
534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

Cost-Efficient On-Chip Routing Implementations
for CMP and MPSoC Systems

S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J. Duato

Abstract—The high-performance computing domain is enrich-
ing with the inclusion of networks-on-chip (NoCs) as a key
component of many-core (CMPs or MPSoCs) architectures. NoCs
face the communication scalability challenge while meeting tight
power, area, and latency constraints. Designers must address new
challenges that were not present before. Defective components,
the enhancement of application-level parallelism, or power-aware
techniques may break topology regularity, thus, efficient routing
becomes a challenge. This paper presents universal logic-based
distributed routing (uLBDR), an efficient logic-based mechanism
that adapts to any irregular topology derived from 2-D meshes,
instead of using routing tables. uLBDR requires a small set of
configuration bits, thus being more practical than large routing
tables implemented in memories. Several implementations of
uLBDR are presented highlighting the tradeoff between routing
cost and coverage. The alternatives span from the previously
proposed LBDR approach (with 30% of coverage) to the uLBDR
mechanism achieving full coverage. This comes with a small
performance cost, thus exhibiting the tradeoff between fault
tolerance and performance. Power consumption, area, and delay
estimates are also provided highlighting the efficiency of the
mechanism. To do this, different router models (one for CMPs
and one for MPSoCs) have been designed as a proof concept.

Index Terms—Fault-tolerance, logic design, networks-on-chip,
routing.

I. Introduction

MAIN MICROPROCESSOR manufacturers have shifted

to chip multi-processors (CMPs) for their products. In

CMPs many cores are put together in the same chip, and

as technology advances more cores are included. Recently,

Manuscript received July 2, 2010; revised November 17, 2010; accepted
November 17, 2010. Date of current version March 18, 2011. This work was
supported by the Spanish MEC and MICINN, as well as by the European
Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-
14475-C04. This work was supported in part by the Project NaNoC (Project
Label 248972) which is funded by the European Commission within the
Research Programme FP7. This paper was recommended by Associate Editor
L. P. Carloni.

S. Rodrigo, J. Flich, A. Roca, J. Camacho, and F. Silla are with the Parallel
Architectures Group, Technical University of Valencia, Valencia 46022, Spain
(e-mail: srodrigo@gap.upv.es; jflich@disca.upv.es; anrope2@gap.upv.es; je-
cavil@gap.upv.es; fsilla@disca.upv.es).

S. Medardoni is with the Integrated Systems Laboratory of Minatec,
Grenoble 38000, France (e-mail: mdrsmn@unife.it).

D. Bertozzi is with the Department of Engineering, University of Ferrara,
Ferrara 44100, Italy (e-mail: brtdvd@unife.it).

J. Duato is with the Parallel Architectures Group, Technical University
of Valencia, Valencia 46022, Spain, and also with the Simula Research
Laboratory, Fornebu 1364, Oslo, Norway (e-mail: jduato@disca.upv.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2119150

Intel has announced a research chip with 48 cores, each being

x86 compatible, under the Tera-Scale Computing Research

Program [1]. Embedded systems are also shifting to multi-core

solutions [multiprocessor system-on-chips (MPSoCs)]. A clear

example of high-end SoCs are the products offered by Tilera

[2] where multi-core chips provide support to a wide range

of computing applications, including advanced networking,

high-end digital multimedia, wireless infrastructure, and cloud

computing. The most recent product by Tilera offers 100 cores

in the same chip. It is well accepted in the community that

processor performance will be increased in the following years

by including more cores in the same die.

CMPs and high-end MPSoCs rely on an on-chip network

(NoC) able to handle all the communication traffic between

cores. Initial chip designs with few cores included buses and

rings as the communication subsystem. Such solutions are well

suited for chips with a small number of cores, like the Cell

processor [3]. However, as the number of cores scales up, the

bus structure suffers from lack of enough bandwidth. Thus,

designers evolved to more scalable solutions.

On the other hand, in CMP and high-end MPSoCs, tile

design is gaining momentum. The tile is designed in isolation

and, once finished, the chip is built by replicating tiles. By

doing this, the design effort to build a chip is drastically

reduced. Tiled designs also advocate for regular network

structures like 2-D meshes, as in Fig. 1. Typically, each tile

incorporates a processor core, cache memory controllers, and

a router to enable communication between tiles.

However, even if the design of a chip with a 2-D mesh

network is correct, the on-chip network may face new chal-

lenges leading to non-regular heterogeneous topologies. In-

deed, as technology advances, correct manufacturing becomes

challenging and defective components will become frequent.

As a consequence, a defective tile in the chip, if not addressed,

will ruin the 2-D mesh structure of the network, leading to

an irregular network that cannot be handled by the routing

algorithm, thus rendering the chip useless. An example can

be seen in Fig. 2, where the link between routers 6 and 7 has

failed. Unless the routing mechanism is prepared to reroute a

message around the defective link, it would be impossible for

both routers to communicate.

Another challenge is the problem of not extracting enough

parallelism from applications so to efficiently use tens and

hundreds of cores in future chips. As a solution, the chip

can be partitioned into multiple domains, each one running a

0278-0070/$26.00 c© 2011 IEEE

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 535

Fig. 1. Tile-based design.

Fig. 2. Future challenges to be addressed in NoCs.

different application (or serving a different customer). In this

scenario, and in order to fit as many applications as possible,

the partition of the chip resources may lead to irregularly

shaped domains. The way applications are usually mapped

onto the chip uses a concept known as virtualization, where

a real chip is partitioned into several smaller virtual chips. In

Fig. 2, an example is shown. Two applications, A0 and A1,

are already mapped on the chip using a different number of

nodes. If a new application named A2 needs only three nodes

to perform its task it could then be mapped on the nodes

attached to routers 8, 9, and 12, grouping them into an irregular

region. If such irregular mapping is not allowed, then A2 will

need to wait the completion of A0 or A1. The objective is to

minimize any fragmentation by allowing irregular patterns.

As a major challenge for chip design, there is a clear

need to introduce efficient power saving methods. As the

number of cores increases, probably many of the cores will

remain unpowered (in sleep mode) most of the time, thus

achieving large savings in power consumption. The same

strategy should be applied to the on-chip network, which has

been reported [4] to consume around 30% of the total chip

power consumption. Powering routers off and on will lead to

temporary irregularities in the topology. An example is present

in Fig. 2. Tiles 14 and 15 are idle, and as a result of a power-

aware technique implemented, they are powered down until

requested by another computation task. This is translated into

an irregular topology with the rest of nodes that are still active

and need an effective routing layer.

Addressing all the previous challenges requires some effort

at the on-chip network level, in particular, the most important

thing to address is providing efficient support for irregular net-

work topologies. Indeed, all the challenges mentioned above

Fig. 3. Routing tables example.

Fig. 4. Area and latency for memory macros/blocks as a function of the
number of entries for a 90 nm technology node.

can be correctly addressed by deploying a routing mechanism

able to deal with any of the derived topologies.

Current solutions that advocate for irregular topologies are

based on routing tables. The basic mechanism consists either

on implementing look-up tables at every end-node (when using

source-based routing), or forwarding tables at every router

(when using distributed-based routing). For every destination,

there is a path or output port associated, respectively, to each

kind of routing, that the message follows, or chooses, to arrive

at its destination. Let us see an example in Fig. 3. In source-

based routing, if a message had node 10 as a source and node

0 as destination, the path to follow, N − N − W − W (north,

north, west, west), would be coded on the message header.

