
25

Cost Minimization while Satisfying Hard/Soft
Timing Constraints for Heterogeneous
Embedded Systems

MEIKANG QIU

University of New Orleans

and

EDWIN H. -M. SHA

University of Texas at Dallas

In high-level synthesis for real-time embedded systems using heterogeneous functional units (FUs),

it is critical to select the best FU type for each task. However, some tasks may not have fixed

execution times. This article models each varied execution time as a probabilistic random vari-

able and solves heterogeneous assignment with probability (HAP) problem. The solution of the

HAP problem assigns a proper FU type to each task such that the total cost is minimized while

the timing constraint is satisfied with a guaranteed confidence probability. The solutions to the

HAP problem are useful for both hard real-time and soft real-time systems. Optimal algorithms

are proposed to find the optimal solutions for the HAP problem when the input is a tree or a

simple path. Two other algorithms, one is optimal and the other is near-optimal heuristic, are

proposed to solve the general problem. The experiments show that our algorithms can effectively

reduce the total cost while satisfying timing constraints with guaranteed confidence probabilities.

For example, our algorithms achieve an average reduction of 33.0% on total cost with 0.90 confi-

dence probability satisfying timing constraints compared with the previous work using worst-case

scenario.

Categories and Subject Descriptors: C.3 [Computer System Organization]: Special-Purpose and

Application-Based Systems—Real-time and embedded systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Embedded Systems, heterogeneous, high-level synthesis,

real-time

This work was supported in part by NSF CCR-0309461, NSF IIS-0513669, HK CERG B-Q60B, and

NSFC 60728206.

Authors’ addresses: M. Qiu, Department of Electrical and Computer Engineering, University of

New Orleans, New Orleans, LA 70148; email: mqiu@uno.edu; E. H. -M. Sha, Dept. of Computer

Science, University of Texas at Dallas, Richardson, TX 75083; email: edsha@utdallas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1084-4309/2009/03-ART25 $5.00

DOI 10.1145/1497561.1497568 http://doi.acm.org/10.1145/1497561.1497568

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:2 • M. Qiu and E. H. -M. Sha

ACM Reference Format:
Qiu, M. and Sha, E. H.-M. 2009. Cost minimization while satisfying hard/soft timing constraints for

heterogeneous embedded systems. ACM Trans. Des. Autom. Elect. Syst., 14, 2, Article 25 (March

2009), 30 pages, DOI = 10.1145/1497561.1497568 http://doi.acm.org/10.1145/1497561.1497568

1. INTRODUCTION

It is a critical issue to do high-level synthesis for special-purpose architectures
of real-time embedded systems to satisfy the time and cost requirements [Wang
and Parhi 1995; Foster 1994; Lester 1993; Wolfe 1996; Chao and Sha 1995]. The
cost of embedded systems may relate to power, reliability, and so on, and consists
of both hardware and software portions [Dogan and Özgüner 2002; Srinivasan
and Jha 1999; Shatz et al. 1992; He et al. 2003]. The systems become more and
more complicated in two aspects.

First, in many systems, such as heterogeneous parallel DSP systems [Hou
and Shin 1997; Banino et al. 2004], the same types of operations can be pro-
cessed by heterogeneous FUs with different costs. Many MPSoCs are het-
erogeneous, with multiple types of CPUs, irregular memory hierarchies, and
irregular communication. Heterogeneity allows architects to support neces-
sary operations while eliminating the costs of unnecessary features [Wolf
2006], which is extremely critical for cost-sensitive real-time embedded sys-
tems. Hence, an important problem arises: how to assign a proper FU type to
each operation of a DSP application such that the requirements can be met
and the total cost can be minimized while satisfying timing constraints with a
guaranteed confidence probability [Shao et al. 2005].

Second, some tasks (operations or instructions) may not have fixed execu-
tion times. Such tasks usually contain conditional instructions and/or opera-
tions that could have different execution times for different inputs [Tongsima
et al. 2000; Zhou et al. 2001; Hua et al. 2003a, Hua et al. 2003b; Hua and Qu
2003]. Although many static assignment techniques can thoroughly check for
the best assignment for dependent tasks, existing methods are not able to deal
with such uncertainty. Therefore, either worst-case or average-case computa-
tion times for these tasks are usually assumed. Such assumptions, however,
may not be applicable for real-time systems and may result in an ineffective
task assignment. Using a probabilistic approach, we can obtain solutions that
can not only be used for hard real-time systems, but also provide more choices
at smaller total costs while satisfying timing constraints with guaranteed con-
fidence probabilities.

This article presents high-level synthesis algorithms which operate in prob-
abilistic environments to solve the heterogeneous assignment with probability
(HAP) problem. In the HAP problem, we model the execution time of a task
as a random variable [Zadeh 1996]. For heterogeneous systems, each FU type
has different cost, representing hardware cost, size, reliability, and so on. The
faster one has a higher cost while the slower one has a lower cost. This arti-
cle will introduce the concept of Probabilistic Data Flow Graph (PDFG) (def-
inition is in the System Model section). Each node of the PDFG represents
a task or an operation. The direction between nodes of the PDFG represents

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:3

task-implementation order. The nodes can be executed either in sequential or
parallel order depending on the structure of the graph.

In this article, we show how to assign a proper FU type to each node (rep-
resenting a task) of a PDFG such that the total cost is minimized while satis-
fying the timing constraint with a guaranteed confidence probability. In other
words, we can guarantee that the total execution time of the PDFG is less
than or equal to the timing constraint with a probability greater than or equal
to P .

We give an example to illustrate the HAP problem. Heterogeneous assign-
ment of special purpose architectures for real-time DSP applications has be-
come a common and critical step in the design flow in order to satisfy the
requirements of stringent timing constraints. DSP applications need special
high-speed functional units (FUs) such as ALUs and multipliers to perform
addition and multiplication operations [Shao et al. 2005]. For a digital camera
chip, there are five major parts in the chip [Vahid and Givargis 2002]: (1) the
JPEG codec compresses and decompresses an image using the JPEG compres-
sion standard, enabling compact storage of images in the limited memory of the
camera; (2) the memory controller controls access to a memory chip also found in
the camera; (3) the display control circuits control the display of images on the
camera’s liquid-crystal display device; (4) the multiplier/accumulator circuit
performs a particular frequently executed multiply/accumulate computation
faster than the microcontroller could; and (5) at the heart of the system is the
microcontroller, which is a programmable processor that controls the activities
of all the other circuits.

We focus on the multiplier/accumulator circuit, which performs a single
function repeatedly and has soft real-time constraints. Due to conditional in-
structions and environmental change, such as temperature change on the chip,
the same tasks may have varied execution times even with the same FU. In
this article, we will show that with heterogeneous FUs available, significant
costs could be saved by satisfying timing constraints with some probabilities,
as opposed to using worst-case times. Assume that the FU type library provides
two types of FUs (such as ALU, multiplier, etc.), R1 and R2, for us to select from.
Assume there are enough FUs available for each node. Each node needs only on
type of FU. FUs can be reused by different nodes at different steps, and there
is no FU-sharing conflict (i.e., one task cannot use a FU that is being used by
another task). The nodes of the PDFG represent task implementation order,
which can be executed in either sequence or parallel order.

For demonstration purposes, assume that there is an input PDFG on the
multiplier/accumulator circuit of the digital camera chip. The PDFG is a sim-
ple path with three nodes which is shown in Figure 1(a). Each node represents
a task, such as an instruction or an operation. The execution times (T), prob-
abilities (P), and costs (C) of each node for different FU types are shown in
Figure 1(b). The probabilities at which these events occur can be obtained by
building a historic table and using statistical profiling [Tia et al. 1995; Zhou
et al. 2001; Kalavade and Moghe 1998]. We think that statistical profiling can be
used to determine probabilities in many applications in the embedded systems
area, especially for applications with loops. If different inputs have completed

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:4 • M. Qiu and E. H. -M. Sha

Fig. 1. (a) A given simple path; (b) the times, probabilities, and costs of its node for different FU

types; (c) the time cumulative distribution functions (CDFs) and costs of its node for different FU

types.

different characteristics, we will adjust this scenario with dynamic scheduling.
This will be our future work.

