
1

Cost-Efficient NFV-Enabled Mobile Edge-Cloud for

Low Latency Mobile Applications
Binxu Yang, Wei Koong Chai, Member, IEEE, Zichuan Xu, Member, IEEE, Konstantinos V. Katsaros,

Member, IEEE, and George Pavlou, Fellow, IEEE

Abstract—Mobile edge-cloud (MEC) aims to support low la-
tency mobile services by bringing remote cloud services nearer to
mobile users. However, in order to deal with dynamic workloads,
MEC is deployed in a large number of fixed-location micro-
clouds, leading to resource wastage during stable/low work-
load periods. Limiting the number of micro-clouds improves
resource utilization and saves operational costs, but faces service
performance degradations due to insufficient physical capacity
during peak time from nearby micro-clouds. To efficiently
support services with low latency requirement under varying
workload conditions, we adopt the emerging Network Function
Virtualization (NFV)-enabled MEC, which offers new flexibility
in hosting MEC services in any virtualized network node,
e.g., access points, routers, etc. This flexibility overcomes the
limitations imposed by fixed-location solutions, providing new
freedom in terms of MEC service-hosting locations. In this paper,
we address the questions on where and when to allocate resources
as well as how many resources to be allocated among NFV-
enabled MECs, such that both the low latency requirements
of mobile services and MEC cost efficiency are achieved. We
propose a dynamic resource allocation framework that consists
of a fast heuristic-based incremental allocation mechanism that
dynamically performs resource allocation and a reoptimization
algorithm that periodically adjusts allocation to maintain a near-
optimal MEC operational cost over time. We show through ex-
tensive simulations that our flexible framework always manages
to allocate sufficient resources in time to guarantee continuous
satisfaction of applications’ low latency requirements. At the
same time, our proposal saves up to 33% of cost in comparison
to existing fixed-location MEC solutions.

Index Terms—Mobile edge-cloud, low latency applications,
dynamic resource allocation, approximation algorithm.

I. INTRODUCTION

O
VER the last decade, advances in wireless access tech-

nologies (e.g., WiFi and LTE) have enabled an explosion

of resource-hungry mobile applications, challenging current

mobile devices’ processing ability. In particular, mobile mul-

timedia services with stringent latency requirements (in the

order of hundreds of milliseconds [1]), such as augmented

reality (AR), high-definition video streaming, gaming and

face recognition, are computationally expensive for today’s

mobile devices; resulting in fast exhaustion of battery life

B. Yang and G. Pavlou are with the Department of Electronic and Electrical
Engineering, University College London, London, WC1E 7JE, U.K. (e-mails:
binxu.yang.13@ucl.ac.uk, g.pavlou@ucl.ac.uk).

Z. Xu is with the School of Software, Dalian University of Technology,
Dalian, Liaoning, China, 116620 (e-mails: z.xu@dlut.edu.cn).

W. K. Chai is with the Department of Computing and Infor-
matics, Bournemouth University, Dorset, BH12 5BB, U.K. (e-mail:
wchai@bournemouth.ac.uk).

K. V. Katsaros is with Intracom Telecom, Athens, Greece. (e-mail:
konkat@intracom-telecom.com).

and long processing delays [2]. Conventional cloud solutions

[3], where users exploit preallocated service instances from

data center-based clouds to process computationally expensive

tasks, address the issue of computational resources, but suffer

from long network latencies [4]. On the other hand, mobile

edge-cloud (MEC) (also known as cloudlet [4], fog computing

[5], Telco cloud [6], follow-me cloud [7]) mitigates the long

network latency issue by deploying dedicated micro-clouds

along with service instances at network locations that are

closer to users, e.g., access points (APs), routers, etc.

However, since the micro-clouds are deployed at fixed

locations and have limited physical resources (especially com-

pared to data center-based clouds), they are deployed to

large number of APs with MEC service instances in each

micro-cloud [8]. This achieves low latency at the expense of

significant operational costs due to break of data center (DC)

consolidation [2], [3]. Limiting the number of micro-clouds

can save operational costs, but faces challenges in dynamically

supporting low latency services with limited resources at static

network locations. For instance, current resource allocation

techniques to deal with workload elasticity, such as auto-

scaling [9], [10], could only scale up to the physical capacity

limit of micro-clouds. Subsequently, if there is no micro-cloud

in the vicinity of the overloaded one that can provide more

computational resources for load balancing, users’ tasks would

accumulate, leading to the violation of the required service

response time (e.g., time spent in network and edge clouds).

Recently, Network Function Virtualization (NFV) was pro-

posed to facilitate network function deployment for Internet

service providers (ISPs) [11]. It decouples network functions

from the underlying hardware and implements them as soft-

ware in virtual machines (VMs) hosted in commodity servers.

The advent of NFV promotes the emerging concept of NFV-

enabled MEC (e.g., [12], [13]) whereby services can be hosted

at any network location that has virtualized resources, e.g.,

provided by commodity servers. Such NFV-enabled MEC

model enables real-time instantiation (e.g., VM instantiation

time for Unikernel [14] and ClickOS [15] are in the order

of tens of milliseconds) of MEC at new network locations to

host edge services, and also allows MEC to scale up/down

computational resources to accommodate user demand varia-

tions. As a result, the MEC can be dynamically instantiated at

network locations that efficiently utilize ISPs’ virtual network

infrastructures and thereby maintaining low operational costs

overtime. However, such flexibility in resource allocation faces

challenges in:

• Dynamically deriving the MEC service-hosting locations,

2

amount of resources and the corresponding network paths

to mobile users such that the resulting network access

latencies are within the network latency requirements

and the ISPs’ virtualized network resources are optimally

utilized.

• Determining the appropriate time instance to perform dy-

namic resource allocation in order to avoid computation

congestion at VMs due to peak load [16].

• Performing resource allocation in a timely manner such

that the time spent in deriving a resource allocation

decision does not affect low latency MEC services.

In this work, we take into account the flexibility afforded

by NFV along with the abovementioned challenges, and study

the problem of dynamic resource allocation in MEC, aiming

at minimizing operational costs while satisfying users’ low

latency service response time requirements.

For the above problem, we propose a novel dynamic

resource allocation framework for NFV-enabled MEC that

consists of an online heuristic-based incremental allocation

mechanism and a global resource reoptimization algorithm

to address the trade-off between cost efficiency and low

latency requirement. In particular, our online heuristic-based

incremental allocation mechanism aims to efficiently allocate

resources to tackle local MEC computation congestion due to

(sudden) increase of workload in a timely manner. It consists

of (1) an initial offline MEC resource allocation based on

expected workload that achieves the desired service response

time with the minimum required computational resources, (2)

an auto-scaling and load balancing (ALB) mechanism that

accommodates workload variations, (3) a capacity violation

detection (CVD) mechanism that derives the projected time

when ALB fails to cope with service elasticity and (4)

a network latency constraint greedy (NLCG) algorithm of

polynomial complexity to derive a new NFV-enabled node

as MEC service-hosting node which supports the stringent

latency requirement. Since our online allocation mechanism

computes local MEC resource allocation, we also design a set

cover partition approximation (SCPA) algorithm that operates

in parallel with NLCG to globally reoptimize the locations and

allocated resources while achieving a guaranteed operational

cost. Given user demands, this cost is no more than ln(N)
times of optimal MEC operational cost, where N is the largest

number of APs that are served by a MEC service-hosting node

among all instantiated MECs.

To demonstrate the effectiveness of our proposed frame-

work, we carry out an extensive set of simulations with

realistic three-layer cellular network setup [17]. We use real

mobility traces from [18] to show the cost reduction brought

by NFV-enabled flexible MEC instantiation compared to fixed-

location MEC. Further, we conduct an in-depth cost efficiency

impact factor analysis to give detailed insights into the design

of online MEC resource allocation framework under various

network topologies, latency requirements and server capaci-

ties.

Our study here is based on our preliminary work in [19].

The main contributions of this study are as follows.

1) We formulate and solve the dynamic MEC resource

allocation problem as an integer linear programming

(ILP) problem taking into account the flexibility in the

determination of MEC locations enabled by NFV (see

Section III-B) and the trade-off between service response

time and operational costs. To the best of our knowledge,

this is the first study focusing on the dynamic MEC

resource allocation taking into account the possibility of

NFV-enabled MEC service instantiations.

2) We design a dynamic resource allocation framework

consisting of a fast heuristic-based incremental alloca-

tion mechanism and a SCPA reoptimization algorithm

for low-cost MEC resource allocation framework (see

Section IV). Both NLCG and SCPA algorithms are

general in nature and applicable to any online edge

cloud systems (e.g., for different hosted services, edge

cloud capacities and VM technologies). In addition,

we mathematically prove that given user demands, our

SCPA algorithm results in no more than ln(N) times of

optimal MEC operational cost in polynomial time.

3) We demonstrate the effectiveness of our framework (see

Section V) through extensive simulations. We show that

our framework achieves 33% cost reduction compared to

fixed-location MEC overprovisioning solutions. Further,

our in-depth impact factor analysis shows that SCPA

achieves cost efficiency within 20% of the lower bound

of the optimal solution, under different network size, ser-

vices’ latency requirements and MEC server capacities.

II. RELATED WORK

Cost efficiency in cloud computing is an important topic

that has received wide attention. One branch of studies in this

regard focuses on energy efficiency in DCs [3], [20]. In partic-

ular, various dynamic workload-to-VM placement algorithms

have been proposed to minimize system operational costs by

minimizing the number of active physical machines. However,

these work do not consider the deadlines of computational

tasks, which is a key requirement for low latency services.

