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Abstract An optimization problem is described, that arises in telecommunications
and is associated with multiple cross-sections of a single power cable used to sup-
ply remote telecom equipments. The problem consists of minimizing the volume of
copper material used in the cables and consequently the total cable cost. Two main
formulations for the problem are introduced and some properties of the functions
and constraints involved are presented. In particular it is shown that the optimiza-
tion problems are convex and have a unique optimal solution. A Projected Gradient
algorithm is proposed for finding the global minimum of the optimization problem,
taking advantage of the particular structure of the second formulation. An analysis of
the performance of the algorithm for given real-life problems is also presented.
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1 Introduction

This work describes the formulation and resolution of an engineering optimization
problem that arose in a project of the Instituto de Telecomunicações (Portuguese re-
search institute for telecommunications) with the company Portugal Telecom (Anun-
ciada 2003). The problem consists of optimizing the multiple cross-sections of a sin-
gle power cable used to supply remote telecom equipment.

Electric power transmission is usually operated at an almost constant voltage. In
fact, electric appliances and equipment require a constant supply voltage, named
the nominal operating voltage. In alternating current (AC) distribution networks, the
nominal operating voltage is 230 V in Europe and 110 V in USA. Those values are
the root mean square value of a sinusoidal voltage that is a function of time and
frequency (frequencies of 50 Hz in Europe and 60 Hz in USA).

Electric appliances may accept only narrow variations of those voltages, typically
tolerances of +10%, −15%. If an electrical generator operates at a fixed voltage V
and a distribution line with several nodes, where loads are connected, there are volt-
age drops along the line, described by Ohm’s law (the voltage drop is proportional
to the line impedance and line current, and line impedance is proportional to line
length). However, when currents are at a maximum value in any one of the nodes,
the voltage must be kept in the interval of acceptable voltages. Consequently, power
distribution is made with oversized copper or aluminum cables. The maximum length
of the distribution cables is limited, in order to avoid excessive voltage drops or ex-
cessive cross sections of the cables. Usually the cable length is limited to be less than
2 km. The cables cross sections are standardized considering the maximum current
in the system and the maximum allowed voltage drops.

For larger distances, the distribution networks use transformers in order to increase
operating voltage to 10 kV or 15 kV, reducing the line currents in the same proportion.
For very long distances or large power, the voltage increases up to 440 kV or more.

Power distribution operates at an almost constant voltage. Consequently, power
lines are interconnected with transformers in order to keep acceptable sizes of the
cables. Industry has standardized cables, maximum distances and operating voltages
in order to obtain acceptable values for the system cost and voltage drops.

A different situation occurs when a small amount of energy is required very far
from any possible supply point. This happens on a motorway, far from any town
where it is required to power a video camera and the radio transmitter. The use of
optic fibers in long distance telecommunications implies the use of electronic signal
conditioning equipment placed along the fibers, in places that can be more than 100
km from the nearest power supply. It is possible to construct a copper cable for energy
supply along the fiber cable. However, such long distances imply very large voltage
drops or bulky and costly cables, assuming a constant voltage operation. In the above
mentioned project, the authors considered the possibility of having very large voltage
drops in the cable, in order to avoid large cable costs. This option is possible because
telecom equipment require voltage regulators and storage batteries that can operate
with voltage tolerances up to 50%. When the power cable supplies several devices in
different places along the cable, the cross section of each part of the cable should be
optimized.
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As shown in this paper, the model under consideration can be formulated as a
nonlinear programming problem. We are able to show that the constraint set of this
program is bounded and the objective function is strictly convex on this constraint
set. Hence the optimization problem has a unique optimal solution, which can eas-
ily be found by a nonlinear program code, such as MINOS (Murtagh and Saunders
1987). By exploiting the structure of this optimization problem, it is also possible to
reformulate it as a strictly convex nonlinear program on a simplex. This latter op-
timization problem can be efficiently processed by a Projected Gradient algorithm
(Bertsekas 1976, 1999; Birgin et al. 2000) that fully exploits the structure of the con-
straint set. Computational experience with small instances of the problem illustrates
the validity of the formulation for its purpose and of the Projected Gradient algorithm
to process the associated nonlinear program.