Each node can select one of the two different FU types. The execution time
(T) of each FU type is modeled as a random variable. For example, node 0
can choose one of the two types: R1 or R2. When choosing R1, node 0 will be
finished in 1 time unit with probability 0.9 and will be finished in 3 time units
with probability 0.1. In other words, node 0 can guarantee being finished in 3
time units with 100% probability. Hence, we care about the time cumulative
distribution function (CDF) F (t), which gives accumulated probability for T ≤
t. For example, the CDF of node 0 at time unit 1 is 0.9; and the CDF of node 0
at time unit 3 is 1.0. Figure 1(c) shows the time CDFs and costs of each node
for different FU types.

A solution to the HAP problem with timing constraint 10 can be found as
follows: We assign FU types 2, 2, and 1 for nodes 0, 1, and 2, respectively. Let T0,
T1, and T2 be the random variables representing the execution times of nodes
0, 1, and 2. From Figure 1(c), we get: Pr(T0 ≤ 4) = 1.0, Pr(T1 ≤ 5) = 1.0, and
Pr(T2 ≤ 1) = 0.9. Hence, we obtain minimum total cost 16 with 0.9 probability
satisfying the timing constraint 10. The total cost is computed by adding the
costs of all nodes together and the probability corresponding to the total cost
is computed by multiplying the probabilities of all nodes based on the basic
properties of probability and cost of a PDFG.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:5

In Figure 1(b), if we use the worst-case execution time as a fixed execution
time for each node, then the assignment problem becomes the hard heteroge-
neous assignment (hard HA) problem, which is related to the hard real-time
problem. The hard HA problem is the worst-case scenario of the heterogeneous
assignment with probability (HAP) problem. For example, in the hard HA prob-
lem, when choosing type R1, node 0 has only one execution time 3. When choos-
ing type R2, node 0 has one execution time 4. With certain timing constraints,
there might not be a solution for the hard HA problem. However, for soft real-
time applications, it is desirable to find an assignment that guarantees the total
execution time to be less than or equal to the timing constraint with certain
confidence probability.

For example, in Figure 1, under timing constraint 10, we cannot find a so-
lution to the hard HA problem. But we can obtain minimum system cost 16
with probability 0.9 satisfying the timing constraint 10. Also, the cost obtained
from the worst-case scenario is always larger than or equal to the cost from the
probabilistic scenario. For example, under timing constraint 11, the minimum
cost is 27 for the hard HA problem. While in the HAP problem, with confidence
probability 0.9 satisfying the timing constraint, we get the minimum cost of 16,
which gives 40.7% improvement.

It is known that the hard HA problem is NP-complete [Shao et al. 2005].
Since the HAP problem is NP harder than the hard HA problem, the HAP
problem is also NP-complete. In this article, two polynomial time algorithms
are proposed to optimally solve the HAP problem when the given PDFG is a tree
or a simple path, and two other algorithms are proposed to solve the general
problem.

There has been a lot of research on allocating applications in heterogeneous
distributed systems [Beaumont et al. 2002; Hou and Shin 1997; Banino et al.
2004; Ramamritham et al. 1990; Bettati and Liu 1992; Beaumont et al. 2004;
Beaumont et al. 2003a, 2003b]. Incorporating reliability cost into heteroge-
neous distributed systems, the reliability-driven assignment problem has been
studied by researchers [Dogan and Özgüner 2002; Srinivasan and Jha 1999;
Shatz et al. 1992]. In these works, allocations are performed based on a fixed
architecture. However, when performing assignments in architecture synthe-
sis, no fixed architectures are available. Most previous work on the synthesis
of special-purpose architectures for real-time DSP applications focuses on the
architectures that use only homogeneous FUs; that is, the same type of opera-
tions will be processed by the same types of FUs [Paulin and Knight 1989; Ito
et al. 1998; McFarland et al. 1990; De Man et al. 1990; Parhi and Messerschmitt
1991; Hwang et al. 1991; Gebotys and Elmasry 1993; Chao and Sha 1997; Chang
et al. 1996].

Our work is related to the work of the following authors: [Tongsima et al.
2000; Ito and Parhi 1995; Shao et al. 2005; Li et al. 1993]. Although the ILP
model from Ito and Parhi [1995] can obtain an optimal solution for the hetero-
geneous assignment problem, it is a NP-hard problem to solve the ILP model.
Therefore, the ILP model may take a very long time to get results, even when
a given data flow graph (DFG) is not very big. In this article, the algorithm
solving the hard HA problem in Ito and Parhi [1995] is called the hard HA

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:6 • M. Qiu and E. H. -M. Sha

ILP algorithm in general. Shao et al. [2005] proposed two optimal algorithms
for the hard HA problem when the given input is a tree or simple path, and
three heuristic algorithms for the general, hard HA problem. But they did not
consider a varied execution time situation. Also, their solutions are not optimal
for the general problem.

Probabilistic retiming (PR) was proposed in Tongsima et al. [2000] and Passos
et al. [1994]. For a system without resource constraints, PR can be applied to
optimize the input graph, that is, reduce the length of the longest path of the
graph such that the probability of the longest path computation time being less
than or equal to the given timing constraint, L is greater than or equal to a given
confidence probability P . Since the execution times of the nodes can be either
fixed or varied, a probability model is employed to represent the execution time
of the tasks. But PR does not model the hard HA problem, which focuses on
how to obtain the best assignment from different FU types.

Our contributions are as follows:

—When the given PDFG is a tree or a simple path, the results of our algo-
rithms, Path Assign and Tree Assign, cover the results of the optimal hard
HA ILP algorithm [Ito and Parhi 1995] using the worst-case scenario of our
algorithms, and our algorithms produce results for soft real-time systems.

—For the general problem, that is, when the given input is a directed acyclic
graph (DAG), our optimal algorithm, DAG Opt, gives the optimal solution
and covers the results of the hard HA ILP algorithm [Ito and Parhi 1995]
using the worst-case scenario of our algorithms. Our heuristic algorithm,
DAG Heu, gives near optimal solutions efficiently.

—Our algorithms are able to give solutions and provide more choices of smaller
total costs with guaranteed confidence probabilities that satisfy timing con-
straints. While the hard HA ILP algorithm [Ito and Parhi 1995] may not find
a solution with certain timing constraints.

—Our algorithms are practical and quick. In practice, when the number of
multiparent nodes and multichild nodes in the given input graph is small
and the timing constraint is polynomial to the size of PDFG, our algorithms
become polynomial. The running times of these algorithms are very small,
and our experiments always finished in a very short time.

We conducted experiments on a set of benchmarks and compared our algo-
rithms with the hard HA ILP algorithm [Ito and Parhi 1995]. Experiments
show that when the input PDFG is a tree or a simple path, the results of our al-
gorithms have an average (from 6 different benchmarks under different set-up
parameters, and the same for the other cases) a 32.5% improvement with 0.9
confidence probability satisfying timing constraints, compared with the results
for the hard HA problem. With 0.8 confidence probability in satisfying timing
constraints, the average improvement is 38.2%; and with 0.7 confidence proba-
bility satisfying timing constraints, the improvement is 40.6%. When the input
PDFG is a DAG, both our optimal and near-optimal algorithms have significant
improvement on total cost reduction compared with the cost for hard real-time.
On average, our algorithms give a cost reduction of 33.5% with 0.9 confidence

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:7

probability satisfying timing constraints, and a cost reduction of 45.3% and
48.9% with, respectively, 0.8 and 0.7 confidence probability satisfying timing
constraints.