In addition, DCs are considered to be rich in terms of com-

putational resources at a single location, whereas MECs are

distributed and have limited computational resources. Thus,

these solutions are not suitable for our problem.

Early work targeting specifically MEC focused on offload-

ing technologies [4], [21] which later shifted to problems

on dynamic state migration between micro-clouds [8], [22]

whereby the investigations focused on the decision on whether

and where to migrate user states in VMs due to user mobility.

More recently, the research focus in MEC further shifted to

resource allocation and micro-cloud placement. These work

can be categorized into offline (e.g., static) and online (e.g., dy-

namic) problems. Specifically, [17], [23], [24] consider static

network planning problems in metropolitan area networks

where the authors investigated the optimal static placement of

micro-clouds with objectives such as minimizing the system

costs or the end-to-end latencies. For instance, [23], [24]

formulated the static micro-cloud placement problem into a

K-median problem such that the average end-to-end latency

of all users is minimized. In addition, they proposed an

online user request assignment algorithm that dynamically

3

decides the routes between users and the K micro-clouds.

Similar to [23], [24], work in [17] studied a static micro-

cloud placement problem while additionally taking potential

migrations into account. The authors also investigated the

dynamic routing problem given the derived initial micro-

cloud locations. Nonetheless, these early work related to the

placement of micro-clouds did not consider the possibility of

flexible MEC service instantiations enabled by NFV. Clearly,

the performance improvement achieved through online routing

and load balancing [25] is limited by the fixed number and

locations of micro-clouds. Finally, [13] considered flexible

micro-cloud instantiations where content distribution network

providers dynamically discover edge locations in different ISP

networks to improve the performance and reduce MEC costs.

Nevertheless, application latency requirements are ignored.

Moreover, this investigation looked into a different resource

allocation granularity whereby the allocation is performed at

autonomous system level.

Online resource allocation proposals are mainly investigated

either in the form of online admission control problem or the

online service placement problem in MEC. [26], [27] and [28]

considered a resource-constrained MEC scenario where they

devised online resource allocation schemes to determine how

much resources to allocate to each user or which users to serve.

In particular, they considered a set of pre-determined micro-

cloud locations that have fixed amount of overall resources

to be allocated. In contrast, our proposal can be seen as

an alternative solution to their problem, as we increase the

overall allocated resources at new network locations (rather

than selecting which users to serve) such that all users can be

served.

Apart from offloading computational tasks to fixed network

locations (e.g., our approach), computational tasks can also be

offloaded to nearby mobile devices, known as mobile ad-hoc

clouds [29]. The primary advantage of using mobile ad-hoc

clouds is to exploit its intrinsic mobility to enable a flexible

on-demand resource provisioning by scheduling devices to

move to certain geographic locations [29]. However, unlike

conventional mobile edge clouds where clouds are fixed and

managed by cloud operators, the discovery and management of

dynamic mobile ad-hoc clouds would introduce extra system

complexity. In addition, the fully distributed cloud architecture

would result in a worse cost efficiency than our approach due

to the complete break of DC consolidation [2].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a typical three-layer hierarchical wireless

metropolitan area network [17] that consists of APs, aggre-

gation nodes and metropolitan level mobile core network

nodes (illustrated in Fig. 1). Each AP is connected to a

single aggregation node which is connected to one mobile

core node. Furthermore, the connectivity between mobile core

nodes depends on the actual mobile core network’s topology.

For most of real-world topologies, a mobile core node has at

least one network link towards other mobile core nodes (e.g.,

a topology example is shown in Fig. 2). We use G = (V,E)

Internet	

SDN	controller	

	Network	link		

SDN	link		

18ms	

5ms	 5ms	

10ms	
10ms	

300Mbps	 300Mbps	

10Gbps	

10Gbps	

NFV-enabled	node		

Service-hos4ng	node	

AP	

Core	router	

Aggrega4on		

Core	level		

Aggrega@on	level		

Access	level	

Fig. 1: (Color Online) Hierarchical MEC system model.

to denote this network, where V is the set of network nodes

and E is the set of links. Further, let B denote the set of

APs, b ∈ B, which is a subset of network nodes (B ⊂ V). We

consider that each network node is equipped with a commodity

server [11], which has limited computational resources, kv
(e.g., CPU1) to host application service providers’ services

as software via VMs. Such support of MEC services with

NFV-enabled nodes necessitates NFV commodity servers to

be active (e.g., active servers are shown in Fig. 1 as service-

hosting nodes) and hence, incurs operational costs (e.g., energy

consumption) [3]. For the rest of paper, we consider MEC

nodes to be any NFV-enabled network nodes on which MEC

services can be hosted with allocated VMs.

Given the NFV-enabled MEC, mobile users upload raw files

at discrete time, t ∈ T , through their associated APs to MEC

nodes for processing rather than executing service instances

locally in their mobile devices. The user requests from an AP

are served by VMs at a single MEC node through the same

path, pbv ∈ Pbv , between AP b and node v (v is the selected

node to host the required service)2, where P is the set of

paths between pair of nodes in V and Pbv ⊆ P . We use At
b

to denote the total load incurred by mobile users at AP, b at

time t, which results in bandwidth consumption, wt
b, of flows

departing from AP b. At the same time, user flows consume

computational resources from MEC nodes, which depend on

the AP-to-MEC assignment.

We consider stateless mobile services (e.g., AR, etc.) to be

pre-installed as software into NFV-enabled nodes [1], [30].

That is, user requests can be seamlessly served by VMs at

different MEC node without requiring service state migration

since the services are stateless. In addition, NFV-enabled nodes

that are not serving as MEC nodes can instantiate VMs to

support stateless MEC services in a timely manner. This is due

to the latest advances in VM technology such as Unikernel

[14] and ClickOS [15], whereby the VM instantiation time

could be reduced to tens of milliseconds (e.g., 30ms 3). We

summarize the notations used in this paper in Table I.

1We only consider CPU as computational resources in this work.
2Multiple network paths between b and v could exist due to connectivity

between mobile core nodes (see Fig. 2).
3Unikernel, designed for edge computing environment, achieves 30ms by

exploiting a shared memory channel to optimize the VM instantiation time.

4

TABLE I: Notations

Symbol Notations

V,E,B Set of NFV-enabled nodes, edges and APs

P ,Pbv Set of paths, set of paths between b and v

kv Resource capacity at node v

wb Bandwidth consumption at AP b

BWe Bandwidth capacity at network link e

At
b User computational resource demand

from AP b at time t

D Maximum network latency (hops) constraint

dbv Network hop distance between AP b and node v

Nb The set of v that are located less than D network hops to b
Nb = {v|dbv ≤ D}

APv The set of APs covered by network node v

APv′v The set of APs covered by network node v′ and v

Lv The excess workload from node v

Xpbv The path decision variable for pbv ∈ Pbv

Yv The MEC node decision variable for v

B. Problem Definition

Given the abovementioned system model and the flexible

instantiation of MEC nodes, we consider the MEC opera-

tional cost minimization problem for stateless low latency

mobile services, whereby the network locations that host

MEC services and the corresponding network paths can be

dynamically controlled to efficiently utilize ISPs’ resources. To

better illustrate this scenario, an example is given in Fig. 2. We

can see that two MEC nodes are instantiated among all NFV-

enabled nodes together with its selected network paths at t0.

In contrast, only one MEC node is instantiated for operational

cost minimization at t1 in response to the decreased demands

from APs. Meanwhile, the network paths are accordingly

changed at t1.

In this work, we aim to concurrently answer four pri-

mary questions: given a time varying workload, resource-

constrained distributed NFV-enabled network nodes and ca-

pacitated network links, (1) where and (2) when to allocate

resources, (3) how many resources to be allocated among

NFV-enabled nodes and (4) which network paths to use

(e.g., between APs and MECs) such that the low latency

requirements of mobile services are always satisfied while

incurring the least operational cost. Without loss of generality,

we assume in this work that all NFV-enabled commodity

servers are identical (e.g., same specifications) and incur equal

operational cost. Therefore, the operational cost minimization

objective is equivalent to the minimization of number of active

commodity servers (MEC node) [3].

We use ILP to formulate the problem with two binary

decision variables, Y t
v and Xt

pbv
, which represent respectively

the location of MEC service (i.e., Y t
v = 1 if at time t, v

is chosen as the location of a MEC service and Y t
v = 0

otherwise) and the path between b and v (i.e., Xt
pbv

= 1 if

pbv is chosen; Xt
pbv

= 0 otherwise). The objective function of

the ILP is to minimize the number of selected MEC nodes,

that is, the sum of Yv, v ∈ V at every discrete time instance4,

t ∈ T .

4Note that by fixing T = {t0}, the problem is reduced to a static placement
problem mentioned in Section I.

AP 	

AP�	

AP�	

AP�	 AP�	

AP�	

AP�	

AP 	

t�	 t 	

MEC 	

MEC�	

MEC 	

Traffic	flow		 Alterna/ve	flow	path		

Decreased	APs’	demand	

from		t��to	t1	

Fig. 2: (Color Online) Example of MEC operational cost

minimization problem.

To satisfy the service latency requirement, we first decom-

pose the request response time into the following:

1) Network access time – represents the time a MEC ser-

vice request spent during network transmissions, which

highly depends on the selection of network path, Xt
pbv

,

between an AP and the selected MEC node. To model

such delay, we assume that as long as the capacities of

the constituent links in the selected network path are not

violated by MEC flows, we can represent access delay as

a function of network hops. Hence, in order to achieve

a required network access time, both link capacity and

the number of network hops that the request traverses

need to be constrained.

