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Abstract

We introduce an asset-allocation framework based on the active control of the value-at-risk of the portfolio. Within this framework, we
compare two paradigms for making the allocation using neural networks. The first one uses the network to make a forecast of asset behavior,
in conjunction with a traditional mean-variance allocator for constructing the portfolio. The second paradigm uses the network to directly
make the portfolio allocation decisions. We consider a method for performing soft input variable selection, and show its considerable utility.
We use model combination (committee) methods to systematize the choice of hyperparemeters during training. We show that committees
using both paradigms are significantly outperforming the benchmark market performance.
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I. Introduction

In finance applications, the idea of training learning algorithms according to the criterion of interest (such as profit)
rather than a generic prediction criterion, has gained interest in recent years. In asset-allocation tasks, this has been
applied to training neural networks to directly maximize a Sharpe Ratio or other risk-adjusted profit measures [1–3].

One such risk measure that has recently received considerable attention is the value-at-risk (VaR) of the portfolio,
which determines the maximum amount (usually measured in e.g. $) that the portfolio can lose over a certain period,
with a given probability.

Although the VaR has been mostly used to estimate the risk incurred by a portfolio [4], it can also be used to actively
control the asset allocation task. Recent applications of the VaR have focused on extending the classical Markowitz
mean–variance allocation framework into a mean–VaR version; that is, to find an efficient set of portfolios such that, for
a given VaR level, the expected portfolio return is maximized [5, 6].

In this paper, we investigate training a neural network according to a learning criterion that seeks to maximize profit
under a VaR constraint, while taking into account transaction costs. One can view this process as enabling the network
to directly learn the mean–VaR efficient frontier, and use it for making asset allocation decisions; we call this approach
the decision model. We compare this model to a more traditional one (which we call the forecasting model), that
uses a neural network to first make a forecast of asset returns, followed by a classical mean–variance portfolio selection
and VaR constraint application.

II. Value at Risk

A. Assets and Portfolios

In this paper, we consider only the discrete-time scenario, where one period (e.g. a week) elapses between times t− 1
and t, for t ≥ 0 an integer. By convention, the t-th period is between times t− 1 and t.

We consider a set of N assets that constitute the basis of our portfolios. Let Rt be the random vector of simple asset
returns obtained between times t − 1 and t. We shall denote a specific realization of the returns process—each time
made clear according to context—by {rt}.

Definition 1: A portfolio xt defined with respect to a set of N assets is the vector of amounts invested in each asset
at a time t given:

xt = (x1t, x2t, . . . , xNt)′, (1)

where xit ∈ R and −∞ < xit <∞.
(We use bold letters for vectors or matrices; the ′ represents the transpose operation.)
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The amounts xit are chosen causally: they are a function of the information set available at time t, which we denote
by It. These amounts do not necessarily sum to one; they represent the net position (in e.g. $) taken in each asset.
Short positions (negative xit) are allowed.

The total return of the portfolio xt−1 during the period t is given by Rt = x′t−1Rt.

B. Defining Value at Risk

Definition 2: The value-at-risk (VaR) with probability α of the portfolio xt−1 over period t is the value Vt ≥ 0 such
that:

Pr[R′txt−1 < −Vt | It−1] = 1− α. (2)
The VaR of a portfolio can be viewed as the maximal loss that this portfolio can incur with a given probability α, for

a given period of time. The VaR reduces the risk to a single figure: the maximum amount Vt that the portfolio can lose
over one period, with probability α.

C. The Normal Approximation

The value at risk Vt of a portfolio xt−1 is not a quantity that we can generally measure, for its definition (2) assumes
a complete knowledge of the conditional distribution of returns over period t. To enable calculations of the VaR, we
have to rely on a model of the conditional distribution; the model that we consider is to approximate the conditional
distribution of returns by a normal distribution. We qualify this normality assumption at the end of this section.

C.1 One-Asset Portfolio

Let us for the moment consider a single asset, and assume that its return distribution over period t, conditional on
It−1, is

Rt ∼ N (µt, σ2
t ), σ2

t > 0, (3)

which is equivalent to

Pr[Rt < rt | It−1] = Φ
(
rt − µt
σt

)
, (4)

where Φ(·) is the cumulative distribution function of the standardized normal distribution, and µt and σ2
t are respectively

the mean and variance of the conditional return distribution.
According to this model, we compute the α–level VaR as follows: let xt−1 be the (fixed) position taken in the asset

at time t− 1. We choose rt = σtΦ−1(1− α) + µt that we substitute in the above equation, to obtain

Pr[Rt < σtΦ−1(1− α) + µt | It−1] = 1− α, (5)

whence
Pr[Rtxt−1 < (σtΦ−1(1− α) + µt)xt−1 | It−1] = 1− α, (6)

and, comparing eq. (2) and (6),

Vt = −(σtΦ−1(1− α) + µt)xt−1

= (σtΦ−1(α)− µt)xt−1, (7)

using the fact that Φ−1(1− α) = −Φ−1(α) from the symmetry of the normal distribution.

C.2 Estimating Vt
Let µ̂t and σ̂t be estimators of the parameters of the return distribution, computed using information It−1. (We

discuss below the choice of estimators.) An estimator of Vt is given by:

V̂t = (σ̂tΦ−1(α)− µ̂t)xt−1. (8)

If µ̂t and σ̂t are unbiased, V̂t is also obviously unbiased.

C.3 N -Asset Portfolio

The previous model can be extended straightforwardly to the N -asset case. Let the conditional distribution of returns
be

Rt ∼ N (µt,Γt), (9)

where µt is the vector of mean returns, and Γt is the covariance matrix of returns (which we assume is positive-definite).
Let xt−1 the fixed positions taken in the assets at time t− 1. We find the α-level VaR of the portfolio for period t to be

Vt = Φ−1(α)
√

x′t−1Γt xt−1 − µ′t xt−1. (10)
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In some circumstances (especially when we consider short-horizon stock returns), we can approximate the mean asset
returns by zero. Letting µt = 0, we can simplify the above equation to

Vt = Φ−1(α)
√

x′t−1Γt xt−1. (11)

We can estimate Vt in the N -asset case by subsituting estimators for the parameters in the above equations. First,
for the general case,

V̂t = Φ−1(α)
√

x′t−1Γ̂t xt−1 − µ̂′t xt−1, (12)

and when the mean asset returns are zero,

V̂t = Φ−1(α)
√

x′t−1Γ̂t xt−1. (13)

C.4 On the Normality Assumption

It is now established in the finance literature that the returns distribution for individual stocks over short horizons ex-
hibit significant departures from normality [7] (“fat tails”). Furthermore, several types of derivative securities, including
options, have sharply non-normal returns.

However, for returns over longer horizons and for stock indices (as opposed to individual stocks), the normality
assumption can remain a valid one. Indeed, on our datasets (described in section V), a Kolmogorov–Smirnov test of
normality fails to reject the null hypothesis on neither the TSE 300 monthly returns (p = 0.2), nor on the returns of 13
(out of 14) individual subsectors (except one) making up the TSE 300 index, at the 95% level.

The asset return distribution can of course be estimated from empirical data, using kernel methods [8] or neural
networks [9]. The remaining aspects of our methodology are not fundamentally affected by the density estimation
method, even though further VaR analysis is made more complex when going beyond the normal approximation. The
results that we present in this paper nevertheless rely on this approximation, since our datasets are fairly well explained
by this distribution.

D. The VaR as an Investment Framework

The above discussion of the VaR took the “passive” viewpoint of estimating the VaR of an existing portfolio. We
can also use the VaR in an alternative way to actively control the risk incurred by the portfolio. The asset-allocation
framework that we introduce to this effect is as follows:
©1 At each time-step t, a target VaR Ṽt+1 is set (for example by the portfolio manager). The goal of our strategy
is to construct a portfolio xt having this target VaR.
©2 We consult a decision system, such as a neural network, to obtain allocation recommendations for the set of N
assets. These recommendations take the form of a vector yt, which gives the relative weightings of the assets in the
portfolio; we impose no constraint (e.g. positivity or sum-to-one) on the yit.
©3 The recommendation vector yt is rescaled by a constant factor (see below) in order to produce a vector xt of
final positions (in dollars) to take in each asset at time t. This rescaling is performed such that the estimator V̂t+1|t
(computed given the information set It) of the portfolio VaR over period t+ 1 is equal to the target VaR, Ṽt+1.
©4 Borrow the amount

∑N
i=1 xit at the risk-free rate r0t and invest it at time t in the portfolio xt for exactly one

period. At the end of the period, evaluate the profit or loss (using a performance measure explained shortly.)
It should be noted that this framework differs from a conventional investment setting in that the profits generated

during one period are not reinvested during the next. All that we are seeking to achieve is to construct, for each period,
a portfolio xt that matches a given target VaR Ṽt+1. We assume that it is always possible to borrow at the risk-free
rate to carry out the investment.