In distributed routing, there is no path coded at the message

header, just the destination, so on every router, the routing

table is accessed to see the output port the message has to

take on its way to its destination. In the example, at router 10,

for destination 0, the output port chosen is N (north).

The main advantage of table-based routing is that any

topology and any routing algorithm can be used. However,

as routing tables are implemented with memories, they do not

scale in terms of latency, power consumption, and area, thus

being impractical for large NoCs [5]. Indeed, a routing table

with as many entries as the number of nodes and input ports

are needed in the worst case, with the possible addition that

every entry needs to store different output ports returned by

the routing algorithm. Hence, the cost of this implementation

is N × d × d, where N is the number of nodes and d is the

number of ports. An example of poor scalability of tables can

be seen in Fig. 4 which shows the synthesis of memory macros

with 90 nm technology obtained with Memaker [6]. As can

be seen in the figure, there is a direct increase of area with

respect to the number of entries (table size). Latency results

536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

have the same trend. In addition, the increase on router delay

could change the critical path of the router leading to lower

performance.

On the other hand, dimension-order routing (DOR, also

called XY) [7] is based on the concept of minimal-path

routing and is very simple: first route the message in one

dimension (X) and then, in the other dimension (Y), when

related to a 2-D mesh. DOR is an efficient solution (logic-

based implementation) in terms of area, power, and delay

overheads, but as opposed to a routing tables implementation,

it lacks the associated flexibility and cannot support any of the

challenges mentioned before.

So, it is imperative for current and future designs to face

these challenges, benefiting from the flexibility of routing

tables, while achieving important savings in three critical key

aspects that influence every design at the nano-scale domain:

area, latency (critical path) and power. Indeed, effective and

efficient designs that accomplish to get overall savings in any

of the aspects mentioned before will be a great contribution

to the NoC field. Here we take on such a challenge. But,

rather than addressing completely irregular topologies (more

suitable for low-end MPSoC systems) we focus on irregular

topologies derived from an initial 2-D mesh structure, where

the following properties still remain: 1) a router is connected

to at most four routers, each one in a different direction and

dimension, and 2) a hop along a valid direction and dimension

will not cross more than one row or column. If we assume

that the previous two properties are guaranteed by the final

topology, then the solutions to provide efficient routing in

those topologies get simplified. The aim is to provide a step

further and deliver a logic-based routing mechanism able to

cover all the possible cases derived from a 2-D mesh, that is,

with full support for any failure/virtualization/domain/region

configuration. The mechanism, referred to as universal logic-

based distributed routing (uLBDR), is an evolution of LBDR

[5].

The remainder of this paper is organized as follows. In

Section II, we describe the related work. In Section III, we

describe the uLBDR mechanism. In Section IV, we describe

two router implementations to support the uLBDR mechanism.

Then, in Section V we evaluate uLBDR. Finally, in Section

VI we present the conclusion and provide future directions.

II. Related Work

There are solutions from the off-chip network domain that

could be applied to the NoC field. All these mechanisms do

not fit properly in NoCs unless they are thoroughly redesigned.

As an example, proposals for TCP/IP protocols [8] are not

suitable for NoCs as they rely on message dropping, and would

severely affect network performance. There are also techniques

used in large parallel systems like the Blue Gene/L system [9]

where entire sets of healthy nodes (lamb nodes) are switched

off to keep topology and routing algorithm unchanged. Other

mechanisms, focused on routing optimization [10], require

the use of virtual channels (up to five in some cases) but

they do not achieve 100% coverage practically. Also, these

mechanisms rely on adaptive routing, and the network must

deal with out-of-order delivery issues, a feature that could be

difficult to implement in NoCs. Other examples are Interval

Routing [11] and extensions [12], group sets of destinations

requesting the same port, and are an initial attempt to compress

the routing table. However, these techniques are not easily

applicable to irregular networks.

Street-Sign Routing [13], a source-based routing implemen-

tation, compresses the message header so to minimize the

impact on network bandwidth. Street-Sign Routing includes

only the router ID of the next turn and the direction of the turn

in the message header. Although message header is reduced

it still consumes bandwidth. In addition, a table including the

paths for every destination is required at every end-node.

Regarding distributed routing solutions, first we focus on

region-based routing (RBR) [14] (and a similar proposal [15]).

At each router RBR groups into a region different destinations

that can be reached through a given output port. The main

drawback of such mechanism is that, even with 16 regions

defined, it still does not achieve 100% coverage and induces

a long critical path [16].

Default-backup path [17] tries to keep healthy processing

elements when the attached router fails. It consists of adding

redundant wiring and buffers that connect output and input

ports directly. However, it does not address routing in irregular

topologies.

Adaptive stochastic routing [18] is a recently proposed

algorithm (an improvement from the cooperative on-demand

secure route algorithm [19]) that relies on a self-learning

method to handle failures by assigning confidence fields to

output ports for different tasks (or applications) running in

the system. Thus, it requires a routing table at each router,

suffering from the same scalability problems and routing costs

related to routing tables.

In [20], the authors proposed an architecture based on

deflection routing that attempts to detect fault errors by adding

cyclic redundancy check modules at input and output ports

for crossbar faults, and security codes for link faults with

the support of routing matrices, one for each type of fault.

The link fault matrix is n × n, n being the dimension of

the mesh. It uses a variant of deflection routing called delta

XY with weighted priority. Deflection (or reflection) can lead

to potential starvation solved with message dropping, thus

impacting performance. Also, routing matrices exhibit poor

scalability as the number of destinations increases.

Another recent proposal, whose objective is to minimize

the size of routing tables, either at end-nodes or at routers, is

described in [21]. Three techniques are proposed: turn-table,

XY deviation table, and source routing deviation points. All of

them consist of a table created by different routing algorithms

to handle irregular cases in combination with routing strategies

like XY (combined with YX), source routing, or the don’t turn

technique (meaning that a message must not change direc-

tion when traversing the router unless indicated). Deadlock-

freedom, however, is not assured in all these strategies (e.g.,

when changing from XY to YX) unless virtual channels are

used.

In [22], a compendium of state-of-the-art look-up tables im-

plementations for routing purposes is proposed, shifting from

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 537

Fig. 5. SR as a set of routing restrictions and routing bits at router 5.

fully hardwired to partially or fully configurable solutions,

depending on the degree of flexibility.

Novel implementations based on dimension-ordered rout-

ing, like FDOR [23], arise to provide coverage on irregular

topologies. FDOR is based on the idea of dividing the di-

mensional mesh irregular topology into regular sub-meshes,

a core mesh and one or more flask meshes. Depending on

the division, at the core mesh, messages are routed with XY

routing and on the flank meshes with YX, or vice versa.

One bit per router is needed to configure XY or YX routing.

FDOR provides a cheap and efficient routing solution to offer

coverage on a set of irregular topologies that are restricted by

certain conditions, but it does not offer full coverage.

As a summary of the related work on fault-tolerant unicast

routing for NoCs, the proposals use routing tables (either at

sources or at destinations) and/or rely on an excessive number

of resources (virtual channels) to avoid the deadlock problem.

Also, none of the solutions (except when using tables) is able

to provide full coverage (all the possible failure cases) for a

2-D mesh. Thus, existing solutions are very expensive in terms

of routing delay and/or required silicon area.