The remainder of this article is organized as follows: In the next section, we
give the basic definitions and models used in the rest of the article. Examples
of the HAP problem when the input is a simple path or a tree are given in
Section 3, The algorithms for the HAP problem are presented in Section 4.
Experimental results and concluding remarks are provided in Section 5 and
Section 6, respectively.

2. SYSTEM MODEL

We use probabilistic data-flow graph (PDFG) to model an application of em-
bedded systems. A PDFG G = 〈V , E, T, R〉 is a directed acyclic graph (DAG),
where V = 〈v1, v2, · · · , vN 〉 is the set of nodes, and E ⊆ V × V is the edge set
that defines the precedence relations among nodes in V . In practice, many ar-
chitectures consist of different types of FUs. Assume there are maximum M
different FU types in a FU set R = {R1, R2, · · · , RM }. For each FU type, there
are maximum K execution time variations T , although each node may have a
different number of FU types and execution time variations.

An assignment for a PDFG G is to assign a FU type to each node. Define an
assignment A to be a function from domain V to range R, where V is the node
set and R is FU type set. For a node v ∈ V , A(v) gives the selected type of node
v. For example, in Figure 1(a), assigning FU types 2, 2, and 1 for nodes 0, 1, and
2, respectively, we obtain minimum total cost 16 with 0.9 probability satisfying
the timing constraint 10. That is, A(0) = 2, A(1) = 2, and A(2) = 1.

In a PDFG G, each varied execution time T is modeled as a probabilistic
random variable. TRj (v) (1 ≤ j ≤ M) represents the execution times of each
node v ∈ V for FU type j , and PRj (v) (1 ≤ j ≤ M) represents the corresponding
probability function. And CRj (v) (1 ≤ j ≤ M) is used to represent the cost
of each node v ∈ V for FU type j , which is a fixed value. For instance, in
Figure 1(a), T1(0) = 1, 3; T2(0) = 2, 4. Correspondingly, P1(0) = 0.9, 0.1; P2(0) =
0.7, 0.3. And C1(0) = 10, C2(0) = 4.

Given an assignment A of a PDFG G, we define the system total cost under
assignment A, denoted CA(G), to be the summation of costs of all nodes, that
is, CA(G) = ∑

v∈V CA(v)(v). In this article we call CA(G) the total cost, in brief.
For example, in Figure 1(a), under assignment 2, 2, and 1 for nodes 0, 1, and
2, respectively, the costs of nodes 0, 1, and 2 are C2(0) = 4, C2(1) = 3, and
C1(2) = 9. Hence, the total cost of the graph G is CA(G) = C2(0) + C2(1) + C1(2),
that is, CA(G) = 16.

For the input PDFG G, given an assignment A, assume that TA(G) stands
for the execution time of graph G under assignment A. TA(G) can be gotten
from the longest path p in G. The new variable TA(G) = max∀p TA(v)(p), where
TA(v)(p) = ∑

v∈p TA(v)(v), is also a random variable. In Figure 1(a), there is only
one path. Under assignment 2, 2, and 1 for nodes 0, 1, and 2, TA(G) = TA(v)(p) =
T2(0)+T2(1)+T1(2). Since T2(0), T2(1), and T1(2) are all random variables, then
TA(G) is also a random variable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:8 • M. Qiu and E. H. -M. Sha

The minimum total cost C with confidence probability P under timing con-
straint L is defined as C = minA CA(G), where probability of (TA(G) ≤ L) ≥ P .
Probability of (TA(G) ≤ L) is computed by multiplying the probabilities of all
nodes together while satisfying TA(G) ≤ L. That is, PA(G) = ∏

v∈V PA(v)(v).
In Figure 1(a), under assignment 2, 2, and 1 for nodes 0, 1, and 2, P2(0) =

Pr(T2(0) ≤ 4) = 1.0, P2(1) = Pr(T2(1) ≤ 5) = 1.0, and P1(2) = Pr(T1(2) ≤
1) = 0.9. Hence, PA(G) = ∏

v∈V PA(v)(v) = 0.9. With confidence probability P ,
we can guarantee that the total execution time of the graph G is less than or
equal to the timing constraint L with a probability greater than or equal to P .
For each timing constraint L, our algorithm will output a serial of (probability,
cost) pairs (P , C).

TR j (v) is either a discrete random variable or a continuous random variable.
We define F to be the cumulative distribution function of the random variable
TR j (v) (abbreviated as CDF), where F (t) = P (TR j (v) < t). When TR j (v) is a
discrete random variable, the CDF F (t) is the sum of all the probabilities as-
sociating with the execution times that are less than or equal to t. Figure 1(c)
gives the time CDFs of each node for different FU types. If TR j (v) is a contin-
uous random variable, then it has a probability density function (PDF) . If we
assume the PDF is f , then F (t) = ∫ t

0
f (s)ds. Function F is nondecreasing, and

F (−∞) = 0, F (∞) = 1.
We define the heterogeneous assignment with probability (HAP) problem as

follows: Given M different FU types: R1,R2,· · ·,RM , a PDFG G = 〈V , E〉 where
V =〈v1,v2,· · · ,vN 〉, TR j (v), PR j (v), CR j (v) for each node v ∈ V executed on each
FU type j , and a timing constraint L, find an assignment for G that gives the
minimum total cost C with confidence probability P under timing constraint
L. In Figure 1(a), a solution to the HAP problem with timing constraint 11
can be found as follows. Assigning FU types 2, 2, and 2 for nodes 0, 1, and 2,
respectively, we obtain minimum total cost 12 with 0.8 probability under the
timing constraint 11.

3. EXAMPLES

Here we give two different types of examples to illustrate the heterogeneous
assignment probability (HAP) problem. One is a simple path, and the other is
a tree for the given input PDFG.

3.1 Simple Path

For the example in Figure 1(a), each node has two different FU types to choose
from, and is executed on them with probabilistic times. In many applications, a
real-time system does not always have hard deadlines. The execution time can
be smaller than the hard deadline time with certain probabilities. So the hard
deadline time is the worst-case of the varied smaller time cases. If we consider
these time variations, we can achieve a better minimum cost with satisfying
confidence probabilities.

Different FU types have different costs, which can be any cost such as hard-
ware cost, energy consumption or reliability costs. A node may run slower, but
with less energy consumption or reliability cost when executed on one type of

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:9

Table I. Minimum Total Costs (with computed confidence probabilities

under various timing constraints for a simple path)

T (P , C) (P , C) (P , C) (P , C) (P , C) (P , C)

3 0.65, 27

4 0.50, 21 0.58, 23 0.65, 27

5 0.45, 17 0.50, 21 0.58, 23 0.72, 27

6 0.38, 16 0.45, 17 0.72, 21 0.81, 27

7 0.34, 12 0.38, 16 0.64, 17 0.72, 21 0.81, 22

8 0.34, 12 0.63, 16 0.64, 17 0.72, 18 0.81, 22 0.90, 27

9 0.56, 12 0.63, 16 0.64, 17 0.72, 18 0.90, 21

10 0.56, 12 0.90, 16

11 0.80, 12 0.90, 16 1.00, 27
12 0.80, 12 0.90, 16 1.00, 21
13 0.80, 12 1.00, 16
14 0.80, 12 1.00, 16
15 1.00, 12

FU rather than on another [Shao et al. 2005]. But for the same FU type, a
node may have varied execution times, while there is not too much difference
in cost. In this article, we assume the cost of a FU type is fixed for a node ex-
ecuted on it while the execution time is a random variable. When the cost is
related to energy consumption, it is clear that the total energy consumption is
the summation of the energy cost of each node. Also, when the cost is related to
reliability, the total reliability cost is the summation of the reliability cost of all
nodes. We compute the reliability cost using the same model as Srinivasan and
Jha [1999]. From the conclusions of the papers by Srinivasan and Jha [1999]
and Shao et al. [2005], we know that in order to maximize the reliability of
a system, we need to find an assignment such that the timing constraint is
satisfied and the summation of the reliability costs of all nodes is minimized.