We mention that a framework similar to this one is used by at least one major Canadian financial institution for parts
of its short-term asset management.

E. Rescaling Equations

Our use of the VaR as an investment framework is based on the observation that a portfolio with a given target VaR
Ṽt+1 can be constructed by homogeneously multiplying the recommendations vector yt (which does not obey any VaR
constraint) by a constant:

xt = βt yt, (14)

where βt ≥ 0 is a scalar. To simplify the calculation of βt, we make the assumption that the asset returns over period
t+ 1, follow a zero-mean normal distribution, conditional on It:

Rt+1 ∼ N (0,Γt+1), (15)
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with Γt+1 positive-definite. Then, given a (fixed) recommendations vector yt, ‖yt‖ > 0, the rescaling factor is given by

βt =
Ṽt+1

Φ−1(α)
√

y′t Γt+1 yt
. (16)

It can be verified directly by substitution into eq. (11) that the VaR of the portfolio xt given by eq. (14) is indeed the
target VaR Ṽt+1.

E.1 Estimating βt
In practice, we have to replace the Γt+1 in the above equation by an estimator. We can estimate the rescaling factor

simply as follows:

β̂t =
Ṽt+1

Φ−1(α)
√

y′t Γ̂t+1 yt
. (17)

Unfortunately, even if Γ̂t+1 is unbiased, β̂t is biased in finite samples (because, in general for a random variable X > 0,
E[1/X ] 6= 1/E[X ]). However, the samples that we use are of sufficient size for the bias to be negligible. [10] provides a
proof that β̂t is asymptotically unbiased, and proposes another (slightly more complicated) estimator that is unbiased
in finite samples under certain assumptions.

F. The VaR as a Performance Measure

The VaR of a portfolio can also be used as the risk measure to evaluate the performance of a portfolio. The performance
measure that we consider for a fixed strategy S is a simple average of the VaR-corrected net profit generated during
each period (see e.g. [4], for similar formulations):

WS =
1
T

T∑
t=1

WS
t , (18)

where WS
t is the (random) net profit produced by strategy S over period t (between times t − 1 and t), computed as

follows (we give the equation for Wt+1 to simplify the notation):

WS
t+1 = (Rt+1 − ι r0t)′xSt + losst . (19)

This expression computes the excess return of the portfolio for the period (over the borrowing costs at the risk-free
rate r0t), and accounts for the transaction costs incurred for establishing the position xt from xt−1, as described below.
We note that the profit does not require a normalization by the risk measure, since the portfolio xSt is already risk-
constrained.

F.1 Estimating WS and WS
t

To estimate the quantities WS and WS
t , we substitute for {Rt} the realized returns {rt}, and we use the target VaR

Ṽt as an estimator of the portfolio VaR Vt:

ŴS =
1
T

T∑
t=1

ŴS
t (20)

ŴS
t+1 =

(rt+1 − ι r0t)′xSt + losst

Ṽt+1

. (21)

As for β̂t, we ignore the finite-sample bias of these estimators, for it is of little significance for the sample sizes that we
use in practice.

Examining eq. (20), it should be obvious that this performance measure is equivalent to the well-known Sharpe Ratio
[11] for symmetric return distributions (within a multiplicative factor), with the exception that it uses the ex ante
volatility (VaR) rather than the ex post volatility as the risk measure.

F.2 Transaction Costs

Transaction costs are modeled by a simple multiplicative loss:

losst = −c′ |xt − x̃t| (22)
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Fig. 1. The forecasting (a) and decision (b) paradigms for using neural networks (NN) in asset allocation.

where c = (c1, . . . , cN)′, ci the relative loss associated with a change in position (in dollars) in asset i, and x̃t the
portfolio positions in each asset immediately before that the transaction is performed at time t. This position is different
from xt−1 because of the asset returns generated during period t:

x̃it = (rit + 1)xi(t−1). (23)

In our experiments, the transaction costs were set uniformly to 0.1%.

G. Volatility Estimation

As eq. (16) shows, the covariance matrix Γt plays a fundamental role in computing the value at risk of a portfolio
(under the normal approximation). It is therefore of extreme importance to make use of a good estimator for this
covariance matrix.

For this purpose, we used an exponentially-weighted moving average (ewma) estimator, of the kind put forward by
RiskMetrics [12]. Given an estimator of the covariance matrix at time t− 1, a new estimate is computed by

Γ̂t = λΓ̂t−1 + (1− λ)(rt r′t), (24)

where rt is the vector of asset returns over period t and λ is a decay factor that controls the speed at which observations
are “absorbed” by the estimator. We used the value recommended by RiskMetrics for monthly data, λ = 0.97.

III. Neural Networks for Portfolio Management

The use of adaptive decision systems, such as neural networks, to implement asset-allocation systems is not new. Most
applications of them fall into two categories: (i) using the neural net as a forecasting model, in conjunction with an
allocation scheme (such as mean–variance allocation) to make the final decision; and (ii) using the neural net to directly
make the asset allocation decisions. We start by setting some notation related to our use of neural networks, and we
then consider these two approaches in the context of portfolio selection subject to VaR constraints.

A. Neural Networks

We consider a specific type of neural network, the multi-layer perceptron (MLP) with one hidden Tanh layer (with H
hidden units), and a linear output layer. We denote by f : RM 7→ R

N the vectorial function represented by the MLP.
Let x (∈ RM ) be an input vector; the function is computed by the MLP as follows:

f(x;θ) = A2 tanh(A1x + b1) + b2. (25)

The adjustable parameters of the network are: A1, an H ×M matrix; b1 an H-element vector; A2 an N ×H matrix;
and b2 an N -element vector. We denote by θ the vector of all parameters:

θ = 〈A1,A2,b1,b2〉 .
A.1 Network Training

The parameters θ are found by training the network to minimize a cost function, which depends, as we shall see
below, on the type of model—forecasting or decision—that we are using. In our implementation, the optimization is
carried out using a conjugate gradient descent algorithm [13]. The gradient of the parameters with respect to the cost
function is computed using the standard backpropagation algorithm [14] for multi-layer perceptrons.
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B. Forecasting Model

The forecasting model centers around a general procedure whose objective is to find an “optimal” allocation of assets,
one which maximizes the expected value of a utility function (fixed a priori, and specific to each investor), given a
probability distribution of asset returns.

The use of the neural network within the forecasting model is illustrated in figure 1a. The network is used to make
forecasts of asset returns in the next time period, µ̂t+1|t, given explanatory variables ut, which are described in section
V-A (these variables are determined causally, i.e. they are a function of It.)

B.1 Maximization of Expected Utility

We assume that an investor associates a utility function U(rt+1,wt) with the performance of his/her investment in
the portfolio wt over period t + 1. (For the remainder of this section, we suppose, without loss of generality, that the
net capital in a portfolio has been factored out of the equations; we use wt to denote a portfolio whose elements sum to
one.)

The problem of (myopic) utility maximization consists, at each time-step t, in finding the porfolio wt that maximizes
the expected utility obtained at t+ 1, given the information available at time t:

w∗t = arg max
wt

E[U(Rt+1,wt) | It]. (26)

This procedure is called myopic because we only seek to maximize the expected utility over the next period, and not
over the entire sequence of periods until some end-of-times.

The expected utility can be expressed in the form of an integral:

E[U(Rt+1,wt) | It] =
∫

Rt+1

Pt+1|t(r)U(r,wt) dr, (27)

where Pt+1|t(·) is the probability density function of the asset returns, Rt+1, given the information available at time t.

