessing the 
precision of the mean estimate, and purposive subject selection. These two 
well-known types of error refer to sampling variance and bias respectively. 
Sampling variance is the average squared deviation of the sample mean ex-
posure from the group mean exposure over all possible samples M that could 

be drawn from the population. That is, 
2ˆ( )

ˆ( )Var
M

µ µ
µ

Σ −
= . Bias is the 

difference between the expected value of the mean exposure estimate and its 
true value: ˆ( )B E µ µ= − . The maximum possible information will be pro-
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duced when both bias and uncertainty are minimized. This is related to the 
concept of the mean square error (MSE) of the sample mean exposure, 
which is defined as the average squared distance between the true exposure 
and its estimate, squared so that positive and negative errors do not cancel 

each other out. That is, 2 2ˆ ˆ ˆ( ) ( ) ( )MSE E Var Bµ µ µ µ= − = + . The root of the 

mean square error shows the quantity of error produced during an exposure 
assessment study. This measure is used in Paper II for assessing the statisti-
cal performance of posture assessment techniques, while only random 
sources of error are considered in Papers III and IV for optimizing measure-
ment designs. 

Statistical efficiency  
Statistical efficiency can be assessed by quantifying the difference between 
the error-exposed estimate of a group mean exposure and its true value. The 
statistical efficiency of a measurement design, consisting of measurement 
technique(s) and strategy, refers to its ability to produce information on a 
specific exposure variable. The coefficient of statistical efficiency provided 
by a measurement design is defined as the minimum possible variance of an 
unbiased mean estimate for the given statistical resources divided by its cur-
rent variance (Hogg et al, 2005). An unbiased assessment of group mean 
exposure is thus efficient if the minimum possible variance is equal to its 
current variance. If the efficiency coefficient is equal to unity, the exposure 
assessment is absolutely efficient, in which case there exists a minimum var-

iance unbiased estimator (MVUE). If several measurement designs give 
unbiased estimates, the efficient design is the one that gives the most precise 
mean estimate of the exposure. A measurement design can also be relatively 
efficient if it produces less error than the alternatives under equal conditions. 
The concept of relative efficiency is used in the cost efficiency comparison 
of assessment techniques reported in Paper II.   

Input-output relationship  
The quantity of information produced is usually considered as the output of 
an exposure assessment study. For analysing cost efficiency, we need to 
know how the quantity of information is affected by measurement inputs 
such as subjects, offices and laboratories, instruments and other types of 
capital equipment, and particularly the investigators who collect and analyse 
the exposure data. The input-output relationship is a physical relationship 
that describes how the measurement inputs are transformed into the output 
information. 
   
Technological constraints: Only certain combinations of measurement in-
puts are feasible for producing a given amount of information about an oc-
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cupational exposure. The output is thus a function of technology and inputs 
according to the following production function: 

( , , )Y A f K L S= ⋅ ,        [1] 

where Y denotes the amount of information produced; A the technology; K 

the physical capital consisting of measurement instruments, other equipment, 
and buildings (offices and laboratories); L the labour (the investigators who 
collect and analyse the exposure data); and S the subjects. The statistical 
production function shows the maximum information that can be produced 
from a given combination of measurement inputs. This general form of sta-
tistical production function is applied in Papers I–IV in terms of different 
error equations.  
     
The isoquant plane offers an alternative way to describe the technological 
constraints. An isoquant plane shows all possible combinations of measure-
ment inputs that yield the same level of output (i.e. the same quantity of in-
formation), and thus shows the flexibility available to researchers when mak-
ing the decision of an appropriate input-combination to use. The shape of the 
isoquant plane (or isoquant curve when only two inputs are considered) de-
pends on the rate of substitution/complementation between the measurement 
inputs (cf. Figure 1 in the Appendix). Isoquants are used in Papers III and 
IV. 
  
Input productivity and marginal product of input: Researchers in the field 
have to make decisions about the quantity of measurement inputs. For this, 
they need to know how the amount of information changes as the measure-
ment inputs are incrementally increased; for example, they might want to 
know how the precision of a sample group mean exposure will increase if 
they measure one additional subject. The rate of this change is called the 
marginal product of the measurement inputs. While input productivity, or 
the average product of input i (APi), is the output per unit of the input, the 
marginal product of the input (MPi) measures the change in output resulting 
from an additional unit of the input. Naturally, if all inputs to the statistical 
production are allowed to vary, we would expect that the marginal product 
of a specific measurement input will diminish as we get more and more of 
that input when holding other inputs constant. The precision of a mean expo-
sure estimate will be improved by increasing the number of subjects and/or 
recordings over time. However, the gain in precision from increasing the 
units in a given sampling stage while holding units in other stages constant 
may diminish in size after a certain threshold (Hoozemans et al, 2001). As 
another example, when the labour input to collect exposure data is small and 
the measurement instruments are fixed, extra labour adds considerably to the 
amount of exposure data produced. However, when there are too many data 
collectors, some of them become ineffective in the production and the mar-
ginal product of labour falls. The concepts of input productivity and the 
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marginal product of the input are used when optimizing measurement de-
signs in Papers III and IV. 
 
Returns to scale: If all inputs to the statistical production are increased pro-
portionately, the amount of information produced would certainly change. 
This relative change gives information about returns to scale. When the 
amount of information is changed by the same proportion, that is, the degree 

of homogeneity is equal to one, the statistical production function is charac-
terized by constant returns to scale (CRS). However, if the amount of this 
change is less than the amount of change in the measurement inputs, that is, 
the degree of homogeneity is less than unity, the situation is characterized by 
decreasing returns to scale (DRS). When the degree of homogeneity ex-
ceeds unity, then the statistical production technology exhibits increasing 

returns to scale (IRS). If, for instance, the precision of a sample exposure 
mean is the output being produced by investigators and subjects, the statisti-
cal production technology exhibits CRS when a doubling of investigators 
and subjects results in a doubling of precision. If this doubling results in less 
than doubled precision or more than doubled precision, then the production 
technology is characterized by DRS or IRS, respectively. Returns to scale for 
the statistical production technologies are discussed in Paper I and measured 
in Papers III and IV. 

Costs    
Input costs: To assess the total cost of an exposure assessment study, it is 
necessary to estimate input costs such as license fees and project manager 
salaries, the user cost of capital (equipment and buildings), the cost of 
maintenance and technical support (repairs, services, and calibrations), the 
cost of recruiting subjects, the cost of labour for recording and analysing 
exposure data, the cost of energy and material used, the cost of educating 
and training investigators, and the cost of controlling the quality of the data 
produced. 
 

Accounting cost and economic cost: The total cost of an exposure meas-
urement study includes the user cost of physical capital and the rent paid for 
laboratory and office buildings. However, in some cases the research group 
already owns a working building and hence does not have to pay rent. While 
a financial accountant would treat this cost as zero, an economist would note 
that the group could have earned rent or some other return on the building by 
leasing it to another company or devoting it to another activity. This forgone 
rent/return is the opportunity cost of using the building for the exposure as-
sessment study. Similarly, an economist will take the forgone interest into 
account when calculating the user cost of equipment capital. We must thus 
distinguish between economic cost, which refers to the future performance of 
the research centre, and accounting cost, which focuses on the centre’s fi-
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nancial statement. Accounting cost consists of the actual expenses in an ex-
posure assessment study plus depreciation charges for equipment. Economic 
cost is the total cost to a research centre of utilizing resources in the assess-
ment study, including opportunity costs (i.e. costs associated with opportuni-
ties that are forgone when the resources are not put to their highest-value 
alternative use). The papers in this thesis consider the economic costs asso-
ciated with measurement designs. 
    
Input costs in the short run: The short run is a period of time in which the 
quantity of at least one measurement input remains unchanged during the 
statistical production (i.e. the assessment of biomechanical exposures at 
work). Thus, in short-run production, the total cost of exposure assessment 
consists of the fixed costs and variable costs. The fixed costs are those that 
do not vary with the level of output, and refer to the inputs that remain un-
changed during exposure assessment. Fixed costs can be recovered only by 
ending the exposure assessment study. The variable costs are those that vary 
as the output varies, and refer to the variable measurement inputs. Examples 
of fixed costs include licence fees, rentals, and equipment costs, while ex-
amples of variable costs include the cost of recruiting subjects and investiga-
tors. In Paper II both fixed and variable costs are considered, while in Papers 
III and IV all costs are considered to be variable. 
              
Input costs in the long run: The long run is the amount of time needed to 
make all measurement inputs variable. Thus, in the long run, all costs associ-
ated with the statistical production are variable. In this case, the user cost of 
capital (equipment and buildings), which usually remains unchanged in the 
short run, should be assessed. The user cost of capital is usually the total 
annual cost of owning and using a capital asset, and is equal to economic 
depreciation plus forgone interest as an opportunity cost. The inflation-
adjusted user cost of capital (UCC) can be expressed as a rate of capital val-
ue: 
UCC r PP= ⋅ ,   [2] 
where PP is the purchasing price, considered as the value of the capital esti-
mated in the market, and the rate is calculated as r =  depreciation rate+ in-
terest rate− inflation rate.  
 
Purchase prices can be amortized across the life of the asset. For example, if 
the price of a new measurement instrument is 40000 SEK and the working 
life of the instrument is five years (i.e. the depreciation rate is 20%), the 
amortized cost will be 8000 SEK per year. The amortized cost per year is 
viewed as the annual economic depreciation. If the forgone interest or finan-
cial return is 10%, while the inflation rate is 2%, the user cost of the meas-
urement instrument is then (0.20 0.10 0.02) 40000 11200+ − × =  SEK per 
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year. The estimated costs associated with different designs in Papers II–IV 
all include the user cost of capital. 
   
Isocost line equations: Cost constraints in the assessment studies of biome-
chanical exposures at work are shown by isocost line equations. The equa-
tions show all possible combinations of measurement inputs that can be pur-
chased for a given total cost. In the cost efficiency studies, the total cost of 
exposure assessment is mainly divided between capital (equipment and 
buildings) and labour (investigators), for each level of total cost. The isocost 
line equation is then defined as C w L r K= ⋅ + ⋅ , where w, L, r, and K stand 
for wages, labour, price of capital, and capital, respectively. Solving the 

equation for capital, an isocost line equation appears as 
C w

K L
r r

= − ⋅ 
 
 

. 

The slope of the isocost line, 
w

r
− 
 
 

, which is the opportunity cost, reveals 

that the research group may give up a unit of labour to purchase w/r units of 
capital while the total cost of the exposure assessment study remains un-
changed. For example, if the investigators are paid 200 SEK per hour and the 
user cost of capital estimated by equation [2] is 100 SEK per hour, the re-
search group can replace one hour of investigations with two hours of use of 
capital (i.e. equipment and buildings) in the exposure assessment study with 
no change in total cost. Thus, a capital-intensive measurement design is rec-
ommended in this case. Note that the possible input combinations in the 
isocost line (cf. Figure 2 in the Appendix) are all affordable but not neces-
sary optimal. There is thus no guarantee that an affordable input combination 
will either minimize the total cost or maximize the quantity of information 
produced. A comparative static analysis of the isocost line equation shows 
that: 1) if the given total cost changes and/or both input prices change in the 
same proportion, the slope of the isocost line (i.e. the opportunity cost) re-
mains unchanged, but the line shifts in parallel, and 2) an individual change 
in input prices or changes with different proportions in both input prices will 
lead to a change in the slope. 
   