2) Service processing time – refers to the time a VM uses

to serve a request. We assume that as long as there

is an available resource unit, and the request rate is

lower than service rate, the processing delay is bounded

and can be represented by a mean expected value that

depends on the actual VM technology. To satisfy the

processing time, we constrain the aggregated resource

demands from APs that are served by MEC node at time

t to be no more than its physical capacity limit. This

ensures a fixed service time at all time by allocating a

dedicated resource unit for each request.

The ILP problem is formulated as below:

min
∑

v∈V

Y t
v , ∀t ∈ T, (1)

Subject to
∑

b∈B

∑

v∈V

∑

pbv(e)∈Pbv(e)

wt
bX

t
pbv(e)

≤ BWe, ∀e ∈ E, ∀t ∈ T,

(2)
∑

pbv∈Pbv

∑

v∈Nb

Xt
pbv

= 1, ∀b ∈ B, ∀t ∈ T, (3)

∑

pbv∈Pbv

∑

b∈B

At
bX

t
pbv
− kvY

t
v ≤ 0, ∀v ∈ V, ∀t ∈ T, (4)

Y t
v ∈ {0, 1}, ∀v ∈ V, ∀t ∈ T, (5)

Xt
pbv
∈ {0, 1}, ∀pbv ∈ Pbv, ∀t ∈ T, (6)

Constraint (2) guarantees that for all edges, the aggregated

bandwidth consumption is less than the link capacity, BWe, at

5

every time instance, where Pbv(e) denotes all paths between

b and v that traverse edge, e; Constraint (3) guarantees that

flows from the same b are assigned to the same MEC node v

where v is selected from the set of network locations Nb =
{v|dbv ≤ D} that are within the network latency constraint

denoted as D; Constraint (4) guarantees that the aggregated

demands from APs at time t,
∑

pbv∈Pbv

∑

b∈B

At
bX

t
pbv

, served by

the selected MEC v is no more than its physical capacity limit

kv and Constraints (5)-(6) limit the decision variables to be

either 0 or 1.

Our problem stated above is NP-hard. A relaxed version of

our problem (i.e., without the bandwidth capacity constraints

(2)) can be obtained from the capacitated set covering problem

(CSCP)5. Since CSCP problem has been shown to be NP-hard

[31], our problem is NP-hard too.

IV. DYNAMIC RESOURCE ALLOCATION FRAMEWORK FOR

NFV-ENABLED MEC

A. Overview

Our problem aims at deriving the optimal MEC locations,

amount of resources and network paths to MECs in face of dy-

namic workloads to satisfy services’ low latency requirements

while minimizing the overall operational costs incurred within

the time period, T . Offline solutions (e.g., overprovisioning)

only solve the latency aspect of the problem while ignoring

the possible high costs incurred due to inefficient resource

utilization. Existing dynamic solutions are either based on

local search or global optimization. The former derives the

resource allocation in a timely manner by targeting specific

network areas suffering from resource exhaustion which how-

ever often results in sub-optimal allocations. On the other

hand, the latter takes demands across the whole network

and is generally able to obtain better results at the cost of

running time due to the large scale input from the entire

network. Note that such long running time is not tolerable to

online MEC as it would affect the performance of low latency

services. To overcome the abovementioned issues suffered by

most conventional approaches, we propose a novel dynamic

optimization framework for NFV-enabled MEC that leverages

both the local resource allocation and global re-allocation of

resources to achieve a balanced trade-off between resource

allocation optimality and algorithm’s running time.

Fig. 3 presents the overview of our dynamic resource

allocation framework.

1) Heuristic-based incremental allocation mechanism (see

the right-side of Fig. 3) follows the local search principle

and aims at deriving the minimum required resources

for MEC in a timely manner in response to temporary

workload increase. The basic idea is to first provision

NFV-enabled MEC with the minimum (optimal) number

of MECs to satisfy the average user demands. Then, it

5In a capacitated set cover instance, we are given a universe X of n
elements and a collection S of m subsets of X with elements having demand
d : X 7→ R

+ and sets having supplies s : S 7→ R
+, each subset has an

associated cost; the objective is to pick the collection of sets S′ ∈ S of least
total cost, such that each element e ∈ X is contained in at least one set
S ∈ S′ while the supply of each set in S′ is not violated [31].

exploits conventional techniques for coping with (minor)

service elasticity (i.e., ALB) to maintain the overall

number of MECs at a relatively low level. At the same

time, we detect the time point when these mitigation

tools will reach their limits (i.e., this implies that the

existing MECs have been fully utilized) and cause the

MEC system to violate the service response time re-

quirement of the considered service(s). In such event, the

allocation of a new MEC node (e.g., within the network

latency constraints of APs that overloaded one of the

existing MECs) will be chosen from the neighbouring

network nodes of the overloaded MEC nodes (e.g., not

searching the entire network), and activated in time

before service quality degrades. By limiting the search

scope to within the overloaded network area for the

new MEC node, we significantly reduce the algorithm’s

running time and avoid service response time violations

due to computation congestion at MECs. However, the

heuristic-based incremental allocation solution has a ma-

jor disadvantage due to the fact that it only incrementally

adds MEC nodes to the existing MEC nodes that are

previously allocated. As a result, the MEC resource

allocation may gradually deviate from the optimum over

time due to its lack of consideration for global workload

variations.

2) SCPA global reoptimization (see the left-side of Fig. 3)

aims to overcome the disadvantages of heuristic-based

incremental allocation by adjusting the allocated re-

sources at a coarse-grained time granularity to a near-

optimal state. SCPA is periodically performed in a less

frequent manner. It takes the resulting MEC nodes

from the incremental solution and globally adjusts the

resource allocation to maintain low MEC operational

costs6 within a bounded resulting operational cost.

Next, we elaborate on how these two approaches jointly

solve the MEC operational cost minimization problem while

always conforming to the latency constraint. Our framework

follows the procedure below.

1) We derive the initial optimal static MEC placement (i.e.,

the number of MECs is minimized) in an offline fashion

by solving the static version of the problem7 at time t0
using CPLEX [32].

2) We leverage conventional ALB mechanisms to cope with

service elasticity based on the initial or most current

placement and allocation such that the service process-

ing time is guaranteed (i.e., no computation congestion

at MECs) and the overall MEC number (e.g., operational

cost) is kept low.

3) When the workload approaches the cloud capacity

threshold, the system triggers the CVD mechanism

based on the projected workload over a time window

∆t = t′ − t where t′ is the prediction time slot. Note

that ∆t will be selected according to the size of MEC

network and the hosted mobile applications in MECs.

6We do not consider migration costs as applications are stateless.
7For large scale problem, we solve the relaxed version of our problem, and

derive the lower bound of optimal solution.

6

Yes

No

Periodic Reoptimization
SCPA Algorithm

Initial Offline
Allocation

MEC
Operational

Cost
Minimization

MEC
Capacity

Violation?

Heuristic-based
Incremental AllocationSCPA Global Reoptimization

Auto-scaling
Load Balancing

NLCG Heuristic

No

Yes

More
resources to

guarantee
processing

time?

Fig. 3: (Color Online) Dynamic resource allocation framework

overview.

4) If it is detected that the ALB’s limit will be reached

within the coming time horizon, ∆t, our NLCG algo-

rithm is invoked to derive the desired new MEC node

allocation based on the previous allocation solution. By

appropriately deriving the NLCG start time, we mini-

mize the added MECs in face of dynamic workloads.

5) A global reoptimization algorithm is performed periodi-

cally to adjust the MEC locations of the entire network,

allocation of MEC nodes and the corresponding network

paths such that given a certain user demands, the MEC

operational cost is bounded.

B. Heuristic-based Incremental Allocation Mechanism

In the following, we detail every component of our heuristic-

based incremental allocation mechanism.

1) Static Offline Resource Allocation: We first derive the

minimum required number of MEC nodes, its network loca-

tions, amount of allocated resources and AP-to-MEC network

paths with CPLEX to support the low latency requirement

given the average / expected user demands. We highlight that

the offline resource allocation takes place at the network plan-

ning stage which does not impose any optimization execution

time constraints. However, when the input size to CPLEX is

extremely large (e.g., more than 300 network nodes), a relaxed

version 8 of the MEC operational cost minimization problem

is solved to get a feasible solution within polynomial time.

2) Auto-Scaling and Load Balancing (ALB): Auto-scaling

and load balancing are two current existing cloud comput-

ing elastic techniques to accommodate dynamic workload

8We relax the routing decision variable (i.e., from integer to linear pro-
gramming).

Algorithm 1 Capacity Violation Detection (CVD)

Input: G(V,E), B, predicted workload At′ , v′, kv′

Output: Future time t′ and extra load Lv′ or no NLCG

1: if current MEC nodes cannot accommodate At′ then
2: Derive new AP-to-MEC assignments and resource

allocation with V ALB
3: if V ALB cannot handle At′ then
4: Derive Lv′ by At′ , the new assignments and
5: capacities of MEC nodes
6: Trigger NLCG algorithm return t′, Lv′

7: else
8: Perform ALB
9: end if

10: end if

variations. We adopt a reactive auto-scaling solution that

is triggered once a specific capacity threshold is reached.

However, auto-scaling incurs additional VM reconfiguration

delays which could affect service response time. This effect

can be mitigated by setting a smaller auto-scaling threshold to

invoke the auto-scaling mechanism in advance. Alternatively,

proactive auto-scaling [33] can be applied to mitigate such

auto-scaling overheads.

For load balancing, we adopt a proximity-aware solution

[10] that considers both the residual capacity in MEC nodes

and the topological proximity between MEC nodes and APs.