B.2 Quadratic Utility

Some “simple” utility functions admit analytical solutions for the expected utility (27). To derive the mean–variance
allocation equations, we shall postulate that investors are governed by a quadratic utility of the form

U(Rt+1,wt) = R′t+1wt − λ
(
w′t(Rt+1 − µt+1)

)2
. (28)

The parameter λ > 0 represents the risk aversion of the investor; more risk-averse investors will choose higher λ’s.
Assuming the first and second moment of the conditional distribution of asset returns exist, and writing them µt+1

and Γt+1 respectively (with Γt+1 positive-definite), eq. (28) can be integrated out analytically to give the expected
quadratic utility:

E[U(Rt+1,wt) | It] = µ′t+1wt − λw′tΓt+1wt. (29)

Substituting estimators available at time t, we obtain an estimator of the expected utility at time t+ 1:

Ût+1(wt) = µ̂′t+1|twt − λw′tΓ̂t+1|twt. (30)

(We abuse slightly the notation here by denoting by Û the estimator of expected utility.)

B.3 Mean–variance allocation

We now derive, under quadratic utility, the portfolio allocation equation. We seek a vector of “optimal” weights w∗t
that will yield the maximum expected utility at time t+ 1, given the information at time t.

Note that we can derive an analytical solution to this problem because we allow the weights to be negative as well
as positive; the only constraint that we impose on the weights is that they sum to one (all the capital is invested).
In contrast, the classical Markowitz formulation [15] further imposes the positivity of the weights; this makes the
optimization problem tractable only by computational methods, such as quadratic programming.

We start by forming the lagrangian incorporating the sum-to-one constraint to eq. (29), observing that maximizing
this equation is equivalent to minimizing its negative (ι is the vector (1, . . . , 1)′):

L(wt, α) = −µ′t+1wt + λw′tΓt+1wt + α(w′tι− 1). (31)

After differentiating this equation and a bit of algebra, we find:

w∗t =
1
λ

Γ−1
t+1

(
µt+1 −

ι′Γ−1
t+1µt+1 − λ
ι′Γ−1

t+1ι
ι

)
. (32)
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In practical use, we have to substitute estimators available at time t for the parameters µt+1 and Γt+1 in this equation.
To recapitulate, the “optimal” weight vector w∗t constitutes the recommendations vector yt output by the mean–

variance allocation module in figure 1a.

B.4 MLP Training Cost Function

As illustrated in figure 1a, the role played by the neural network in the forecasting model is to produce estimates of
the mean asset returns over the next period. This use of a neural net is all-the-more classical, and hence the training
procedure brings no surprise.

The network is trained to minimize the prediction error of the realized asset returns, using a quadratic loss function:

CF(θ) =
1
T

T∑
t=1

‖f(ut;θ)− rt+1‖2 + CWD(θ) + CID(θ) (33)

where ‖·‖ is the Euclidian distance, and f(·;θ) is the function computed by the MLP, given the parameter vector θ.
The CWD(θ) and CID(θ) terms serve regularization purposes; they are described in section IV.

As explained above, the network is trained to minimize this cost function using a conjugate gradient optimizer, with
gradient information computed using the standard backpropagation algorithm for MLPs.

C. Decision Model

Within the decision model, in contrast with the forecasting model introduced previously, the neural network directly
yields the allocation recommendations yt from explanatory variables ut (figure 1b).

We introduce the possibility for the network to be recurrent, taking as input the recommendations emitted during
the previous time step. This enables, in theory, the network to make decisions that would not lead to excess trading, to
minimize transaction costs.

C.1 Justifying The Model

Before explaining the technical machinery necessary for training the recurrent neural network in the decision model,
we provide a brief explanation as to why such a network would be attractive. We note immediately that, as a downside
for the model, the steps required to produce a decision are not as “transparent” as they are for the forecasting model:
everything happens inside the “black box” of the neural network. However, from a pragmatic standpoint, the following
reasons lead us to believe that the model’s potential is at least worthy of investigation:

• The probability density estimation problem—which must be solved in one way or another by the forecasting
model—is intrinsically a very difficult problem in high dimension [16]. The decision model does not require an
explicit solution to this problem (although some function of the density is learned implicitly by the model).
• The decision model does not need to explicitly postulate a utility function that admits a simple mathematical
treatment, but which may not correspond to the needs of the investor. The choice of this utility function is important,
for it directly leads to the allocation decisions within the forecasting model. However, we already know, without
deep analysis, that quadratic utility does not constitute the “true” utility of an investor, for the sole reasons that
it treats good news just as negatively as bad news (because both lead to high variance), and does not consider
transaction costs. Furthermore, the utility function of the forecasting model is not the final financial criterion (18)
on which it is ultimately evaluated. In contrast, the decision model directly maximizes this criterion.

C.2 Training Cost Function

The network is trained to directly minimize the (negative of the) financial performance evaluation criterion (18):

CD(θ) = − 1
T

T∑
t=1

Wt + CWD(θ) + CID(θ) + Cnorm. (34)

The terms CWD(θ) and CID(θ), which are the same as in the forecasting model cost function, are described in section
IV. The new term Cnorm induces a preference on the norm of the solutions produced by the neural network; its nature
is explained shortly.

The effect of this cost function is to have the network learn to maximize the profit returned by a VaR-constrained
portfolio.

C.3 Training the MLP

The training procedure for the MLP is quite more complex for the decision model than it is for the forecasting model:
the feedback loop, which provides as inputs to the network the recommendations yt−1 produced for the preceding time
step, induces a recurrence which must be accounted for. This feedback loop is required for the following reasons:
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• The transaction costs introduce a coupling between two successive time steps: the decision made at time t has
an impact on both the transaction costs incurred at t and at t + 1. This coupling induces in turn a gradient with
respect to the positions xt coming from the positions xt+1, and this information can be of use during training. We
explain these dependencies more deeply in the following section.
• In addition, knowing the decision made during the preceding time step can enable the network to learn a strategy
that minimizes the transaction costs: given a choice between two equally profitable positions at time t, the network
can minimize the transaction costs by choosing that closer to the position taken at time t−1; for this reason, providing
yt−1 as input can be useful. Unfortunately, this ideal of minimizing costs can never be reached perfectly, because
our current process of rescaling the positions at each time step for reaching the target VaR is always performed
unconditionally, i.e. oblivious to the previous positions.

C.4 Backpropagation Equations

We now introduce the backpropagation equations. We note that these equations shall be, for a short moment, slightly
incomplete: we present in the following section a regularization condition that ensures the existence of local minima of
the cost function.

The backpropagation equations are obtained in the usual way, by traversing the flow graph of the allocation system,
unfolded through time, and by accumulating all the contributions to the gradient at a node. Figure 2 illustrates this
graph, unfolded for the first few time steps. Following the backpropagation-through-time (BPTT) algorithm [14], we
compute the gradient by going back in time, starting from the last time step T until the first one.

Recall that we denote by f(·;θ) the function computed by a MLP with parameter vector θ. In the decision model,
the allocation recommendations yt are the direct product of the MLP:

yt = f(yt−1,ut;θ), (35)

where ut are explanatory variables considered useful to the allocation problem, which we can compute given the infor-
mation set It.