For this simple path with three nodes, we can obtain the minimum total cost
with computed confidence probabilities under various timing constraints. The
results generated by our algorithms are shown in Table I. The entries with
probability equal to 1 (see the entries in boldface) actually give the results to
the hard HA problem, which show the worst-case scenario of the HAP problem.
For each row of the table, the C in each (P , C) pair gives the minimum total
cost with confidence probability P under timing constraint T . For example,
when T = 3, with pair (0.65, 27), we can achieve minimum total cost 27 with
confidence probability 0.65 under timing constraint 3.

Compared to the optimal results of the hard HA problem for a simple path
using a worst-case scenario, Table I provides more information, more selections
and decisions, no matter whether the system is hard or soft real-time. In Table I,
we have the output of our algorithm from timing constraint 3 to 15, while the
optimal results of the hard HA problem for a simple path only has 5 entries (in
boldface) from timing constraints 11 to 15.

For a soft real-time system, some nodes of PDFG have smaller probabilistic
execution times compared with the hard deadline time. We can achieve much
smaller cost than the cost of worst-case with guaranteed confidence probability.
For example, under timing constraint 11, we can select the pair (0.90, 16) which
guarantees achieving minimum cost 16 with 0.90 confidence, satisfying the

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:10 • M. Qiu and E. H. -M. Sha

Table II. With Timing Constraint 11, the Assignments

of Types for Each Node with Different (Probability,

Cost) Pairs

Node id Type id T Prob. Cost

Assign 0 2 4 1.00 4

Assign 1 2 5 1.00 3

Assign 2 2 2 0.80 5

Total 11 0.80 12

Assign 0 2 4 1.00 4

Assign 1 2 5 1.00 3

Assign 2 1 1 0.90 9

Total 11 0.90 16

Assign 0 1 3 1.00 10

Assign 1 1 4 1.00 8

Assign 2 1 4 1.00 9

Total 11 1.00 27

Table III. Given an Assignment for a Simple Path, the

(Probability, Cost) Pairs under Different Timing Constraints

T 6, 7 8 , 9 10 - 12 13

(P , C) (0.38, 16) (0.63, 16) (0.90, 16) (1.00, 16)

timing constraint 11. It achieves 40.7% reduction in cost compared with cost
27, the result obtained by the algorithms using worst-case scenario of the HAP
problem. In many situations, this assignment is good enough for users. We can
also select the pair (0.80, 12), which has provable confidence probability 0.8,
satisfying the timing constraint 11, while the cost 12 is only 55.5% of the cost
of the worst-case, 27. The assignments for each pair of (0.80, 12), (0.90, 16), and
(1.00, 27) under the timing constraint 11 are shown in Table II.

Given an assignment, we can get a minimum total cost under every timing
constraint. But the probability of achieving this minimum total cost may not
be same. For example, if the assignments for nodes 0, 1, and 2 are types 2, 2,
and 1, respectively, then the total cost is 12. But the probabilities vary from
0.38 to 1.00. The probabilities under different timing constraints are shown in
Table III.

3.2 Tree

Here we give an example of the HAP problem when the input is a tree. The
PDFG graph is shown in Figure 2(a), which is a tree with four nodes. The
times, costs, and probabilities are shown in Figure 2(b). For example, node 1
can choose one of the two types: R1 or R2. When choosing R1, node 1 will be
finished in 1 time unit with probability 0.9, and will finish in time units 3 with
probability 0.1. The cost of type R1 is 10. When node 1 chooses type R2, it will be
finished within 2 time units with probability 0.7, and will be finished in 4 time
units with probability 0.3. The cost of type R2 is 4. Node 0 has two types of FUs
to execute on. But for each type, node 0 has fixed execution time. Figure 2(c)
shows the time cumulative distribution functions (CDFs) and costs of each node
for different FU types.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:11

Fig. 2. (a) A given tree; (b) the time, probabilities, and costs of its nodes for different FU types; (c)

the time cumulative distribution functions (CDFs) and costs of its node for different FU types.

Table IV. Minimum Total Costs with Computed Confidence

Probabilities under Various Timing Constraints for a Tree

T (P , C) (P , C) (P , C) (P , C) (P , C) (P , C)

3 0.08, 36

4 0.06, 30 0.72, 32 0.81, 36

5 0.56, 26 0.72, 28 0.81, 32

6 0.17, 21 0.56, 22 0.63, 26 0.72, 28 0.81, 32 0.90, 36

7 0.17, 17 0.19, 21 0.56, 22 0.80, 26 0.90, 30

8 0.17, 17 0.24, 21 0.80, 22 0.90, 26 1.00, 36
9 0.24, 17 0.70, 21 0.80, 22 0.90, 23 1.00, 30
10 0.70, 17 0.80, 22 0.90, 23 1.00, 26
11 0.70, 17 1.00, 21
12 1.00, 17

The minimum total costs with computed confidence probabilities under var-
ious timing constraints for a tree are shown in Table IV. For example, pair
(0.08, 36) with timing constraint 3 means that we can get minimal cost 36 with
guaranteed probability 0.08 while satisfying timing constraint 3. The assign-
ment is (node 0: R1; node 1: R1; node 3: R1; node 4: R1). We multiply all the
probabilities and get confidence probability 0.08. We add all the costs together
and get total cost 36. All the corresponding execution times are 1. Since nodes
2 and 3 are executed in parallel, the total execution time of the PDFG is 3. The
entries with probability equal to 1 (see the entries in boldface) actually give
the results to the hard HA problem which shows the worst-case scenario of the
HAP problem.

From the two examples above, we can see that the probabilistic approach
to the heterogeneous assignment problem has great advantages: It provides
guaranteed confidence probabilities to reduce the total costs of systems un-
der different timing constraints. It is suitable to both hard and soft real-time
systems. We will give related algorithms and experiments in later sections.

4. THE ALGORITHMS FOR THE HAP PROBLEM

In this section, we propose two algorithms to achieve the optimal solution for
the HAP problem when the input PDFG is a simple path or a tree. For the

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:12 • M. Qiu and E. H. -M. Sha

Fig. 3. (a) A simple path with three nodes; (b) a tree with five nodes.

general problem, that is, the given input is a DAG, we propose one near-optimal
heuristic algorithm and one optimal algorithm to solve the HAP problem.

4.1 Definitions and Lemma

To solve the HAP problem, we use dynamic programming method. For example,
Figure 3(a) shows a simple path with nodes v1 → v2 → v3. Figure 3(b) shows a
tree with sequence: v1 → v2 → · · · → v5.
Given the timing constraint L, a PDFG G, and an assignment A, we first give
several definitions, as follows:

—Gi: The subgraph rooted at node vi, containing all the nodes reached by node
vi. In our algorithm, each step will add one node which becomes the root of
its subgraph. For example, in Figure 3(b), G3 is the tree containing nodes 1,
2, and 3.

—CA(Gi) and TA(Gi): The total cost and total execution time of Gi under assign-
ment A. In our algorithm, each step will achieve the minimum total cost of
Gi with computed confidence probabilities under various timing constraints.

—In our algorithm, table Di, j will be built. Each entry of table Di, j will store
a linked list of (probability, cost) pairs sorted by probability in ascending
order. Here we define the (Probability, Cost) pair (Pi,j, Ci,j) as follows:
Ci, j is the minimum cost of CA(Gi) computed by all assignments A satisfying
TA(Gi) ≤ j with probability that is greater than or equal to Pi, j .