Specifically, a flow from an AP to the overloaded MEC node

will only be redirected when the newly chosen MEC node,

v, is within the network latency cover, Nb, and the residual

capacity is sufficient to accommodate the redirected load. By

doing so, the network latency and MEC processing time are

always bounded after load balancing.

3) Capacity Violation Detection (CVD) Mechanism: ALB

have their limits, after which further increase in the request

rate will incur increasing queuing delays at MEC nodes and

lead to potential latency violations. The core idea of the CVD

mechanism is to identify the time when such limitations will

be reached so as to allow the system to pro-actively allocate

new MEC node(s). Algorithm 1 presents the pseudocode of

the CVD mechanism.

For CVD, we first assume that the workload can be

reasonably predicted (e.g., perfect prediction). In practice,

prediction algorithms predict workloads based on historical

workload data. Algorithms such as generalized autoregressive

conditional heteroscedasticity model [9] and various more [33]

can be accommodated into CVD. We note that prediction

techniques are not the main focus of this work. Given the

current MEC node locations, resource utilization level and

AP-to-MEC assignment, we predict over the time window ∆t

the aggregated workload
∑

p
bv′∈P

bv′

∑

b∈B

At′

b X
t
p
bv′

at v′ (i.e., v′

is the MEC node that invokes the detection) and check if

the predicted workload results in a capacity violation at v′

(Line 1 in Algorithm 1). If the current state is predicted to be

insufficient to accommodate the projected workload, we then

estimate the future system state by virtually running ALB on

the current system state with the projected workload.

The virtual ALB (VALB) aims to fully exploit computa-

tional resources provided by MEC nodes located in different

network locations before triggering NLCG. It checks if load

7

Algorithm 2 Network Latency Constraint Greedy (NLCG)

Input: G(V,E), B represents APs, existing MEC nodes Vs,
latency constraint D, overloaded MEC node v′, excess

flow Lv′ , predicted workload At′

Output: newly selected MEC node(s) and the corresponding
routes

1: New MEC node initialization vbmax ← ∅
2: Find the set of APs, APv′ , located in the distance cover

of overloaded MEC node v′

3: For each network node v ∈ V \Vs, find the APs, APv′v ,
that are located both in the cover of v and v′

4: for all b ∈ APv′ do
5: for all v ∈ Nb and v not in Vs do
6: if v can accommodate excess flow Lv′ and

|APv′v| ≥ |APv′vbmax
| then

7: vbmax ← v
8: end if
9: end for

10: end for
11: if no MEC found vbmax == ∅ then
12: vbmax ← argmax(|APv′v|)
13: trigger NLCG again with newly derived excess flow

Lv′ = Lv′ − kvbmax

14: end if
15: Find network routes for the newly allocated MEC node(s)

Xt′ ←MinMaxFaireness(vbmax,APv′vbmax
)

16: Update Y t′ with Vs ← Vs ∪ vbmax

17: return MEC node locations Y t′ and routings Xt′

(e.g., offloading tasks from the same AP) from v′ could be

redirected to other MEC nodes while still conforming to the

response time requirements of these flows. If virtual load

balancing fails, virtual auto-scaling will be triggered to check

if it can accommodate additional workloads by invoking auto-

scaling. If this fails again, it means ALB will reach its limit

within the projected time horizon and the overloaded MEC

needs more computational resources to guarantee the service

performance. Then, CVD records the excess load that cannot

be served by v′ as Lv′ =
∑

p
bv′∈P

bv′

∑

b∈B

At′

b X
t′

p
bv′
− kv′Y t

v′ and

triggers the online NLCG heuristic. It is worth mentioning that

VALB is running as a real-time simulation where no actual

ALB and any network configurations take place.

4) Network Latency Constraint Greedy Heuristic: The

NLCG algorithm simultaneously determines the new place-

ment of MEC node(s), the required resources and the corre-

sponding routes. The idea of NLCG (Algorithm 2) is to search

for a new MEC node located within the applications’ network

latency constraints that can accommodate the excess flow, Lv′ ,

from the overloaded MEC node v′ within the projected time.

At the same time, the newly selected MEC node needs to

satisfy as many flows (e.g., flows from APs served by other

MEC nodes) as possible without violating network access

delay to increase potential gain via load balancing to the new

MEC node.

Specifically, NLCG first derives, for each network node

other than existing MEC node v ∈ Vs, the number of APs

covered by both the overloaded MEC node v′ and v. To

this end, NLCG finds the set of APs, denoted by APv′ =
{b|dbv′ ≤ D, b ∈ B}, within the latency coverage of the

overloaded MEC, v′ (Line 2 in Algorithm 2). Next, it adds all

Algorithm 3 Set Cover Partition Approximation (SCPA)

Input: G(V,E), B represents APs
Output: MEC nodes and the corresponding routes

1: Vs ← ∅ where Vs is the set of MEC nodes
2: while Vs is not a feasible solution do
3: Select v ∈ V that maximizes the increase of newly

covered APs in Vs

4: Store newly covered APs by v into APv

5: Vs ← Vs ∪ v
6: end while
7: for all v ∈ Vs do
8: fv ← G.fractionalMaxF low(v,APv)
9: Construct subgraphs Gv(Vv, Ev) with edges and nodes

traversed by fv
10: Gv.partition(APv) [35] finds the unsplittable flows

between APs in APv and v
11: end for
12: Superimpose paths found in each subgraph Gv

13: return MEC node locations and routings

APs that are located within the distance cover of both v′ and v

into APv′v = {b|dbv ≤ D, dbv′ ≤ D, b ∈ B} (Line 3). Then,

for each AP within the distance cover b ∈ APv′ of overloaded

MEC v′, NLCG searches the potential MEC node v from the

candidate set Nb = {v|dbv ≤ D, v ∈ V }, and greedily chooses

the node vbmax
that has the highest APv′v and can support

excess load Lv′ (Line 4-10). If no viable vbmax
can be found,

NLCG assigns the v that has the largest APv′v as vbmax (Line

11-12). This means that there is no single node location that

can host all the excess flows Lv′ from v′. In this case, NLCG

will be triggered again with a reduced Lv′ = Lv′ − kvbmax

to find the next location to add (Line 13). NLCG then directs

flows in APv′ previously served by v′ to vbmax
and solve the

routing problem using min-max fairness [34] (Line 15).

Upon completion of NLCG, VM instantiation will start at

NFV-enabled servers that have been selected to serve as MEC

nodes. This instantiation process needs to accomplish before

application workload At′ arrives so that application’s response

time will not be affected by VM instantiation. In other words,

the overall time of VM instantiation and NLCG running

time needs to be smaller than CVD’s detection interval. In

our framework, since CVD interval (e.g., on the order of

minutes [9]) is not on the same order as VM instantiation

time (e.g., on the order of tens of milliseconds [14], [15]), the

abovementioned condition can be achieved if NLCG’s running

time is fast. We will evaluate NLCG’s running time and

heuristic’s resulting application response time in Section V.

C. Set Cover Partition Approximation (SCPA) Global Reopti-

mization Algorithm

To complement our incremental allocation mechanism, we

devise the SCPA reoptimization algorithm (see Algorithm 3)

with guaranteed performance bounds where an approximation

ratio is derived to indicate how far the obtained solution is

from the optimal solution. The SCPA algorithm first finds the

locations and resources of MEC nodes by solving a CSCP

with each MEC node being assigned a subset of demand

nodes (e.g., APs) without considering the capacity constraint

of each link in the network. Clearly, this solution does not

8

represent a feasible solution to our original problem, as the

network link capacity constraint and AP-to-MEC paths are not

incorporated. To obtain a feasible solution, SCPA then applies

a graph partition technique to find the routes between each AP

and MEC node that are assigned such that the link capacity

constraint is satisfied. Specifically, we decompose the original

MEC operational cost minimization problem into a CSCP and

a set of single-source unsplittable flow problem (SSUFP)9.

The solution to the CSCP gives MEC node allocation and

the corresponding AP assignment, while the solution to each

SSUFP derives the specific path between each MEC node and

its assigned AP.

MEC node selection: We first show how the MEC node

allocation for delay-sensitive applications without bandwidth

constraints is transformed into a CSCP problem. To this end,

we consider each network node v ∈ V as a set in the CSCP

problem, and its computational capacity represents the supply

of the set. An AP b denotes an element in the CSCP problem,

and it can be covered by v if the network latency constraint

is satisfied with dbv ≤ D. The number of requests at AP b

denotes the demand of its corresponding element in the CSCP

problem. Without loss of generality, we assume that the total

demand of all APs can be fulfilled by the total resources

available in the network. Then, the MEC node allocation

without bandwidth constraints but with latency constraints

becomes finding a capacitated set cover for the CSCP problem.

Let Vs be such a feasible solution to the CSCP problem, which

can be found by utilizing the algorithm due to [36]. Each

network node in v ∈ Vs is selected to serve as a MEC node,

and the APs,APv , that are within its range in terms of network

latency, will be covered by the MEC node allocated at v. The

procedures of finding each MEC node v ∈ Vs is described in

Algorithm 3 (Line 2-5), whereby the basic idea is to find a

network node at each iteration that covers the most of APs

until all APs are assigned to one of the selected network node

in Vs .