We shall consider a slightly simpler criterion C to minimize than eq. (34), one that does not include any regularization
term. As we shall see below, incorporating those terms involves trivial modifications to the gradient computation. Our
simplified criterion C (illustrated in the lower right-hand side of figure 2) is:

C = −Ŵ . (36)

From eq. (18), we account for the contribution brought to the criterion by the profit at each time step:

∂C

∂Ŵt+1

= − 1
T
. (37)

Next, we make use of eq. (19), (22) and (23) to determine the contribution of transaction costs to the gradient:

∂C

∂losst
= − 1

T Ṽt
(38)

∂losst
∂xit

= −ci sign(xit − x̃it) (39)

∂losst
∂x̃it

= ci sign(xit − x̃it) (40)

∂losst+1

∂xit
= ci sign(xi(t+1) − x̃i(t+1))

∂x̃i(t+1)

∂xit
= ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1)). (41)

From this point, again making use of eq. (19), we compute the contribution of xit to the gradient, which comes from
the two “paths” by which xit affects C: a first direct contribution through the return between times t and t+ 1; and a
second indirect contribution through the transaction costs at t+ 1:

∂C

∂xit
=

∂C

∂Ŵt+1

∂Ŵt+1

∂xit
+

∂C

∂Ŵt+2

∂Ŵt+2

∂xit
. (42)

Because ∂C/∂Ŵt+1 is simply given by eq. (37), we use eq. (19) to compute

∂C

∂Ŵt+1

∂Ŵt+1

∂xit
= − 1

T Ṽt

(
ri(t+1) − r0t +

∂losst
∂xit

)
, (43)
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Fig. 2. Flow graph of the steps implemented by the decision model, unfolded through time. The backpropagation equations are obtained by
traversing the graph in the reverse direction of the arrows. The numbers in parentheses refer to the equations (in the main text) used
for computing each value.

whence,
∂C

∂Ŵt+1

∂Ŵt+1

∂xit
= − 1

T Ṽt

(
ri(t+1) − r0t − ci sign(xit − x̃it)

)
. (44)

In the same manner, we compute the contribution

∂C

∂Ŵt+2

∂Ŵt+2

∂xit
= − 1

T Ṽt+1

∂losst+1

∂xit
, (45)

which gives, after simplification,

∂C

∂Ŵt+2

∂Ŵt+2

∂xit
= − 1

T Ṽt+1

(
ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1))

)
. (46)

Finally, we add up the two previous equations to obtain

∂C

∂xit
= − 1

T Ṽt

(
ri(t+1) − r0t − ci sign(xit − x̃it)

)
− 1
T Ṽt+1

(
ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1))

)
. (47)
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We are now in a position to compute the gradient with respect to the neural network outputs. Using eq. (14) and
(16), we start by evaluating the effect of yit on xit:1

∂xit
∂yit

=
Ṽt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 1
2
−
yit Ṽt

∑N
k=1 γ̂ik(t+1) ykt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 3
2
, (48)

and for i 6= j,
∂xit
∂yjt

= −
yit Ṽt

∑N
k=1 γ̂jk(t+1) ykt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 3
2
. (49)

(As previously noted, α is the desired level of the VaR and Φ−1(·) is the inverse cumulative distribution function of
the standardized normal distribution.)

The complete gradient is given by
∂C

∂yit
=
∑
k

∂C

∂xkt

∂xkt
∂yit

+
∂C

∂ft+1
, (50)

where ∂C/∂ft+1 is the gradient with respect to the inputs of the neural network at time t+1, which is a usual by-product
of the standard backpropagation algorithm.

C.5 Introducing a “Preferred Norm”

The cost function (36) corresponding to the financial criterion (18) cannot reliably be used in its original form to train
a neural network. The reason lies in the rescaling equations (14) and (16) that transform a recommendation vector yt
into a VaR-constrained portfolio xt. Consider two recommendations y(1)

t and y(2)
t that differ only by a multiplicative

factor δ > 0:
y(2)
t = δy(1)

t .

As can easily be seen by substitution in the rescaling equations, the final porfolios obtained from those two (different)
recommendations are identical! Put differently, two different recommendations that have the same direction but different
lengths are rescaled into the same final portfolio.

This phenomenon is illustrated in figure 3, which shows the level curves of the cost function for a small allocation
problem between two assets (stocks and bonds, in this case), as a function of the recommentations output by the network.
We observe clearly that different recommendations in the same direction yield the same cost.

The direct consequence of this effect is that the optimization problem for training the parameters of the neural network
is not well posed: two different sets of parameters yielding equal solutions (within a constant factor) will be judged as
equivalent by the cost function. This problem can be expressed more precisely as follows: for nearly every parameter
vector θ, there is a direction from that point that has (exactly) zero gradient, and hence there is no local minimum in
that direction. We have observed empirically that this could lead to severe divergence problems when the network is
trained with the usual gradient-based optimization algorithms such as conjugate gradient descent.

This problem suggests that we can introduce an a priori preference on the norm of the recommendations, using a
modification to the cost function that is analogous to the “hints” mechanism that is sometimes used for incorporating
a priori knowledge in neural network training [17]. This preference is introduced by way of a soft constraint, the
regularization term Cnorm appearing in eq. (34):

Cnorm =
φnorm

2T

T∑
t=1

(
N∑
i=1

y2
i − ρ2

)2

. (51)

Two parameters must be determined by the user: (i) ρ, which is the desired norm for the recommendations output by
the neural network (in our experiments, it was arbitrarily set to ρ2 = 0.9), and (ii) φnorm, which controls the relative
importance of the penalization in the total cost.

Figure 4 illustrates the cost function modified to incorporate this penalization (with ρ2 = 0.9 and φnorm = 0.1).
We now observe the clear presence of local minima in this function. The optimal solution is in the same direction as
previously, but it is now encouraged to have a length ρ.

1To arrive at these equations, it is useful to recall that y′ Γ y can be written in the form of
P
k

P
` γk` yk y`, whence it easily follows that

∂
∂yi

y′ Γ y = 2
P
k γik yk.
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This penalization brings forth a small change to the backpropagation equations introduced previously: the term
∂C/∂yit, eq. (50), must be adjusted to become:

∂C′

∂yit
=

∂C

∂yit
+
φnorm

T
(
N∑
j=1

y2
jt − ρ2)(2yit). (52)

C.6 Reference Portfolio

A second type of preference takes the form of a preferred portfolio: in some circumstances, we may know a priori what
should be “good positions” to take, often because of regulatory constraints. For instance, a portfolio manager may be
mandated to construct her portfolio such that it contains “approximately” 60% stocks and 40% bonds. This contraint,
which results from policies on which the manager has no immediate control, constitutes the reference portfolio.

We shall denote this reference portfolio by ψt. The cost function eq. (34) is modified to replace the Cnorm term by a
Cref. port. term that penalizes the squared-distance between the network output and the reference portfolio:

Cref. port. =
1
T

T∑
t=1

penaltyref. port.(yt) (53)

penaltyref. port.(yt) =
φref. port.

2
‖yt −ψt‖

2 , (54)

with ‖·‖ the Euclidian distance.
With this change, the backpropagation equations are simple to adjust; we add a contribution to ∂C/∂yit, eq. (50),

which becomes:
∂Cref. port.

∂yit
=

∂C

∂yit
+
φref. port.

T
(yit − ψit). (55)

In our experiments with the TSE 300 sectors (see section V), we favored this reference-portfolio penalization over the
preferred-norm penalization. Our reference portfolio was chosen to be the market weight of each sector with respect to
the complete TSE index; the φref. port. hyper-parameter was set to a constant 0.1.

D. Why Optimize the VaR Criterion?

It is tempting to associate the optimization criterion for training the neural network (eq. (34)) to the maximization
of the Sharpe Ratio, as is done in, e.g., [2, 3]. However, even though the criterion indeed appears superficially similar to
the Sharpe Ratio, it more flexibility in the modeling process:

1. The variance used in the Sharpe Ratio measure is the (single) estimated variance over the entire training set,
whereas criterion (34) uses, for each timestep, an estimator of the variance for the following timestep. (In our
experiments, this estimator was, for simplicity, the EWMA estimator, but in general it could be a much better
forecast.)
2. Criterion (34) allows time-varying risk exposures, for instance to compensate for inflation or changing market
conditions. In our experiments, this was set to a constant $1 VaR, but it can easily be made to vary with time.

IV. Regularization, Hyperparameter Selection, and Model Combination

Regularization techniques are used to specify a priori preferences on the network weights; they are useful to control
network capacity to help prevent overfitting. In our experiments, we made use of two such methods, weight decay and
input decay (in addition, for the decision model, to the norm preference covered previously.)

A. Weight Decay

Weight decay is a classic regularization procedure that imposes a penalty to the squared norm of all network weights:

CWD(θ) =
φWD

2

∑
k

θ2
k, (56)

where the summation is performed over all the elements of the parameter vector θ (in our experiments, the biases, e.g.
b1 and b2 in eq. (25), were omitted); φWD is a hyperparameter (usually determined through trial-and-error, but not in
our case as we shall see shortly) that controls the importance of CWD in the total cost.