In every step in our algorithm, one more node will be included for consideration.
The information of this node is stored in local table Bi, j , which is similar to
table Di, j . A local table only stores data of probabilities and consumptions of
a node itself. Table Bi, j is the local table storing only the information of node
vi. In more detail, Bi, j is a local table of linked lists that stores pair (pi, j , ci, j)
sorted by pi, j in an ascending order; ci, j is the cost only for node vi at time
j , and pi, j is the corresponding probability. The building procedures of Bi, j

are as follows. First, sort the execution time variations in an ascending order.
Then, accumulate the probabilities of the same type. Finally, let Li, j be the
linked list in each entry of Bi, j , insert Li, j into Li, j+1 while redundant pairs
are canceled out based on Algorithm 4.1. For example, node 0 in Figure 1(b)
has the following (T: P, C) pairs: (1: 0.9, 10), (3: 0.1, 10) for type R1, and (2: 0.7,
4), (4: 0.3, 4) for type R2. After sorting and accumulating, we get (1: 0.9, 10),
(2: 0.7, 4), (3: 1.0, 10), and (4: 1.0, 4). We obtain Table V after the insertion.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:13

Table V. An Example of Local Table, B0, j

Time 1 2 3 4

(Pi , Ci) (0.9, 10) (0.7, 4) (0.7, 4) (1.0, 4)

(0.9, 10) (1.0, 10)

Algorithm 4.1. Redundant-pair removal algorithm.

Require: A list of (Pk
i, j , Ck

i, j)

Ensure: A redundant-pair-free list

1: Sort the list by Pi, j in an ascending order such that Pk
i, j ≤ Pk+1

i, j .

2: From the beginning to the end of the list,

3: for each two neighboring pairs (Pk
i, j , Ck

i, j) and (Pk+1
i, j , Ck+1

i, j)

4: if Pk
i, j = Pk+1

i, j

5: if Ck
i, j ≥ Ck+1

i, j

6: cancel the pair Pk
i, j , Ck

i, j

7: else
8: cancel the pair Pk+1

i, j , Ck+1
i, j

9: end if
10: else
11: if Ck

i, j ≥ Ck+1
i, j

12: cancel the pair (Pk
i, j , Ck

i, j)

13: end if
14: end if
15: end for

In this article, we introduce the operator “⊕”. For two (Probability, Cost)
pairs H1 and H2, if H1 is (P1

i, j , C1
i, j), and H2 is (P2

i, j , C2
i, j), then, after the ⊕

operation between H1 and H2, we get pair (P
′
, C

′
), where P

′ = P1
i, j * P2

i, j and

C
′ = C1

i, j + C2
i, j . We denote this operation H1 ⊕ H2. This is the key operation of

our algorithms. The meaning is that when two task nodes add together, the total
cost is computed by adding the costs of all nodes together, and the probability
corresponding to the total cost is computed by multiplying the probabilities of
all nodes based on the basic properties of the probability and cost of a PDFG.
For two independent events A and B, P (A ∪ B) = P (A) ∗ P (B) and C(A ∪ B) =
C(A) + C(B).

In our algorithm, Di, j is the table in which each entry has a link list that
stores pair (Pi, j , Ci, j). Here, i represents a node number, and j represents time.
For example, a link list can be (0.1, 2)→(0.3, 3)→(0.8, 6)→(1.0, 12). Usually,
there are redundant pairs in a link list. We give the redundant-pair removal
algorithm in Algorithm 4.1.

For example, we have a list with pairs (0.1, 2) → (0.3, 3) → (0.5, 3) → (0.3, 4),
we remove the redundant-pair as follows: First, sort the list according to Pi, j

in an ascending order. This list becomes (0.1, 2) → (0.3, 3) → (0.3, 4) → (0.5, 3).
Second, cancel redundant pairs. Comparing (0.1, 2) and (0.3, 3), we keep both.
For the two pairs (0.3, 3) and (0.3, 4), we cancel pair (0.3, 4) since the cost 4 is
bigger than 3 in pair (0.3, 3). Comparing (0.3, 3) and (0.5, 3), we cancel (0.3, 3)

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:14 • M. Qiu and E. H. -M. Sha

Algorithm 4.2. Path Assign algorithm: optimal algorithm for the HAP problem when
the input is a simple path.

Require: M different types of FUs, a simple path, and the timing constraint L.
Ensure: An optimal assignment for the simple path

(1) Build a local table Bi, j for each node of PDFG.

(2) 1: let D1, j = B1, j
2: for each node vi , i > 1 do
3: for each time j do
4: for each time k in Bi,k do
5: if Di−1, j−k! = NULL then
6: Di, j = Di−1, j−k ⊕ Bi,k
7: else
8: continue
9: end if

10: end for
11: insert Di, j−1 to Di, j and remove redundant pairs using Algorithm 4.1.
12: end for
13: end for

(3) return DN , j

since 0.3 < 0.5 while 3 ≥ 3. The probability 0.3 is already covered by probability
0.5 while the costs are the same. There is no information lost in redundant-pair
removal.

Using Algorithm 4.1, redundant-pair (Pi, j , Ci, j) whenever we find conflicting
pairs in a list during a computation. After the ⊕ operation and redundant-pair
removal, the list (Pi, j , Ci, j) has the following properties:

LEMMA 4.1. For any (P1
i, j , C1

i, j) and (P2
i, j , C2

i, j) in the same list:

(1) P1
i, j �= P2

i, j and C1
i, j �= C2

i, j .

(2) P1
i, j < P2

i, j if and only if C1
i, j < C2

i, j .

For two linked lists L1 and L2, the operation L1 ⊕ L2 is implemented as follows:
First, implement the ⊕ operation on all possible combinations of two pairs from
different linked lists. Then insert the new pairs into a new linked list and
remove redundant pairs using Algorithm 4.1.

4.2 An Optimal Algorithm for a Simple Path

An optimal algorithm, Path Assign, is proposed in the following. It can give
the optimal solution for the HAP problem when the given PDFG is a simple
path. Assume the node sequence of the simple path in the HAP problem is
v1 → v2 → · · · → vN . For example, in Figure 3(a), the node sequence of the
simple path is v1 → v2 → v3.

In algorithm Path Assign, first build a local table Bi, j for each node. Next,
in step 2 of the algorithm, when i = 1, there is only one node. We set the initial
value, and let D1, j = B1, j . Then, using the dynamic programming method,
build the table Di, j . For each node vi under each time j , we try all the times k
(1 ≤ k ≤ j) in table Bi, j . We use “⊕” on the two tables Bi,k and Di−1, j−k . Since

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:15

Fig. 4. (a) Initial parameters; (b) a PDFG; (c) the corresponding B table; (d) part of the correspond-

ing D table.

k+(j −k) = j , the total time for nodes from v1 to vi is j . We use the ⊕ operation
to add the costs of two tables together and multiply the probabilities of two
tables with each other. Finally, we use Algorithm 4.1 to cancel the conflicting
(Probability, Cost) pairs. The new cost in each pair obtained in table Di, j is the
cost of current node vi at time k plus the cost in each pair obtained in Di−1, j−k .
Since we have used Algorithm 4.1 to cancel redundant pairs, the cost of each
pair in Di, j is the minimum total cost for graph Gi with confidence probability
Pi, j under timing constraint j .