Network path selection: Next, we proceed to find the paths

between each of the selected MEC node v ∈ Vs and its covered

APs, APv , where the bandwidth resource constraint of each

link in G is taken into account. We first get a fractional

maximum flow fv
10 for each MEC node v ∈ Vs and its

assigned APs in APv (Line 8). Based on fv , we construct |Vs|
subgraphs Gv(Vv, Ev) by including v, its assigned APv , all

other intermediate network nodes (Vv) that connect v and its

APv , and the links (Ev) traversed by fv (Line 9). We then find

SSUFP in the constructed subgraph for each selected network

node v ∈ Vs, by using the algorithm PARTITION described

[35] (Line 10). The basic idea of algorithm PARTITION is to

further partition each subgraph into ε subgraphs by including

APs that have demands in the same demand interval and the

corresponding fractional paths from fv . Then, in order to find

9In a single-source unsplittable flow instance (SSUFP), we are given a
network G = (V,E), a source vertex s, a set of k commodities with sinks
t1, ..., tk and the associated real-valued demands ρ1, ..., ρk . The objective
is to route the demand ρi of each commodity i along a single s − ti flow
path so that the total flow routed across any edge e is bounded by the edge
capacity BWe.

10Note that maximum flow is a common problem where many different
solutions can be applied (e.g., augmenting path algorithms [37]).

a feasible unsplittable path for all APs in each new subgraph,

PARTITION updates edge capacities in each newly obtained

subgraph by rounding up APs’ demand to the upper bound

of its demand interval (i.e., this leads to the increase of edge

capacity in subgraphs). Next, PARTITION iteratively applies

augmenting path algorithm to find a feasible (e.g., conforms

to augmented link capacities) unsplittable path for each AP.

Finally, we superimpose unsplittable flows’ solutions of each

subgraph Gv to obtain the complete network paths (Line 12)

for all APs. However, PARTITION violates at most (4 + ε)

relative edge capacity for any ε > 0, where n 1
2

ξ−1
6 ε

and ξ represents the number of partition intervals in algorithm

PARTITION.

D. SCPA Algorithm Analysis

In this section, we derive the performance bounds of our

SCPA global reoptimization algorithm detailed in Section

IV-C. For this purpose, we will first re-state the following

Theorems 1 and 2 given in [36] and [35] respectively.

Theorem 1. [36]: Given a CSCP, there exists a greedy

algorithm that finds a ln(N) approximation solution within

running time of O(|V |), where N gives the largest number of

APs served by a MEC node in Vs.

Theorem 2. [35]: Given an UFP, algorithm PARTITION finds

a (4+ε) approximation for relative congestion for any ε > 0.

The running time of the algorithm is O(T1(|V |, |E|)+|V ||E|+
|E|ε), where T1(|V |, |E|) is the time to solve a fractional

maximum flow problem.

Using the above, we can state the following theorem for our

global reoptimization algorithm:

Theorem 3. Given a NFV-enabled network environment,

G(V,E), where network node v ∈ V has virtual compu-

tational resources kv , network edge e ∈ E has bandwidth

BWe, and APs b ∈ B,B ⊆ V has user demands Ab, there

is a fast approximation algorithm for the delay-guaranteed

cost minimization problem that delivers a feasible solution

with a cost no more than ln(N) times of the optimal cost

in O(|V |+ |Vs|(T1(|V |, |E|)+ |V ||E|+ |E|ε)) time, where N

gives the largest number of APs served by a MEC node in Vs,

|Vs| gives the number of resulting MEC nodes and T1(|V |, |E|)
is the time to solve a fractional maximum flow problem.

Proof. We begin by showing that the approximation ratio of

our proposed SCPA algorithm is ln(N) times the optimal

solution. Let C∗ and C ′∗ be the optimal solutions to our

problem with and without capacity constraints of network

links.

The approximation solution to CSCP (Theorem 1) gives

the lower bound of our original problem, i.e., C ′∗ ≤ C∗.

Specifically, in the aforementioned SCPA algorithm, the first

step is to find the MEC node locations and the assignment of

APs to the selected MEC nodes, which are given by solving the

CSCP problem. Such node locations determine the resulting

cost of both CSCP and our original problem defined in Section

III-B. However, CSCP does not answer through which paths

the APs and MEC nodes are connected and the network

9

bandwidth capacity constraints are ignored, which is a special

case of our original problem. Hence, the solution to CSCP is

the lower bound to the original problem.

Denote by C ′ and C the solutions of the first (node

selection) and second (path selection) steps of the proposed

SCPA algorithm. Clearly, we have C ′ = C, because in the

second step no network nodes are included or removed. We

thus have

C = C ′

≤ C ′∗ · ln(N) , since Theorem 1

≤ C∗ · ln(N).

This means that the approximation ratio of the proposed

algorithm is ln(N).
We then show that feasible unsplittable paths between MEC

nodes and the APs assigned to each MEC node can be found

in polynomial time and the resulting edge congestion is no

more than (4 + ε)|Vs| times edge capacity.

The idea of showing the bound of edge congestion is

by considering the worst-case where the edge that has the

maximum flow in a subgraph Gv overlaps with all edges

from other subgraphs that also have the maximum flow. This

situation could occur as we partition the original graph into

|Vs| subgraphs after we solve CSCP, and an edge from the

original graph G can be shared by many subgraphs. According

to Theorem 2, the relative edge congestion is at most (4+ε) in

a subgraph Gv . Hence, the worst-case relative edge congestion

in the original graph is at most (4+ε)|Vs| since an edge in Gv

can overlap with at most |Vs| edges when it is superimposed

with other edges.

We have now shown that there is a set of unsplittable flows

for each subgraph Gv obtained from the solution to CSCP and

each edge has a congestion no more than (4+ǫ)|Vs|. However,

the edge congestion could violate the bandwidth constraint (2).

This can be solved by setting the subgraph edge capacity by
BWe

(4+ε)|Vs|
. Then, the edge capacity at all edges can be satisfied.

Thus, the solution of the proposed SCPA algorithm satisfies

all constraints and there is a feasible solution of paths for the

lower bound (e.g., CSCP) of the original problem. This means

that the approximation ratio of CSCP is the approximation

ratio of the original problem.

Finally, we derive the running time of the proposed SCPA

algorithm based on the running time from [35], where

they showed solving a SSUFP requires a running time in

O(T1(|V |, |E|) + |V ||E|+ |E|ε). More specifically, since our

problem consists of solving a CSCP and |Vs| SSUFP, we derive

the running time by adding the running time of solving each

subproblem. Therefore, the running time in our problem is

O(|V |+ |Vs|(T1(|V |, |E|) + |V ||E|+ ε|E|)).

V. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposed

framework in terms of service response time (i.e., round-

trip time and processing delay at VMs) and cost efficiency

under different MEC settings (e.g., network size, application

latency requirement and server capacity). We first show in

Section V-A that our dynamic resource allocation framework

achieves the low latency requirement of the application while

resulting in lower operational costs compared to existing

approaches. We then focus on the performance analysis of the

SCPA reoptimization algorithm in Section V-B. We compare

SCPA’s results against optimal and heuristic-based incremental

allocation and show how close our SCPA algorithm can drive

MEC systems back to the optimal state.

We clarify the schemes that will be compared against as

follows:

1) Overprovisioning – We first solve the MEC placement

and allocation at the peak workload with CPLEX in an

offline manner and then, for each chosen location, we

overprovision VMs with the maximum possible physical

capacity to serve user requests, i.e., ALB and new MEC

instantiation are never needed in this case.

2) ALB – We implement the initial solution from the static

allocation problem at t = 0. The network performs

ALB on the initial MEC locations (fixed locations) when

needed.

3) Heuristic – Our proposed heuristic-based incremental

allocation including NLCG algorithm, ALB and CVD

(see the right-side of Fig. 3).

4) Heuristic+Reoptimization – Our proposed dynamic

framework in full, combining heuristic-based incremen-

tal allocation and periodic SCPA global reoptimization

that performs every 30 minutes.

A. Service Latency and Operational Costs

We use packet-level simulations to examine detailed MEC

service latencies and operational costs. To this end, we create

a realistic online NFV-enabled MEC simulation environment

with OMNeT++ [38] complemented with an OpenFlow exten-

sion module provided by [39]. We implemented our dynamic

resource allocation framework that operates as part of the

centralized software-defined networking (SDN) controller. The

controller connects to each network node through a dedicated

network link (see Fig. 1), and dynamically carries out network

configuration during MEC node instantiations.

We create a three-layer metropolitan wireless network

shown in Fig. 1, consisting of APs, aggregation nodes and

mobile core network nodes. In this network, the APs are

deployed over an area of 46km2 where the deployment density

is 0.65 APs per km2. We further consider 1,800 mobile

users moving following the mobility traces of a fleet of taxis

operating in San Francisco [18]. Accordingly, we set up 30

APs, 5 aggregation nodes and 5 core network nodes (e.g,

set according to part of Paris’ core network model [40]) for

the considered number of users and area where each network

node is equipped with a cluster of commodity servers. In

terms of server size, we follow [26] such that each network

node has 21 servers and each server has 2.1GHz CPU of 18

cores. Moreover, we consider an AR application [30] where

users upload street views captured by their mobile devices

for annotations (e.g., building name, available parking places,

etc.) computed by MEC. Such application requires a service

response time of 480ms [1] and generates upload frames of

size 0.5MB at 0.3FPS [30] which requires 230ms for a VM

10

TABLE II: Performance comparison with realistic topology.

Latency Maximum Number of Cost
Requirement Latency MEC nodes saving(%)

(start)−→(end)

Overprovision Succeed 480ms 3−→3 0%

ALB Fail 132s 2−→2 42.6%

Heuristic Succeed 480ms 2−→3 33.6%

Heuristic+ Succeed 480ms 2−→3 33.6%
Reoptimization

of 600MHz CPU to process [30]. For simplicity, we assume

homogeneous frame size and upload rate for all users. In terms

of network latency constraint, we set a maximum of 4 network

hops11 from AP to MEC node [41].