The effect of weight decay is to encourage the network weights to have smaller magnitudes; it reduces the learning
capacity of the network. Empirically, it often yields improved generalization performance when the number of training
examples is relatively small [18]. Its disadvantage is that it does not take into account the function to learn: it applies
without discrimination to every weight.
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Fig. 3. Level curves of the non-regularized cost function for a two-asset allocation problem. The axes indicate the value of each component
of a recommendation. There is no minimum point to this function, but rather a half-line of minimal cost, starting around the origin
towards the bottom left. This is undesirable, since it may lead to numerical difficulties when optimizing the VaR criterion.
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Fig. 4. Level curves of the regularized cost function for the two-asset problem. The “preferred” norm of the recommendations has been fixed
to ρ2 = 0.9. In contrast to fig. 3, a minimum can clearly be seen a bit to the left and below the origin (i.e. along the minimum half-line
of fig.3). This regularized cost function yields a better-behaved optimization process.
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Fig. 5. Soft variable selection: illustration of the network weights affected by the input decay penalty term C
(j)
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B. Input Decay

Input decay is a method for performing “soft” variable selection during the regular training of the neural network.
Contrarily to combinatorial methods such as branch-and-bound and forward or backward selection, we do not seek a
“good set” of inputs to provide to the network; we provide them all. The network will automatically penalize the
network connections coming from the inputs that turn out not to be important.

Input decay works by imposing a penalty to the squared-norm of the weights linking a particular network input to all
hidden units. Let θ(1)

jh the network weight (located on the first layer of the MLP) linking input j to hidden unit h; the
squared-norm of the weights from input j is:

C
(j)
ID (θ) =

H∑
h=1

(
θ

(1)
jh

)2

, (57)

where H is the number of hidden units in the network. The weights that are part of C(j)
ID (θ) are illustrated in figure 5.

The complete contribution CID(θ) to the cost function is obtained by a non-linear combination of the C(j)
ID :

CID(θ) = φID

∑
j

C
(j)
ID

η + C
(j)
ID (θ)

, (58)

The behavior of the function x2/(η + x2) is shown in figure 6. Intuitively, this function acts as follows: if the weights
emanating from input j are small, the network must absorbe a high marginal cost (locally quadratic) in order to
increase the weights; the net effect, in this case, is to bring those weights closer to zero. On the other hand, if the
weights associated with that input have become large enough, the penalty incurred by the network turns into a constant
independent of the value of the weights; those are then free to be adjusted as appropriate. The parameter η acts as a
threshold that determines the point beyond which the penalty becomes constant.

Input decay is similar to the weight elimination procedure [19] sometimes applied for training neural networks, with
the difference that input decay applies in a collective way to the weights associated with a given input.

C. Model Combination

The capacity-control methods described above leave open the question of selecting good values for the hyperparameters
φWD and φID. These parameters are normally chosen such as to minimize the error on a validation set, separate from the
testing set. However, we found desirable to completely avoid using a validation set, primarily because of the limited size
of our data sets. Since we are not in a position to choose the best set of hyperparameters, we used model combination
methods to altogether avoid having to make a choice.

We use model combination as follows. We have M underlying models, sharing the same basic MLP topology (number
of hidden units) but varying in the hyperparameters. Each model m implements a function fmt(·).2 We construct a
committee whose decision is a convex combination of the underlying decisions:

ycom
t =

M∑
m=1

wmt fmt(ut), (59)

2Because of the retrainings brought forth by the sequential validation procedure described in section IV-D, the function realized by a
member of the committee has a time dependency.
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Fig. 6. Soft variable selection: shape of the penalty function x2/(η + x2) (solid), and its first derivative (dashed), for η = 1.

with ut the vector of explanatory variables, and wmt ≥ 0,
∑
mwmt = 1. The weight given to each model depends on

the combination method; intuitively, models that have “worked well” in the past should be given greater weight. We
consider three such combination methods: hardmax, softmax, and exponentiated gradient.

C.1 Hardmax

The simplest combination method is to choose, at time t, the model that yielded the best generalization performance
(out-of-sample) for all (available) preceding time steps. We assume that a generalization performance result is available
for all time steps from G+ 1 until t− 1 (where t is the current time step).3

Let Ŵm(τ) the (generalization) financial performance returned during period τ by the m-th member of the committee.
Let m∗t the “best model” until time t− 1:

m∗t = arg max
m

t−1∑
τ=G+1

Ŵm(τ). (60)

The weight given at time t to the m-th member of the committee by the hardmax combination method is:

whardmax
mt =

{
1 if m = m∗t ,

0 otherwise.
(61)

C.2 Softmax

The softmax method is a simple modification of the previous one. It consists in combining the average past generaliza-
tion performances using the softmax function. Using the same notation as previously, let W̄mt be the average financial
performance obtained by the m-th comittee member until time t− 1:

W̄mt =
1

t−G− 1

t−1∑
τ=G+1

Ŵm(τ). (62)

The weight given at time t to the m-th member of the committee by the softmax combination method is:

wsoftmax
mt =

exp(W̄mt)∑M
k=1 exp(W̄kt)

. (63)

3We shall see in section IV-D that this out-of-sample performance is available, for all time steps beyond an initial training set, by using the
sequential validation procedure described in that section.
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C.3 Exponentiated Gradient

We used the fixed-share version [20] of the exponentiated gradient algorithm [21]. This method uses an exponential
update of the weights, followed by a redistribution step that prevents any of the weights from becoming too large. First,
raw weights are computed from the “loss” (19) incurred in the previous time step:

w̃mt = wm(t−1) e
δWt(fm(t−1)). (64)

Next, a proportional share of the weights is taken and redistributed uniformly (a form of taxation) to produce new
weights:

poolt =
M∑
m=1

w̃mt

wexp. grad.
mt = (1− α)w̃mt +

1
M − 1

(poolt − αw̃mt). (65)

The parameters δ and α control, respectively, the convergence rate and the minimum value of a weight. Some experi-
mentation on the initial training set revealed that δ = 0.3, α = 0.01 yielded reasonable behavior, but these values were
not tuned extensively.

An extensive analysis of this combination method, including bounds on the generalization error, is provided by [20].

D. Performance Estimation for Sequential Decision Problems

Cross-validation is a performance-evaluation method commonly used when the total size of the data set is relatively
small, provided that the data contains no temporal structure, i.e. the observations can be freely permuted. Since this is
obviously not the case for our current asset-allocation problem, ordinary cross-validation is not applicable.

To obtain low-variance performance estimates, we use a variation on cross-validation called sequential validation that
preserves the temporal structure of the data. Although a formal definition of the method can be given (e.g. [10]), an
intuitive description is as follows:
©1 An initial training set is defined, starting from the first available time step and extending until a predefined
time G (included). A model of a given topology M (fixing the number of hidden units, and the value of the
hyperparameters) is trained on this initial data.
©2 The model is tested on the P observations in the data set that follow after the end of the training set. The test
result for each time step is computed using the financial performance criterion, eq. (19). These test results are saved
aside.
©3 The P test observations used in step©2 are added to the training set, and a model with the same topologyM
is retrained using the new training set.
©4 Steps©2 and©3 are performed until the data set is exhausted.
©5 The final performance estimate for the model with topologyM for the entire data set is obtained by averaging
the test results for all time steps saved in step©2 (cf. eq. (18)).

We observe that for every time step beyond G (the end of the initial training set), a generalization (out-of-sample)
performance result is available for a given time step, even though the data for this time step might eventually become
part of a later training set.

The “progression” factor P in the size of the training set is a free parameter of the method. If non-stationarities
are suspected in the data set, P should be chosen as small as possible; the obvious downside is the greatly increased
computational requirement incurred with a small P . In our experiments, we attempted to strike a compromise by setting
P = 12, which corresponds to retraining every year for monthly data.

Finally, we note that the method of sequential validation owes its simplicity to the fact that the model combination
algorithms described above (which can be viewed as performing a kind of model selection) operate strictly on in-
sample data, and make use of out-of-sample data solely to calculate an unbiased estimate of the generalization error.
Alternatively, model selection or combination can be performed after the fact, by choosing the model(s) that performed
the best on test data; when such a choice is made, it is advisable to make use of a procedure proposed by White [22] to
test whether the chosen models might have been biased by data snooping effects.