III. uLBDR Description

The description of uLBDR will be guided as an evolution

from the basic mechanism, previously proposed, and with low

coverage, to the most enhanced version, with full coverage. In

each, example cases will be described so to motivate the need

for the next version. As we focus on 2-D meshes we will refer

to each router port by its direction, being N, E, W , and S for

north, east, west, and south, respectively.

A. The Foundations

uLBDR is a mechanism that allows a compact and effi-

cient implementation of routing algorithms in NoCs. Indeed,

different routing algorithms can be implemented when using

uLBDR. Therefore, uLBDR should not be seen as a routing

algorithm by itself, rather as an implementation of routing

algorithms.

In order to enable an efficient implementation of the routing

algorithm, uLBDR relies on a compact representation of the

routing algorithm, thus requiring a small silicon area and

achieving low latency while providing flexibility, and this

fact makes uLBDR different from other approaches. More

precisely, the compact representation of the routing algorithm

implemented with uLBDR is based on a set of routing restric-

tions. A routing restriction is defined among two consecutive

network links if no message is allowed to cross them in a given

order along its path to destination. Enforcing certain routing

restrictions is required to ensure deadlock freedom.

Fig. 5 shows an example of the segment-based routing algo-

rithm (SR) [24] represented by its set of routing restrictions.

SR is a topology-agnostic routing algorithm since it can be

implemented on any topology. Therefore, it is suitable for pro-

viding fault tolerance. With SR, many different instances of the

routing algorithm can be obtained by simply placing routing

restrictions in different locations (always ensuring deadlock

freedom and connectivity). An example of valid/invalid paths

is shown in the figure.

Representing a routing algorithm by a set of routing re-

strictions allows an efficient implementation of the algorithm.

This is based on two sets of configuration bits: routing

bits (Rxy), which define the set of routing restrictions, and

connectivity bits (Cx), which define the availability of links.

Those bits are computed for a given topology and the routing

algorithm represented by its routing restrictions and are dis-

tributed over the routers in the network before starting normal

operation.

Routing bits in a router represent the routing restrictions

found at the neighbor routers. As we have four output ports

labeled as N, E, W , and S, the Rxy bit at a given router indi-

cates whether a message is allowed (by the routing algorithm)

to leave the router through output port x and at the next router

to take output y. For example, in Fig. 5, Rne bit at router 5 is

set because a message can be routed at router 5 through the N

output port and at the router 1 through the E output port. Ren

is, however, reset due to the existing routing restriction. With

Rxy bits a 1-hop visibility of the allowed routing restrictions

is provided. Note that four of those routing bits (Rnn, Ree,

Rww, and Rss) indicate whether a message can advance along

the same direction or, on the contrary, either should take a

non-minimal path, or has reached the mesh border.

A Cx bit defines the connectivity at the x output port. For

example, if the Cn bit is set it means that there is a neighbor

router connected through the N port. Cx bits act as a filter for

connectivity and topology definition.

Routing and connectivity bits are a simple yet powerful

mechanism to route messages in combination with the logic

described later. Note that the reconfiguration of these bits is

out the scope of this paper and is left for future work.

B. First Mechanism: LBDR

uLBDR is based on LBDR. LBDR required only eight

routing bits (Rne, Rnw, Ren, Res, Rwn, Rws, Rse, Rsw) and

four connectivity bits (Cn, Ce, Cw, Cs) per router. In order

to support non-minimal paths, the original LBDR module has

been extended as shown in Fig. 6.

538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

Fig. 6. LBDR logic as the core module in uLBDR.

Fig. 7. Example of routing decisions in LBDR.

LBDR is based on the relative position in the mesh of the

destination node and the current router. In order to compare

both, LBDR uses a COMPARATOR module (see Fig. 11),

which generates eight control signals. On one hand, signals

N ′, E′, W ′ and S′ indicate the relative position of the final

node. For example, in Fig. 5, if the current router is 14 and our

destination is router 11, signals N ′ and E′ would be activated.

On the other hand, signals N1, E1, W1, and S1 indicate

whether the final node is one hop away in each direction.

In the case of Fig. 5 again, at router 14, N1 signal would be

set if our destination is router 10. With these control signals,

and using the Rxy and Cx bits, the LBDR module computes

an initial set of routing decisions (Fig. 6).

Fig. 7 shows an example. Router 14 wants to send a

message to router 5. At 14, signals N ′ and W ′ are activated as

destination is on the NW quadrant. As N ′ and W ′ are active,

and Rnw is set, and there is connectivity to the north (Cn is

set), N becomes a valid choice. W port can also be valid,

as Rwn is set, and there is connectivity to the west. Let us

assume that the arbiter chooses N finally. At the next hop,

at router 10, N ′ and W ′ are active, again. LBDR provides

N direction as a valid choice, but now W is discarded, as

Rwn bit is reset at router 10, which represents the routing

restriction at router 9. Message is sent north to router 6.

In this case, only W ′ signal is active, and after the routing

process, W is the only routing option. The message is finally

delivered to router 5, where it will be forwarded to the local

port.

C. Second Mechanism: LBDRdr

The LBDR mechanism relies on the use of minimal paths

for every source-destination pair. This leads, as we will see

Fig. 8. Example of deroute and fork operations.

in the evaluation, to a low percentage of topologies being

supported. Indeed, in a 2-D mesh is easy to imagine sets of

failed links/routers that require non-minimal paths for some

source-destination pairs. A single hole in the network is a clear

example. Fig. 8 shows a topology not supported by LBDR. The

path from A to B is non-minimal. At router A, the possible

directions to reach B are N and E, however, both links are

missing, and therefore no possible way out.

We need to provide non-minimal support in an efficient

way (i.e., add the minimal set of logic resources to handle

this). This motivates for the first extension for LBDR, the

DEROUTES module, or LBDRdr. Fig. 9 shows the additional

logic. In particular, for every input port of the router a deroute

option is provided. A set of two bits (dr0 and dr1) encode

the deroute option that can be N, E, W , or S. Deroute

options are computed in accordance to the routing algorithm,

as these options must ensure deadlock-freedom property. The

computation of these options are performed by an exhaustive

search algorithm that tests all the paths in a recursive way

for every source-destination pair. This algorithm, performed

offline, tries all possible deroute options (in case LBDR offers

no outputs), one per output port available but avoiding U

turns and crossing routing restrictions. Whenever the previous

LBDR logic is unable to provide a valid output port (NOR gate

with four inputs) the deroute option is taken into account. The

logic is replicated for every input port, therefore the deroute

option used is the one associated with the corresponding input

port.

Alternatively, the deroute option can be designed for the

entire router, instead of having a deroute option per input port.

However, this reduces flexibility and leads to non-supported

topologies (this alternative will be analyzed later, called

LBDR1dr). Fig. 8 shows an example, where two different

deroute options are required for two different input ports at

router A. If going N, and the message comes from input port

S, then a deroute is set to W . On the other hand, if the message

is coming from W , and the intention is to go E, then a deroute

is set to S. Note that the deroute option needs to be computed

in accordance with the routing algorithm to avoid deadlocks.

In Fig. 8, a deroute option at input port W at router B cannot be

set to S as it would let messages crossing a routing restriction.

w
Highlight

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 539

Fig. 9. Deroutes logic.