For example, for the PDFG shown in Figure 4(b), the initial parameters are
shown in Figure 4(a). We compute the corresponding B table of node v1 and v2.
For node v2, after sorting and accumulating, we get (T: P, C) pairs: (1: 0.3, 3), (2:
0.4, 1), (3: 0.4, 1), (3: 1, 3), and (4: 1.0, 1). The results are shown in Figure 4(c).
Figure 4(d) shows the corresponding Di, j table. For instance, computing D2,3

entry, for v1 → v2 path and buffer size j = 3. Buffer size j = t(v1) + t(v2) = 3.
Using algorithm Path Assign, we have two cases. Case 1: 3 = 2 + 1. Then
D2,3 = D1,2 ⊕ B2,1, (0.3, 3) ⊕ (0.4, 1) = (0.12, 4). Case 2: 3 = 1 + 2. Then
D2,3 = D1,1 ⊕ B2,2. We get (0.3, 3) ⊕ (0.3, 3) = (0.09, 6). Since (0.09, 6) is
inferior to (0.12, 4), it can be removed. Hence, we (0.12, 4) into put the D2,3

entry.
The cost in DN , j is the minimum total cost with computed confidence prob-

ability under timing constraint j. Given the timing constraint L, the minimum
total cost for the graph G is the cost in DN ,L. Theorem 4.2 follows:

THEOREM 4.2. For each pair (Pi, j , Ci, j) in Di, j (1 ≤ i ≤ N) obtained by algo-
rithm Path Assign, Ci, j is the minimum total cost for graph Gi with confidence
probability Pi, j under timing constraint j .

PROOF. By induction. Basic step: When i = 1, there is only one node and
D1, j = B1, j . Thus, when i = 1, Theorem 4.2 is true. Induction step: We need

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:16 • M. Qiu and E. H. -M. Sha

Fig. 5. (a) Tree case 1; (b) tree case 2.

to show that for i ≥ 1, if for each pair (Pi, j , Ci, j) in Di, j , Ci, j is the minimum
total cost for graph Gi with confidence probability Pi, j under timing constraint
j , then for each pair (Pi+1, j , Ci+1, j) in Di+1, j , Ci+1, j is the minimum total cost
for graph Gi+1 with confidence probability Pi+1, j under timing constraint j .
In step 2 of the algorithm, since j = k + (j − k) for each k in Bi+1, j , we try
all the possibilities to obtain j . Then we use the ⊕ operator to add the costs
of the two tables and multiply the probabilities of two tables. Finally, we use
Algorithm 4.1 to cancel the conflicting (Probability, Cost) pairs. The new cost in
each pair obtained in table Di+1, j is the cost of current node i +1 at time k plus
the cost in each pair obtained in Di, j−k . Since we used Algorithm 4.1 to cancel
redundant pairs, the cost of each pair in Di+1, j is the minimum total cost for
graph Gi+1 with confidence probability Pi+1, j under timing constraint j . Thus,
Theorem 4.2 is true for any i (1 ≤ i ≤ N).

From Theorem 4.2, we know that DN ,L records the minimum total cost of the
whole path with corresponding confidence probabilities under the timing con-
straint L. We can record the corresponding FU type assignment of each node
when computing the minimum total cost in step 2 in the algorithm Path Assign.
Using this information, we can get an optimal assignment by tracing how to
reach DN ,L.

It takes O(M ∗ K) to compute one value of Di, j , where M is the maximum
number of FU types, and K is the maximum number of execution time vari-
ations for each node. Thus, the complexity of the algorithm Path Assign is
O(|V | ∗ L ∗ M ∗ K), where |V | is the number of nodes and L is the given tim-
ing constraint. Usually, the execution time of each node is upper-bounded by a
constant. So L equals O(|V |c) (c is a constant). In this case, Path Assign is a
polynomial algorithm.

4.3 An Optimal Algorithm for a Tree

In this section we propose an optimal algorithm, Tree Assign, to produce the
optimal solution to the HAP problem when the input PDFG is a tree.

Define a root node to be a node without any parent and a leaf node to be a
node without any child. We start from the longest leaf node towards the root
node in the implementation of the algorithm. For example, both {D, E, B} and
{E, D, B} are sequences for the given tree in Figure 5(a). When we begin to
process a node, the processing of all of its child nodes has already been finished
in the algorithm. So there is no difference between {D, E, B} and {E, D, B} in

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:17

Algorithm 4.3. Tree Assign algorithm: optimal algorithm for the HAP problem when
the input is a tree.

Require: M different types of FUs, a tree, and the timing constraint L.
Ensure: An optimal assignment for the tree

(1) |V | ← N , where |V | is the number of nodes.
Topological sorting all the nodes from the longest leaf to the root. Assume the se-
quence of the tree is v1 → v2 → · · · → vN , vN is the root.

(2) Let D1, j = B1, j .

Assume D
′
i, j is the table that stored minimum total cost with computed confidence

probabilities under the timing constraint j for the subtree rooted on vi except vi .
Nodes vi1 , vi2 , · · · , viw are all child nodes of node vi .
w is the number of child nodes of node vi , then

D
′
i, j =

⎧⎨
⎩

(0, 0) if w = 0
Di1, j if w = 1
Di1, j ⊕ Di2, j ⊕ · · · ⊕ Diw , j if w ≥ 1

(1)

Then, for each k in Bi,k .

Di, j = D
′
i, j−k ⊕ Bi,k (2)

(3) return DN , j

terms of our algorithm. In Figure 5(a), we can merge two children first as one
node, then we get the simple path. Hence we can get the optimal assignment. If
we start from the root, we have two paths. It is possible there are two optimal
assignments for the root node and other nodes are common to both paths. For
example, in Figure 5(a), if we use start from the root toward a leaf to execute
the dynamic program, the best assignments for routes A → B → D and A →
B → E may have different assignments at node A. We can verify our approach
on the tree case 2 in Figure 5(b). The pseudo-polynomial algorithm for trees is
shown in Algorithm 4.3.

In Tree Assign algorithm, we first implement topological sorting of all the
nodes from the longest leaf to the root. Assume total N nodes, and let the root
be vN . When w = 1, node vi has only one child vi1 . By using the Path Assign
algorithm, we get Di, j = (Pi, j , Ci, j), where Pi, j = Pi1, j−k ∗ Pi,k , and Ci, j =
Ci1, j−k +Ci,k , by using the operator “⊕”. If w ≥ 1, node vi has multiple children.
We merge all the children of node vi into one pseudo child. Then we can use the
Path Assign algorithm to get the final solution. The merging procedures are as
follows. At the same time j , sum up the costs of all children and multiply the
probabilities of all children. For instance, if node vi has two child nodes vi1 and
vi2 , then D

′
i, j = (P

′
i, j , C

′
i, j), where P

′
i, j = Pi1, j ∗ Pi2, j and C

′
i, j = Ci1, j +Ci2, j . After

merging all children into one pseudo child, we can continue to implement the
Path Assign algorithm to get the final solution for the tree.

The execution of Di−1, j for each child node of vi has finished before executing
Di, j . From Equation (1), D

′
i, j gets the summation of the minimum total cost of

all child nodes of vi because they can be executed simultaneously within time
j . From Equation (2), the minimum total cost is selected from all possible costs
caused by adding vi to graph Gi. Therefore, for each pair (Pi, j , Ci, j) in Di, j ,

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:18 • M. Qiu and E. H. -M. Sha

Ci, j is the minimum total cost for the graph Gi with confidence probability Pi, j

under timing constraint j .
Algorithm Tree Assign gives the optimal solution when the given PDFG is a

tree. Theorem 4.3 follows:

THEOREM 4.3. For each pair (Pi, j , Ci, j) in Di, j (1 ≤ i ≤ N) obtained by
algorithm Tree Assign, Ci, j is the minimum total cost for the graph Gi with
confidence probability Pi, j under timing constraint j .