The organization of the paper is as follows. In Sect. 2 the model and its formulation
are introduced. A heuristic procedure used in Anunciada (2003) is reviewed in Sect. 3
to find a feasible solution to the associated optimization problem. The solution of the
nonlinear program under consideration is fully discussed in Sect. 4. The alternative
formulation with simplex constraints and the Projected Gradient algorithm for its
solution are described in Sects. 5 and 6. Finally some computational experience and
conclusions are reported.

2 Model description

A long cable with two conducting wires is supplied at one end by a constant voltage
generator with a known voltage vI . The cable is constituted by n sections. The cross-
sections of the conductors may differ from section to section (although in each section
of the cable the cross-section of both conducting wires should be the same). If li is the
length of each section i (i = 1,2, . . . , n), then the total length of the cable is

∑n
i=1 li .

Besides the voltage generator and the n sections, we assume the existence of n

nodes along the cable, each representing an electrical load. Section i connects two
consecutive nodes i − 1 and i, thus

where i = 1,2, . . . , n (and node 0 coincides with the voltage generator). Therefore
node i connects two consecutive sections i and i + 1:

where i = 1,2, . . . , n − 1, with the exception of node n.
The load in each node i is known and is characterized by its constant power load

pi . The load current lci in each node i depends on the voltage vi in that node, accord-
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ing to

lci = pi

vi

, i = 1,2, . . . , n. (1)

The voltage decrease �vi along each section i (�vi = vi−1 − vi ) is, according to
Ohm’s law (Feynman et al. 1963),

�vi = vi−1 − vi = rici, (2)

where ri and ci are the resistance of the cable and the current in section i, i =
1,2, . . . , n.

As the cable is made of two conducting wires, the resistance of each cable section
is twice the resistance of each conductor in that section. Hence

ri = 2ρ
li

si
, (3)

where ρ is the material resistivity, li is the length of the section, and si is the area of
the cross section.

The current ci in section i is the sum of the currents in the loads at nodes i,
i = 1, . . . , n

ci =
n∑

j=i

lcj =
n∑

j=i

pj

vj

. (4)

Consequently the current in section i (i = 1,2, . . . , n) depends on the voltage in
all later nodes of this section, as the power loads pi are constant. Now, using the
expressions of ri and si in (3) and (4), we obtain from (2)

vi−1 − vi = 2ρ
li

si

n∑

j=i

pj

vj

. (5)

Therefore

vi = vi−1 − 2ρ
li

si

n∑

j=i

pj

vj

(6)

for i = 1,2, . . . , n.
Another data item is the voltage vn in the last node n of the cable. Considering

that the voltage v0 of node 0 coincides with the initial voltage vI , then

vn = av0, (7)

where a is a positive given constant satisfying 1
2 ≤ a < 1.1

1It is possible to show that if a < 1
2 , the total volume of the cable increases as the voltage vn decreases

(DeCarlo 2001).
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The volume of each section i of the cable is equal to 2lisi . Therefore, the total
volume of cable material is

V =
n∑

i=1

2lisi . (8)

As the price of the cable is almost proportional to its volume, its total cost C is
given by C = cV , where c is a given positive constant

C = c

n∑

i=1

2lisi =
n∑

i=1

2clisi . (9)

The objective of the problem is to determine the cross-section area si of the con-
ducting wires in each section that minimizes the total cost of the cable. This is equiv-
alent to minimizing its volume V . The values pi and li , i = 1,2, . . . , n, as well as
v0, vn, a,ρ and c are data of the optimization problem, and we have to find the cross-
section areas si , i = 1,2, . . . , n, that minimize C (or equivalently V ). The problem
also contains the variables v1, v2, . . . , vn−1, which are related to si , i = 1,2, . . . , n by
(6).

The model described can then be formulated as the following nonlinear optimiza-
tion problem:

Minimize
n∑

i=1

2clisi (10)

subject to vi = vi−1 − 2ρ
li

si

n∑

j=i

pj

vj

, i = 1,2, . . . , n, (11)

vn = av0, (12)

vi−1 > vi, i = 1,2, . . . , n, (13)

si , vi > 0, i = 1,2, . . . , n, (14)

where the power loads pi (i = 1,2, . . . , n), the lengths li (i = 1,2, . . . , n), the volt-
ages v0 and vn, and the constants a, ρ and c, are data, and the cross-sections si
(i = 1,2, . . . , n) and the voltages v1, v2 . . . , vn−1 are the variables of the optimiza-
tion problem. The objective in (10) is the minimization of the total cost of the cable
or equivalently of its total volume.