D. Third Mechanism: uLBDR

LBDRdr enhances greatly the coverage. However, there are

subtle cases that are still not covered by LBDRdr. Fig. 8 shows

an example. The problem comes by the fact that for some

destinations located at the same quadrant, at router C the rout-

ing engine should provide one port (S) for some destinations

(router D) and another port (E) for other destinations (router

E). As LBDR (or LBDRdr) works in quadrants, there is no

way to indicate the router which option should be given to the

message.

To solve this, we introduce the FORKS module. The ob-

jective is to fork (replicate) the message through two output

ports. The logic is shown in Fig. 10. As shown, it relies on four

additional configuration bits (fork bits): Fn, Fe, Fw, and Fs.

These bits are set to reflect the output ports that must be used

to fork a packet. Whenever a packet comes and its destination

is in the same quadrant defined by the fork bits, then the

packet needs to be forked, e.g., packet is replicated through

two output ports. The FORK signal is set and forwarded to

the arbiter to distinguish between two possible valid routing

options that could come from the LBDR module and a fork

operation. Fn, Fe, Fw, and Fs bits are set appropriately. If due

to the irregularity in the network topology considered, at least

one pair of end nodes could not communicate through one

path, even in the presence of deroutes, the fork operations are

considered. To do so, the bit computation algorithm tests any

possible fork operation at routers where no deroute succeeded,

again discarding any possible choice that leads to cross a

routing restriction. Fork options are computed, offline, in a

similar way as deroute options.

The fork operation leads, however, to important changes

in the router design. The router arbiter needs to be changed

to allow one message to compete for more than one output

port at the same time. There are two alternatives. In the

first one, the arbiter may consider a request from a message

to two output ports as an indivisible request, granting or

denying access to both outputs at the same time. This leads

to a simpler design of the buffering at the input port, as

only one read pointer is needed. In the second one, the

arbiter may grant or deny access to one port regardless of

the other port. This leads to a complex input buffering, as

Fig. 10. Fork logic.

message forwarding may be shifted for both outputs, thus each

requiring a read pointer. We assume the first option because

of its simplicity (notice fork operations will be used in few

cases).

Deadlock may occur in wormhole switching, since two fork

messages may compete for the same set of resources. Although

the routing algorithm used is deadlock-free, performing fork

actions leads to deadlock. Imagine that a message m1 gets the

output port N at router X and requests output port E at router

Y . However, message m2 gets output port E at router Y and

requests output port N at router X. None of the messages will

advance since the input buffers will fill and the output ports

will never be released.

The easiest solution is the use of virtual cut-through (VCT)

switching, thus ensuring a packet1 will fit always in a buffer.

Thus, the output ports in the previous example will be released

(the packet has been forwarded entirely) and the requests

for the output port will be granted. Other options rely on

performing flit-level VCT [25] and wormhole switching be-

tween routers. Basically, those solutions label each flit with

identifiers so flits from different messages can be mixed in

the same buffer. Internal tables are, however, required to keep

flit identifiers. We opt for the first solution (VCT switching).

Although VCT is seen as demanding much buffer space at

routers, a careful design of the router can minimize this impact.

When using forks, one of the replica will reach the final

destination while the other needs to be removed from the

network. This will be easily achieved by silently destroying

the replica packet to be removed at a router when gets no

output direction and it is not at its destination (remember that

forks are computed before normal operation so in this case,

the removal is confirmed). In Section V we show area, power,

and latency results for two routers designed for uLBDR, thus

showing upfront the real impact of such router changes. Note

also the buffer requirements in a VCT switch do not depend

on the implementation of FORK operations. Indeed, the flow

control is applied on a per-buffer basis, regardless of packets

are forked or not.

The FORK extension, together with the DEROUTES exten-

sion and the LBDR module, forms the uLBDR mechanism.

The uLBDR mechanism is shown in Fig. 11.

1In VCT we use the term packet since a message may be packetized.

w
Highlight

540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

Fig. 11. uLBDR mechanism.

IV. Routers Description

In this section, we provide a brief description of the routers

used for the evaluation. Two routers are provided to address

two different areas: MPSoCs where unpipelined routers are

usually deployed, and CMPs where pipelined routers are

common. In both cases, an initial wormhole router design has

been evolved to allow VCT switching (required for uLBDR).

The most important changes are: 1) packetization of messages

at the network interfaces; 2) buffering sizing to packet sizes;

and 3) changes in flow control. To allow the replication of

packets we need also to: 1) change the arbiter logic, and

2) remove stale copies of packets (being forked).

A. MPSoC Router Design

Typically, NoC building blocks for use in MPSoCs target

lower operating speeds with respect to CMPs and are generally

unpipelined [26]. The reference component that we consider

to assess the feasibility of uLBDR is an input buffered router

implementing wormhole switching (Fig. 12). Size of the input

buffer is tunable and set to four slots. In 1 cycle, a flit

covers the distance between two consecutive input buffers of

connected routers through the inter-router link. The switch

traversal inside the router is controlled by a modular ar-

biter round-robin arbiter (one per output port). A lightweight

stall/go flow control policy is implemented. It requires two

control wires: one going forward and flagging data availability

(“valid”) and one going backward and signaling either a

condition of buffer filled (“stall”) or of buffer free (“go”).

This latter signal is indicated as flow control in Fig. 12. The

router design is implemented in a 65 nm industrial technology

library.

LBDR and LBDRdr mechanisms are implemented in a

similar way, from an architecture viewpoint. The head flit

contains destination coordinates which are read, after storage

in the input buffer, by the routing logic. The output signals

elaborated by the LBDR/LBDRdr module represent match

signals sent to the arbiters. A match signal indicates that the

packet from a given input port requires a specific output port.

It is interesting to note that the LBDR/LBDRdr routing logic

enables to preserve the modular design style of the router

architecture (one routing module per input port).

This router was evolved to VCT switching to support fork

operations (thus uLBDR). The signals used and the architec-

ture schematic are the same of Fig. 12, just the meaning of

flow control signals and the arbiter behavior change. First of

all, we had to evolve the basic stall/go flow control protocol

Fig. 12. MPSoC router schematic.

to credit-based flow control. In fact, stall/go would have been

acceptable only in case all packets were of the same length.

If packets exhibit variable length (e.g., reads versus writes,

variable number of write/read burst beats, and so on), then

the router arbiter needs to know the number of available slots

in the downstream buffer before granting a new packet head.

Therefore, we now use the flowcontrol signals in Fig. 12 as

credits. An input buffer asserts a credit high when it has a

grant from the arbiter AND it has valid flits to send.

The arbiter behavior had to be modified as well. A port

arbiter (say for the N output port) performs round-robin

arbitration among all inputs with valid asserted and presenting

a headflit. Say that input N is the winner. Then, the arbiter

compares its counter value (denoting the number of free slots

in the downstream input buffer) with the packet length from

the Ninputport. If it is larger, then grant is asserted enabling

switch traversal to all the winning packet flits. If there is no

space downstream for the entire packet, the grant is kept low.

In uLBDR, packets can be forked through two output ports.

When this happens, the LBDR logic asserts two match signals

heading to two different port arbiters. When both of them

assert their grant signals, a unique grant is sent to the

requesting input buffer, as illustrated in Fig. 12. One of the

packets will reach destination. The other one will reach a

router where the LBDR logic will not provide a valid match

signal. In that situation, the grant signal is set by default to

asserted, thus the packet will be forwarded to the crossbar

which is not configured for the input port, thus the packet will

be filtered. The input buffer is not aware that no arbitration

has been performed for the forked packet, and the grant signal

is kept asserted, thus will also correctly generate a credit to

the upstream router, since buffer slots are cleared. This is the

way the misrouted forked packet is silently discarded.