PROOF. By induction. Basic step: When i = 1, there is only one node and
D1, j = B1, j . Thus, when i = 1, Theorem 4.3 is true. Induction step: We need to
show that for i ≥ 1, if for each pair (Pi, j , Ci, j) in Di, j , Ci, j is the minimum total
cost for the graph Gi with confidence probability Pi, j under timing constraint
j , then for each pair (Pi+1, j , Ci+1, j) in Di+1, j , Ci+1, j is the total system cost for
the graph Gi+1 with confidence probability Pi+1, j under timing constraint j .
The execution of Di, j for each child node of vi+1 was finished before executing
Di+1, j . From Equation (1), D

′
i+1, j gets the summation of the minimum total cost

of all child nodes of vi+1 because they can be executed simultaneously within
time j . From Equation (2), the minimum total cost is selected from all possible
costs caused by adding vi+1 to graph Gi+1. So for each pair (Pi+1, j , Ci+1, j) in
Di+1, j , Ci+1, j is the minimum total cost for the graph Gi+1 with confidence
probability Pi+1, j under timing constraint j . Therefore, Theorem 4.3 is true for
any i (1 ≤ i ≤ N).

The complexity of algorithm Tree Assign is O(|V | ∗ L ∗ M ∗ K), where |V | is the
number of nodes, L is the given timing constraint, M is the maximum number
of FU types for each node, and K is the maximum number of execution time
variations for each node. When L equals O(|V |c) (c is a constant), which is the
general case in practice, algorithm Tree Assign is polynomial.

4.4 A Near-Optimal Heuristic Algorithm for DAG

In this and the next sections, we propose two algorithms to solve the general
case of the HAP problem, that is, the given input is a directed acyclic graph
(DAG). Since the general problem of the HAP problem is NP-complete, one of
the two algorithms we propose here is a near-optimal heuristic algorithm, and
the other is an optimal one. In many cases, the near-optimal heuristic algorithm
will give us the same results as the those for the optimal algorithm. The optimal
algorithm is suitable for cases when the given PDFG has a small number of
multiparent and multichild nodes.

We give an example of DAG. The input PDFG is shown in Figure 6(a), which
has five nodes. The time, probabilities, and costs of each node are shown in
Figure 6(b). Node 4 is a multichild node which has three children: 0, 2, and 3.
Node 0 is a multiparent node and has two parents: 2 and 4. Figure 6(c) shows
the time-cumulative distribution functions (CDFs) and costs of each node for
different FU types.

We give the near-optimal heuristic algorithm (DAG Heu) for the HAP prob-
lem when the given PDFG is a DAG, which is shown in Algorithm 4.4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:19

Algorithm 4.4. The DAG Heu algorithm.

Require: M different types of FUs, a DAG, and the timing constraint L.
Ensure: A near-optimal heuristic assignment for the DAG

(1) SE Q ← Sequence obtained by topological sorting all the nodes.

(2) tmp ← the number of multiparent nodes;
tmc ← the number of multichild nodes;
If tmp < tmc, use bottom-up approach;
else, use top down approach.

(3) If bottom-up approach, use the following algorithm;
If top-down approach, just reverse the sequence.
|V | ← N , where |V | is the number of nodes.

(4) SE Q ← {v1 → v2 → · · · → vN }, in bottom-up fashion;
D1, j ← B1, j ;

D
′
i, j ← the table that stored MIN(C) with Prob.(T ≤ j) ≥ P for the subgraph rooted

on vi except vi ;
vi1 , vi2 , · · · , viw ← all child nodes of node vi ;
w ← the number of child nodes of node vi .

D
′
i, j =

⎧⎨
⎩

(0, 0) if w = 0
Di1, j if w = 1
Di1, j ⊕ · · · ⊕ Diw , j if w > 1

(3)

(5) Computing Di1, j ⊕ Di2, j :

G
′ ← the union of all nodes in the graphs rooted at nodes vi1 and vi2 ;

Travel all the graphs rooted at nodes vi1 and vi2 ;
If a node is a common node, then use a selection function to choose the FU type of a
node.

(6) For each k in Bi,k .

Di, j = D
′
i, j−k ⊕ Bi,k (4)

(7) Then use Algorithm 4.1 to remove redundant pairs;
DN , j ← a table of MIN(C) with Prob.(T ≤ j) ≥ P ;
Output DN ,L.

In algorithm DAG Heu, if using a bottom-up approach, for each sequence
node use the simple path algorithm to get the dynamic table of a parent node. If
using the top-down approach, reverse the sequence and use the same algorithm.
For example, in Figure 6(a), there are two multichild nodes: 2 and 4, and there
are also two multiparent nodes, that is, nodes 0 and 1. Hence, we can use either
approach.

In algorithm DAG Heu, we also have to solve the problem of common nodes,
that is, one node appears in two or more graphs that are rooted by the child
nodes of node vi. In Equation (3), even if there are common nodes, we must
not count the same node twice. That is, the cost is just added once, and the
probability is multiplied once. For example, in Figure 7, the two children of
node vi are vi1 and vi2 . The two subgraphs rooted at nodes vi1 and vi2 have
common areas (the shaded area in Figure 7). The nodes in this common area
are called common nodes. When we compute the cost and probability of node vi,

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:20 • M. Qiu and E. H. -M. Sha

Fig. 6. (a) A given DAG; (b) the time, probabilities and costs of its nodes for different FU types;

(c) the time cumulative distribution functions (CDFs) and costs of its nodes for different FU types.

Fig. 7. Problem of common nodes.

we can only count these common nodes once. If a common node has conflicting
FU type selection, then we need to define a selection function to decide which
FU type should be chosen for the common node. For example, we can select the
FU type that has a smaller execution time as the FU type of a common node.

Due to the problem of common nodes, algorithm DAG Heu is not optimal.
The reason is that an assignment conflict for a common node may exist, and
algorithm DAG Heu cannot solve this problem. For example, in Figure 6, we
focus on the subgraph composed of nodes 1, 2, 3, and 4. Using the bottom-up
approach, there will be two paths from node 1 to node 4. Path a is 1 → 2 → 4, and
path b is 1 → 3 → 4. Hence, node 1 is a common node for both paths while node
4 is the root. It is possible, under a timing constraint, that the best assignment

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:21

for path a gives node 1 assignment as FU type 1, while the best assignment for
path b gives node 1 assignment as FU type 2. This kind of assignment conflict
cannot be solved by algorithm DAG Heu. Hence, DAG Heu is not an optimal
algorithm, although it is very efficient in practice.

From algorithm DAG Heu, we know DN ,L records the minimum total cost of
the whole path within the timing constraint L. We can record the correspond-
ing FU type assignment of each node when computing the minimum system
cost in the algorithm DAG heu. Using this information, we can get an optimal
assignment by tracing how to reach DN ,L.

It takes at most O(|V |) to compute common nodes for each node in the al-
gorithm DAG heu, where |V | is the number of nodes. Thus, the complexity of
the algorithm DAG heu is O(|V |2 ∗ L ∗ M ∗ K), where L is the given timing
constraint, M is the maximum number of FU types for each node, and K is
the maximum number of execution time variations for each node. Usually, the
execution time of each node is upper bounded by a constant, that is, L equals
O(|V |c) (c is a constant). In this case, DAG heu is a polynomial algorithm.

4.5 An Optimal Algorithm for DAG

In this section we give the optimal algorithm (DAG Opt) for the HAP problem
when the given PDFG is a DAG. In DAG Opt, we exhaust all the possible assign-
ments of multiparent or multichild nodes. Without loss of generality, assume
we use the bottom-up approach. If the total number of nodes with a multiparent
is t, and there are maximum K variations for the execution times of all nodes,
then we give each of these t nodes a fixed assignment. We exhaust all of the K t

possible fixed assignments by algorithm DAG Heu without using the selection
function, since there is no assignment conflict for a common node.