Cost curves; average and marginal costs: Analysis of cost curves associated 
with the statistical production technology is another important issue in an 
economic evaluation of a measurement design. A decision-maker should be 
able to predict how the cost curves will change as the corresponding output 
changes when expanding or contracting the exposure assessment study. Fu-
ture costs may be estimated from curves relating a cost to the corresponding 
output that a research group can control. To predict cost correctly, we must 
know the underlying relationship between these variables. There are two 
important cost curves in producing data on biomechanical exposures: aver-

age cost and marginal cost, which are used to evaluate the measurement 
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design as a basis for decision-making regarding the level of output and the 
quantity of inputs. Average total cost, or simply average cost (AC), is the 
cost per unit output and is obtained by dividing the total cost by the output 
(e.g. the quantity of information produced on exposures). Marginal cost 
(MC) is the cost associated with producing one additional unit of the output 
(in this case, an additional unit of information produced on exposures). MC 
is obtained by differentiating the total cost function with respect to output. 
Least squares regression analysis is often used to fit the curve to the cost 
data. If the cost is proportional to its corresponding output, the average cost 
and the marginal cost are equal at each level of output. If, however, the cost 
is not strictly proportional to the output, the average and marginal costs di-
verge. Average and marginal costs of precision are compared in Papers III 
and IV. 
   
Price elasticity of demand: Another important tool for economic decisions 
around the quantity of measurement inputs is the price elasticity of demand

( )p

DE . According to common assumptions in microeconomics, the demand 

of an input will usually be reduced when its price increases (negative rela-
tionship). The own-price elasticity of demand for an input measures the re-
sponsiveness of the demand function for the input in percent towards a per-
centage change in its price; that is, the sensitivity of an input to the statistical 
production towards a change in its price. This concept is applied in Paper IV.   

Cost efficiency analysis  
The analysis of cost efficiency when producing information on biomechani-
cal exposures at work, regardless of specific application, is concerned with 
an attempt to trade off between the cost and the amount of information pro-
duced. The two main approaches to cost efficiency analysis in this research 
area are optimization of resource allocation between inputs to exposure 
measurement, and comparison of the cost efficiency in alternative non-
optimal measurement designs. The objective of the first approach is either to 
maximize the quantity of information using defined measurement inputs, or 
to minimize the cost of producing a predetermined level of information. The 
objective of the second approach is to identify the relatively most cost-
efficient measurement design that is able to produce more information per 
unit cost. 
   
Optimizing resource allocation: The optimization of resource allocation 
between different measurement inputs requires both an isocost line equation 
and a function that describes the input-output relationship; for example, a 
model relating the precision of a group mean exposure estimate to the given 
measurement inputs. Optimization analysis results in deriving a function that 
describes the cost-output relationship, such as a cost function showing the 
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lowest possible cost to achieve a given precision. The optimization is based 
upon some general assumptions. For instance, it is assumed that decision-
makers typically attempt to choose the most precise measurement design that 
they can afford. Researchers can also reasonably choose a cost-minimized 
measurement design that gives an acceptable level of precision. Thus, there 
are two approaches to optimizing exposure measurement designs: precision 

maximization and cost minimization. For producing information at optimum, 
the measurement inputs must be combined in one specific way. This input 
combination can be determined by finding the point where the isoquant 
curve touches the isocost line (or where the isoquant plane touches the iso-
cost plane, in cases where several measurement inputs are used). When the 
isocost line touches the isoquant curve at a point; that is, the slope of the 
isocost line is equal to the slope of the isoquant curve, the optimal choice is 
made. This tangent point offers either the cheapest or the most precise meas-
urement design. Thus, when using two measurement inputs, the condition 
holds when the ratio of the marginal products of the inputs is equal to their 
corresponding cost ratio, regardless of whether the aim is to minimize the 
cost of producing a predetermined quantity of information or to maximize 
the quantity of information produced for a given input. For instance, if the 
user cost of measurement equipment is twice the labour cost of investiga-
tions, the optimal input combination is where the marginal product of the 
measurement equipment is twice the marginal product of an investigator. If a 
SEK spent for measurement equipment is more productive than a SEK spent 
for an investigator, the decision-maker will want to use more equipment and 
fewer investigators in the exposure measurement design. However, if the 
decision-maker reduces the number of investigators and increases the 
amount of equipment, the marginal product of the investigator will rise and 
the marginal product of the equipment will fall so that the condition holds 
again. The optimization condition is used in Paper IV. 
  
The technical efficiency (TE) and productive efficiency (PE) of a currently-
used design are two aspects of its economic efficiency (Farrell, 1957; Kopp, 
1981; Maietta, 2000) that can be measured only when resources in exposure 
assessments are optimally allocated. The economic aspects of efficiency are 
measured by comparing non-optimal and optimal choices in terms of cost or 
precision. Technical efficiency, or equivalently physical efficiency, refers to 
the ability of a measurement design to produce information from a given 
quantity of measurement inputs and technology. Technical efficiency is 
measured as the precision actually produced divided by the maximum preci-
sion technically possible with the given measurement inputs and technology. 
The statistical production is thus technically efficient only along an isoquant 
curve where the precision of mean exposure cannot be increased by any oth-
er possible combination of measurement inputs. Technical inefficiency is 
caused by wasting measurement inputs and/or using the wrong production 
technology (i.e. inefficient combination of measurement inputs). The devia-
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tion of observed (current) precision from the maximized precision is a meas-
ure of the technical inefficiency associated with a measurement design. Pro-
ductive efficiency is defined as the ability of a measurement design to pro-
duce a well-specified precision at minimum cost. The cheapest input combi-
nation would be the point of tangency between an isocost line and the 
isoquant curve. In principle, a cost function will be used to estimate produc-
tive efficiency as the minimum possible cost divided by the current cost of 
an exposure measurement design. 
   
The efficiency indices indicate the cost savings through the elimination of 
inefficiency. The quantities 1 TE−  and 1 PE−  indicate the reduction in total 
cost if the inefficiency associated with technical and productive factors, re-
spectively, is eliminated. The concept of productive efficiency is applied in 
Paper III, while both technical and productive efficiency indices are applied 
in Paper IV. 
   
Comparing non-optimal measurement designs: A cost efficiency compari-
son of alternative non-optimal measurement designs can help decision-
makers allocate the available resources in such a way that error and/or cost 
will be reduced. To compare cost efficiency in alternative measurement de-
signs, researchers first need to assess the total cost and total error associated 
with each measurement design. In the comparison approach, with a short-run 
economic decision, all costs and errors are important and should be taken 
into consideration. Another essential component is appropriate measures 
incorporating the expected costs and errors associated with the alternative 
measurement designs. These measures can then suggest which of the alterna-
tive designs is appropriate for the statistical production. There are two gen-
eral research questions in this approach of cost efficiency analysis: 
  

1) Which of the alternative measurement designs produces information 
at lower cost? 

2) What is the cost of improving the statistical performance of a de-
sign?  

 
The first of these can be addressed using the concept of relative cost effi-

ciency (RCE), and the second using the marginal cost-benefit ratio (MCBR). 
The RCE measures the amount of information per unit cost that a measure-
ment design can produce, while the MCBR is defined as the marginal cost of 
an efficient design divided by its marginal benefit in statistical performance 
compared to the design traditionally used. The first measure is used in Paper 
II, and the second in Paper III. 
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Methodologies applied in Papers I–IV 
 
The aim in Paper I was to develop the theories and methodologies applied in 

the relevant studies through a critical review in order to provide cost-

efficient designs for work-related biomechanical exposure assessments. 
  
The review required a systematic search for gathering the relevant studies. 
Two search algorithms were used in the PubMed and ScienceDirect data-
bases: [cost∩ (precision∪ accuracy∪ power)∩ assessment∩ exposure] and 
(cost-efficient∩ validation study). The relevance of the identified studies 
was judged using three criteria: 1) addressing assessment of exposure varia-
bles, 2) consideration of both statistical and economical performance criteria, 
and 3) mathematical definition and solution of the cost efficiency problem. 
Nine studies were assessed as being relevant for a critical review. The analy-
sis of these studies was focused on three issues: 1) the statistical perfor-
mance criterion and the model applied to assess it, 2) the isocost line equa-
tion and economic performance criterion, and 3) the cost efficiency measure. 
 
The aim in Paper II was to compare the cost efficiency of four video-based 

assessment techniques.  
 
The four techniques, which differed in cost and statistical performance, were 
used to assess four aspects of arm postures of hairdressers at work via a 
number of films recorded in Umeå. The four aspects were defined by the 
mean angle of the upper arm, as well as the proportions of time that the hair-
dressers worked with their upper arm at an angle above 60°, above 90°, and 
less than 15°, respectively. The four video-based assessment techniques were 
based either on continuous observation (CO) or work sampling (WS). In the 
first technique (CO15), the observer watched 15 s of a 30 min video and was 
then asked to assess the four postures (120 video clips). In the second tech-
nique (CO120), 2 minutes of video were shown to the observer before asking 
for the posture assessments (15 video clips). In the third technique (WS15), 
the observer was asked to estimate the upper arm angle from video stills 
separated by 15 s (120 stills). In the last technique (WS120), which was used 
as a reference, the posture assessments were based on video stills separated 
by 2 minutes (15 stills). The assessment techniques were compared under 
four non-optimal measurement strategies which combined labour-intensive 
and labour-saving work and sampling designs (Table 1).  
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Table 1. Specification of the four simulated measurement strategies in terms of the number of observers 
(no), repeated assessments per observer (na), hairdressers (ns), and videos per hairdresser (nm). N gives the 
total number of assessments.  

 no na ns nm N 

MAMS 4 2 25 4 800 
MAFS 4 2 4 1 32 
FAMS 1 1 25 4 100 
FAFS 1 1 4 1 4 
 
Three sources of error were considered in assessing the statistical perfor-
mance of the alternative measurement designs: 
  
1) Random error: This is an error of non-observation that occurs when using 
a sample to estimate exposure. Because not all members of the occupational 
group were measured, the sample mean exposure is subject to random error. 
The uncertainty or dispersion of the sampling distribution of the sample 
mean was first shown by sampling variance. The squared root of sampling 
variance (standard error) was then used to quantify the random error. One 
property of random error is that it decreases as the corresponding sample 
size is increased. The precision of the sample mean exposure was estimated 
as the inverse of the standard error. 
 
2) Misspecification error: This type of error is caused by omitting some im-
portant sources of random error in the statistical error equation. It was im-
portant to assess both between-subject and within-subject variance, but due 
to the use of observational assessment techniques it was also necessary to 
assess between-observer and within-observer variance. Information about 
the amount of misspecification bias can be obtained by examining the differ-
ence between the expected “true” standard error (including all sources of 
random error) and the standard error excluding observation-based sources of 
random error. 
   
3) Measurement error: Error caused by observation methods carries a high 
risk of systematic error, and can be the largest source of error for many ex-
posure assessments. The behaviour of the observer, the status and calibration 
of the video camera, and the method by which the video films were observed 
could all lead to overestimation or underestimation of the posture variables. 
The labour input to the statistical production when processing data (entering, 
coding, imputing, weighting, and editing the posture data) was therefore 
identified as an error-producing unit. This factor of statistical production 
produces error as well as information, and hence affects the output specifica-
tion. Methods of reducing and assessing the measurement bias associated 
with the assessment techniques include the observers’ education and experi-
ence in collecting and analysing work-related arm postures, and the use of 
inclinometer measures.  
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The absolute error, ˆAE µ µ= − , estimated by the root of the mean square 

error of the mean posture estimate, 2ˆ ˆ( ) ( )MSE V Bµ µ= + , was used to 

quantify the total error produced by each assessment technique. The variance 
of the mean posture, ˆ( )V µ , was estimated as   

2 2 2 2ˆ ˆ ˆ ˆ
ˆ( ) bo bs ws wo

o s s m o a s m

V
n n n n n n n n

σ σ σ σ
µ = + + +

⋅ ⋅ ⋅ ⋅
, where 2ˆ

boσ , 2ˆ
bsσ , 2ˆ

wsσ , and 2ˆ
woσ

denote estimates of the variance between observers, between subjects, within 
subjects, and within observers, respectively; and no, ns, nm, and na 

represent 
the numbers of observers, subjects, recording days per subject, and repeated 
assessments per observer, respectively. The bias (B) was estimated using the 
difference between each assessment of a video recording and the corre-
sponding inclinometer measure. 
 