3 An initial feasible solution for the optimization problem

As stated in Anunciada (2003), a first feasible solution for the optimization prob-
lem can be constructed by assuming that in each cable section i, i = 1,2, . . . , n,
the cross section si is proportional to the current ci . Thus si = Sci , and from (4),
si = S

∑n
j=i l

c
j , with S > 0. The process of finding such a solution reduces to the

computation of the proportionality constant S. Suppose that all the loads along the
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cable are concentrated in a unique node, so that the cable is made of a single section
with length L = ∑n

i=1 li and by two nodes, one at each end, namely the voltage gen-
erator and the current node. This last node concentrates the electrical loads, whence
it has a load power P = ∑n

i=1 pi . Since the voltage in this node is av0, we can easily
compute the load current c in the last node, the resistance r in the section, and the
cross-section s in the conducting wires of that section by

c = P

av0
, (15)

r = v0 − av0

c
= a(1 − a)v2

0

P
, (16)

s = 2ρL

r
= 2ρLP

a(1 − a)v2
0

. (17)

Therefore the reference cross-section S is defined by

S = s

c
= 2ρL

(1 − a)v0
. (18)

The cross-sections si are computed from

si = S

n∑

j=i

lcj , i = 1,2, . . . , n. (19)

The voltages vi can now be obtained recursively from (6) by

vi−1 = vi + 2ρ
li

si

n∑

j=i

pj

vj

, i = 1,2, . . . , n. (20)

In the particular case where p1 = p2 = · · · = pn, with vn = v0
2 , the voltages can

be determined as follows:

vi−1 − vi = li
∑n

i=1 li
(v0 − vn), i = 1,2, . . . , n. (21)

Then by (20) the cross-sections satisfy

si = 2ρli

∑n
j=i

pj

vj

vi−1 − vi

, i = 1,2, . . . , n. (22)

Computational experience (Sect. 7) shows that this process finds a feasible so-
lution that is in general a tight upper bound to the global minimum value of the
optimization problem.

It is also important to note that, since si = S
∑n

j=i l
c
j , (5) can be rewritten as �vi =

vi−1 − vi = 2ρ
S

li . This means that for the feasible solution obtained through this
heuristic method, the voltage decrease �vi in each section i is proportional to the
length li of this section.
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4 Solution of the nonlinear optimization problem

Consider again the model described in Sect. 2. Looking carefully at this formulation,
we note that the constraints si , vi > 0, i = 1,2, . . . , n, are redundant. In fact, accord-
ing to (12) and (13), we have v0 > v1 > v2 > · · · > vn = av0. Since a and v0 are
positive, then vi ≥ av0 > 0, for all i = 1,2, . . . , n. As vi−1 − vi > 0, ρ > 0, li > 0
and pj > 0, for all j , then si > 0, for all i = 1,2, . . . , n. Then the variables si can be
assumed to be unrestricted in sign and can be eliminated from the problem to obtain
the following nonlinear program in the variables vi :

NLP: Minimize
v∈Rn

4ρc

n∑

i=1

l2
i

∑n
j=i

pj

vj

vi−1 − vi

(23)

subject to vi−1 > vi, i = 1,2, . . . , n, (24)

vn = av0, (25)

where v0, a, ρ, c, li , pj are positive data. After a global minimum is obtained for this
optimization problem NLP, then the cross-section areas si can be found from (11).

The feasible set of this program is not closed, whence the Weierstrass Theorem
(Bazaraa et al. 1993) cannot be used to guarantee the existence of a minimum. To
overcome this difficulty, we consider the additional variables zi , defined by zi =
vi−1 − vi, i = 1,2, . . . , n, and the nonlinear program:

NLP1: Minimize f (z, v) = 4ρc

n∑

i=1

l2
i

∑n
j=i

pj

vj

zi

(26)

subject to zi − vi−1 + vi = 0, i = 1,2, . . . , n, (27)

zi ≥ ε, i = 1,2, . . . , n, (28)

vn = av0, (29)

where ε is a positive and small real number (in practice ε = 10−6). As for each
i = 1,2, . . . , n,

vi−1 > vi ⇔ zi = vi−1 − vi > 0,

then we guarantee that the function f of NLP1 has a global minimum on the set

K = {(z, v) ∈ R
n×n satisfying (27–29)}.