Given the aforementioned setup, we first derive the initial

MEC node locations, resources needed and the corresponding

network paths by CPLEX solver in an offline manner. Two

MEC nodes are selected among all NFV-enabled nodes (the

“Number of MEC nodes, (start)−→(end)” column in Table II

shows this number). Then, we execute our simulations for

a duration of 1 hour from the abovementioned initial state,

during which we gradually increase the AR application work-

load from 0.3FPS to the peak workload at 3.0FPS in steps

of 0.1FPS every 400s. We set a threshold-based VM auto-

scaling mechanism for our packet-level simulation. Whenever

VM load reaches a threshold of 80%, auto-scaling mecha-

nism is triggered with a VM instantiation time of 100ms,

This is set according to a realistic NFV commodity servers’

instantiation time following [14]. In addition, we set the

workload prediction time window, ∆t = 400s [9] for the

NLCG algorithm, and consider a 100% prediction accuracy.

This assumption has been largely adopted in the design of

online resource allocation algorithms [3], [17], [24]. On the

other hand, an inaccurate workload prediction would result

in overprovisioning or underprovisioning of MEC resources

in practice, which leads to poor cost efficiency and long

processing delay respectively. Many existing work such as

[42] have studied the impact of prediction inaccuracy and

the compensation techniques (e.g., [42] proposed a method to

minimize the impact of prediction inaccuracy, in which they

minimized the underprovisioning-caused latency violations

less than 2% of all requests). Therefore, our evaluation focuses

on the proposed algorithms.

Now, we compare our solution against existing solutions in

terms of service latency and operational costs. Table II shows

our results with respect to satisfaction of the response time

requirement, number of resulting MEC nodes (i.e., operational

costs) at the start and end of the simulation and the cost

savings over time in comparison to the Overprovision scheme.

From the table, we can see that only the costly Overprovision

and our solutions (Heuristic and Heuristic+Reoptimization),

manage to satisfy the delay requirement of the considered AR

application. In addition, ALB results in the lowest number of

MEC nodes at the end of the simulations, but it comes with

delay penalties due to computation congestion at the two initial

MEC nodes. Our solutions have all increased the resulting

11According to [41], when maximum number of network hops are no more
than 4, MEC always outperforms DC-based cloud in terms of latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

C
D

F

Response Time (ms)

480ms

Overlaps Heuristic solutions

and Overprovision

Overprovision
ALB

Heuristic
Heuristic+Reoptimization

Threshold

Fig. 4: (Color Online) Response time.

number of MEC nodes by 1 in response to the increased

workload. When we compare the costs over time against

Overprovision, ALB achieves a saving of 42.6%. In contrast,

our Heuristic and Heuristic+Reoptimization lead to a more

modest saving (i.e., 33.6% in both cases), but achieves the

latency requirement by increasing the overall computational

resources through the new allocation of MEC nodes. Such

saving is achieved by minimizing the number of required MEC

node instantiations whereby the CVD mechanism derives the

time instance when the resources of MECs will be fully

utilized and cannot accommodate more workloads. However,

due to the packet-level simulator’s limitation, only a small

topology is evaluated, whereby the performance improvement

of Heuristic+Reoptimization cannot be revealed (e.g., identical

results of cost saving in Table II).

In addition, we observe from the cumulative distribution

function (CDF) of response time in Fig. 4 that the resulting

response time of our solutions overlap with that of Overpro-

vision. This further shows the seamless transition to the new

system state, and Heuristic approach is fast enough to get VMs

ready before workload arrives. On the other hand, ALB fails to

conform to the latency requirement with 20% (see Fig. 4) of

the overall requests exceed the latency threshold (maximum

latency at 132s) due to insufficient physical capacity in the

fixed limited number of MECs.

Our detailed packet-level simulator allows us to track and

examine each and every individual request and response packet

in the system. The tradeoff to this is the scalability of the

simulator which constrained us to smaller scale simulations.

To more comprehensively evaluate our solution, we further

evaluate our framework, specifically on the benefits brought

by our global re-optimization algorithm, SCPA, with larger

network topologies in the next section. Also, we thoroughly

investigate the impact of different network sizes, network hop

constraints and MEC service-hosting servers’ sizes to our

solution.

B. System Cost Optimality

We proceed to evaluate the improvements provided by

SCPA via flow-level simulations with large network topolo-

gies, and investigate by how much SCPA can drive the

NFV-enabled MEC back to the optimal state. To this end,

we compare the resulting MEC operational cost of Heuris-

tic+Reoptimization against Heuristic and lower bound of op-

11

timal solution12 denoted by OPTLB under different network

sizes, latency requirements and physical capacities of NFV-

enabled servers. Furthermore, in order to present SCPA reopti-

mization’s optimality difference to OPTLB in a more intuitive

way and take into account MECs’ resource utilization level,

we introduce two metrics: cost efficiency and cost efficiency

gap. The cost efficiency, Ceff , quantifies the number of mobile

users per MEC node who achieve the required service response

time.

Cost efficiency, Ceff =
Nbusers

|Vs|
(7)

where Nbusers is the total number of users who receive their

services within the services’ latency requirements.

Cost efficiency gap shows how close the resulting cost

efficiency of our solutions (i.e., Heuristic+Reoptimization and

Heuristic) is to the OPTLB , that is, the smaller this gap is,

the more cost-efficient the solution is. More specifically, this

metric is derived as the normalized difference between cost

efficiency of our solutions and that of OPTLB .

Cost efficiency gap, Gapeff =

∣

∣

∣

∣

∣

∣

COPTLB

eff − Ceff

COPTLB

eff

∣

∣

∣

∣

∣

∣

(8)

where COPTLB

eff denotes the cost efficiency of OPTLB .

1) Impact of Network Size: We adopt GT-ITM [43] to

generate synthetic network topologies where the probability of

having an edge between two nodes is 0.2 with edge capacities

uniformly distributed between 300Mbps and 10Gbps. Other

setup / parameters related to the application, workload and

server capacity remain the same as previously described (see

Section V-A). We plot in Fig. 5(a) the average number of MEC

nodes in function of different network sizes ranging from 100

nodes to 1000 nodes for Heuristic, Heuristic+Reoptimization

and OPTLB . It must be stressed that the average number of

MEC nodes at each network size (e.g., 100 to 1000 nodes)

is the average number of MEC nodes of 4 simulations with

different service latency requirements (e.g., maximum number

of hops from 1 to 4 hops). By doing so, the impact of a specific

latency requirement to the MEC node number is reduced, and

hence Fig. 5(a) can reflect the impact of network sizes to MEC

node number in a more accurate way.

From Fig. 5(a), we see that the Heuristic+Reoptimization

solution achieves lower operational costs (i.e., lower number

of resulting MEC nodes) for all network sizes compared to

Heuristic. The resulting MEC operational cost of our Heuris-

tic+Reoptimization also closely follows that of OPTLB . The

relative poorer performance achieved by Heuristic is due to

its local search nature where the search of a new MEC node

is triggered by overloaded existing MEC nodes and carried

12Such OPTLB is solved by relaxing both the edge capacity constraint and
the routing decision variable Xp (i.e., from integer to linear programming).
Note that this is a conservative estimation of the optimal solution, which is
smaller than the optimal value. In addition, due to the complexity in deriving
the OPTLB solutions for large size networks (e.g., larger than 300 nodes),
we stop the CPLEX solver when the optimality gap reaches 5% to avoid long
execution time.

 0

 20

 40

 60

 80

 100

 120

 140

100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r
 o

f
M

E
C

 N
o

d
e

s

Network Size

Heuristic
Heuristic+Reoptimization

OPTLB

(a) Average costs for each network
size over different latency require-
ments.

 0

 10

 20

 30

 40

 50

100 200 300 400 500 600 800 1000

C
o

s
t

E
ff

ic
ie

n
c

y
 G

a
p

 (
%

)

Network Size

Heuristic
Heuristic+Reoptimization

(b) Cost efficiency gap to OPTLB .

Fig. 5: (Color Online) Impact of network sizes to costs.

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2 3 4 ∞

C
o

s
t

E
ff

ic
ie

n
c

y
 G

a
p

 (
%

)

Maximum Number of Network Hops

Heuristic
Heuristic+Reoptimization

Fig. 6: (Color Online) Cost efficiency gap to OPTLB .

out in the vicinity of these affected nodes. As a result, the

optimal MEC location that may benefit the maximum num-

ber of users could potentially be omitted during Heuristic’s

search process, leading to a relatively lower cost efficiency.

In contrast, Heuristic+Reoptimization utilizes resources more

efficiently by searching the optimal MEC locations over the

entire network.

We show in Fig. 5(b) the cost efficiency gap to OPTLB for

Heuristic+Reoptimization and Heuristic. We see that Heuris-

tic’s cost efficiency gap to OPTLB is always above 25%,

whereas Heuristic+Reoptimization can improve nearly 20% of

Heuristic’s cost efficiency due to the global search. In addition,

Heuristic+Reoptimization consistently achieves an efficiency

gap below 15% for any network sizes (see Fig. 5(b)). In par-

ticular, we observe that Heuristic+Reoptimization’s efficiency

gap does not increase with network size, which justifies the

theoretical performance bound ln(N), whereby N represents

the largest number of APs served by a MEC node, which is

independent to the size of network.

2) Impact of Latency Requirements: The latency require-

ment can be interpreted as the maximum tolerable number

of network hops between APs and MEC nodes. It directly

affects the number of APs that a NFV network node can cover

(i.e., serving the APs without violating latency requirements).