V. Experimental Results and Analysis

A. Overall Setting

Our experiments consisted in allocating among the 14 sectors (subindices) of the Toronto Stock Exchange TSE 300
index. Each sector represents an important segment of the canadian economy. Our benchmark market performance
is the complete TSE 300 index. (To make the comparisons meaningful, the market portfolio is also subjected to VaR
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constraints). We used monthly data ranging from January 1971 until July 1996 (no missing values). Our “risk-free”
interest rate is that of the short-term (90-day) Canadian government T-bills.

To obtain a performance estimate for each model, we used the sequential validation procedure, by first training on
120 months and thereafter retraining every 12 months, each time testing on the 12 months following the last training
point.

A.1 Inputs and Preprocessing

The input variables ut provided to the neural networks consisted of:
• 3 series of 14 moving average returns (short-, mid-, and long-term MA depths).
• 2 series of 14 return volatilities (computed using exponential averages with a short-term and long-term decay).
• 5 series, each corresponding to the “instantaneous” average over the 14 sectors of the above series.

The resulting 75 inputs are then normalized to zero-mean and unit-variance before being provided to the networks.

A.2 Experimental Plan

The experiments that we performed are divided into two major parts, those with single models, and those with model
combination. In all our experiments, we set a target VaR of $1, with a probability of 95%.

A.2.a Experiments with Single Models. The first set of experiments (section V-B) is designed to understand the
impact of the model type (and hence of the cost function used to train the neural network), of network topology and of
capacity-control hyperparameters on the financial performance criterion. In this set, we consider:

• Model type. We compare (i) the decision model without network recurrence, (ii) the decision model with
recurrence, (iii) the forecasting model without recurrence.
• Network topology. For each model type, we evaluate the effect of the number of hidden units, from the set
NH ∈ {2, 5, 10}.
• Capacity control. For each of the above cases, we evaluate the effects of the weight decay and input decay
penalizations. Since we do not know a priori what are good settings for the hyperparameters, we train several
networks, one for each combination of φWD ∈ {10−3, 10−2, 10−1, 100} and φID ∈ {10−3, 10−2, 10−1, 100}.

Our analysis in this section uses analyses of variance (anovas, briefly described below) and pairwise comparisons between
single models in order to single out the most significant of the above factor(s) in determining performance. However, as
pointed out in section IV-C, selecting a “best model” from these results would amount to performing model selection on
the test set (i.e. cheating), and hence we have to rely on model combination methods to truly estimate the real-world
trading system performance.

A.2.b Experiments with Model Combination. The second set of experiments (section V-C) verifies the usefulness of
the model combination methods. We construct committees that combine, for a given type of model, MLP’s with the
same number of hidden units but that vary in the setting of the hyperparameters controlling weight and input decay
(φWD and φID). Our analysis in this section focuses on:

• Evaluating the relative effectiveness of the combination methods using statistical tests.
• Comparing the performance of a committee with that of the underlying models making up the committee.
• Ensuring that committees indeed reach their target value-at-risk levels.

B. Results with Single Models

We start by analyzing the generalization (out-of-sample) performance obtained by all single models on the financial
performance criterion. In all the results that follow, we reserve the term “significant” to denote statistical significance
at the 0.05 level.

Detailed performance results for the individual models is presented elsewhere [10]. Comparing each model to the
benchmark market performance4 we observe that several of the single models are yielding net returns that are significantly
better than the market.

Figure 7 shows the impact of input decay on a cross-section of the experiments (in this case, the forecasting model
with 5 hidden units, and constant WD = 1.0.) At each level of the input decay factor, the average performance (square
markers) is given with a 95% confidence interval; the benchmark market performance (round markers) and the difference
between the model and the benchmark (triangular markers) are also plotted.

B.1 anova Results for Single Models

We further compared the single models using a formal analysis of variance (anova) to detect the systematic impact of a
certain factors. The anova (e.g. [23]) is a well-known statistical procedure used to test the effect of several experimental
factors (each factor taking several discrete levels) on a continuous measured quantity, in our case, a financial performance

4This comparison is performed using a paired t-test to obtain reasonable-size confidence intervals on the differences. The basic assumptions
of the t-test—normality and independence of the observations—were quite well fulfilled in our results.
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measure. The null hypothesis being tested is that the mean performance measure is identical for all levels of the factors
under consideration.

The results are given in tables I, II, and III, respectively for the decision model without and with recurrence, and for
the forecasing model. We make the following observations:

• For all the model types, the input decay factor has a very significant impact.
• The number of hidden units is significant for the decision models (both with and without recurrence) but is not
significant for the forecasting model.
• Weight decay is never significant.
• Higher-order interactions (of second and third order) between the factors are never significant.

B.2 Comparisons Between Models

In order to understand the performance differences attributable to the model type (decision with or without recurrence,
forecasting), we performed pairwise comparisons between models.

Recall that for each model type, we have performance estimates for a total of 48 configurations (corresponding to
the various settings of hidden units, of weight and input decay). One way to test for the impact of one model type
over another would be to “align” the corresponding configurations of the two model types and perform paired t-tests
on the generalization financial performance, and repeat this procedure for each of the 48 configurations. However, this
method is biased because it does not account for the significant instantaneous cross-correlation in performance across
configurations (in other words, the performance at time t of a model trained with weight decay set to 0.01 is likely to
be quite similar to the same model type with weight decay set to 0.1, trained in otherwise the same conditions.)5

Consider two model types to be compared, and denote their generalization financial returns {xit} and {yit} respectively.
The index i denotes the configuration number (from 1 to N = 48 in our experiments), and t denotes the timestep (the
number of generalization timesteps is T = 187 in our results). We wish to test the hypothesis that x̄ 6= ȳ. To this end,
we need an unbiased estimator of the variance of the sample mean difference. Let eit = xit − yit denote the sample
differences. In order to perform the paired t-test, we wish to estimate:

Var[ē] = Var

[
1
NT

N∑
i=1

T∑
t=1

eit

]
, (66)

where ē is the sample mean of e across all configurations and time steps:

ē =
1
NT

N∑
i=1

T∑
t=1

eit. (67)

The variance of ē, taking into account the covariance between eit and ejt, is given by

Var[ē] =
1

N2T

N∑
i=1

Var[ei] +
2

N2T

N∑
i=1

i−1∑
j=1

Cov[ei, ej ]. (68)

This equation relies on the following assumptions: i) the variance of the eit within a given configuration i is stationary
(time invariant), which we denote by Var[ei]; ii) the covariance between eit and ejt, for i 6= j, is also stationary (denoted
above by Cov[ei, ej]); iii) the covariance between eit1 and ejt2 , for t1 6= t2, and all i, j, is zero. As mentioned above, we
have verified experimentally that these assumptions are indeed very well satisfied.

The variances Var[ei] and covariances Cov[ei, ej] can be estimated from the financial returns at all time steps within
configurations i and j.

Finally, to test the hypothesis that the performance difference between model types x and y is different from zero, we
compute the t statistic,

t =
ē√

V̂ar[ē]
, (69)

where V̂ar[ē] is an estimator of Var[ē] computed from estimators of Var[ei] and Cov[ei, ej ].
Our results for the pairwise comparisons between all model types appear in table IV. We observe that the p-values for

the differences between model types is never statistically significant, and from these results, we cannot draw definitive
conclusions as to the relative merits of one model type over another.

5We have determined experimentally that the autocorrelation of returns (across time) is not statistically significant at any lag for any
configuration of any model type; likewise, cross-correlations of returns across configurations are not statistically significant, except at lag 0.
Hence, the procedure we describe here serves to account for these significant lag-0 cross-correlations.
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Fig. 7. Effect of Input Decay on the financial performance obtained by an MLP in an asset-allocation task (solid). The (constant) benchmark
market performance is given (dotted), along with the MLP–market difference (dashed). The error bars represent 95% confidence intervals.
We note that the use of input decay can significantly improve performance.

TABLE I

anova results for the decision model without recurrence, showing the effect of single factors (number of hidden units (NH), weight

decay (WD) and input decay (ID)) along with second- and third-order interactions between these factors. Bold-starred entries are

statistically significant at the 5% level. The input decay and number of hidden units factors are significant.