The total cost (TC) associated with each assessment technique was estimated 
as 

L F M S I K R E CTC C C C C C C C C C= + + + + + + + + ; that is, the sum of 

the cost of assessing postures (CL), the cost of recording the video films (CF), 
the cost of materials (CM), the cost of software (CS), the cost of introductory 
course and training for the observers (CI), the user cost of equipment includ-
ing economic depreciation and forgone interest (CK), the rental cost of office 
space required for performing the assessments (CR), the energy cost (CE), 
and the cost of post-observation quality control of data (CC). The cost of 
training included the costs of trainers as well as salaries paid to the supervi-
sory trainees. The labour costs (CL, CF, CS, CI, and CC) were estimated as 

LC w L= ⋅ , where w is the corresponding average wage per hour and L is the 

amount of working time. The user cost of equipment capital was estimated 
as 

KC r K= ⋅ , where K and r stand for the capital and the price of capital, 

respectively.      

The relative total cost, 
( )

( , )

( )

r

r i

i

TC
RTC

TC
= , and average relative efficiency, 

( )
( )

4

( , )
1

ˆ1

4 ˆ

rj

i r
j

ij

AE
ARE

AE

µ

µ=
= ⋅ ∑  (where 1,..., 4j =  indexes the four postures), 

were used to evaluate the economic and statistical performance of each al-
ternative assessment technique i compared to the reference r in assessing the 
four postures. 
   
The overall performance of the alternative techniques was assessed using the 
relative cost efficiency, which measures the amount of information per unit 
cost that an alternative assessment technique can produce compared to the 
reference technique. That is, ( , ) ( , ) ( , )i r i r r iRCE ARE RTC= ⋅ . When ignoring 
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economic considerations, the measurement design that produces more in-
formation is preferred. When instead ignoring statistical considerations, the 
measurement design that saves more resources (lower cost) is preferred. 
Considering both objectives in an exposure assessment study, the two basic 
measures (i.e. the relative total cost and the average relative efficiency) 
should be multiplied together to assess the overall performance of a design. 
If an assessment technique i produces more information per unit cost than 
the reference technique r, then it is relatively cost efficient ( , )( 1)i rRCE >  

and will therefore be preferred to the reference technique. The relative cost 
efficiency measure is theoretically based on the concept of utility from the 
statistical production. The expected utility of a measurement design, 

( )designE U , could be assessed by the inverse of its total losses; that is, its 

cost-error product, 1( ) ( , ) ( )designE U f TC AE TC AE
−= = ⋅ . The overall per-

formance of each measurement design was thus evaluated on the basis of its 
expected utility. 
 
To assess the effects of hidden costs (i.e. costs other than CL) and bias on the 
relative cost efficiency of the alternative assessment techniques, the overall 
performance was also estimated (i) using only the labour cost of posture 
assessment and (ii) with only random errors.   
 
The aim in Paper III was to optimize the fraction of expensive direct meas-

urements in an exposure assessment study by resolving a precision-requiring 

cost minimization problem. 
 
Two measurement techniques were assumed to be combined in an occupa-
tional exposure assessment study: one statistically efficient but expensive, 
and the other cheap but statistically inefficient.  
The combined exposure mean, ˆ

cµ , was estimated as 1 1 2 2ˆ ˆ ˆ
c f fµ µ µ= + , 

where 1µ̂ and 2µ̂ stand for the exposure means estimated by direct technical 

measurements and indirect subjective estimates, respectively; and f1 and f2 
denote the fractions of the direct measurements and subjective estimates, 

respectively. The precision of the combined mean, ( )ˆ
cP µ , was estimated as 

the inverse of the standard error of the combined mean, 

( )
1

2 2 2
1 1 2 2ˆ ˆ1

ˆ
ˆ( )

c

c

f f
P
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σ σ
µ

µ

−
+

= =
 
 
 

, while the total cost (TC) of the 

combined data-producing technique was expressed as ( )1 1 2 2TC N f c f c= ⋅ +

, where N is the total number of measurements;
 

2
1σ̂  and 2

2σ̂  are the mean 

variances estimated by the direct measurement technique and the indirect 
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subjective method, respectively; and 1c and 2c are the average unit prices of a 

direct measurement and an indirect subjective estimate, respectively. 
  
The total cost of the combined technique as a function of the precision, the 
mean variances, and the average unit prices was assessed for different frac-
tions of direct measurements by using the derived cost function 

( ) ( )2 2 2
1 1 1 2 1 1 1 2ˆ ˆ1 1TC P f c f c f fσ σ= ⋅ + − ⋅ + −      . The cost elasticity of the 

precision, C

PE , and the returns to scale, P

CE , were estimated as 
ln

ln

C

P

C
E

P

∂
=
∂

and 
ln

ln

P

C

P
E

C

∂
=
∂

, respectively, for an economic evaluation of the combined 

technology. We were particularly concerned with the scale of the exposure 
measurement study: did the combined production give a technological ad-
vantage that made the exposure measurement study more productive as its 
scale increased? This economic evaluation of the statistical production tech-
nology used the cost elasticity of precision, which is obtained by dividing the 
marginal cost divided by the average cost. Economy of scale, which relates 
to increasing returns to scale, is achieved when the marginal cost is less than 
the average cost. Conversely, diseconomy of scale, which relates to decreas-
ing returns to scale, occurs when the marginal cost is greater than the aver-
age cost. In the case of constant returns to scale, the marginal cost is equal to 
the average cost (cf. Figure 3 in the Appendix). A rational decision-maker 
(in this case, a researcher in the field) should not produce more information 
(improving precision) after the point at which AC MC= , otherwise the 
research firm risks diseconomy of scale. 
 
The constrained optimization problem regarding the hypothesized combined 
measurement technique was defined as a precision-requiring cost minimiza-
tion problem, which was chosen to be resolved in order to identify the opti-
mal fraction of direct technical measurements. Different combined tech-
niques were compared according to their productive efficiency (PE). The 
productive efficiency of each alternative technique was obtained by dividing 
the cost of the optimal choice by the cost of the alternative with the yielded 
precision kept the same. The cost savings (CS) made through elimination of 
the productive inefficiency associated with each non-optimal design were 
then estimated as 1 PE− .  
 
The cost of improving precision by one unit when using the two measure-
ment inputs was estimated with the marginal cost-benefit ratio, 

( ) ( )

( )

( ) ( )

 
j i

j

j i

TC TC
MCBR

P P

−
=

−
, which is the incremental cost of the introduced 

design j divided by the incremental benefit compared to the cheaper but less 
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precise design i. The incremental cost and the incremental benefit refer to the 
differences of the compared designs in cost and precision, respectively. 
  
To allow decision-making about the fraction of direct measurements and the 
extent of information produced on exposures, the shape (direction and curva-
ture) and size of changes in the total cost as a result of increasing the fraction 
and the level of precision were investigated. Thus, the marginal effects of the 
fraction and the precision on the total cost of exposure assessments were 

estimated by using the regression equations 2
1 1 2 1TC f fα β β= + ⋅ + ⋅

 
and 

2
1 2TC P Pα β β= + ⋅ + ⋅ , respectively. The sign of the 2β  coefficient gives 

information about the curvature of the relationship between the total cost and 
the fraction or precision, respectively. If 2β was not significantly different 

from zero, the relationship could be assumed to be linear. Hence, it was pos-
sible to have both a non-linear average cost curve (AC) and a non-constant 
but linear marginal cost curve (MC) in the cost-precision relationship. The 
marginal cost increases with P if 2β is positive (diseconomy of scale), and 

decreases with P if 2β  is negative (economy of scale). As formulated, if the 

cost-precision relationship is nonlinear, different values of AC and MC will 
be obtained. If the regression coefficient 2β  is not significantly different 

from zero, AC will be equal to MC (linear cost-precision relationship). The 
cost curve would be strictly concave if ´́ ( ) 0C P <  and strictly convex if 

´́ ( ) 0C P >  for all possible values of P. 

 
The models were used to optimize the fraction of direct measurements and 
also to evaluate different combinations of direct measurements by incli-
nometer (n1) and video-based observational estimates (n2) in assessing the 
proportion of time that the hairdressers in Paper II worked with their upper 
arm above 60°. 
 
The aim in Paper IV was to optimize the cost and the precision of a four-

stage measurement strategy devoted to observational assessments of postur-

al loads at work.  
      

The strategy chosen for optimization was a four-stage measurement strategy 
combining a two-stage assessment work design consisting of the number of 
observers (no) and the number of assessments per observer (na), and a two-
stage data collection procedure consisting of the number of subjects (ns) and 
the number of recordings per subject (nr). 
  
Two constrained optimization problems were defined for optimizing the 
measurement strategy devoted to observational assessment of a work-related 
biomechanical exposure: 1) minimizing the total cost of achieving an ac-
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ceptable level of precision (output constraint), and 2) maximizing the preci-
sion of the group mean estimate for a predetermined cost (budget constraint); 
both constrained optimization problems were solved by optimally determin-
ing the measurement inputs ns, no, nr and na. The isocost line equation for the 
four-stage assessment strategy was defined as 

s s o o r s r a s o r ac n c n c n n c n n n n⋅ + ⋅ + ⋅ + ⋅ , while the precision yielded by the 

measurement strategy was expressed as 

1
2 2 2 2 2ˆ ˆ ˆ ˆ
bs bo ws wo

s o s r s o r an n n n n n n n

σ σ σ σ
−

+ + +
 
 
 

, 

where 2ˆ
bsσ , 2ˆ

boσ , 2ˆ
wsσ , and 2ˆ

woσ  are the between-subject, between-observer, 

within-subject, and within-observer variance components, respectively and 
, ,s o rc c c , and

ac are the average variable costs of recruiting a subject, educat-

ing and recruiting an observer, producing one video recording, and perform-
ing an assessment procedure, respectively. The error equation describes the 
level of precision that can be reached by every possible combination of the 
four measurement inputs. 
 
For producing information at optimum, the measurement inputs must be 
combined in a specific way which can be determined by finding the point 
where the isoquant curve of precision touches the isocost line equation. 
Thus, for minimizing the cost of achieving a predetermined level of preci-
sion or maximizing the precision subject to a given budget, by using the four 

measurement inputs, the condition i i

j j

MP c

MP c
= would hold for any two meas-

urement inputs i and j. The optimality condition for each two measurement 
inputs then holds where the ratio of marginal products (MP) of inputs i and j 
(i.e. the proportional gain in precision from additional units of inputs i and j) 
is equal to its corresponding cost ratio. When the isocost line touches the 
curve of isoquant at a point (i.e. the slope of the isocost line is equal to the 
slope of the isoquant curve), the optimal choice for the four-stage measure-
ment strategy is found. This tangent point offers either the cost-constant 
most precise or the precision-constant cost-minimized measurement strategy. 
The economic decision thus has a dual nature. The optimal choice of meas-
urement inputs was analysed not only as the problem of choosing the lowest 
isocost line tangent to the statistical production isoquant, but also as the 
problem of choosing the highest isoquant curve tangent to a given isocost 
line. In principle, maximizing the precision subject to a budget constraint 
gives the same condition that was necessary for minimizing the cost of 
achieving a required precision. The error equation was used to derive the 
dual cost function, which measures the minimum costs necessary to achieve 
the predetermined level of precision. The derived cost function reveals: 1) 
how the total cost of production increases as the level of precision increases, 
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and 2) how the total cost changes as input prices change. The cost function 
was then rearranged to estimate the maximum precision that was possible 
with a fixed budget and the gain in precision that would be achieved by an 
increase in the budget. 
     
The optimal units in each stage were derived for the two approaches, and 
then two cost-efficient measurement strategies were compared with the non-
optimal measurement strategy to see whether they provided optimal solu-
tions. This comparison was performed by measuring productive and tech-
nical efficiency. The productive and technical efficiencies were measured by 
dividing the minimized cost and the maximized precision of the optimized 
measurement strategy by the cost and precision of the current measurement 
strategy, respectively. Then, the cost saved through elimination of produc-
tive inefficiency and the gain in precision through elimination of technical 
inefficiency were obtained by 1 PE− and 1 TE− , respectively.  
 