This, in turn, affects the required MEC nodes to cover all

APs in the proposed algorithms. To show the impact of this

factor, we vary the maximum tolerable number of network

hops from 1 to 4, which reflects latency requirements of

different nature such as extremely strict network latencies

(e.g., 10ms network delay) to loose latencies (e.g., 150ms

network latency). We show, with Fig. 6, both Heuristic and

Heuristic+Reoptimization’s cost efficiency gap ratio for each

of considered latency requirement. Note that the cost efficiency

gap at each latency requirement in Fig. 6 is the average of that

of all network sizes (e.g., 100 to 1000).

We see from Fig. 6 that Heurisitc+Reoptimization still out-

12

performs Heuristic for each latency requirement, and it always

achieves an efficiency gap below 20%. In particular, when

the maximum network hop is set to zero, both Heuristic and

Heurisitc+Reoptimization achieve an optimal operational cost

where the efficiency gap equals to zero. This is due to the fact

that the extreme low latency constraint (e.g., 0 hop) restricts

all APs to be served as MEC nodes, which makes the resulting

number of MEC nodes identical for any MEC allocation

algorithms that conforms to the network latency constraint.

Similarly, when we look at the other extreme case where

the latency constraint is extremely loose (see ∞ in Fig. 6)

and the physical NFV servers have infinite capacity, only one

MEC node is required in Heuristic, Heurisitc+Reoptimization

and OPTLB (e.g., this leads to 0% cost efficiency gap).

From the above two cases, we observe that the selection of

MEC resource allocation algorithm does not play a critical

role in the resulting MEC operational cost when latency is

either extremely loose or strict. However, when the latency

requirement is between the two extremes cases, it significantly

affects the cost efficiency. For instance, when the latency

requirement is set to 1, 2, 3 and 4 network hops, we observe

from Fig. 6 that the cost efficiency gap of both Heuristic and

Heurisitc+Reoptimization first increases and then decreases as

the maximum tolerable network hops increase. The increase

of cost efficiency gap at network hop 1 and 2 compared to

0 hop is due to the enlarged search space for MEC nodes

in Heuristic and Heurisitc+Reoptimization. Such search space

enlargement increases the chance of selecting less optimal

MEC nodes where MECs’ resource utilization is poorer com-

pared to MECs derived by OPTLB . On the other hand, the

decrease of efficiency gap at 3 and 4 network hops is the

consequence of improved MEC utilization compared to cases

with 1 and 2 network hops. Specifically, due to the relaxed

latency constraint, a MEC node can serve a larger number

of users without violating the network latency requirement,

and hence achieve a better resource utilization compared to

strict latency requirements. In particular, the relaxed latency

constraint at 4 network hops results in a situation where the

number of served users in each MEC reaches servers’ physical

capacity limits, that is, the resource utilization at each derived

MEC is almost 100%. Knowing that an optimal MEC resource

allocation achieves the least number of MEC also by fully

utilizing MECs’ resources. Therefore, the fully utilized MEC

nodes at 4 network hops achieve a very close cost to OPTLB .

Similarly, when the latency becomes even less strict (e.g.,

∞), the allocated resources at MECs will reach the servers’

physical capacity limits and result in the same operational

cost as OPTLB (see ∞ in Fig. 6). Clearly, there is an inter-

correlation between applications’ latency requirement and the

server capacity, which we elaborate in the next subsection.

3) Impact of Physical Capacities: Next, we

evaluate the impact of servers’ physical capacities to

Heurisitc+Reoptimization’s MEC costs. To this end, we

consider three NFV-enabled servers sizes, namely, FULL

(i.e., the considered server size (see Section V-A)), HALF

(i.e., half of FULL size), DOUBLE (i.e., two times the FULL

size) [17], [26]. Furthermore, servers of different sizes result

in different energy consumption, which can be estimated

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5

M
E

C
 E

n
e

rg
y

 C
o

s
t

 (
N

B
 o

f
M

E
C

)*
S

e
rv

e
r

S
iz

e

Maximum Number of Network Hops

Half Server Size

Full Server Size

Double Server Size

Fig. 7: (Color Online) Heuristic+Reoptimization’s average

cost for each latency constraint over different network sizes.

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

s
e

c
o

n
d

s
)

Network Size

Heuristic
Heuristic+Reoptimization

Fig. 8: (Color Online) Algorithm running time comparison.

based on the server size and resource utilization [3]. We

take a simplistic assumption in our evaluation whereby the

energy consumption is proportional to the server size. That

is, we consider HALF size servers consume half of FULL

size servers’ energy and correspondingly, DOUBLE size

servers consume double the amount of energy of FULL size

servers. We plot in Fig. 7 the average energy cost incurred

by Heurisitc+Reoptimization under different network latency

requirements for each of the abovementioned server sizes.

We observe that simulations with DOUBLE server size

result in higher costs than HALF and FULL server when

network latency requirement is extremely low (e.g., 1 network

hop). This is due to the inter-correlation between the two

impact factors: latency requirement and server size. More

specifically, when network latency requirement is extremely

low, the latency requirement impact factor dominates the

MEC node searching process leading to almost the same

number and placement of resulting MEC nodes for HALF,

FULL and DOUBLE size servers. However, the per MEC

energy consumption of DOUBLE size server is significantly

more than that of HALF and FULL size which results in the

overall higher costs (see Fig. 7). In contrast, when the latency

requirement becomes less strict (e.g., network hops 3 and 4),

DOUBLE size servers’ energy cost decreases drastically as

a consequence of decreased number of required servers and

better resource utilization compared to that of strict latency

requirements (i.e., each server supports a larger number of

users within its network latency constraint). At the same time,

we see from Fig. 7 that the resulting cost of the 3 server

sizes converges to the same level after 3 network hops. For

each server size, more users are served per MEC after the

relaxation of latency requirements, and hence all MECs are

almost fully utilized. As a consequence, the overall number of

MEC nodes with full-size servers is half of that of half-size

case and double of double-size case. Given the simplified

energy cost assumption, our dynamic resource allocation

13

framework results in the same level of energy consumption

for each server size when latency requirement is loose.

Given the above observations, we see that the performance

of our dynamic resource allocation framework is independent

of the network size. In particular, Heurisitc+Reoptimization

can always improve Heuristic’s resulting operational cost

except when the latency requirement is extremely low (e.g.,

0 hops) or extremely high (e.g., ∞ hops). Also, the obser-

vations from the impact factor analysis of latency and server

capacity provide insights on the server size selection in the

NFV-enable MEC cost minimization problem. We conclude

that for extreme low latency applications (e.g., under 10ms),

deployment of smaller servers are more desirable in order to

achieve lower MEC cost through dynamic resource allocation.

However, when the latency requirement is loose, the server

size does not have strong influence on the MEC operational

costs.

4) Algorithm Running Time: Last, we show in Fig. 8

the average running time of NLCG heuristic and SCPA

reoptimization for each network size whereby the average

running time is derived over different latency requirements.

As Fig. 8 shows, the SCPA takes more time to execute than

NLCG heuristic, but achieves a cost efficiency within 20% of

OPTLB’s cost efficiency (see Fig. 6). In addition, we observe

that when network size is larger than 500 nodes, SCPA running

time increases drastically due to the increased complexity

in finding unsplittable flows. However, it must be stressed

that conventional metropolitan-level wireless networks usually

have network size smaller than 700 nodes [17], [23], and even

the maximum execution time (e.g., 200s) for 700 nodes does

not affect the desired latency requirements in the considered

online NFV-enabled MEC. This is due to the fact that SCPA

is performed less frequently than incremental MEC allocation

in our dynamic resource allocation framework. On the other

hand, the NLCG’s running time is below 50s in the worst case

(e.g., network size 1000), which does not affect the latency

requirements (i.e., the sum of VM instantiation time and

NLCG’s running time is always smaller than CVD detection

interval).

VI. SUMMARY AND CONCLUSIONS

We address the challenge of designing dynamic mobile

edge-cloud (MEC) resource allocation for delay sensitive mo-

bile applications in a Network Function Virtualization (NFV)-

enhanced MEC environment. Specifically, we consider new

flexibility afforded by NFV in dynamic MEC instantiations

rather than the existing fixed-location MEC allocation prac-

tices. For this, we formulate an optimization problem for

allocating MEC services at any resource-constrained NFV-

enabled nodes so that resources are optimally allocated to

satisfy the applications’ latency requirements, while incurring

minimum operational costs to ISPs. Since the problem is

NP-hard, we designed a novel dynamic resource allocation

framework consisting of an online heuristic-based incremental

allocation solution (i.e., using combination of NLGC algo-

rithm with CVD and ALB mechanisms) and a reoptimization

solution (i.e., SCPA) with a guaranteed approximation ratio.

In particular, our online heuristic-based incremental allocation

mechanism aims to efficiently allocate resources to tackle

local MEC computation congestion due to (sudden) increase

of workload in a timely manner, such that the low latency

requirements are always achieved. The reoptimization solution

readjusts the sub-optimal MEC resource allocation resulted

by the incremental solution, and drives MEC systems back

towards the optimal state. We demonstrate the effectiveness of

our dynamic resource allocation framework in NFV-enabled

MEC through both packet-level and flow-level simulations.

Our results show that only our proposal always ensures

that MEC services respond to user requests on time, while

achieving up to 33% operational cost reduction in compari-

son to the current fixed-location MEC practices. Meanwhile,

our proposal achieves a near-optimal MEC operational cost

whereby the cost efficiency is no more than 20% of that

incurred by optimal MEC resource allocation. In addition, our

impact factor analysis indicates that MEC applications with

extreme low latency requirements (e.g., 10ms) are more in

favour of small size servers for cost efficiency purposes.