Degrees of Sum of
freedom squares F -value Pr(F )

ID 3 3.146 2.937 0.032?
WD 3 0.015 0.014 0.998
NH 2 3.458 4.841 0.008?

ID : WD 9 0.158 0.049 0.999
ID : NH 6 1.483 0.692 0.656
WD : NH 6 0.114 0.053 0.999

ID : WD : NH 18 0.589 0.092 0.999
Residuals 8928 3188.357

TABLE II

anova results for the decision model with recurrence. The same remarks as table I apply. The input decay and number of hidden units

factors are significant.

Degrees of Sum of
freedom squares F -value Pr(F )

ID 3 8.482 8.649 0.000?
WD 3 0.111 0.114 0.952
NH 2 2.969 4.542 0.012?

ID : WD 9 0.392 0.133 0.999
ID : NH 6 1.505 0.767 0.596
WD : NH 6 0.286 0.146 0.990

ID : WD : NH 18 0.336 0.057 1.000
Residuals 8928 2918.357
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C. Results with Model Combination

We now turn to the investigation of model combination methods. The raw results obtained by the combination methods
are given in tables V, VI, and VII, respectively for the decision models without and with recurrence, and the forecasting
model. Each table gives the generalization financial performance obtained by a committee constructed by combining
MLP’s with the same number of hidden units, but trained with different values of the hyperparameters controlling
weight decay and input decay (all combinations of φWD ∈ {10−3, 10−2, 10−1, 100} and φID ∈ {10−3, 10−2, 10−1, 100}.)
Each result is given with a standard error derived from the t distribution, along with the difference in performance with
respect to the market benchmark (whose standard error is derived from the t distribution using paired differences.)

A graph summarizing the results for the exponentiated gradient combination method appears in figure 8. Similar
graphs are obtained for the other combination methods.

By way of illustration, figure 9 shows the (out-of-sample) behavior of one of the committees. The top part of the
figure plots the monthly positions taken in each of the 14 assets. The middle part plots the monthly returns generated
by the committee and, for comparison, by the market benchmark; the monthly value-at-risk, set in all our experiments
to 1$, is also illustrated, as an experimental indication that is is not traversed too often (the monthly return of either
the committee or the market should not go below the −1$ mark more than 5% of the times). Finally, the bottom part
gives the net cumulative returns yielded by the committee and the market benchmark.

This figure illustrates an important point: the positions taken in each asset by the models (top) are by no means
“trivial”: they vary substantially with time, they are allowed to become fairly large in magnitude (both positive and
negative), and yet, even after accounting for transaction costs, the target VaR of $1 is reached and the trading model is
profitable.

C.1 anova Results for Committees

Tables VIII and IX formally analyze the impact of the model combination methods.
Restricting ourselves to the exponentiated gradient committees, we first note (table VIII) that no factor, either the

model type or the number of hidden units, has a statistically significant effect on the performance of the committees.
Secondly, when we contrast all the combination methods taken together, we note that the number of hidden units

has an overall significant effect. This appears to be attributable to the relative weakness of the ‘hardmax’ combination
method, even though no direct statistical evidence can confirm this conjecture. The other combination methods—
softmax and exponentiated gradient—are found to be statistically equivalent in our results.

C.2 Comparing a Committee with its Underlying Models

We now compare the models formed by the committees (restricting ourselves to the exponentiated gradient combina-
tion method) against the performance of their best underlying model, and the average performance of their underlying
models, for all model types and number of hidden units.

Table X indicates which of the respective underlying models yielded the best performance (ex post) for each committee,
and tabulates the average difference between the performance of the committee (noted x) and the performance of that
best underlying (noted y). Even though a committee suffers in general from a slight performance degradation with
respect to its best underlying model, this difference is, in no circumstance, statistically significant. (Furthermore, we
note that the best underlying model can never directly be used by itself, since its performance can only be evaluated
after the facts.)

Table XI gives the results of the average performance of the underlying models (noted y) and compares it with the
performance of the committee itself (noted x). We note that the committee performance is significantly better in four
cases out of nine, and “quasi-significantly” better in two other cases. We observe that comparing a committee to the
average performance of its underlying models is equivalent to randomly picking one of the underlyings.

We can conclude from these results that, contrarily to their human equivalents, model committees can be significantly
more intelligent than one of their members picked randomly, and can never be (according to our results) significantly
worse than the best of their members.

C.3 Is the Target VaR Really Reached?

Finally, a legitimate question to ask is whether the target value at risk is indeed reached by the models. This is an
important question for ensuring that the incurred risk exposure is comparable to that chosen by the portfolio manager.

Our approach to carry out this test is to construct confidence intervals around the 5th percentile (since we ran our
experiments at 95%-level VaR) of the empirical returns distribution of the committee models. We want to ensure that
the confidence intervals include the $–1 mark, which is our target VaR.

We consider two manners of constructing said confidence intervals, the first based on an asymptotic result, and the
second based on the bootstrap.
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TABLE III

anova results for the forecasting model without recurrence. The same remarks as table I apply. The input decay factor is significant.

Degrees of Sum of
freedom squares F -value Pr(F )

ID 3 5.483 3.617 0.013?
WD 3 0.068 0.044 0.988
NH 2 0.384 0.380 0.684

ID : WD 9 0.172 0.038 1.000
ID : NH 6 3.684 1.215 0.295
WD : NH 6 0.207 0.068 0.999

ID : WD : NH 18 0.977 0.107 1.000
Residuals 8928 4511.072

TABLE IV

Pairwise comparisons between all model types: the choice of model type does not have a statistically significant impact on performance.

The test is performed using the cross-correlation-corrected t-test described in the text; ‘D’ stands for the decision model, and ‘F’ for the

forecasting model.

Sample
Model x Model y x− y t-value Pr(t)
D. w/ recur. D. w/o recur. 0.002 0.144 0.886
F. w/o recur. D. w/o recur. 0.027 0.874 0.382
F. w/o recur. D. w/o recur. 0.025 0.821 0.412

TABLE V

Results for three model combination methods, applied to the decision model without recurrence. NH refers to the number of hidden

units. The average net market return for the period under consideration is 0.009 (standard error=0.042). Bold-starred entries are

statistically significant at the 5% level.

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.023 (0.044) 0.014 (0.035) 0.043 (0.043) 0.034 (0.033) 0.012 (0.045) 0.003 (0.059)

5 0.107 (0.041) ? 0.099 (0.056) 0.099 (0.041) ? 0.090 (0.053) 0.126 (0.041) ? 0.117 (0.061)

10 0.090 (0.045) ? 0.081 (0.060) 0.089 (0.045) ? 0.080 (0.060) 0.083 (0.046) 0.074 (0.057)

TABLE VI

Results for three model combination methods, applied to the decision model with recurrence. The same remarks as in table V apply.

Many of those committees significantly beat the market.

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.072 (0.043) 0.063 (0.038) 0.087 (0.042) ? 0.078 (0.036) ? 0.050 (0.039) 0.041 (0.052)

5 0.138 (0.041) ? 0.129 (0.051) ? 0.132 (0.041) ? 0.123 (0.047) ? 0.124 (0.041) ? 0.116 (0.054) ?

10 0.090 (0.042) ? 0.081 (0.056) 0.084 (0.043) ? 0.076 (0.056) 0.106 (0.042) ? 0.097 (0.057)

TABLE VII

Results for three model combination methods, applied to the forecasting model without recurrence. The same remarks as in table V

apply. Many of those committees significantly beat the market.

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.127 (0.052) ? 0.119 (0.048) ? 0.137 (0.052) ? 0.128 (0.049) ? 0.031 (0.050) 0.022 (0.048)

5 0.156 (0.055) ? 0.147 (0.053) ? 0.138 (0.053) ? 0.129 (0.054) ? 0.130 (0.054) ? 0.121 (0.050) ?

10 0.113 (0.052) ? 0.104 (0.058) 0.120 (0.051) ? 0.111 (0.057) 0.040 (0.052) 0.032 (0.058)
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TABLE VIII

anova results for the exponentiated gradient committees. The factors are the model type (noted M : decision without or with recurrence;

forecasting) and the number of hidden units (noted NH), along with the interaction between the two. No factor can be singled out as “the

most important”.