The cost elasticity of the precision ( )C

PE  and the returns to scale ( )P

CE  were 

estimated as 
ln

ln

C

P

C
E

P

∂
=
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 and 
ln
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C
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=
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, respectively, for an economic 

evaluation of the statistical production technology and decisions about the 
size of the production. Economy of scale related to increasing returns to scale 
is achieved when the marginal cost is less than the average cost, while dise-

conomy of scale related to decreasing returns to scale occurs when the mar-
ginal cost of improving precision is greater than the average cost; that is, the 
cost elasticity of precision is greater than unity. For situations with constant 
returns to scale, the marginal cost is equal to the average cost (cf. Figure 3 in 
the Appendix). A decision to produce more information (a higher level of 
precision) after the point at which AC MC=  can result in diseconomy of 
scale. 
 
The own-price elasticities of demand were estimated as tools for adjusting 
the demands to changes in costs and also for further economic evaluation of 
the statistical production technology. The own-price elasticity of demand for 
an input is elastic (sensitive to changes in cost) if it changes by more than 

one percent (i.e. 1p

DE−∞ < < − ) in response to a one percent change in its 

price, and inelastic (not sensitive to changes in cost) if it changes by less 

than one percent (i.e. 1 0p

DE− < < ) in response to such a change. The ap-

plied methodologies were then developed to resolve a practical problem 
associated with the optimization of discrete measurement inputs.      
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Results   

Paper I: Cost-Efficient Design of Occupational 
Exposure Assessment Strategies – a Review 
The few relevant studies clearly showed the need for providing cost-efficient 
designs for exposure assessment studies by developing the applied concepts 
and tools in balancing cost and statistical performance. Providing cost-
efficient designs requires well-behaved isocost line and error equations, in 
addition to data on input costs and sources of error. As the studies either 
compared non-optimal designs or optimized a design to exposure assess-
ments, they should have used specific assumptions and methods in their 
analyses. The models applied in each study for assessing statistical efficien-
cy, costs, and cost efficiency, were thus assessed on the basis of the objec-
tive and approach selected in the study. The concept of statistical efficiency 
in the reviewed studies, depending on the specific objective and approach, 
was expressed by indicators such as precision, accuracy, or statistical pow-

er. For optimization of a resource allocation, the most useful indicator of 
efficiency is precision, since any constant error produced in exposure as-
sessment does not influence the optimal determination of variable samples. 
The concept of statistical power could only be employed in an optimization 
approach with some difficulty. For evaluating and comparing different 
measurement methods, on the other hand, it is appropriate to use indicators 
that include both systematic and random sources of error. Likewise, includ-
ing the fixed costs associated with exposure measurement is important when 
evaluating or comparing alternative measurement designs. Hence, both fixed 
and variable costs are relevant in economic evaluation of designs where 
some measurement inputs are fixed. In studies optimizing resource alloca-
tion between inputs, where all inputs are allowed to vary, fixed costs should 
not be considered and included in the proposed isocost line equation, as they 
do not influence optimal solutions and economic decisions. The distinction 
between fixed and variable costs is thus important in cost efficiency analysis.  
 
Generally, the reviewed studies did not discuss whether the underlying as-
sumptions of the statistical models used for assessing precision of the mean 
exposure estimates were met; all studies employed a standard additive ran-
dom effects model. The studies paid much less attention to the cost structure 
and economic analyses than to error models and statistical interpretations. 
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For instance, it was often not clear which cost curves (unit cost, average 
cost, or marginal cost) or which input costs (capital cost, labour cost, energy 
cost, or material cost) were considered and estimated in the isocost line 
equations. Regardless of whether the objective of a cost efficiency study is 
comparison or optimization, the input costs should be correctly identified, 
estimated, and modelled; otherwise, the wrong decision might be made. The 
social costs of using imperfect information on exposure (i.e. error-exposed 
estimates), which are the opportunity costs of not using the adequate meas-
urement design, were not discussed in any of the studies, since the outputs 
were limited to the statistical performance of the exposure measurement 
design. Methods should also be developed for evaluating the social benefit 
of an exposure assessment study in monetary terms, so as to make it directly 
comparable to the total cost of the study. No studies considered the cost and 
productivity associated with the labour input, and none analysed the associa-
tions between minimized cost and statistical performance. The basic eco-
nomic assumption in the studies was linear homogeneity between inputs and 
output (i.e. constant returns to scale), which leads to the marginal cost of 
producing information and/or purchasing measurement inputs being equal to 
the average cost at each quantity level of produced information and/or 
measurement inputs. 
 
The various elasticities associated with statistical production are a funda-
mental issue to consider when making economic decisions on exposure as-
sessment, but these were not addressed by any of the reviewed studies. The 
cost elasticity of output would show the relative change in the (minimized) 
cost as a result of a one percent change in the level of information produced, 
while the price elasticity of demand would measure the responsiveness and 
sensitivity of an optimized demand function to changes in an input cost. 
These elasticities are important tools for economic decision-making in expo-
sure assessment studies. 
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Table 1. Characteristics of the cost efficiency studies reviewed in Paper I 
Reference Indicator of 

statistical  
efficiency 

Purpose Statistical  
assumption 

Cost estimation 

Lemasters et 
al. (1996) 

Precision Comparison of 32 
alternative  

sampling strategies 

Additive random 
error; three-stage 

sampling 

Cost is equal to the 
number of  

Measurements 
Shukla et al. 

(2005) 
Precision Comparison of 

alternative 
sampling strategies 

Additive random 
error; three-stage 

sampling 

Cost is equal to the 
number of  

Measurements 
Armstrong 

(1995, 1996) 
Accuracy Comparison of two 

measurement 
methods 

 

Existence of perfect 
measurement; 
single-stage  

sampling 
 

Two different  
variable costs for the 

measurement 
methods; same fixed 

cost for both  
methods 

Duan and 
Mage (1997) 

Accuracy Optimization of 
resource 

allocation between 
two measurement 

methods 

Correlation  
between 

indirect and direct 
measurements; 

single-stage 
sampling 

One cost component 
differing between 
direct and indirect  

measurement  
methods 

Spiegelman 
and 

Gray (1991); 
Spiegelman 

(1994) 

Discriminatory 
statistical power 

Optimization of 
resource 

allocation between 
main and  
validation 

studies 

Non-linear error 
model; 

single-stage  
sampling 

Two aggregate costs 
of main and  

validation studies 

Stram et al. 
(1995) 

Precision Optimization of 
resource 

allocation between 
two 

sampling stages 

Additive random 
error; 

two-stage sampling 
 

Two mixed cost 
components 

 

Whitmore et 
al. (2005) 

Precision Optimization of 
resource 

allocation between 
three 

sampling stages 

Additive random 
error; 

three-stage  
sampling 

Three cost 
components; fixed 

cost addressed 
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Paper II: Cost Efficiency Comparison of Four Video-
based Techniques for Assessing Upper Arm Postures 
Due to large differences in labour costs for posture assessments, costs were a 
dominant factor in the cost efficiency comparison of the four assessment 
techniques when the comparison was based on the labour assessment costs 
alone (RcE), regardless of measurement strategy; and also when using the 
labour-intensive measurement strategy MAMS with any model. Thus, the 
most labour-saving assessment technique was also, in general, the most cost-
efficient alternative for posture assessments. The effect of measurement 
strategies on the results showed that the cost savings gained by utilizing 
smaller work and sampling designs could allow for a more advanced as-
sessment technique. Moreover, the gains from the improved statistical per-
formance of larger work and sampling designs would compensate for the 
lower quantity of information produced by a simpler assessment technique. 
The labour-intensive assessment techniques were generally superior to the 
labour-saving techniques in terms of statistical performance. However, the 
additional labour used in the labour-intensive techniques (i.e. the incremen-

tal labour cost of these techniques over the labour-saving techniques) ex-
ceeded their incremental benefit in statistical performance. Thus, labour-
saving techniques generally appeared to be cost-efficient alternatives for 
posture assessments, relative to the labour-intensive techniques. 
  
For the most resource-intensive measurement strategy, the ranking of the 
four assessment techniques was not affected when costs other than labour 
costs for posture assessments were excluded, nor when bias in the assess-
ment of statistical errors was neglected. However, with a more resource-
saving measurement strategy, improvements of the cost efficiency model did 
influence which technique appeared to be preferable. 
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Paper III: Optimizing the Fraction of Expensive Direct 
Measurements in an Exposure Assessment Study 
 

Indefinite number of total measurements 

The total cost of measurements decreased significantly as the fraction of 
direct measurements approached unity. By using direct measurements in a 
combined technique, the researcher could thus improve the cost efficiency of 
the observation method. When the total number of measurements was indef-
inite, the optimal fraction of direct measurements that minimized the cost of 
achieving a predetermined level of precision was unity; that is, although 
direct measurements were more expensive, the cost could only be minimized 
by using direct measurements alone. Hence, a combined technique was not 
the optimal choice in this case. A combined technique was only appropriate 
to employ when the total cost was also predetermined.   
 
The regression analysis gave the result of

2
1 1264967 68811 224198TC f f= + ⋅ − ⋅ . Here, the autonomous cost of the 

statistical production (264967 SEK) is the cost of achieving the required 
precision by using observational assessments alone (cf. Table 3). The high 
value of 2β  (224198 SEK) shows the significant curvature of the cost func-

tion, and the negative sign of 2β shows that the cost will decrease at an in-

creasing rate for every unit by which the fraction is increased. 
  
In economics, it is hypothesized that cost curves will fall as the output in-
creases up to a certain level, and then begin to rise again as capacity is 
reached or diseconomies set in. However, in the present study, with the pre-
cision of the combined mean considered as output and the fraction of the 
direct measurements set as constant, the total cost of the combined meas-
urement technique increased with the output for all values of output, accord-

ing to the cost-precision association 232175C P= ⋅ . The measurement tech-
nology was characterised by decreasing returns to scale, which led to the 
marginal cost exceeding the average cost; that is, diseconomies of scale 
would prevail if the marginal benefit of producing additional information 
would be less than the marginal cost. 
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Table 3. Calculation of total cost (TC), total number of measurements (N), numbers of direct measure-
ments (n1) and indirect estimates (n2), productive efficiency (PE), and cost saving (CS) for different 
values of f1. Costs are in SEK, and all values are rounded to the nearest integer. The predetermined preci-
sion is 2.75.  

f1 11 f−  TC N n1 n2 PE (%) CS (%) 

0.00 1.00 264967 346 0 346 41 59 
0.10 0.90 269607 319 32 287 41 59 
0.20 0.80 269762 291 58 233 41 59 
0.30 0.70 265433 263 79 184 41 59 
0.40 0.60 256620 236 94 141 43 57 
0.50 0.50 243323 208 104 104 45 55 
0.60 0.40 225543 180 108 72 49 51 
0.70 0.30 203278 153 107 46 54 46 
0.80 0.20 176530 125 100 25 62 38 
0.90 0.10 145297 97 88 10 75 25 
1.00 0.00 109581 70 70 0 100 0 
 
Definite number of total measurements   
When the total number of measurements was predetermined, a combined 
technique could be optimal in terms of a constraint on either cost or preci-
sion. As an example, the precision for a research budget that could not ex-
ceed 100000 SEK was maximized by 1 0.2f = , while the cost of achieving a 

precision of at least 2 was minimized by 1 0.6f = . If the research budget 

increased from 92700 SEK to 117000 SEK, the increased budget allowed for 
30 more direct measurements instead of observational assessments, to im-
prove the precision by 0.295. MCBR values showed whether the necessary 
investment for improving precision of an optimal design by one unit could 
be funded. The higher the demanded precision, the lower the necessary in-
vestment. 
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Table 4. Calculation of total cost (TC) and precision of combined mean (P) for different values of f1. The 
cost of improving precision by one unit, MCBR, is calculated for the previous alternative. The total 
number of measurements (N), that is, the sum of direct measurements (n1) and indirect estimates (n2), is 
100. Costs are in SEK.   
N 

1f  11 f−  n1 n2 TC P MCBR 

100 0 1 0 100 76500 1.478 0 
100 0.1 0.9 10 90 84600 1.540 125011 
100 0.2 0.8 20 80 92700 1.612 109408 
100 0.3 0.7 30 70 100800 1.695 94514 
100 0.4 0.6 40 60 108900 1.791 80364 
100 0.5 0.5 50 50 117000 1.907 67000 
100 0.6 0.4 60 40 125100 2.048 54470 
100 0.7 0.3 70 30 133200 2.226 42834 
100 0.8 0.2 80 20 141300 2.460 32168 
100 0.9 0.1 90 10 149400 2.789 22567 
100 1 0 100 0 157500 3.297 14166 

Paper IV: Deriving Cost-Efficient Strategies for 
Observational Assessments of Postural Loads 
Demand functions for the four measurement inputs differed depending on 
the objective and constraint in the defined optimization problems. Cost-
minimized demand functions for the four measurement inputs were derived 
in relation to the required precision (P): 
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and the precision-maximized demand functions for the four measurement 
inputs were derived in relation to the budget constraint (B): 
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where
1 1 1 1

2 2 2 2ˆ ˆ ˆ ˆ
bs s ws r bo o wo ak c c c cσ σ σ σ= ⋅ + ⋅ + ⋅ + ⋅ .  