Consider now the objective function of NLP1, the n functions fi defined by

fi(zi, vi, . . . , vn) =
∑n

j=i

pj

vj

zi

, i = 1,2, . . . , n (30)

and the sets
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Ki = {(zi, vi, . . . , vn) ∈ R
n−i+2 : zi > 0;vj > 0, j = i, . . . , n},

i = 1,2, . . . , n. (31)

Therefore for all (z, v) ∈ K,

f (z, v) = 4ρc

n∑

i=1

l2
i fi(zi, vi, . . . , vn). (32)

Then f is strictly convex on K, as the following property holds:

Theorem The function fi (i = 1,2, . . . , n) defined by (30) is strictly convex on Ki .

Proof The gradient of fi at each point of Ki always exists and is given by

∇fi(zi, vi, . . . , vn) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
z2
i

(∑n
j=i

pj

vj

)

− 1
zi

(pi

v2
i

)

...

− 1
zi

(pn

v2
n

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The Hessian of fi is

∇2fi(zi, vi, . . . , vn) = A1 + A2,

where

A1 = diag

(
1

z3
i

(
n∑

j=i

pj

vj

)

,
pi

ziv
3
i

, . . . ,
pn

ziv3
n

)

and A2 is given by

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
z3
i

(∑n
j=i

pj

vj

) pi

z2
i v

2
i

pi+1

z2
i v

2
i+1

· · · pn

z2
i v

2
n

pi

z2
i v

2
i

pi

ziv
3
i

0 · · · 0

pi+1

z2
i v

2
i+1

0 pi+1

ziv
3
i+1

· · · 0

...
...

... · · · ...

pn

z2
i v

2
n

0 0 · · · pn

ziv
3
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now A2 can be written as follows:

A2 =
[
α vT

v D

]

,
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where α > 0, v ∈ R
n−i+1 and

D = diag

(
pi

ziv
3
i

,
pi+1

ziv
3
i+1

, . . . ,
pn

ziv3
n

)

.

Since all diagonal elements of D are positive and the Schur Complement (A2|D)

of D in A2 (Cottle et al. 1992) is zero, then A2 is Symmetric Positive Semi-Definite.
As A1 is Symmetric Positive Definite, then ∇2fi(zi , vi, . . . , vn) is Symmetric Posi-
tive Definite in Ki (Cottle et al. 1992) and fi is strictly convex on Ki . �

Since K is compact and f is strictly convex on K, then f has a unique stationary
point on K, which is exactly its unique global minimum (Bazaraa et al. 1993). As a
stationary point of f on K may be found by a local nonlinear programming algorithm,
it is easy to obtain the unique global minimum of the function on K and thus to solve
the optimization problem.

5 An alternative formulation on the simplex

Consider the program NLP1, introduced in the previous section. We can write the
constraints of the program as follows:

Lv + z = b,

vn = av0,

zi ≥ ε, i = 1,2, . . . , n,

where

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
−1 1

−1 1
. . .

−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n,

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v0
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n, z =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

z1
z2
z3
...

zn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n.

As L is a triangular nonsingular matrix, we can eliminate the variables vi by solving
Lv = b − z. Then

vi = v0 −
i∑

k=1

zk, i = 1,2, . . . , n. (33)
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Furthermore

vn = av0 ⇔ v0 − (z1 + z2 + · · · + zn) = av0

⇔ z1 + z2 + · · · + zn = (1 − a)v0

⇔
n∑

j=1

zj = (1 − a)v0.