B. CMP Router Design

The CMP router is a pipelined input-buffered wormhole

router with five stages: input buffer (IB), routing (RT),

switch allocator (SW), crossbar (XB), and link traversal

(LT). We used a simple router with no virtual channels and

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 541

five input/output ports. The input buffer size is set to four

flits. The RT module has been implemented to support XY ,

LBDR, LBDRdr, and uLBDR routing implementations and

the Stall/Go flow control. Finally, the SW module has been

designed with a round-robin arbiter as in [27]. The router has

been implemented using the 45 nm technology open source

Nangate [28].

In order to adapt the basic CMP router to VCT we have

performed the following changes. First, buffers at routers have

been set to maximum packet size, in our case to four flits.

In addition, packetization is performed at the interface nodes

when required (notice that this is also needed for the MPSoC

router, probably with a different packet size). Message sizes

in CMPs (using a coherence protocol) are known beforehand.

Usually, a short message contains a memory address and a

coherence command and a long message also includes the

cache line. In our case (in the evaluation), short messages are

set to 8 bytes and long messages to 72 bytes (cache line size

is 64 bytes). Assuming 8-byte flits, short messages are not

packetized and long messages are packetized in 11 packets

(taking into account packet header is replicated).

To efficiently forward packets in VCT we need to change

the flow control mechanism (as in MPSoC router). In the CMP

case where packet sizes are known, we opted for the Stall/&Go

flow control at the packet level. That is, a stall or go signal is

asserted per packet. Notice that we assume links with one cycle

delay, thus round trip time is set to three cycles. Buffers of four

flits are thus enough to avoid introducing bubbles. However,

for messages with sizes lower than packet size (and round-

trip time; e.g., one-flit packets) bubbles between packets are

generated. To avoid bubbles we decided to pad short packets

to four-flit packets. Obviously, this may affect performance.

In the next section, we analyze the impact of padding and

packetization.

SW is the most critical stage in our design. Thus, the arbiter

modifications applied in the MPSoC arbiter are not affordable

for the CMP router. To solve this we have implemented

the arbiter shown in Fig. 13. This arbiter is the same used

in the WH design but it adds a new module performed in

parallel. This module arbitrates between fork requests. The

grant signals of this module enable (or disable) the non-fork

grants. Higher priority is given to fork requests. By doing

this minimum impact on the SW latency is expected. Stale

packets (generated by fork operations) are silently discarded

in the same way as in the MPSoC router.

V. Evaluation

In this section, we provide several evaluation results to

assess the impact of the different implementations. First,

we provide a coverage analysis for each solution. Then, we

analyze the overhead and power consumption of the mech-

anisms in the router designs, including the overhead for the

VCT router support. Finally, we provide performance results

with synthetic and real traffic (by running real applications

in a full system simulator environment). We also test, in

particular, if the packetization requirement by uLBDR affects

final application’s execution time.

Fig. 13. New arbiter for the CMP router with fork requests.

Fig. 14. Coverage of different mechanisms.

A. Coverage Analysis

In this section, we evaluate the coverage provided by

different versions of the mechanism, from the original LBDR

to the full uLBDR mechanism. Coverage is measured as the

percentage of topologies supported from a pool of topologies.

A topology is considered supported if every node in the

network reaches all possible destinations.

A set of topologies derived from the link variability analysis

provided in [16] has been used. In particular, different NoC

operating frequency thresholds were set and links not reaching

those thresholds (due to variability effects) were labelled as

faulty. Chips were modeled on a real 65 nm implementation

NoC layout where all cores are identical, and their size is

1 mm2. Two different configurations were used, 4 × 4 and

8 × 8 NoCs with different values of spatial correlation (λ 0.4

and λ 1.2) and variance (σ 0.05 and σ 0.18). In total, 1423

topologies have been evaluated.

The evaluation comprehends four different scenarios,

LBDR, LBDR with 1 global deroute (LBDR1dr), LBDRdr

and uLBDR. In Fig. 14, results show how the addition of the

two enhancements, deroutes and forks, affects significantly the

coverage. Although having one global deroute per router helps

to increase coverage by 50%, further benefits are obtained for

deroutes per each input port (5 per router), as coverage further

increases to 80%. Finally, the fork mechanism is the one that

guarantees full coverage.

B. MPSoC Router Overhead

We synthesized the MPSoC router with a 65 nm STMicro-

electronics technology library and Synopsys Physical Com-

piler. Routers with all routing mechanisms (LBDR, LBDRdr,

542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

Fig. 15. MPSoC router, normalized results. (a) Area. (b) Latency.

Fig. 16. MPSoC router power analysis, normalized results. (a) Idle power. (b) Active power.

and uLBDR) were synthesized both for maximum perfor-

mance and for the same target speed (that of the slowest

architecture, i.e., uLBDR). All routers implement the same

amount of buffering (4 slots). The choice of a specific routing

mechanism affects the maximum achievable speed by each

router: 1 GHz for LBDR, 950 MHz for LBDRdr, and 750

MHz for uLBDR.

Post-synthesis area results for the routers are illustrated in

Fig. 15(a). By looking at the maximum performance figures,

uLBDR is about 10% larger than LBDR, clearly due to

the more complex port arbiters and to their need to handle

true credit-based flow control. To make this relatively more

complex circuit faster, the synthesis tool tried to speed up

the crossbar at the cost of further increased area. We also

observe that LBDR and LBDRdr feature approximately the

same maximum area, except for hardly controllable specific

optimizations that the synthesis tool applies to the two netlists.

The take-away message here is that the logic complexity of

these two routing mechanisms is pretty much equivalent.

When the three routers under test were re-synthesized to

meet the performance of the slowest one, uLBDR, then of

course the relaxation of the delay constraint for LBDR and

LBDRdr allowed the synthesis tool to infer a more area

efficient gate level netlist for them. As a consequence, the

area efficiency gap with uLBDR became as large as 44.7%,

the absolute worst-case.

We conclude that whenever the three routing schemes are

employed at their maximum performance, the area gap is

not significant (around 10%) while tremendously gaining in

fault coverage. When the target speed is affordable for each

of them and close to that of the slowest scheme, then the

choice between the routers becomes a true area-coverage

tradeoff decision. When the target frequency is very low [a few

hundred MHz, not shown in Fig. 15(a)], then the gate level

netlists of the three schemes can be almost equally optimized,

resulting in almost the same area while keeping the coverage

differences.

Fig. 15(b) shows the latency breakdown of the three mecha-

nisms, LBDR, LBDRdr, and uLBDR. As can be seen, uLBDR

introduces 25% more delay compared to the basic system in

the critical path of the router, while the gap of LBDRdr is

around 3%. But the routing stage is not setting the critical

path as shown in the figure. The latency for the routing stage

for LBDRdr and uLBDR is almost the same. The latency gap

introduced in uLBDR for the total router is due to the changes

to support VCT switching and this is reflected in other router

elements like the input buffers.

Power analysis has also been performed for the different

routing implementations. Fig. 16(a) reports normalized total

idle power of the routers with their respective breakdowns.