 
Regardless of the optimization problem, the demand of each input in each 
stage of the statistical production had a positive relation with its variability 
but a negative relation with its cost. An increase in an input cost principally 
decreased its input demand, but at the same time could increase the input 
demand in another stage due to the substitution effects in the statistical pro-
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duction. Further, an increase in the research budget when maximizing preci-
sion, or an increase in the required precision when minimizing cost, led to 
increasing the demands for subjects and observers but decreasing the de-
mand for assessments, because of lower productivity and cost savings. The 
demand function for recordings per subject was not, however, affected by 
any changes in the research budget or in the required precision. 
     
The measurement inputs in both approaches had inelastic demands, since the 
own-price elasticities of demand were less than one. This means that the 
input demands were not sensitive to changes in costs, and the optimized 
solutions were robust over slight cost-changing. 
    
The cost function of the statistical production, which shows the minimum 
amount of cost necessary to achieve a predetermined level of precision of 
mean estimate, was derived as 

( )21 1 1 1min 2 2 2 2 2ˆ ˆ ˆ ˆ
bs s bo o ws r wo aC P c c c cσ σ σ σ= ⋅ ⋅ + ⋅ + ⋅ + ⋅ , while the maxim-

ized precision as a function of budget was 
1

2
max

1 1 1 1
2 2 2 2ˆ ˆ ˆ ˆ

bs s bo o ws r wo a

B
P

c c c cσ σ σ σ
=

⋅ + ⋅ + ⋅ + ⋅
. As expected for optimali-

ty, the (minimized) cost and (maximized) precision functions derived from 
either optimization problem showed a duality. The derived cost function was 
increasing in the precision and in all sources of cost and variability. Because 
the statistical production was characterized by decreasing returns to scale, 
the marginal cost of improving precision was larger than its average cost, 
which could result in diseconomies of scale. 
 
The non-optimized measurement strategy applied in Paper II ( 4sn = ; 

4on = ; 1rn = ; 2)an =  for assessing working arm postures of hairdressers 

could be replaced either by the cost-minimized measurement strategy ( 6sn =

; 1on = ; 1rn = ; 5)an =  in order to save 12% of resources, or by the preci-

sion-maximized measurement strategy ( 6sn = ; 2on = ; 1rn = ; 2)an =  in 

order to improve the precision of the posture mean estimate by 7%. The pre-
cision yielded and the cost used by the optimized measurement strategies are 
given in Table 5.    
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Table 5: Precision and total cost of current non-optimized, cost-minimized, and precision maximized 
measurement strategies.       

 Measurement strategy ( )ˆP µ  TC 

Non-optimized 4sn = ; 4on = ; 1rn = ; 2an =  0.241 4392 

Cost-minimized 6sn = ; 1on = ; 1rn = ; 5an =  0.245 3867 

Precision-maximized 6sn = ; 2on = ; 1rn = ; 2an =  0.259 4200 
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Discussion  

Assumptions regarding data distributions and methods 
for estimations 
In the studies reviewed in Paper I and the data collection in Papers II–IV, 
cost and/or exposure data are assumed to be distributed normally. According 
to the central limit theorem, the costs and errors of sample mean assessments 
would approach a normal distribution with increasing sample size. However, 
sample sizes could not always be made sufficiently large. Exposure values 
may be assigned on the assumption that the data is log-normally distributed, 
and data analysis is then conducted on the natural logarithms of the original 
values. Empirical evidence indicates that some occupational exposures are 
quasi-log-normally distributed (Rappaport, 1991; Osvoll and Woldbæk, 
1999). If the distribution of occupational exposure data tends to be log-
normal, the ANOVA is usually fitted to log-transformed data (Loomis and 

Kromhout, 2004). Thus, 2exp  ( 0.5 )L LX X S= +  is the maximum likelihood 

(ML) estimate of μ. While both direct and ML estimates can be used at in-
termediate sample sizes (20 50)n≤ ≤ , the direct estimate of mean is more 

precise than the maximum likelihood estimate if the sample is small 
( 20)n <  (Rappaport, 1991). When the sample sizes are large ( 50)n > , the 

maximum likelihood estimates of the mean and variance of a log-normal 
distribution, although slightly biased, are more precise. Hence, when assum-
ing a log-normal model for occupational exposures, the mean and variance 
are not independent as in the case with the normal distribution. The assump-
tion about exposure data distributions should also be investigated for each 
particular exposure, for example working arm postures. 
         
Regarding assumptions about distribution of cost data, one should note that 
non-zero cost observations are typically truncated and skewed to the right 
(i.e. toward higher costs), and their distribution might be approximated by a 
log-normal distribution. Thus, the log-transformed data could approximate a 
normal distribution. The standard estimation of sample mean, which was 
used for cost assessments in the cost efficiency studies, then had the largest 
MSE because of the distribution of cost data. The ML estimator is usually 
applied when skewness is not high; otherwise, a conditionally minimal MSE 
estimator is recommended (Zhou). Mathematical methods such as non-
parametric estimation methods (Cooper et al, 2003), Bayesian statistics 
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(Lambert et al, 2008), and regression analysis (Lin, 2003) have been devel-
oped to estimate costs in the presence of uncertainty and incompleteness of 
data. However, these techniques cannot be applied in situations with very 
small sample sizes, as in Paper II (particularly around salaries). 
  
Collecting biomechanical exposure data at work is a much easier task than 
transforming it into useful information on the exposure variable. A large 
quantity of exposure data in the empirical exposure assessment studies does 
not necessarily translate to sufficient information on the exposure observed. 
Average measures and variance components were used in the cost efficiency 
studies to transform exposure data into useful information. There are three 

classical Pythagorean means: the arithmetic mean, 
1

1 n

i
i

A x
n =

= ∑ , the geomet-

ric mean, ( )
1

1

n n

i
i

G x
=

= ∏ , and the harmonic mean, 

1

1n

i
i

n
H

x=

=
∑

. The arithmetic 

mean was widely used in the studies reviewed in Paper I, and was also used 
in Papers II–IV. Generally, the arithmetic mean, which is usually simply 
called the mean, is the most useful measure of central tendency in statistical 
analysis, even when the data tends to be skewed, as here. Aside from its ease 
of use and comprehension, another reason for its usefulness is that it has the 
lowest variance and therefore a higher estimated precision. However, in or-
der to obtain an unbiased arithmetic mean and variance estimate, the sample 
estimates should be randomly selected and approximately normally distrib-
uted. 
 
The three means are ordered as A G H> > , and the special case A G H= =  
will occur if and only if all the observations of an exposure or an input cost 
have an equal value; that is, 1 2 nx x x= = ⋅⋅ ⋅ = . Geometric and harmonic 

means could also be applied, since the variables of interest (exposures and 
input costs) had positive values. The harmonic mean is appropriate for situa-
tions when the average of rates is wanted, such as the cost of shares pur-
chased each month. In comparison to the arithmetic mean, the harmonic 
mean tends more toward the lowest elements of the dataset. The log-average 
measure, which is simply the arithmetic mean of the log-transformed values 
of the measurement data, could also be used as a measure of average costs. 
  
In addition to the commonly used indicators of average or central tendency, 
the concept of the median could also be used; this identifies the value which 
lies at the centre of the measurements when they are ordered by size. This 
average measure is the most appropriate to use for observations (such as cost 
and exposure data) that are skewed. However, although it is recommended to 
use the median instead of the mean as a measure of central location in 
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skewed data, means were used for all applications in the studies reviewed in 
Paper I as well as Papers II–IV. This was often reasonable for cost assess-
ments, because the median could not be used to recover the total cost in each 
stage of the statistical production; analysis and prediction of costs require 
explicit functions, which cannot be provided by the median. However, there 
is no reason that the median could not be applied for exposure assessments. 
                        
While the estimation methods for variance components in the studies re-
viewed in Paper I were unclear, all variance components used in Papers II–
IV were estimated by the restricted maximum likelihood method. Other es-
timators for assessing variance components do exist, such as fitting con-

stants, but there is no widely-accepted “best” estimator for variance (Samu-
els et al, 1985). 
    
A computer-based bootstrapping technique could be applied to achieve un-
biased estimates of both the means and the standard errors of the means. The 
non-parametric bootstrap method is carried out in three steps: 1) re-sampling 
(with replacement) from the original sample and calculation of the bootstrap 
mean and variance, 2) repeating step 1 at least 1000 times in order to con-
struct an empirical distribution of estimated parameters, and 3) calculating 
the average of all bootstrap means and variances (Efron and Tibshirani, 
1986). The advantage of this empirical method is that it does not require any 
parametric assumptions concerning the underlying distribution of exposure 
and cost data. 
 
To summarize, the result of the cost efficiency analyses could be affected by 
the assumptions about data distribution on exposures and input costs, and 
also by the methods applied in the relevant studies for assessing means and 
variances. However, not all of the cost efficiency studies had paid enough 
attention to this possibility. Each specific cost efficiency study should con-
sider which types of estimators would be most appropriate for the data, and 
should particularly examine the assumptions they rely on. 

Additional systematic sources of error    
In Paper II, the measurement bias produced by the compared assessment 
techniques was assessed using inclinometer data, and attempts were made to 
eliminate misspecification bias by considering inter- and intra-observer vari-
ance. However, there are two other important sources of systematic error that 
were not considered either in Paper II or in the cost efficiency studies re-
viewed in Paper I. The two sources of error, which are important to consider 
in comparison of non-optimal measurement designs, are: 
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1) Frame error: Frame error or selection bias occurs when subject-sampling 
is performed purposively (rather than randomly with equal selection proba-
bility), as with the “convenience sample” used in Paper II. A randomized 
sample is representative of the underlying occupational group, and provides 
the possibility to improve the precision of the mean exposure estimate with 
no worry about increasing selection bias. Without randomization, the sample 
mean exposure is not an unbiased estimator of the group mean exposure. 
When sampling subjects purposively, the sample mean is in fact an estimator 
of the frame population mean. In cases where frame error exists, the occupa-
tional group mean is really a weighted mean of the covered (on the frame) 
and non-covered (outside of the frame) population. The amount of non-
coverage bias (frame error) is a product of the non-coverage rate and the 
difference between covered and non-covered means in the occupational 
group. 
   
2) Non-response error: Non-response error can appear when some important 
events on the exposure variable fail to be measured. The absence of subjects, 
refusals, instrument failure, incomplete response due to incorrect monitoring, 
too short a measurement time, and missing the most important periods of 
working time are some examples that could cause missed information about 
work-related biomechanical exposures. This type of systematic error is an 
indicator not only of statistical non-performance but also of economic non-
performance, when some statistical resources are wasted or ineffectively 
used. The estimated mean in cases where non-response bias exists is a 
weighted average of the estimated response and non-response means. The 
amount of non-response bias is a product of the non-response rate and the 
difference between response and non-response sample means. 
     