Then NLP is equivalent to

NLP2: Minimize f (z) = 4ρc

n∑

i=1

l2
i

zi

(
n∑

j=i

pj

v0 − ∑j

k=1 zk

)

subject to eT z = (1 − a)v0,

zi ≥ ε, i = 1,2, . . . , n,

where e ∈ R
n is a vector of ones. The feasible set of this program is given by

K = {z ∈ R
n : eT z = (1 − a)v0; zi ≥ ε, i = 1,2, . . . , n}. (34)

Hence K is a compact set and by Weierstrass Theorem, the function f has a global
minimum on K. Moreover, the function of NLP2 is obtained from the function of
NLP by a linear transformation with a nonsingular matrix. Therefore this function f

is strictly convex on K (Martos 1975). Hence the computation of the unique global
minimum of NLP2 may be done by a local nonlinear programming method. In the
next section we introduce a Projected Gradient algorithm that finds the unique sta-
tionary point of f on K by taking advantage of the structure of the program NLP2.
The original variables vi and si can be obtained afterwards by using formulas (33)
and (11).

6 A projected gradient algorithm for the nonlinear program on the simplex

Consider the program NLP2 introduced in the previous section and its constraint set
K given by (34). The projected gradient of f in the point z ∈ K is defined as the
vector in R

n

g(z) = PK(z − η∇f (z)) − z, (35)

where PK(·) is the orthogonal projection in K and η > 0 (Bertsekas 1999).
It is known that for a given η > 0, g(z) = 0 if and only if z is a stationary point

of f on K (Bertsekas 1999). The Projected Gradient algorithm is a modification of
the Steepest Descent algorithm (Dennis and Schnabel 1996) in which the iterates are
forced to stay in K by a projection (Bertsekas 1976). It can be shown (Bertsekas 1999;
Birgin et al. 2000) that this algorithm possesses global convergence towards a sta-
tionary point under reasonable hypotheses. The steps of the algorithm are presented
below.
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Projected gradient algorithm for NLP2:

Step 0: Find an initial solution z ∈ K.
Step 1: (Computation of search direction) Compute the direction d ∈ R

n by

d = y − z,

where y = PK(z − η∇f (z)), with η > 0.
Step 2: (Stopping test) If ‖d‖2 < tol, then stop: z is a stationary point of f on K.

Otherwise, go to Step 3.
Step 3: (Armijo criterion) Find α ∈ R

+ such that

f (z + αd) ≤ f (z) + βα∇f (z)T d,

with 0 < β < 1.
Step 4: (Iterate updating) Update the current solution

z ← z + αd

and return to Step 2.

Next, we discuss some details of the algorithm.

(I) Computation of the gradient of f

By simple manipulation, it is possible to write f (z) as follows:

f (z) = 4ρc

n∑

k=1

pk × ∑k
j=1

l2j
zj

v0 − ∑k
j=1 zj

.

Therefore it is easy to obtain the following formulas for the components of the
gradient vector ∇f (z):

∀
i=1,2,...,n

∂f (z)

∂zi

= 4ρc

n∑

k=i

pk × ∑k
j=1

l2j
zj

(v0 − ∑k
j=1 zj )2

− l2
i

z2
i

n∑

k=i

pk

v0 − ∑k
j=1 zj

. (36)

(II) Computation of the projection y = PK(z − η∇f (z))

1. Find u = z − η∇f (z) using (36) to compute ∇f (z).
2. The vector y is the unique optimal solution of the strictly convex quadratic pro-

gram

Minimize
y∈Rn

1

2
‖u − y‖2

2

subject to eT y = (1 − a)v0,

yi ≥ ε, i = 1,2, . . . , n.
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But

‖u − y‖2
2 = (u − y)T (u − y) = uT u − 2uT y + yT y

and therefore this program is equivalent to

Minimize
z∈Rn

qT y + 1

2
yT y

subject to eT y = b0,

yi ≥ ε, i = 1,2, . . . , n,

where b0 = (1 − a)v0 and q = −u.

There are several algorithms described in the literature to process this kind of
quadratic programs (Dussault et al. 1986; Pardalos and Kovoor 1990; Júdice and
Pires 1992). Among these processes, the Block Pivotal Principal Pivoting (BLOCK)
Algorithm described in (Júdice and Pires 1992) is strongly polynomial and very effi-
cient in practice. The steps of this process are presented below.