Sum of
DoF squares F -value Pr(F )

M 2 0.959 1.215 0.297
NH 2 1.006 1.274 0.280

M : NH 4 0.346 0.219 0.928
Residuals 1665 657.217

TABLE IX

anova results comparing the model combination method (noted C: hardmax; softmax; exp. gradient), the model type (noted M , as

before), the number of hidden units (noted NH), along with higher-order interactions between these factors. The number of hidden units is

the only significant factor.

Sum of
DoF squares F -value Pr(F )

C 2 0.673 0.862 0.422
M 2 1.094 1.401 0.246

NH 2 3.365 4.309 0.013 ?
C : M 4 0.905 0.579 0.678

C : NH 4 0.546 0.350 0.844
M : NH 4 0.674 0.431 0.786

C : M : NH 8 0.302 0.097 0.999
Residuals 4995 1950.545
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Fig. 8. Out-of-sample performance of committees (made with exponentiated gradient) for three types of models. The market performance
is the solid horizontal line just above zero. The error bars denote 95% confidence intervals. We note that the forecasting committee is
slightly but not significantly better than the others.
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Fig. 9. Out-of-sample behavior of the (exponentiated gradient) committee built upon the forecasting model with 5 hidden units. (a) Monthly
positions (in $) taken in each asset. (b) Monthly return, along with the 95%-VaR (set to 1$); we note that the risks taken are approximately
as expected, from the small number of crossings of the −1$ horizontal line. (c) Cumulative return: the decisions would have been very
profitable. Note that the positions taken in (a) vary substantially and are allowed to become fairly large in magnitude, and yet the target
VaR is maintained and the model is profitable.

TABLE X

Analysis of the performance difference between the exponentiated gradient committees and the best underlying model that is part of each

committee. We observe that the committees are never significantly worse than the best model they contain.

Model
Underlying
〈WD, ID〉

Perf.
difference t-value DoF p-value

NH=2 10−1, 10−1 −0.034 −0.77 185 0.43

NH=5 100 , 10−3 −0.033 −1.65 185 0.10

D
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n

w
/
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r.

z
}|
{

NH=10 10−3, 10−1 −0.019 −0.82 185 0.41

NH=2 100 , 10−3 −0.024 −0.71 185 0.47

NH=5 10−3, 10−2 −0.001 −0.05 185 0.95

D
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n

w
/

re
cu

r.

z
}|
{

NH=10 10−3, 10−3 −0.024 −1.59 185 0.11

NH=2 10−2, 10−3 0.005 0.16 185 0.86

NH=5 10−2, 10−1 −0.007 −0.22 185 0.82

F
o
re

ca
st

w
/
o

re
cu

r.

z
}|
{

NH=10 10−3, 10−1 −0.015 −0.46 185 0.64



23

C.3.a Asymptotic Confidence Intervals. Let Q̃(u) be the empirical quantile function in a random sample {Xj} of size
n,

Q̃(u) = Xj:n,
j − 1
n

< u ≤ j

n
, j = 1, . . . , n,

where Xj:n denotes the j-th order statistic of the random sample. Then, it is well known (e.g. [24]) that an asymptotic
100(1− α)% confidence interval for the population quantile Q(p), 0 < p < 1, is given by(

Q̃(k1/n), Q̃(k2/n)
)

(70)

where k1 and k2 are integers chosen so that

k1 ≈ np− Φ−1(α/2)
√
np(1− p) (71)

and
k2 ≈ np+ Φ−1(α/2)

√
np(1− p), (72)

with Φ−1(·) the inverse cumulative function of the standard normal distribution.

C.3.b Bootstrap Confidence Intervals. The bootstrap confidence intervals are found simply from the bootstrap sampling
distribution of the q-th quantile statistic. More specifically, we resample (with replacement) the empirical returns of a
model a large number of times (5000 in our experiments), and compute the position of q-th quantile in each sample. The
100(1−α)% confidence intervals are given by the location of the α/2 and 1−α/2 quantiles of the bootstrap distribution.

C.3.c Confidence Intervals Results. We computed confidence intervals at the 95% level for committees of the various
architectures. Results for the softmax combination method appear in table XII. The results obtained for the other
combination methods are quite alike, and are omitted for brevety. We observe that all the confidence intervals in the
table include the $–1 point, from which we conclude that we cannot reject the null hypothesis that the target value at
risk is not reached.

VI. Conclusion

We demonstrated the success of directly training a (possibly recurrent) neural network according to a VaR-adjusted
profit criterion for making asset-allocation decisions within a VaR-control framework. The performance results are
comparable to those obtained with a forecasting model used jointly with classical mean–variance portfolio selection.
Both the forecasting and decision models perform significantly better than the benchmark market performance.

Recall that the decision model can be preferred to the forecasting model since it relies on fewer assumptions with
respect to the workings of the investment process. In particular, the decision model does not need to postulate that
investors are driven by a utility function of a specific analytical form; instead, the model is trained to directly optimize
the financial criterion of interest. Furthermore, the recurrent network topology we used makes it possible to account for
transaction costs to a certain extent.

We showed how a recurrent neural network can be trained to directly optimize a risk-constrained profit criterion,
which ensures that the value-at-risk constraint on the portfolio remains satisfied, and that correctly accounts for trans-
action costs. We further showed the importance of a “reference norm” or “reference portfolio” regularizer to make the
optimization problem well-posed and numerically well-behaved.

In addition, we showed the importance of the input decay regularizer as a soft input selection procedure, in the case
where networks contain a large number of inputs.

Finally, we noted an effective use of committee methods to systematize the choice of hyperparameters during neural
network training. While many of their underlying models are underperformers, we found that several of our committees
(both of the forecasting and the decision types) are nevertheless significantly outperforming the benchmark market
index.

Future work includes improving explanatory variables, such as incorporating more thorough volatility modelling, as
well as taking full advantage of the recurrent structure of the neural network by making use of hidden states.
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TABLE XI

Analysis of the performance difference between the exponentiated gradient committees and the arithmetic mean of the performance of the

models that are part of each committee (equivalent to average performance obtained by randomly picking a model from the committee).

For the decision model with recurrence and the forecasting model, we see that the committees frequently significantly outperform the

random choice of one of their members.

Model
Average of
underlyings

Perf.
Difference t-value DoF p-value

NH=2 0.033 (0.033) −0.012 −0.539 185 0.591

NH=5 0.078 (0.034) 0.026 1.595 185 0.112

D
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n
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NH=10 0.070 (0.040) 0.016 1.834 185 0.068

NH=2 0.043 (0.030) 0.025 1.106 185 0.270

NH=5 0.087 (0.032) 0.049 3.156 185 0.002 ?

D
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/
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r.
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{

NH=10 0.057 (0.039) 0.032 2.653 185 0.009 ?

NH=2 0.095 (0.042) 0.030 2.008 185 0.046 ?

NH=5 0.089 (0.040) 0.065 3.471 185 0.001 ?

F
o
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o
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r.

z
}|
{

NH=10 0.079 (0.040) 0.031 1.902 185 0.059

TABLE XII

95% confidence intervals for the 5th percentile of the returns distribution for committees of various architectures (combined using the

softmax method). We note that all the confidence intervals include the $–1 point, which was the target value-at-risk in the experiments. We

also observe that the asymptotic and bootstrap intervals are quite similar. NH refers to the number of hidden units.

Architecture NH Bootstrap Asymptotic

Decision 2 (−0.72,−1.28) (−0.74,−1.31)

without 5 (−0.62,−1.02) (−0.65,−1.14)

Recurrence

9>=
>;

10 (−0.63,−1.30) (−0.70,−1.42)

Decision 2 (−0.58,−1.07) (−0.64,−1.26)

with 5 (−0.52,−1.02) (−0.53,−1.19)

Recurrence

9>=
>;

10 (−0.63,−1.15) (−0.64,−1.33)

Forecasting 2 (−0.72,−1.26) (−0.80,−1.42)

without 5 (−0.81,−1.23) (−0.83,−1.26)

Recurrence

9>=
>;

10 (−0.76,−1.14) (−0.78,−1.39)