If these sources of systematic error had in fact been present in the posture 
assessment study in Paper II, our estimates of the total error produced by 
each technique would have been underestimates. Hence, the larger the con-
tribution of these error sources, the greater our underestimation of the total 
error. This underestimation, in turn, could lead to overestimation of the abil-
ity of the assessment techniques to produce information at low cost, with the 
amount of overestimation potentially depending on the specific technique. 
The reliability of the results of cost efficiency comparison study in Paper II 
could thus be reduced if the frame and non-response errors were large.      

The effect of errors on exposure value 
Most of the studies reviewed in Paper I, like the studies in Papers II–IV, 
used a linear additive random effects model to describe exposure variation. 
The model for a three-stage sampling design to assess work-related biome-
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chanical exposures is usually defined as 
sdq s sd sdqy µ ε ε ε= + + + , where µ is 

the group mean exposure, and , , and s sd sdqε ε ε are the errors caused by sub-

jects, days, and quantum, respectively. All errors have zero mean and vari-

ances of 2 2 2, , and s d qσ σ σ , respectively (Mathiassen et al, 2002). The group 

mean variance is thus the sum of the variance components at the three stag-
es. However, the variance of sample mean estimate formulated as 

22 2 ˆˆ ˆ
ˆ( )

qs d

s s d s d q

Var
n n n n n n

σσ σ
µ = + + is linear homogenous in the numbers of sam-

pling units , ,s d qn n n , which in economic terms represents constant returns to 

scale. As an alternative, multiplicative effects models defined as

( )sdq sdq s sd sdqy E y ε ε ε= ⋅ ⋅ ⋅  (Firth and Harris, 1991) for the same sampling 

design could be applied. Allowing the effects to have different rates, the 

model could be developed as ( )sdq sdq s sd sdqy E y
α β γε ε ε= ⋅ ⋅ ⋅ , which in loga-

rithm would be expressed as 

ln ln ( ) ln ln lnsdq sdq s sd sdqy E y α ε β ε γ ε= + ⋅ + ⋅ + ⋅ . While there is evidence 

that the effects are better represented as multiplicative than as additive in 
some other variables (ibid.), there is no evidence from working life examin-
ing whether the effects are additive and/or multiplicative. To summarize, 
cost efficiency studies should investigate more thoroughly whether assump-
tions concerning the effects of errors at different stages of sampling are met, 
since any deviation may jeopardize the results of cost efficiency evaluations 
of measurement designs. 

Precision versus accuracy  

The cost efficiency studies attempted to produce estimates of occupational 
group mean exposures at low cost. However, these estimates were often 
characterized by uncertainty and bias, and thus probably deviated from the 
true group mean exposures. Accuracy (unbiasedness) and precision (repro-
ducibility) were thus two dimensions of statistical performance associated 
with the measurement designs compared in the cost efficiency studies. While 
a precise estimate of mean exposure, which is robust over replications, re-
quires large sample sizes, an accurate exposure estimate, with a value close 
to the true exposure, calls for randomization of sampling, advanced technical 
methods, and highly competent investigators to record and analyse the expo-
sure data. Thus, increased economic resources should allow for increasing 
both the precision and the accuracy of exposure assessments. However, be-
cause random error is cheaply and routinely measureable and reducible by 
increasing sample sizes, and is defined in an explicit model, cost efficiency 
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studies have often focused on this type of error alone. Exposure assessment 
studies have generally preferred precision over accuracy of estimates; not 
always because of the difficulty and expense of recruiting skilled labour and 
acquiring advanced technical equipment, but often because of difficulties 
and expenses inherent in the randomization of sampling and the assessment 
of accuracy. Thus, there has been a tendency among researchers in the field 
to assume “non-biased” estimates and then to attempt to improve precision. 
Theoretically, one can assume that no bias is involved in an exposure as-
sessment study. In practice, however, even if we use advanced techniques 
and skilled labour, it is not realistic to believe that the bias can be eliminated 
completely. In addition, bias can appear not only in point estimates (mean 
exposure), but also in estimates of variance components, which affect the 
evaluation of precision and cost efficiency. 
  
A confidence interval for a group mean exposure may have a much lower 
effective confidence level because of the effect of bias. The confidence in-
terval constructed with a 95% confidence level is ˆ 1.96µ µ σ= ± , meaning 

that there is a 5% probability that the true mean exposure will diverge from 
its estimate by more than 1.96σ. Where bias exists, this probability increases, 
and the confidence interval changes to ˆ ˆ1.96 ( )MSEµ µ µ= ± . Hence, the 

larger the bias, the greater the probability of divergence. 
  
In Paper II, both the precision and the accuracy of the compared assessment 
techniques were considered in the economic decision, which is reasonable in 
the short-run case. Conversely, in Papers III and IV, no sources of systematic 
error were considered, as in the long-run case all the measurement inputs to 
be optimized were variable, and bias was assumed to be independent of these 
variable measurement inputs. However, when maximizing the precision of 
the mean estimate, while an increase in sample sizes can lead to reducing 
random error, it can unfortunately also lead to increasing some systematic 
errors (Biemer and Lyberg, 2003). Considering this, the large non-reducible 
systematic error (bias) in exposure assessments does not allow the researcher 
to optimally determine sample sizes in order to maximize the precision of a 
measurement design for a given research budget. More empirical research is 
needed to discover whether any type of bias is dependent on variable meas-
urement inputs. 

The choice between advanced measurement technique 
and large samples  
One challenge of decision-making in Paper II was the choice between a sim-
ple assessment technique with a more comprehensive measurement strategy 
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and a more advanced technique with a resource-saving measurement strate-
gy. The difficulty in decision-making could be eased by assessing the mar-
ginal effect of each measurement input on the precision (i.e. its marginal 
products) and the cost of reducing each source of error associated with the 
assessment techniques and measurement strategies. Generally, when inex-
pensive simple assessments of occupational exposures are selected over ex-
pensive advanced technical measurements, the resources saved by choosing 
the cheaper measurement method can then be used to recruit a more com-
prehensive measurement strategy. Investment in the measurement strategy, 
on the other hand, reduces the uncertainty (though at a declining rate) but not 
the bias, which is usually assumed to be independent of all sample sizes and 
may be quite large. Thus, once the sample sizes have reached a certain level, 
further increases can hardly reduce the total error any more. In addition, 
according to the results of Papers III and IV, the cost of improving precision 
is very high. Considering these facts, an increase in the research budget 
should now be used for employing more advanced measurement techniques 
in order to reduce bias. Compared to an expensive advanced technique, a 
cheaper measurement technique with a higher bias can be relatively cost-
efficient, since the variance of the currently used measurement strategy is 
much higher than the bias of the cheap method. On the other hand, the ex-
pensive advanced technique, which leads to increased accuracy, may be the 
cost-efficient choice since the improvement in precision by increasing sam-
ple sizes, partially or entirely, is negligible and costly. The results of Paper II 
could be more applicable in resolving short-run economic decision problems 
if the marginal products of measurement inputs and the costs of increasing 
precision and accuracy were assessed. When choosing between an advanced 
technical method with small sample sizes and a simple subjective technique 
with large sample sizes, the bias ratio B/σ is thus an important tool in the 
decision-making. If the current budget increases, the bias ratio determines 
the direction in which the increased resources should be used; for recruit-
ment of the advanced technical method, or increasing sample sizes. While 
the bias ratio is not an appropriate measure for statistical performance of the 
compared designs, because it does not consider absolute values of bias and 
uncertainty, it could be used as a decisive rule when allocating economic 
resources between measurement techniques and samplings in a measurement 
design. Usually, when using simple measurement techniques, a bias greater 
than half of the standard error caused by measurement strategy (sampling 
units) is considered to be large, and vice versa. If, however, the sampling 
units are sufficiently large, the bias ratio is required not to exceed 0.1 
(Biemer and Lyberg, 2003). 
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Evaluation of measures for statistical performance  

In the cost efficiency studies reviewed in Paper I, as in Papers II–IV, the 
statistical performance of an exposure measurement design was assessed 
with different measures such as sampling variance, standard error, validity 
coefficient, reliability, statistical power, and absolute error. When bias is 
expected in cost efficiency comparisons, as in Paper II, one should formulate 
the statistical performance including both variance and bias. If the objective 
of an exposure assessment is to estimate a parameter with some specified 
precision, as in Papers III and IV, then analysis of variance (ANOVA) is 
appropriate. The usual measures of the uncertainty of an estimate are sam-
pling variance and standard error of sample mean. These concepts are used 
to evaluate the precision of an exposure assessment. Standard error is pre-
ferred to sampling variance, because it has the same unit of measurement as 
the exposure variable itself. In addition, standard error is the measure that is 
used in constructing the confidence interval. However, coefficient of varia-

tion, which gives the standard error as a proportion of the mean, could give 
more information about the precision of a measurement design. The value of 
the standard error of the mean yielded by an exposure assessment design 
often does not give sufficient information for evaluating the precision of an 
exposure measurement design, unless it is compared with the value of the 
estimated mean exposure. If the size of the standard error is small relative to 
the size of the mean exposure estimate, the precision could be acceptable. 
Conversely, if the standard error is large relative to the size of the mean ex-
posure estimate, the precision of the measurement design may be unaccepta-
ble. As the coefficient of variation lacks any unit of measurement, it could be 
used to estimate the efficient cost of an exposure assessment design.  
 
If the precision of the mean estimate is measured by the inverse of the sam-
pling variance, the statistical production shows constant returns to scale, as 
in the studies by Stram et al (1995), Whitmore et al (2005), and Mathiassen 
and Bolin (2011). In this case, the marginal cost of improving precision is 
equal to its average cost. If, however, the precision is measured by the in-
verse of the standard error of mean, as in Papers II–IV, the statistical produc-
tion shows decreasing returns to scale. In this case, the marginal cost of im-
proving precision exceeds its average cost. The precision of an exposure 
measurement design has also been evaluated by the stability of intraclass 
correlations (Donner and Eliasziw, 1987; Shoukri et al, 2003). In a two-stage 
sampling strategy, for instance, the intraclass correlation within subjects is 

defined as the proportion of the total exposure variation, 
2

2 2
bs

ws

bs ws

σ
ρ

σ σ
=

+
, 

where 2
bsσ and 2

wsσ are between- and within-subject variances, respectively. 

The variance of intraclass correlation can then be estimated as
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( )
( 1)s

MSB MSW
Var

MSB n MSW
ρ

−
=

+ −
, where MSB and MSW are between-subject 

and within-subject mean square, respectively. Like the coefficient of varia-
tion, this measure lacks any measurement unit; it could also be used for cal-
culating the efficient cost of the alternative designs in Paper II. 
           
When comparing the cost efficiency of alternative measurement designs, the 
appropriate measure of statistical performance is the absolute error estimated 
by the root of mean square error, as employed in Paper II. Assuming no bi-
ases for the alternatives in exposure assessments, the design that produces 
less random error at the same cost is the appropriate design to implement. 
However, where bias exists, ignorance of all sources of systematic errors 
(biases) can lead to the identification of the wrong measurement design. The 
results of Paper II reinforced this statement; when the measurement bias was 
ignored in the model, the bias-exposed assessment technique WS15 was 
identified as cost-efficient for the most cases. Precision represents only one 
dimension of statistical performance in comparing non-optimal measurement 
designs in a short-run economic decision (i.e. where some measurement 
inputs are fixed). The root of ˆ( )MSE µ  includes all types of error produced 

during exposure assessment, and is therefore the most appropriate measure 
for evaluating the informative value of statistical products in this case. By 
selecting the design that produces less mean square error in relation to the 
alternatives, researchers aim to improve both precision and accuracy (i.e. the 
amount of information produced). 
 