BLOCK algorithm:

Step 0: Let F = {1,2, . . . , n}.
Step 1: Compute λ = − b0+∑

i∈F qi

|F | .
Step 2: (Stopping test)

Let

H = {i ∈ F : qi + λ > ε} .

If H = φ, stop: the vector

z = (zi)i=1,2,...,n, with zi =
{
ε, if i /∈ F,

−(qi + λ), if i ∈ F

is the unique optimal solution of the quadratic program. Otherwise set F =
F − H and go to Step 1.

(III) Computation of the optimal values for the variables v∗
i and s∗

i

Let z∗ = (z∗
i )i=1,2,...,n ∈ R

n be the optimal solution of the problem NLP2. The
variables v∗

i , i = 1,2, . . . , n, of the original problem satisfy Lv∗ = b − z∗. Therefore

v∗
i = v∗

i−1 − z∗
i , i = 1,2, . . . , n (v∗

0 = v0). (37)

Furthermore, (11) provides the values of the variables s∗
i :

s∗
i =

2ρli
∑n

j=i

pj

v∗
j

z∗
i

, i = 1,2, . . . , n.
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7 Computational experience

The computational experience presented in this section was performed using a PC
with 3 GHz Pentium 4 processor and 2 GB RAM memory, running Linux 2.6.10. The
active–set code MINOS (Murtagh and Saunders 1987) (one of the nonlinear solvers of
GAMS) has been used for processing both the nonlinear programs NLP1 and NLP2.
Furthermore, the Projected Gradient algorithm for the program NLP2 was imple-
mented in Fortran 77 (Hehl 1987), using the Gnu Fortran (g77) compiler, version
3.4.3, with the options -02 -malign-double -funroll-loops. Running
times presented in this section are given in CPU seconds, excluding inputs and out-
puts. The times for the Projected Gradient algorithm were measured by the etime()
function.

The results reported in this section are concerned with two actual instances of the
problem found in practice, the first (Example 1) presenting reduced voltage decrease
and the second (Example 2) presenting high voltage decrease. The data for these
problems are stated below and in Table 1:

n = 40; ρ = 20 (�km−1 mm2); c > 0.

For the first example the cross-section value is S = 9.680 (with L = 48.40
and P = 7750), and for the second example, is S = 8.811 (with L = 15.42 and
P = 119850). The heuristic procedure described in section 3 has found the following
solutions:

For Example 1:

v = (vi)i=0,1,...,40

= (500.000,499.587,497.107,495.868,483.058,474.793,468.182,

464.876,461.983,457.025,450.826,443.388,441.322,440.083,

438.843,437.603,434.711,431.405,426.860,417.355,386.364,

381.818,376.033,372.314,371.901,371.488,370.661,369.835,

369.421,367.355,363.223,358.678,353.306,348.760,317.769,

304.132,303.719,303.306,302.066,300.413,300.000);
s = (si)i=1,2,...,40

= (195.930,194.961,191.066,187.162,186.160,175.966,165.628,

163.546,162.498,161.439,159.292,154.926,150.539,146.140,

141.728,130.668,129.555,128.433,127.299,126.139,121.128,

116.058,103.187,97.987,96.685,95.382,94.077,92.768,

91.458,88.823,83.493,78.095,64.396,50.518,35.287,

32.104,25.730,19.347,17.744,16.133)

with total cost C = 11105.270 × c.
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Table 1 Problem data for Examples 1 and 2

i Example 1 (reduced voltage decrease) Example 2 (high voltage decrease)

V0 = 500 V a = 0.6 V0 = 260 V a ≈ 0.731

V40 = 300 V V40 = 190 V

length li (km) power pi (W) length li (km) power pi (W)