Routers with LBDR and LBDRdr have been implemented and

characterized twice: in the first variant they are synthesized at

their common maximum speed (1.1 ns clock period), while

in the other variant they are synthesized at the maximum

speed achievable by uLBDR, thus resulting into a fair power

comparison.

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 543

Fig. 17. CMP router, normalized results. (a) Complete router. (b) RT module.

Idle power is dominated in all cases by the buffer con-

tribution, since clock gating has not been applied. Power of

the routing block inside all switches is relevant, and even

dominant with respect to the arbitration power. This is due

not to the combinational logic computing the target output

port, but rather to the registers storing the values of LBDR

configuration bits. This is the price to pay to keep these bits

potentially reprogrammable. We notice however that a clock

gating technique here would be very effective, since these

bits are not changed until a failure occurs in the network and

routing for this latter has to be reconfigured.

LBDRdr and LBDR have an almost equivalent power

consumption, due to the very similar switch structure with just

minor relative modifications, which is consistently lower than

that for uLBDR. This latter features more complex arbitration

logic (with a larger number of state registers), routing logic,

and configuration registers, thus giving rise to an almost 30%

idle power overhead.

Fig. 16(b) reports total router power in active mode, as

derived through the average power computing capability of

Synopsys PrimeTime PX (50% switching activity). First of all,

the crossbar contribution to total power now becomes evident

as an effect of the switching activity. In spite of this, the

input buffer is still by far the largest contributor. Interestingly,

the gap between LBDR and LBDRdr powers at maximum

performance and relaxed performance is now larger, due to the

increased contribution of the combinational logic. The gap is

such that by comparing only power of the routers synthesized

at their respective maximum performance, uLBDR turns out

to be the least consuming scheme. Again, when aiming at the

same target speed, uLBDR proves almost 30% more power

hungry than the other schemes.

C. CMP Router Overhead

Fig. 17(a) summarizes frequency and area results of the

CMP router for different switching techniques and routing

mechanisms. The first thing to highlight is the improvement

of both area and frequency of the VCT router. The reason for

this improvement is due to the use of buffers with the same

size of packets. This has simplified the IB stage because in

VCT the flit header of every packet is mapped always into the

same buffer slot, thus simplifying read logic. Also, the logic

to keep track the number of mapped flits in the buffer has

also been simplified. Due to the per-packet flow control only

a control signal is required. Although such simplifications can

also be made in WH, bubbles would be introduced (known as

atomic buffer allocation).

There is no difference in the operating frequency when

using either XY, LBDR, or LBDRdr, and only a marginal

increase in area (differences fall within the uncertainties of

the synthesis optimization process). This is due to the RT

stage not setting the maximum frequency of the router. uLBDR

experiences, however, a small impact in performance and area.

This performance degradation is due to the overhead added to

the SW stage.

Fig. 17(b) shows the area overhead and frequencies of

the different routing modules, thus not considering the entire

router. There are significative differences between the XY

module for WH and for VCT. These differences are due to the

different flow control mechanism used in both versions. Also,

the different input buffer design affects the routing module.

On the other hand, LBDR and LBDRdr mechanisms have a

small impact on area but a large one in frequency. Also, the

complexity of uLBDR has a large impact on both area and

frequency. However, remember that this module is not the one

setting the router frequency.

Power analysis for the CMP router architectures has also

been performed: Wormhole routers with LBDR and LBDRdr

routing mechanisms and the VCT router with uLBDR routing

mechanism. Fig. 18(a) reports normalized total idle power of

the routers. As same as the MPSoC counterparts, routers with

LBDR and LBDRdr have been implemented classified in two

variants: in the first one they are synthesized at their common

maximum speed (in this case, 0.68 ns clock period), while

in the second one they are synthesized at the maximum speed

achievable by uLBDR (for CMP version, 0.75 ns clock period),

for a fair power comparison.

Idle power is dominated in all cases by the buffer contri-

bution, since clock gating has not been applied. Power of the

routing block inside all switches is relevant, but as can be

seen in Fig. 18(a) the routing module presents the lowest idle

power consumption. As mentioned before, the main element

that causes the power consumption in the routing module

is the registers that store the values of LBDR configuration

bits (routing, connectivity, deroute, and fork bits). Identically

to the MPSoC router, LBDRdr and LBDR have an almost

equivalent power consumption, due to the very similar switch

structure with just minor relative modifications, which is

consistently lower than that for uLBDR. Note that, when

using uLBDR the routing module and the arbiter increase their

power consumption. This increment is almost 20%.

544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

Fig. 18. CMP router power analysis, normalized results. (a) Idle power. (b) Active power.

Fig. 19. Flit latency with different mechanisms in 8×8 mesh under synthetic
traffic.

Fig. 18(b) reports total router power in active mode, per-

formed on the same scenario that was set for the MPSoC

variants. Note that router power presents similar results than

idle power. However, the gap between uLBDR and LBDRdr

with respect to LBDR is reduced.

To conclude the router’s evaluation, it is worth mentioning

LBDR versions emerge as a implementation solution that aims

to be the minimum representation of a routing table with a

logic-based design. Note that LBDR overhead does not grow

with system size, as opposite to any routing table scheme (even

if it is reduced). In [5], a direct comparison of LBDR-based

approach versus routing tables is performed.

D. Performance Analysis

This section starts with the performance evaluation of sev-

eral mechanisms: uLBDR, distributed routing tables assuming

a two-cycle delay router (2C), and distributed routing tables

assuming a two-cycle routing stage. We have developed, for

such purpose, an in-house cycle accurate flit-level network

simulator. The tests were made on 4 × 4 and 8 × 8 mesh

topologies under three traffic load types: uniform, bit-reversal,

and bit-complement. To force the use of deroutes and forks

(thus, using full potential of uLBDR) three link failures were

included randomly into five different topologies for each mesh

size, respectively. 4×4 topologies required eight deroutes and

two forks, and 8×8 topologies required 12 deroutes and three

forks, on average.

In Fig. 19, average flit latencies for the 8×8 mesh case are

shown (4 × 4 case results show the same behavior). We can

see that uLBDR shows better latencies than any routing table

implementation, specifically on the bit-complement scenario,

where we can find an average gap of around 50 cycles, both

in 4 × 4 and 8 × 8 case scenarios. In fact, routing tables are

penalized due to extra latency on accessing the information in

memory macros.

In Fig. 20, average flit throughput results are shown for the

different traffic scenarios, again for the 8×8 mesh case (similar

results for the 4×4 case). Similar conclusions can be extracted

as the ones in the latency results, uLBDR performs equally or

better than when using routing table implementations in any

traffic scenario.

Fig. 21 shows the impact of fork operations on the overall

traffic (number of hops of nonprofitable replica packets divided

by the number of hops of all packets). Results show an

average impact of 3.5% that belongs to packets that were

replicated (only the replica packet that is wasted). This impact

may be minimal regarding power costs derived from traffic,

and depends on the tradeoff that designers want to achieve.

uLBDR, again, offers 100% coverage with important savings

in area and power on the hardware compared to routing tables,

but some expenses have to be paid when compared to other

logic-based mechanisms (which do not offer full coverage).

We have run also several analyses for performance using the

GEMS/SIMICS platform [29] upgraded with the event driven

cycle-accurate network simulator mentioned before. Several

SPLASH-2 [30] applications (Barnes, FFT, LU, Radix) and

Apache application have been run in the platform. Chip envi-

ronment was configured with 16 cores spread in a 4×4 mesh.