Bias was assumed to be independent of the variable measurement inputs in 
the optimization-based studies in Papers III and IV. Thus, bias is not usually 
considered when determining the quantities of variable measurement inputs 
(i.e. in long-run economic decisions). In this approach, not only precision but 
also (with some difficulties) reliability and statistical power could be em-
ployed for assessing the performance of statistical production. However, the 
possibility of using reliability and power was not investigated and examined 
in Papers III and IV. Discussion about the choice between precision and 
power/reliability in sampling optimization is still ongoing. While minimizing 
the random error is an important objective in biomechanical exposure as-
sessment studies, most data analysts are interested in maximizing the power 
of their hypothesis tests (Cohen, 2005). The statistical performance of an 
exposure measurement design has been measured by its statistical power 
(Spiegelman and Gray, 1991; Spiegelman, 1994). For a power calculation, 
we need to know parameters α and β, which denote respectively the proba-
bilities of type I error (null hypothesis, H0, is rejected when it is, in fact, true) 
and type II error (H0 is accepted when alternative hypothesis, Ha, is, in fact, 
true). The power of a statistical test, or the probability that the test would 
lead to rejection of the null hypothesis that was false, is then 1 β− .  
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In principle, the smaller the variance, the greater the power, so the problems 
are equivalent. However, the relationship between variance and power is 
nonlinear, so is could be difficult to determine sample sizes that would yield 
a particular power for a fixed significance level (Cohen, 2005). On the other 
hand, sample size determination based on the expected confidence interval 
width could be misleading if the expected intervals are not “centred” with 
respect to the specified values (Greenland, 1988). 

Output of an exposure assessment study  
The output of each exposure assessment in the cost efficiency studies re-
viewed in Paper I and the studies reported in Papers II–IV was the quantity 
of information on the exposure. The absolute error of the mean, 

ˆ ˆ ˆ( ) ( )AE MSEµ µ µ µ= − = , was used in Paper II to assess the quantity of 

information produced by alternative assessment techniques. However, there 
is no method to perfectly calculate the absolute error, since the true exposure 
is not known. The estimation of the quantity of information produced can 
thus itself be exposed to a large error, while the quantity cannot be compared 
with the cost of producing it as they are measured by different measurement 

units. The standard error, ˆ ˆ( ) ( )SE Varµ µ= , was employed in Papers III 

and IV to assess the quantity of information produced by the applied meas-
urement designs. However, the statistical production could not be economi-
cally evaluated since the marginal benefit of producing information was 
unknown. The quantity of information produced by a measurement design, 
expressed in terms of precision and/or accuracy, is not the only output of an 
exposure assessment study. In addition to the quantitative criteria, there are 
qualitative criteria such as relevancy, timeliness, consistency, accessibility, 
comparability, and completeness (Biemer and Lyberg, 2003) for evaluating 
the usefulness and social benefits of the information produced on different 
exposure variables. Although both the quantity and quality of information 
produced on biomechanical exposure are important for assessing the value of 

information (VOI) produced in exposure assessment studies, the cost effi-
ciency studies reviewed in Paper I and described in Papers II–IV were con-
cerned only with the quantity of information produced. The VOI can be ap-
plied to assess the output of assessment studies on work-related biomechani-
cal exposures in terms of money; that is, in the same terms in which the cost 
of producing information on the exposures is assessed. In health economic 
analysis, the benefits of a health care intervention in terms of both quantity 
and quality of life are assessed by “willingness to pay” (Goossens et al, 
1999; McIntosh et al., 2010). The quantity and quality of information pro-
duced about an exposure of interest can also be assessed in monetary terms, 
based on the same approach. The information produced on an exposure to 
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musculoskeletal disorders can be used in providing an appropriate preven-
tion program. Assuming the total social cost caused by the exposure will be 
clearly reduced by applying the prevention program, the information pro-
duced by the exposure assessment study can easily be valued in terms of 
money. All the positive results of the prevention program, such as reduction 
of sickness absences across the occupational group, and increasing of work 
quality and productivity, are benefits to society that are usually expressed in 
monetary terms. The VOI is the amount of money a decision-maker would 
be willing to pay for information about an occupational exposure of interest, 
prior to making an economic decision about producing the information. Sta-
tistical efficiency (precision and/or accuracy) is only one factor determining 
the amount of money a decision-maker would be willing to pay for the in-
formation; the value of the information produced is also determined by the 
usefulness of the information in further research and the expected social 
benefits of using the information.  

Input costs in short-run and long-run production 
The reliability of the results of the studies described in Papers I–IV could be 
improved if more attention was paid to model construction and parameter 
estimation regarding input costs. Only by correctly formulating the total 
input costs that have been used to produce the information can the resources 
be optimally allocated and the cost-efficient measurement design identified. 
  
The curvature of cost developments: The cost efficiency studies did not 
investigate how the input costs developed as a function of the measurement 
inputs. This development depends on the type of exposure assessment study. 
If the exposure assessment study is carried out in the short run, as in Paper 
II, the curvature of the variable input costs development should be investi-
gated in order to estimate and predict costs correctly. Assessment of labour 
costs should be based on this investigation, since labour productivity growth 
is usually fast in the beginning of the statistical production. The average 
variable costs in the short run then develop non-linearly with the quantity of 
measurement inputs. Thus, the cost efficiency comparison in Paper II, as a 
short-run economic decision, should not ignore the development of costs. 
The cost model used in Paper II should allow the variable costs to vary non-
linearly with the number of measurement inputs. 
      
However, if the exposure assessment study is carried out in the long run, 
stable average variable costs with linear characteristics as a result of stable 
labour productivity should be considered, as in Papers III and IV. 
  
The user cost of capital: In Papers II–IV, the opportunity cost associated 
with physical capital was calculated using the forgone interest or financial 
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return. However, a more accurate method would reflect an investment with 
similar risk, and include a risk premium according to the Capital Asset Pric-

ing Model ( )f m fr r r rβ= + − , where 
fr is the risk-free rate of interest or 

expected return of the risk-free rate, 
mr is the expected return on the stock 

market, and β measures the asset’s non-diversifiable risk. It is also worth 
mentioning that 

m fr r− is the risk premium on the market. 

 
Which costs matter? In Paper II, all fixed and variable costs were assessed, 
while in Papers III and IV only the costs associated with variable measure-
ment inputs were considered. In principle, when identifying measurement 
inputs and selecting a model for calculating their costs, the type of statistical 
production (i.e. whether the exposure assessment study is performed in the 
short or the long run), the methodology of the cost efficiency analysis (i.e. 
how an economic decision is made in exposure assessments), and the output 
of the statistical production (the amount of exposure data recorded, preci-
sion, accuracy, etc.) and its specific definition (i.e. error equation) are con-
sidered. In short-run economic decisions on non-optimal measurement de-
signs, as in Paper II, fixed costs should be assessed because at least one 
measurement input will remain unchanged in the exposure assessment study. 
In optimizing the variable measurement inputs, however, only costs related 
to the variable measurement inputs to be optimized will be considered in the 
isocost line equations, because no input remains unchanged during the study. 
Assessing exposures in the long run is thus the usual underlying assumption 
in optimization-based studies. In these studies, as in Papers III and IV, the 
isocost equation should be referred to the same variables that are shared by 
the error equation. The input costs considered in the isocost equation must 
thus follow the measurement inputs defined in the statistical model.   

Important issues regarding elasticities in economic 
decision-making  
In Paper IV, own-price elasticities of demand for four measurement inputs 
were estimated as an important tool in making a decision on the quantity of 
the measurement inputs. The demand for a measurement input may also 
change as a result of a change in the price of another measurement input. 
This occurrence is called cross-price elasticity of demand, which measures 
the percentage change in demand for an input as the price of another input 
changes by one percent. The two measurement inputs are substitutes if the 
cross-price elasticity is positive, and are complementary to each other if it is 
negative. The estimation of cross-price elasticities of demand for the meas-
urement inputs optimized in Paper IV could thus be used for further econom-
ic analysis.  
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Another important issue of elasticity, which could be assessed in Paper IV 
for advanced economic analysis, is the elasticity of substitution. Elasticity of 
substitution between any two measurement inputs,

ijσ , measures the per-

centage change in the ratio of inputs resulting from one percentage change in 
the corresponding price ratio. It is usually introduced as a measure of the 
relationship between the technical rate of substitution (TRS) and the input 
ratio. A positive value of 

ijσ indicates that inputs i and j are substitutes, 

while a negative value of 
ijσ  indicates complementary inputs. The greater 

the elasticity of substitution, the greater will be the input substitution effects 
of changes in input prices; 0.5ijσ >  indicates strict substitutability between 

the two inputs. There are thus both substitution and complementation proper-
ties in the composited measurement inputs to produce information on any 
biomechanical exposure at work. The degree of complementarity and substi-
tutability are different between different measurement inputs and in different 
situations. For instance, measurement instruments and data collectors are 
strictly complementary inputs in producing information on an exposure 
when the measurement instrument and the skill of data collectors cannot be 
developed. However, they can also be substitute inputs to the statistical pro-
duction when they are characterized by development opportunity. As a con-
trary example, in Paper III, direct technical measurements and indirect sub-
jective estimates were assumed to be strict substitutes in exposure assess-
ment. However, they could be complementary inputs when the information 
produced by each technique was not complete for further exposure analysis. 
The shape of isoquant curves is therefore used for mapping the TRS (i.e. the 
slope of isoquant curve) and then making decision about the quantity of any 
two measurement inputs. The TRS gives information about the amount of a 
measurement input that a researcher is willing to give up in order to employ 
one additional unit of another input for producing information on an expo-
sure. Hence, the TRS decreases as we move down the isoquant curve until it 
reaches and even falls below unity (cf. Figure 1 in the Appendix). 
          
Finally, the elasticity of cost and the elasticity of marginal cost with respect 
to one input price could also be used to evaluate the responsiveness of the 
minimized or marginal cost towards a change in an input price.        

The simple and obscure cost-output relationship   
Simplicity: The simple additive effects model, which describes the input-
output relationship and is used in Papers II–IV and the cost efficiency stud-
ies reviewed in Paper I, is the cause of simplicity in the cost-output relation-
ship. The specifications of the cost-output relationship derived from the op-
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timization analysis are determined by the specifications of the input-output 
relationship considered. A major reason to employ the traditional model in 
assessing the precision of the data produced in the optimization-based cost 
efficiency studies is the practical need for closed solutions for optimizing 
resource allocation. However, as the isocost line equation had to be con-
structed according to the traditional statistical model, the (minimized) cost 
function was also affected by the property of the model. If the precision is 
defined as the inverse of the mean variance, as in the optimization-based 
studies reviewed in Paper I, the statistical production exhibits constant re-
turns to scale; the marginal cost is equal to the average cost in each level of 
production. The cost-output association in this case is modelled as
C Pα β= + ⋅ . If, however, the precision is defined as the inverse of the 

standard error of mean, as in Papers II–IV, the statistical production shows 
decreasing returns to scale; the marginal cost is twice the average cost. The 

cost-output relation in this case is best modelled as 2
1 2C P Pα β β= + ⋅ + ⋅  

(cf. Paper III). If neither the average cost nor the marginal cost curve are 
allowed to be linear, a cubic function such as 

2 3
2 3C P P Pα β β β= + ⋅ + ⋅ + ⋅ could be used for illustrating the cost-output 

relationship. The cubic function was not used in Paper III because the mar-
ginal cost of precision was not assessed to vary non-linearly. However, in 
principle, estimation of the cubic function is a statistical test of linearity in 
marginal cost. The simplicity in the cost-output relationship will still remain 
in economic evaluations of measurement designs as long as the linear input-
output relationship is assumed in the traditional statistical model. 
  
Obscurity: As discussed in Papers III and IV, since the information produced 
on work-related biomechanical exposures is not yet economically valued as 
a function of precision, the derived cost function cannot be used to draw any 
firm conclusions about economies/diseconomies of scale. The invaluable 
precision of the mean estimate, considered as output, was the reason to have 
an obscure cost-output relationship in the optimization studies. The obscuri-
ty led to difficulties in decision-making for any improvement of precision, 
where the economic value of additional precision was not known and could 
not therefore be compared with its marginal cost. 
      