For the future work, we aim to further investigate dy-

namic resource allocation for stateful low latency applica-

tions, whereby changing the user-to-MEC assignment incurs

migration costs. For such scenarios, the resource allocation

needs to be cost-efficient as well as robust, such that the

migration costs are minimized over certain time periods.

Moreover, we aim to expand the current resource allocation

and optimization framework to support multiple services of

different performance requirements while still being fast and

efficient.

ACKNOWLEDGMENT

This work was partially funded by the CHIST-ERA CON-

CERT/EPSRC, project number I1402 and the EU H2020

UMOBILE, project number 645124.

REFERENCES

[1] P. Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical mobile
augmented reality,” in ACM MobiSys, 2015, pp. 331–344.

[2] K. Ha et al., “The impact of mobile multimedia applications on data
center consolidation,” in IEEE Conf. on IC2E, 2013, pp. 166–176.

[3] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[4] M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[5] D. Zeng et al., “Joint optimization of task scheduling and image place-
ment in fog computing supported software-defined embedded system,”
IEEE Trans. on Computers, vol. 65, pp. 3702–3712, 2016.

[6] J. Soares et al., “Toward a telco cloud environment for service func-
tions,” IEEE Commun. Mag., vol. 53, no. 2, pp. 98–106, 2015.

[7] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, 2013.

[8] S. Wang et al., “Dynamic service migration in mobile edge-clouds,” in
IFIP Networking, 2015.

[9] D. Niu et al., “Quality-assured cloud bandwidth auto-scaling for video-
on-demand applications,” in IEEE INFOCOM, 2012, pp. 460–468.

[10] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for dht-
based p2p systems,” IEEE Trans. on Parallel and Distributed Systems,
vol. 16, no. 4, pp. 349–361, 2005.

14

[11] R. Mijumbi et al., “Management and orchestration challenges in network
functions virtualization,” IEEE Commun. Mag., vol. 54, no. 1, pp. 98–
105, 2016.

[12] N. Bouten et al., “Towards nfv-based multimedia delivery,” in Symp. on

IEEE IM, 2015, pp. 738–741.
[13] H. Yin et al., “Edge provisioning with flexible server

placement,” IEEE Trans. on Parallel and Distributed Systems,

DOI:10.1109/TPDS.2016.2604803.
[14] A. Madhavapeddy et al., “Jitsu: Just-in-time summoning of unikernels,”

in USENIX Symp. on NSDI, 2015, pp. 559–573.
[15] J. Martins et al., “Clickos and the art of network function virtualization,”

in USENIX Conf. on Networked Systems Design and Implementation,
2014, pp. 459–473.

[16] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, 2016, pp. 1–9.

[17] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in IFIP Networking, 2015.

[18] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “A parsi-
monious model of mobile partitioned networks with clustering,” in IEEE

Communication Systems and Networks and Workshops, 2009, pp. 1–10.
[19] B. Yang et al., “Seamless support of low latency mobile applications

with nfv-enabled mobile edge-cloud,” in IEEE CloudNet, 2016, pp. 136–
141.

[20] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in IEEE INFOCOM, 2011,
pp. 71–75.

[21] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[22] T. Taleb and A. Ksentini, “An analytical model for follow me cloud,”
in IEEE GLOBECOM, 2013, pp. 1291–1296.

[23] Z. Xu et al., “Capacitated cloudlet placements in wireless metropolitan
area networks,” in IEEE LCN, 2015, pp. 570–578.

[24] Z. Xu et al., “Efficient algorithms for capacitated cloudlet placements,”
IEEE Trans. on Parallel and Distributed Systems, vol. 27, pp. 2866–
2880, 2016.

[25] M. Jia et al., “Cloudlet load balancing in wireless metropolitan area
networks,” in IEEE INFOCOM, 2016, pp. 1–9.

[26] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for online
request admissions in mobile cloudlets,” in IEEE LCN, 2013, pp. 589–
596.

[27] H. Huang and S. Guo, “Service provisioning update scheme for mobile
application users in a cloudlet network,” in IEEE ICC, 2017, pp. 1–6.

[28] R. Landa et al., “Self-tuning service provisioning for decentralised
cloud applications,” IEEE Trans. on Network and Service Management,
vol. 13, pp. 197–211, 2016.

[29] Y. Cao and N. Wang, “Toward efficient electric-vehicle charging us-
ing vanet-based information dissemination,” IEEE Trans. on Vehicular

Technology, vol. 66, no. 4, pp. 2886–2901, 2017.
[30] R. LiKamWa and L. Zhong, “Starfish: Efficient concurrency support for

computer vision applications,” in ACM MobiSys, 2015, pp. 213–226.
[31] J. R. Current and J. E. Storbeck, “Capacitated covering models,”

Environment and planning B: planning and Design, vol. 15, no. 2, pp.
153–163, 1988.

[32] I. I. CPLEX, “V12. 1: User manual for cplex,” International Business

Machines Corporation, vol. 46, no. 53, p. 157, 2009.
[33] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud

using predictive models for workload forecasting,” in IEEE CLOUD,
2011, pp. 500–507.

[34] B. Radunović and J.-Y. L. Boudec, “A unified framework for max-
min and min-max fairness with applications,” IEEE/ACM Trans. on

Networking, vol. 15, no. 5, pp. 1073–1083, 2007.
[35] S. G. Kolliopoulos and C. Stein, “Approximation algorithms for single-

source unsplittable flow,” SIAM Journal on Computing, vol. 31, no. 3,
pp. 919–946, 2001.

[36] J. Chuzhoy and J. Naor, “Covering problems with hard capacities,” SIAM

Journal on Computing, vol. 36, no. 2, pp. 498–515, 2006.
[37] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory,

algorithms, and applications,” 1993.
[38] A. Varga, OMNeT++ Simulator Home Page, http://www.omnetpp.org.
[39] D. Klein and M. Jarschel, “An openflow extension for the omnet++ inet

framework,” in ICST Conf. on Simulation Tools and Techniques, 2013.
[40] S. Knight et al., “The internet topology zoo,” IEEE Journal on Selected

Areas in Communications, vol. 29, no. 9, pp. 1765–1775, 2011.
[41] D. Fesehaye et al., “Impact of cloudlets on interactive mobile cloud ap-

plications,” in IEEE Conf. on Enterprise Distributed Object Computing,
2012, pp. 123–132.

[42] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling
for cloud systems,” in IEEE CNSM, 2010, pp. 9–16.

[43] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling internet
topology,” IEEE Commun. Mag., vol. 35, no. 6, pp. 160–163, 1997.

Binxu Yang received the B.S. degree in telecommu-
nications from Xidian University, China; the French
Engineering degree from Telecom Bretagne, France;
and the M.Res. degree (Distinction) from University
College London (UCL), U.K, in 2010, 2013, and
2014, respectively. He is currently a final-year Ph.D.
from the Department of Electronic and Electrical
Engineering, UCL. His current research interests
include mobile edge computing and resource allo-
cation in network function virtualization.

Wei Koong Chai received the B.Eng. degree in
electrical engineering from the Universiti Teknologi
Malaysia, Johor Bahru, Malaysia, in 2000, and both
the M.Sc. (Distinction) and the Ph.D. degrees from
the University of Surrey, Surrey, U.K., in 2002 and
2008, respectively. He is currently a Senior Lecturer
in the Department of Computing and Informatics,
Bournemouth University, Dorset, U.K. as well as a
Visiting Academic - Honorary Senior Research As-
sociate - at University College London (UCL). Prior
to this, he was with the Department of Electronic and

Electrical Engineering, UCL, as Senior Research Fellow. His current research
interests include information-centric networking, network science and resource
management (e.g., for mobile cloud networks, satellite networks, wireless
mesh networks).

Zichuan Xu received his Ph.D. degree from the
Australian National University in 2016, ME degree
and B.Sc. degree from Dalian University of Tech-
nology in China in 2011 and 2008, all in Computer
Science. He is currently an Associate Professor at
the School of Software, Dalian University of Tech-
nology in China. He was a Research Associate at
Department of Electronic and Electrical Engineer-
ing, University College London, UK. His research
interests include cloud computing, software-defined
networking, network function virtualization, wireless

sensor networks, routing protocol design for wireless networks, algorithmic
game theory, and optimization problems.

Konstantinos V. Katsaros received his B.Sc. in
informatics (2003), and his M.Sc. (Honours, 2005)
and Ph.D. (2010) degrees in computer science from
A.U.E.B, Greece. He has worked in the areas of
cloud networking, mobile grid computing, and mul-
ticast/broadcast service provision over cellular net-
works. His research interests focus on information-
centric networking and smart grid communications.
Currently, he is a senior research engineer at In-
tracom Telecom, Greece. Prior to this, he was a
research associate at the Department of Electronic

and Electrical Engineering, University College London, United Kingdom.

George Pavlou is Professor of Communication Net-
works in the Department of Electronic and Electrical
Engineering, University College London, UK where
he co-ordinates research activities in networking and
network management. He received a Diploma in
Engineering from the National Technical University
of Athens, Greece and M.S. and Ph.D. degrees in
Computer Science from University College Lon-
don, UK. His research interests include aspects
such as resource management, traffic engineering,
quality of service, autonomic networking, network

programmability and content-based networking. He has been instrumental in
a number of European and UK research projects that produced significant
results with real-world uptake and has contributed to standardisation activities
in ISO, ITU-T and IETF. He has been the technical program chair of several
key conferences in the area and in 2011 he received the Daniel Stokesbury
award for distinguished technical contribution to the growth of the network
management field.