For this chip configuration, two cache coherency protocols

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 545

Fig. 24. Execution time of applications in a 4 × 4 CMP system where packetization is performed. (a) Flit size is set to 2 bytes. (b) Flit size is set to 8 bytes.

Fig. 20. Flit throughput with different mechanisms in 8 × 8 mesh under
synthetic traffic.

Fig. 21. Impact of nonprofitable hops of replica packets over the total
number of hops made by all packets.

Fig. 22. Normalized execution time of applications, directory-based proto-
col.

Fig. 23. Normalized execution time of applications, token-based protocol.

have been evaluated to keep coherency between private L1

caches and a shared (but distributed) L2 cache: directory-based

and token-based. Virtual-cut-through switching is assumed and

flit size is set to 3 bytes (performing packetization and padding

when needed).

In Fig. 22, the results for performance evaluation in a

directory-based protocol are shown. This figure shows the

normalized execution time when using a router with distributed

routing tables (two-cycle delay router) and a router using

uLBDR mechanism (one-cycle delay router). As can be seen,

a slow router (a two-cycle delay router with distributed routing

tables), 2C results in figure, affects greatly the execution time

of applications, in some cases, like Apache, almost doubling

it. When the RT stage experiences two cycles (only for header

flits) for accessing the routing table at a memory macro, notice

that in this situation the overhead of routing tables is smaller,

around 11%. Therefore, the designer needs to avoid the large

latency of routing tables.

Performance evaluation on the token-based protocol is

shown in Fig. 23. Again, for the three mechanisms, uLBDR

performs better, with average gaps of 50% and 11%, being

similar to the directory-based conclusions.

To conclude the evaluation, Fig. 24 shows performance

on several SPLASH-2 applications (Barnes, FFT, LU, Radix,

and Raytrace) results when packetization is used in a VCT

router. Also, results assuming WH switching are included

for comparison purposes. Fig. 24(a) shows the worst case

for packetization when flit size is narrow (2 bytes). In that

situation packetizing messages usually doubles execution time

of applications. However, in Fig. 24(b) where flit size is

widened (8 bytes) the situation changes and now the im-

546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 4, APRIL 2011

pact is much lower. Notice that packetization overhead in

execution time is lower than 20% in all the applications,

being on average 5%. Anyway, there is an overhead in

packetization.

VI. Conclusion

In this paper we presented uLBDR, a logic-based routing

layer for on-chip networks to support any irregular topology

derived from a 2-D mesh without using routing tables. The

objective of the full mechanism, uLBDR, is to offer full

coverage on this set of topologies, result of several challenges

to be taken into account: fault-tolerance, chip virtualization,

and power-aware techniques. This is achieved with a tradeoff

between router design and coverage. The mechanism proposed

spans from low coverage (30%) with no router overhead and

no performance impact, to full coverage with a marginal

impact on router design. In particular, uLBDR requires a VCT

router design and its impact on router frequency is 30% on

an MPSoC router and no impact on a CMP pipelined router

design.

To sum up, a clear tradeoff lies between coverage of

irregular 2-D mesh derived topologies and performance of

applications. Future research will target an in-deep tuning of

router architectures with uLBDR, specially reducing the paid

overhead, along with a reconfiguration methodology of the

configuration bits.

References

[1] Intel. (2010). The Single-Chip Cloud Computer [Online]. Available: http:
//techresearch.intel.com/articles/Tera-Scale/1421.htm

[2] Tilera. (2010). Tilera Tile Multicore Processors [Online]. Available: http:
//www.tilera.com/products/processors.php

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the CELL multiprocessor,” IBM J. Res.

Dev., vol. 49, nos. 4–5, pp. 589–604, 2005.
[4] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,

D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-tile 1.28TFLOPS network-on-chip
in 65 nm CMOS,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2007,
pp. 98–589.

[5] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato, “Effi-
cient implementation of distributed routing algorithms for NoCs,” IET

Comput. Digital Tech., vol. 3, no. 5, pp. 460–475, 2009.
[6] Faraday Technology. (2010). UMC Free Library: 90 nm IPs [Online].

Available: http://freelibrary.faraday-tech.com/ips/90library.html
[7] H. Sullivan and T. R. Bashkow, “A large scale, homogeneous, fully

distributed parallel machine, I,” in Proc. 4th Annu. ISCA, 1977, pp.
105–117.

[8] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ:
Prentice-Hall, 2003.

[9] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E.
Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay,
T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and
P. Vranas, “Overview of the Blue Gene/L system architecture,” IBM J.

Res. Dev., vol. 49, no. 2, pp. 195–212, 2005.
[10] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. Robles, J. Duato,

T. Skeie, and O. Lysne, “A routing methodology for achieving fault
tolerance in direct networks,” IEEE Trans. Comput., vol. 55, no. 4, pp.
400–415, Apr. 2006.

[11] J. Van Leeuwen and R. B. Tan, “Interval routing,” Comput. J., vol. 30,
no. 4, pp. 298–307, 1987.

[12] M. E. Gómez, P. López, and J. Duato, “A memory-effective routing
strategy for regular interconnection networks,” in Proc. 19th IEEE

IPDPS, Apr. 2005, p. 41.2.

[13] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross, “iWarp: An inte-
grated solution of high-speed parallel computing,” in Proc. ACM/IEEE

Conf. Supercomput., Nov. 1988, pp. 330–339.
[14] J. Flich, A. Mejía, P. López, and J. Duato, “Region-based routing: An

efficient routing mechanism to tackle unreliable hardware in network on
chips,” in Proc. 1st Int. Symp. NOCS, 2007, pp. 183–194.

[15] M. Palesi, S. Kumar, and R. Holsmark, “A method for router
table compression for application specific routing,” in Proc.

6th SAMOS Workshop Mesh Topology NoC Architectures, 2006,
pp. 373–384.

[16] S. Rodrigo, C. Hernández, J. Flich, F. Silla, J. Duato, S. Medardoni,
D. Bertozzi, A. Mejía, and D. Dai, “Yield-oriented evaluation method-
ology of network-on-chip routing implementations,” in Proc. 11th Int.

Conf. SoC, 2009, pp. 100–105.
[17] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, “A

lightweight fault-tolerant mechanism for network-on-chip,” in Proc. 2nd

ACM/IEEE Int. Symp. NOCS, Apr. 2008, pp. 13–22.
[18] W. Song, D. Edwards, J. L. Nuñez Yanez, and S. Dasgupta, “Adaptive

stochastic routing in fault-tolerant on-chip networks,” in Proc. 3rd

ACM/IEEE Int. Symp. NOCS, May 2009, pp. 32–37.
[19] J. Nuñez Yanez, D. Edwards, and A. Coppola, “Adaptive routing strate-

gies for fault-tolerant on-chip networks in dynamically reconfigurable
systems,” IET Comput. Digital Tech., vol. 2, no. 3, pp. 184–198,
2008.

[20] A. Kohler and M. Radetzki, “Fault-tolerant architecture and deflection
routing for degradable NoC switches,” in Proc. 3rd ACM/IEEE Int.

Symp. NOCS, May 2009, pp. 22–31.
[21] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “Routing table

minimization for irregular mesh NoCs,” in Proc. DATE, 2007, pp. 942–
947.

[22] I. Loi, F. Angiolini, and L. Benini, “Synthesis of low-overhead con-
figurable source routing tables for network interfaces,” in Proc. Conf.