To solve both problems, simplicity and obscurity, the cost-output relation-
ship should be analysed by first evaluating the output economically, as a 
“benefit” in the health economic literature (McIntosh et al., 2010), and then 
using appropriate cost functions developed in production economics (Cham-
bers, 1994). The standard (logarithmic) cost function usually takes the fol-
lowing functional form: 

1
ln ln ln

n

i i
i

C Y cα γ β ε
=

= + + +∑ ,  [1] 
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where Y denotes the value of information produced; α, βi, and γ are regres-
sion coefficients; and ε is a disturbance term. For minimizing the total cost 
of an exposure assessment study using the standard cost function, the output 
of the statistical production should be valued in the same terms as the total 
cost (i.e. in terms of money), for a complete economic analysis. The simple 
logarithmic cost function [1] for statistical production, however, constrains 
the elasticity of substitution between any two measurement inputs to be 
equal to unity. To avoid the restriction, econometricians suggest using the 
transcendental logarithmic cost function (TLCF) which is based on a se-
cond-order Taylor’s series approximation theorem in logarithms (Berndt, 
1996; Bantekas, 2008). The transcendental logarithmic cost function, which 
is simply called the translog cost function, has also been applied in health 
economic studies to explore associations between cost inefficiency and hos-
pital health outcomes (Mckay and Deily, 2008). The non technological pro-
gress of a general specification of translog cost function is expressed as:  

( )

1 1 1
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 ,  

    [2] 
where i and j are measurement inputs. 
  
The standard economic analysis, however, requires a time-series, cross-
sectional, or pooled empirical dataset on costs and the value of information. 
The required datasets can thus be obtained in exposure assessment studies 
across time and space. If the working arm postures of hairdressers were as-
sessed regularly at certain intervals of time and/or in a wide range of work-
places at the country/province level, the standard cost functions could be 
applied in Papers II–IV. 

Uncertainties in the cost efficiency analyses  
Costs and benefits of remedying the uncertainties associated with data 

collection: The methodologies applied in Paper II and other studies compar-
ing the cost efficiency of alternative designs required that all relevant quanti-
ties (error and cost components) were accessible. Thus, for reducing uncer-
tainty in the results of the cost efficiency studies, the required quantities 
should be efficiently estimated. More information might thus be acquired for 
making the right decision about implementation of a suggested measurement 
design in Paper II. The expected value of perfect information (EVPI) ap-
proach could be used to estimate the value of obtaining further information 
to reduce this uncertainty. The expected cost of the uncertainty would be 
determined by the probability that a decision was wrong and the size of the 
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opportunity cost if the wrong decision was made, since perfect information 
would eliminate the possibility of making the wrong decision. When decid-
ing whether to produce additional information, the marginal benefit and the 
marginal cost of exposure assessments should be estimated. We had to esti-
mate the benefits to society of further information, or equivalently, the op-

portunity cost of not using the appropriate measurement design. The EVPI is 
the difference between the expected benefits to society provided by using 
perfect information on quantities of costs and errors, and the expected social 
costs when using error-exposed estimates. In other words, the total EVPI is 
the difference between the expected benefits of the optimal decision the so-
ciety would make under certainty and the expected costs of wrong decisions 
the society would make under uncertainty. 
 
Limitation in optimizing measurement designs: The measurement design to 
be optimized in Papers III and IV is assumed to be performed in a situation 
where all input costs and errors vary with the quantity of measurement in-
puts. This is the usual underlying assumption in optimization-based studies; 
that is, it is usually assumed that the exposures are assessed in the long run. 
In practice, only the known types of cost and error that are related to the 
measurement inputs to be optimized will be considered in the isocost line 
and error equations. Further, the isocost equation will be referred to the same 
measurement inputs that are shared by the (random) error equation. The 
structure of the isocost equation will thus follow the structure of the statisti-
cal model instead of the economic principles. Finally, the optimized solu-
tions are conditional on the functional forms of the isocost and error equa-
tions being correct. 
   
Limitations of the methodologies in comparing non-optimal designs: In 
Paper II, the comparison of alternative measurement designs differing in 
economic and statistical performance revealed that labour-intensive meas-
urement designs often produced more information on working arm postures 
than the labour-saving designs, at an incremental cost. A research question in 
similar situations is whether the incremental information justifies the incre-
mental cost. Economic decision theory suggests that the cost of producing 
additional information would be compared with the opportunity cost (ex-
pected social cost) of using the inferior but labour-saving measurement de-
sign that produces insufficient information on the exposure, or equivalently, 
with the expected social benefit of employing the superior but labour-
intensive measurement design. However, the value of information on the 
working arm postures was unknown, and so there was no reliable criterion to 
use when making economic decisions around production of additional in-
formation. In the absence of a reliable criterion, there was an obscurity in the 
definition of the cost efficiency comparison of non-optimal measurement 
designs. The definition was careful to include the criterion that the appropri-
ate measurement design to employ was the one that produces more infor-
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mation on the exposure relative to the cost of achieving it. However, the 
analytical tools applied in the comparison analysis (i.e. RCE in Paper II and 
MCBR in Paper III) do not provide the same kind of evidence on technical 
and productive efficiencies that would be available if using optimization 
analysis. Only under assumption of the same returns to scale for alternative 
measurement designs will the analytical tools be able to identify the relative-
ly most cost-efficient design. 
   
Uncertainties in cost efficiency measures: The analytical tools introduced in 
this thesis for comparing the cost efficiency of non-optimal measurement 
designs do not provide sufficient information for decision-making. Ambigui-
ty arose with the relative cost efficiency measure (RCE), as applied in Paper 
II, as the value it produced was only an overall performance measure of the 
alternative measurement design compared to the reference. Although the 
information from the RCE value was decomposed into relative statistical and 
economic performances in Paper II, it did not include the cost of improving 
statistical performance. The additional cost of using a superior measurement 
design in statistical performance could not therefore be justified by the error 
reduction opportunity. The MCBR measures applied in Paper III would give 
the decision-maker a foundation to resolve this problem. However, ambigui-
ty also arose with this measure, since it could not give decision-makers suf-
ficient information without a specified maximal justified investment for im-
proving statistical performance. According to the application of the MCBR 
measure in Paper III, the design including more direct measurements pro-
duced more information for the resources it used (and therefore was appro-
priate to implement) if the value was below the maximum justified invest-
ment for reducing the amount of error by one unit. However, when the bene-
fit of additional information is unknown, the amount of the investment can 
only be determined subjectively. Thus, the measure does not provide a final 
decision rule, since the social benefit of an increase in the amount of infor-
mation produced on a work-related biomechanical exposure is not known. 
The researchers in the field can, instead, formulate a decision rule that indi-
cates whether an increase in the amount of the information produced may be 
funded; that is, they can decide how much they are able or willing to invest 
for an improvement in statistical efficiency. The decision over which design 
is appropriate to implement will then be made when the estimated value of 
MCBR compares with the maximal ability/willingness to invest for an in-
crease in the quantity of the information produced by one unit. Generally, 
the resource-intensive measurement design with a higher ability to produce 
information is the cost-efficient design compared to the other design for a 
MCBR value less than the maximal investment. 
 
To sum up, for a more comprehensive economic evaluation of alternative 
non-optimal measurement designs, both approaches in cost efficiency com-
parison, RCE and MCBR, should be applied. The cost efficiency measures 
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alone give only partial assistance for decision-making about non-optimal 
measurement designs.  

Current position and recommendations for future 
research 
Current position: There is still a need for further criticism of the models 
used in making economic decisions about measurement designs, since all the 
above-discussed limitations and insufficiencies associated with the exposure 
assessment studies still remain. Extensive data on input costs over time and 
workplaces is not available, since assessment studies on biomechanical ex-
posures are often carried out over a limited time at a specific and predeter-
mined workplace. Because of the practical limitations, researchers are forced 
to simplify input-output relationships and introduce strong assumptions in 
order to derive the required closed-form solutions. However, the derived cost 
functions, which convey cost-output relationships in the statistical produc-
tion, will be simplified if the error equations, which show input-output rela-
tionships in the statistical production, are simplified. Moreover, the social 
cost of an exposure of interest is not yet economically modelled, and thus the 
marginal benefit of producing additional information on the exposure cannot 
be determined in order to be compared with the corresponding marginal cost.   
There are other limitations that usually appear in practicing the derived solu-
tions for allocating resources between different measurement inputs. Firstly, 
in addition to statistical and economic considerations, there are often practi-
cal constraints and feasible alternative designs considered in selection of a 
measurement design. These considerations are not usually displayed in the 
applied methodologies. The cost-efficient measurement design provided by 
the methodologies may thus be infeasible due to exogenous factors such as 
practical and technological constraints and/or required facilities that are not 
reflected in the model and are thus determined out of the model. Secondly, it 
may be possible to produce more percentile information on a biomechanical 
exposure at work by increasing a particular percentile in the measurement 
inputs, which exhibits increasing returns to scale for the exposure assessment 
study. However, this possibility, which is an economic incentive for expan-
sion of the statistical production, is not included in the available error equa-
tions applied in the relevant studies. When the precision is formulated as the 
inverse of the mean variance, the statistical production shows constant re-
turns to scale (cf. Stram et al, 1995; Whitmore et al, 2005; Mathiassen and 
Bolin, 2011); however, when the precision is formulated as the inverse of the 
standard error, the statistical production shows decreasing returns to scale 
(cf. Papers II–IV). Finally, the variables to be optimized in an exposure 
measurement design (measurement inputs in the statistical production) may 
be discrete rather than continuous, hence not, in principle, differentiable. 
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However, in order to derive the optimized solutions, they are assumed to be 
continuous, and then the Lagrangian function is differentiated. At the end of 
optimization, when the derived optimal values are adjusted to the nearest 
integers, the constraint is violated (cf. Papers III and IV). The problem can 
be resolved by considering the constraint in the adjustments, as in Paper IV. 
However, the new optimized solution may not differ significantly from the 
current design in terms of cost efficiency. 
 
Final recommendations:  

• Parametric assumptions concerning the underlying distribution of 
the exposure to be measured, and related cost data, should be inves-
tigated in order to apply appropriate estimation methods. 

• Assumptions concerning the effects of errors at different stages of 
sampling should also be investigated. This will allow the application 
of appropriate effects models for estimating the total error produced 
in each exposure assessment study.  

• In short-run economic decisions, when alternative measurement de-
signs are compared, all sources of costs and errors should be consid-
ered and estimated, as the curvature of cost developments. 

• The marginal cost and marginal product of measurement inputs 
should be estimated in order to provide a sound basis on which to 
make economic decisions. 

• The social benefit of an exposure assessment study should be evalu-
ated, to allow an assessment of the value of information produced by 
employing a specific measurement design.   

• Instead of sampling units in each stage, the quantity of capital input 
(buildings, measurement instruments, and other equipment), labour 
inputs (data collectors and data analysts), and other inputs to the sta-
tistical production should be optimized in long-run economic deci-
sions.       
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Conclusions 

Efficient allocation of resources in assessing biomechanical exposures at 
work requires appropriate statistical and economical models in both compar-
ison and optimization of measurement designs.  

• When comparing the cost efficiency of alternative designs, varia-
tions in input costs and all sources of costs and statistical errors as-
sociated with the compared designs should be considered, and the 
cost of improving statistical performance should be estimated. In op-
timizing measurement designs, the optimized solutions should be 
further refined with comparative static analyses, cost functions, and 
economic interpretations.    

• Labour-intensity in exposure assessments is an important determi-
nant in cost efficiency comparisons. The labour cost of improving 
the statistical performance in exposure assessments can thus be very 
high.  

• An increase in the fraction of expensive direct measurements can re-
duce the total cost of achieving a required precision. Hence, the cost 
of a measurement design is not the determining factor in cost effi-
ciency analysis; the decisive factor is the cost of achieving a re-
quired precision and the cost of improving precision by using the de-
sign.  

• Although the overall performance of the optimized measurement 
strategy can be reduced after any necessary adjustment, either the 
scarce resources can be saved or the precision of the group mean ex-
posure estimate can be improved through an optimization. 
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