1 0.1 50 0.1 1150

2 0.6 200 0.1 1150

3 0.3 200 0.2 2300

4 3.1 50 0.5 2300

5 2.0 500 0.4 1150

6 1.6 500 1.0 6900

7 0.8 100 0.2 1150

8 0.7 50 0.3 1150

9 1.2 50 0.2 2300

10 1.5 100 0.1 2300

11 1.8 200 0.1 1150

12 0.5 200 0.05 1150

13 0.3 200 0.05 2300

14 0.3 200 0.03 1150

15 0.3 500 0.4 6900

16 0.7 50 0.5 6900

17 0.8 50 0.5 1350

18 1.1 50 0.3 2300

19 2.3 50 0.4 1150

20 7.5 200 0.4 2300

21 1.1 200 0.9 6900

22 1.4 500 1.0 3450

23 1.9 200 0.5 1350

24 0.1 50 0.1 6900

25 0.1 50 0.1 1350

26 0.2 50 0.03 1350

27 0.2 50 0.05 1350

28 0.1 50 0.05 1350

29 0.5 100 1.1 6900

30 1.0 200 1.2 3450

31 1.1 200 0.6 3450

32 1.3 500 0.45 3450

33 1.1 500 0.33 6900

34 7.5 500 0.21 1350

35 3.3 100 0.09 10350

36 0.1 200 0.06 6900

37 0.1 200 1.25 1150

38 0.3 50 0.15 1150

39 0.4 50 0.12 1150

40 0.1 500 1.3 1150



Cost minimization of a multiple section power cable 287

For Example 2:

v = (vi)i=0,1,...,40

= (260.000,259.546,259.092,258.184,255.914,254.099,249.559,

248.651,247.289,246.381,245.927,245.473,245.246,245.019,

244.883,243.067,240.798,238.528,237.166,235.350,233.534,

229.449,224.909,222.639,222.185,221.732,221.595,221.368,

221.141,216.148,210.700,207.977,205.934,204.436,203.482,

203.074,202.802,197.127,196.446,195.901,190.000);

s = (si)i=1,2,...,40

= (4714.404,4675.363,4636.252,4557.757,4478.565,4438.686,4195.061,

4154.309,4113.332,4031.076,3948.669,3907.389,3866.070,3783.357,

3741.978,3491.846,3239.357,3189.487,3104.035,3060.979,2974.198,

2709.221,2574.057,2520.628,2246.988,2193.340,2139.659,2085.924,

2032.132,1750.849,1606.571,1460.403,1312.786,1015.388,956.928,

507.839,208.044,156.640,105.058,53.332)

with total cost C = 74762.948 × c.

As mentioned earlier, each of these values is an upper bound for the optimal value
given by the nonlinear programs NLP1 and NLP2. The unique optimal solution of
those programs found by MINOS is given below:

For Example 1:

v∗ = (v∗
i )i=0,1,...,40

= (500.000,499.470,496.298,494.727,478.658,468.316,460.255,

456.334,452.922,447.091,439.823,431.152,428.772,427.361,

425.968,424.593,421.494,417.966,413.132,403.062,370.347,

365.618,359.689,356.031,355.632,355.235,354.445,353.659,

353.267,351.321,347.470,343.325,338.543,334.769,311.298,

302.215,301.949,301.704,301.048,300.203,300.000);
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s∗ = (s∗
i )i=1,2,...,40

= (156.856,156.477,154.934,153.366,152.944,148.488,143.766,

142.792,142.295,141.785,140.726,138.507,136.244,133.944,

131.608,125.623,125.007,124.379,123.734,123.055,119.820,

116.475,107.708,104.070,103.153,102.231,101.303,100.368,

99.429,97.521,93.586,89.506,78.755,67.253,53.127,49.982,

43.473,36.549,34.720,32.831).

For Example 2:

v∗ = (v∗
i )i=0,1,...,40

= (260.000,259.337,258.676,257.360,254.097,251.507,245.062,

243.805,241.930,240.685,240.068,239.457,239.153,238.851,

238.671,236.286,233.396,230.601,228.936,226.742,224.561,

219.715,214.542,212.010,211.508,211.029,210.887,210.653,

210.421,205.379,200.211,197.717,195.919,194.657,193.937,

193.636,193.485,191.440,191.226,191.085,190.000);

s∗ = (s∗
i )i=1,2,...,40

= (3351.859,3338.425,3324.873,3297.323,3268.836,3254.211,3160.536,

3144.546,3128.242,3095.103,3061.525,3044.547,3027.457,2992.976,

2975.600,2867.608,2753.897,2730.719,2690.347,2669.620,2627.048,

2491.010,2418.020,2388.453,2233.547,2202.441,2171.058,2139.357,

2107.330,1931.019,1834.938,1733.832,1627.834,1401.373,1354.395,

950.698,588.979,507.413,412.098,290.011).