DATE, 2009, pp. 262–267.
[23] T. Skeie, F. O. Sem-Jacobsen, S. Rodrigo, J. Flich, D. Bertozzi, and

S. Medardoni, “Flexible DOR routing for virtualization of multicore
chips,” in Proc. 11th Int. Conf. SoC, 2009, pp. 73–76.

[24] A. Mejía, J. Flich, J. Duato, S. A. Reinemo, and T. Skeie, “Segment-
based routing: An efficient fault-tolerant routing algorithm for meshes
and tori,” in Proc. Int. Parallel Distributed Process. Symp., Apr. 2006,
pp. 84–93.

[25] F. A. Samman, T. Hollstein, and M. Glesner, “Planar adaptive router
microarchitecture for tree-based multicast network-on-chip,” in Proc. Int.

Workshop NoCArc, Nov. 2008, pp. 6–13.
[26] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and

L. Benini, “Bringing NoCs to 65 nm,” IEEE Micro, vol. 27, no. 5, pp.
75–85, Nov. 2007.

[27] E. S. Shin, V. J. Mooney, III, and G. F. Riley, “Round-
robin arbiter design and generation,” in Proc. 15th ISSS, 2002,
pp. 243–248.

[28] Nangate. (2010). The Nangate Open Cell Library, 45 nm Freepdk [On-
line]. Available: https://www.si2.org/openeda.si2.org/projects/nangatelib

[29] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator (gems)
toolset,” SIGARCH Comput. Architecture News, vol. 33, no. 4, pp. 92–
99, 2005.

[30] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proc. 22nd Annu. ISCA, 1995, pp. 24–36.

Samuel Rodrigo received the M.S. and Ph.D. de-
grees in computer engineering from the Technical
University of Valencia, Valencia, Spain, in 2008 and
2010, respectively.

He is currently a Post-Doctoral Fellow with the
Simula Research Laboratory, Oslo, Norway. His
current research interests include routing and fault-
tolerance schemes in networks-on-chip.

RODRIGO et al.: COST-EFFICIENT ON-CHIP ROUTING IMPLEMENTATIONS FOR CMP AND MPSOC SYSTEMS 547

José Flich received the M.S. and Ph.D. degrees
in computer science from the Technical University
of Valencia, Valencia, Spain, in 1994 and 2001,
respectively.

He joined the Department of Computer Engineer-
ing, Universidad Politécnica de Valencia, in 1998,
where he is currently an Associate Professor of com-
puter architecture and technology with the Parallel
Architectures Group. He has published over 100 pa-
pers in peer-reviewed conferences and journals. His
current research interests include high-performance

interconnection networks for multiprocessor systems, cluster of workstations,
and networks-on-chip.

Dr. Flich has served as a program committee member in different con-
ferences, including NOCS, DATE, ICPP, IPDPS, HiPC, CAC, ICPADS, and
ISCC. He is an Associate Editor of the IEEE Transactions on Parallel

and Distributed Systems. He is currently the co-chair of the CAC and
INA-OCMC workshops. He is the Coordinator of the NaNoC FP7 EU-Funded
Project (http://www.nanoc-project.eu).

Antoni Roca received the M.S. degree and the
Advanced Studies Diploma, both in telecommuni-
cations engineering from the Technical University
of Valencia, Valencia, Spain, in 2006 and 2007,
respectively.

Currently, he is pursuing the Ph.D. degree from the
Parallel Architectures Group, Technical University
of Valencia. His current research interests include
network-on-chip architectures, especially router im-
plementation.

Simone Medardoni received the Ph.D. degree in
electrical engineering from the University of Fer-
rara, Ferrara, Italy, in 2009, with a dissertation
on technology-aware network-on-chip architecture
design.

He is currently a Post-Doctoral Researcher with
the Integrated Systems Laboratory of Minatec,
Grenoble, France. His current research interests
include embedded systems, networks-on-chip, and
emulation techniques for system-on-chips.

Davide Bertozzi received the Ph.D. degree in elec-
trical engineering from the University of Bologna,
Bologna, Italy, in 2003.

Since 2005, he has been an Assistant Professor
with the Department of Engineering, University
of Ferrara, Ferrara, Italy, where he leads research
activities on multi-processor systems-on-chip and
on networks-on-chip in particular. He has been a
Visiting Researcher with international academic in-
stitutions (Stanford University, Stanford, CA) and
large semiconductor companies (NEC America Lab-

oratories, Princeton, NJ, NXP Semiconductors, Eindhoven, The Netherlands,
STMicroelectronics, Agrate Brianza MB, Italy, Samsung Electronics, Seoul,
South Korea).

Dr. Bertozzi was the Program Chair of the International Symposium on
Networks-on-Chip in 2008, of the NoC Track at the Design Automation and
Test in Europe Conference in 2010 and 2011, and a guest editor of the special
issues on networks-on-chip of the IET Computer and Digital Techniques

Journal in 2009 and of the Hindawi VLSI Design Journal in 2007. He is
a member of the Editorial Board of the IET CDT Journal. He is a member of
the Hipeac-2 NoE (Interconnect Cluster) and is actively involved in STREP
projects funded by the EU (Galaxy Project, NaNoC Project).

Jesús Camacho is currently pursuing the Ph.D.
degree from the Parallel Architectures Group, Tech-
nical University of Valencia, Valencia, Spain.

His current research interests include design of
novel high performance and power-aware networks-
on-chip topologies.

Federico Silla received the M.S. and Ph.D. degrees
in computer engineering from the Technical Univer-
sity of Valencia, Valencia, Spain, in 1995 and 1999,
respectively.

He is currently an Associate Professor with the
Parallel Architectures Group, Department of Com-
puter Engineering, Technical University of Valencia.
His current research interests include high perfor-
mance on-chip and off-chip networks, as well as
distributed systems. He is a member of the Advanced
Technology Group of the HyperTransport Consor-

tium.

José Duato received the M.S. and Ph.D. degrees in
electrical engineering from the Technical University
of Valencia, Valencia, Spain, in 1981 and 1985,
respectively.

Currently, he is a Professor with the Parallel Ar-
chitectures Group, Department of Computer Engi-
neering, Technical University of Valencia, and is a
Researcher with the Simula Research Laboratory,
Oslo, Norway. He also developed RECN, a scalable
congestion management technique, and a very effi-
cient routing algorithm for fat trees that has been in-

corporated into the Sun Microsystems 3456-Port InfiniBand Magnum Switch.
Currently, he leads the Advanced Technology Group in the HyperTransport
Consortium, whose main result until now has been the development and
standardization of an extension to HyperTransport (High Node Count Hyper-
Transport Specification 1.0). He is the first author of the book Interconnection

Networks: An Engineering Approach. His current research interests include
interconnection networks and multiprocessor architectures.

Dr. Duato served as a member of the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, IEEE
Transactions on Computers, and IEEE Computer Architecture

Letters. He has been the General Co-Chair for the 2001 International
Conference on Parallel Processing, the Program Committee Chair for the
Tenth International Symposium on High Performance Computer Architecture,
and the Program Co-Chair for the 2005 International Conference on Parallel
Processing. Also, he served as the Co-Chair, a member of the Steering
Committee, Vice-Chair, or a member of the program committees in more
than 60 conferences, including the most prestigious conferences in his area
(HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, HiPC).