For both examples, we have used as an initial point for MINOS the default choice
given by the code and the solution computed by the heuristic procedure. The values
of the variables vi show that the constraints zi ≥ ε (ε = 10−6) are inactive at the
optimal solutions of both problems. Tables 2 and 3 report the numerical results under
these two choices and lead to the conclusion that it is recommended to start with
the feasible solution given by the heuristic procedure. It is also important to add that
Formulation NLP1 is preferable if an active-set method such as MINOS is employed
to process the nonlinear program. The reason for this arises from the more complex
formulas of the objective function in the Formulation NLP2.

The implementation of the Projected Gradient algorithm for problem NLP2 re-
quires a choice for the parameters β , θ and η used by the procedure. For both exam-
ples, some tests have been performed with the algorithm in order to make a sensitivity
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Table 2 Comparative performance of the formulations NLP1 and NLP2 for Example 1, solved by
GAMS/MINOS

Example 1

Formulations Initial solution

By default (MINOS) Heuristic solution

Iterations CPU Cost Iterations CPU Cost

NLP1 820 1.470 10764.6896 × c 84 0.266 10764.6896 × c

NLP2 789 12.423 10764.6896 × c 121 2.447 10764.6896 × c

Table 3 Comparative performance of the formulations NLP1 and NLP2 for Example 2, solved by
GAMS/MINOS

Example 2

Formulations Initial solution

By default (MINOS) Heuristic solution

Iterations CPU Cost Iterations CPU Cost

NLP1 562 1.014 66585.2396 × c 98 0.286 66585.2396 × c

NLP2 530 8.474 66585.2396 × c 153 3.014 66585.2396 × c

analysis for these parameters. The best choices for the Projected Gradient algorithm
have been achieved with β = 10−4, θ = 1

2 , η = 10−2 for Example 1 and β = 10−4

(or β = 10−2), θ = 1
10 , η = 10−3 for Example 2.

Table 4 indicates the performance of the Projected Gradient algorithm (with
tol = 10−6) for the best choice of the parameters and for two initial solutions.
These computational results show that the Projected Gradient algorithm is efficient to
process the nonlinear program NLP2. The number of iterations required by the pro-
jected gradient method is slightly bigger than those of the active-set method (MINOS)
displayed in Tables 2 and 3. However, the algorithm performs faster than MINOS. An-
other interesting conclusion is that the use of the initial solution given by the heuristic
procedure does not seem to help for this method. As the Projected Gradient algorithm
fully exploits the structure of the nonlinear program and requires minimal storage, we
believe that this method can be useful for the solution of larger instances of this opti-
mization model.

The unique optimal solution found by the algorithms gives about 3% savings for
Example 1 and about 12% savings for Example 2, when compared with the heuristic
solutions used in practice in the project reported in this paper. We believe that more
substantial savings can be achieved for larger instances of the energy model if the
unique optimal solution of NLP1 or NLP2 is used instead of the solution that is
nowadays employed in this project.
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Table 4 Best performances of
the Projected Gradient algorithm Example 1

Initial solution Iterations CPU Cost

zi = b0
40 , i = 1,2, . . . ,40 399 0.003 10764.6896 × c

Heuristic solution 512 0.005 10764.6896 × c

Example 2

Initial solution Iterations CPU Cost

zi = b0
40 , i = 1,2, . . . ,40 114 0.001 66585.2396 × c

Heuristic solution 129 0.001 66585.2396 × c

8 Conclusion

This paper describes formulations and solutions of an engineering optimization prob-
lem in telecommunications area, that consists of optimizing the cross section of con-
ducting energy cables, used to supply remote telecom equipments, in order to min-
imize the volume of copper material used in the cables and consequently the cost.
Two alternative formulations for the problem have been introduced and a Projected
Gradient algorithm was proposed for the second formulation, taking advantage of its
particular structure. Computational experience with an implementation of this algo-
rithm has shown that the proposed methodology is efficient in practice. We believe
that this type of model and the Projected Gradient algorithm can also be useful in
other engineering models used in energy supply, piping and fluid distribution with a
similar structure, particularly when the number of nodes is quite large.
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