Algorithm DAG Opt gives the optimal solution when the given PDFG is a
DAG, which is shown in Algorithm 4.5. Theorem 4.4 and Theorem 4.5 follow
from this.

THEOREM 4.4. In each possible fixed assignment, for each pair (Pi, j , Ci, j) in
Di, j (1 ≤ i ≤ N) obtained by algorithm DAG Opt, Ci, j is the minimum total cost
for the graph Gi with confidence probability Pi, j under timing constraint j .

PROOF. By induction. Basic step: When i = 1, there is only one node and
D1, j = B1, j . Thus, when i = 1, Theorem 4.4 is true. Induction step: We need
to show that for i ≥ 1, if for each pair (Pi, j , Ci, j) in Di, j , Ci, j is the minimum
total cost of the graph Gi, then for each pair (Pi+1, j , Ci+1, j) in Di+1, j , Ci+1, j is
the total cost of the graph Gi+1 with confidence probability Pi+1, j under timing
constraint j . According to the bottom-up approach (for the top-down approach,
just reverse the sequence), the execution of Di, j for each child node of vi+1 was
finished before executing Di+1, j . From Equation (5), D

′
i+1, j gets the summation

of the minimum total cost of all child nodes of vi+1 because they can be executed
simultaneously within time j . We avoid the repeat counting of the common
nodes. Hence, each node in the graph rooted by node vi+1 is counted only once.
From Equation (6), the minimum total cost is selected from all possible costs
caused by adding vi+1 into the subgraph rooted on vi+1. Hence, for each pair

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:22 • M. Qiu and E. H. -M. Sha

Algorithm 4.5. DAG Opt algorithm.

Require: M different types of FUs, a DAG, and the timing constraint L.
Ensure: An optimal assignment for the DAG

(1) SE Q ← Sequence obtained by topological sorting of all the nodes.

(2) tmp ← the number of multiparent nodes;
tmc ← the number of multichild nodes;
If tmp < tmc, use bottom-up approach;
else, use top-down approach.

(3) If bottom-up approach, use the following algorithm;
If top-down approach, just reverse the sequence.
|V | ← N , where |V | is the number of nodes.

(4) If the total number of nodes with multiparent is t, and there are maximum K
variations for the execution data loads of all nodes, then we will give each of these
t nodes a fixed assignment.

(5) For each of the K t possible fixed assignments,
SE Q ← {v1 → v2 → · · · → vN }, in bottom-up fashion;
D1, j ← B1, j ;

D
′
i, j ← the table that stored MIN(C) with Prob.(T ≤ j) ≥ P for the subgraph rooted

on vi except vi ;
vi1 , vi2 , · · · , viw ← all child nodes of node vi ;
w ← the number of child nodes of node vi .

D
′
i, j =

⎧⎨
⎩

(0, 0) if w = 0
Di1, j if w = 1
Di1, j ⊕ · · · ⊕ Diw , j if w > 1

(5)

(6) Computing Di1, j ⊕ Di2, j :

G
′ ← the union of all nodes in the graphs rooted at nodes vi1 and vi2 ;

Travel all the graphs rooted at nodes vi1 and vi2 ;

(7) For each k in Bi,k .

Di, j = D
′
i, j−k ⊕ Bi,k (6)

(8) For each possible fixed assignment, we get a DN , j . Merge the (P, C) pairs in all the
possible DN , j together, and sort them in ascending sequence according to P .

(9) Then use Algorithm 4.1 to remove redundant pairs;
DN , j ← a table of MIN(C) with Prob.(T ≤ j) ≥ P ;
Output DN ,L.

(Pi+1, j , Ci+1, j) in Di+1, j , Ci+1, j is the total cost of the graph Gi+1 with confidence
probability Pi+1, j under timing constraint j . Therefore, Theorem 4.4 is true for
any i (1 ≤ i ≤ N).

THEOREM 4.5. For each pair (Pi, j , Ci, j) in DN , j (1 ≤ j ≤ L) obtained by
algorithm DAG Opt, Ci, j is the minimum total cost for the given DAG G with
confidence probability Pi, j under timing constraint j .

PROOF. According to Theorem 4.4, in each possible fixed assignment, for
each pair (Pi, j , Ci, j) in Di, j that we obtained, Ci+1, j is the total cost of the graph
Gi+1 with confidence probability Pi+1, j under timing constraint j . In step (4)

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:23

Table VI. Minimum Total Costs with Computed Confidence

Probabilities under Various Timing Constraints for a DAG

T (P , C) (P , C) (P , C) (P , C) (P , C) (P , C)

3 0.50, 43

4 0.72, 39

5 0.58, 30 0.72, 35 0.90, 39

6 0.58, 28 0.72, 30 0.80, 32 0.81, 33 0.90, 35 1.00, 43
7 0.65, 24 0.80, 28 0.81, 29 0.90, 30 1.00, 32
8 0.65, 22 0.81, 24 0.90, 26 1.00, 28
9 0.90, 22 1.00, 26

10 1.00, 22

of the algorithm DAG Opt, we try all the possible fixed assignments, combine
them into a new row DN , j in a dynamic table, and remove redundant pairs using
Algorithm 4.1. Hence, for each pair (Pi, j , Ci, j) in DN , j (1 ≤ j ≤ L) obtained by
algorithm DAG Opt, Ci, j is the minimum total cost for the given DAG G with
confidence probability Pi, j under timing constraint j .

In algorithm DAG Opt, there are K t loops and each loop needs O(|V |2 ∗ L ∗
M ∗K) running times. The complexity of algorithm DAG Opt is O(K t ∗|V |2∗L∗
M ∗ K), where t is the total number of nodes with multiparent (or multichild)
in the bottom-up approach (or top-down approach), |V | is the number of nodes,
L is the given timing constraint, M is the maximum number of FU types for
each node, and K is the maximum number of execution time variations for each
node. Algorithm DAG Opt is exponential, hence it can not be applied to a graph
with large amounts of multiparent and multichild nodes.

For Figure 6, the minimum total costs with computed confidence probabilities
under the timing constraint are shown in Table VI. The entries with probabil-
ity equal to 1 (see the entries in boldface) actually give the results to the hard
HA problem, which shows the worst-case scenario of the HAP problem. In this
example, the algorithm DAG Heu gives the same results as those of the algo-
rithm DAG Opt. Actually, experiments show that although algorithm DAG Heu
is only near-optimal, it can give the same results as those given by the optimal
algorithm in most cases.

5. EXPERIMENTS

This section presents the experimental results of our algorithms. We conducted
experiments on a set of benchmarks including a 4-stage lattice filter, an 8-stage
lattice filter, a voltera filter, a differential equation solver, a RLS-languerre
lattice filter, and an elliptic filter. The PDFG for the first three filters are trees
and those for the others are DAGs. The basic information about the benchmarks
is shown in Table VII, in which a multiparent node is a node with more than
one parent and a multichild node is a node with more than one child.

M different FU types, R1, . . . , RM , are used in the system, in which an FU
with type R1 is the quickest with the highest cost and an FU with type RM is
the slowest with the lowest cost. For example, in a computation task in a digital
camera chip: Let M = 3. We perform a computation based on the benchmark
voltera, which has 27 task nodes. At each node, we perform add, sub, shift or

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:24 • M. Qiu and E. H. -M. Sha

Table VII. Basic Information for Benchmarks

Benchmarks PDFG # of nodes # of multi- # of multi-

parent child

voltera Tree 27

4-lat-iir Tree 26

8-lat-iir Tree 42

Diff. Eq. DAG 11 3 1

RLS-lagu. DAG 19 6 3

elliptic DAG 34 8 5

Table VIII. Minimum Total Costs with Computed Confidence

Probabilities under Various Timing Constraints for Voltera Filter

Voltera Filter

TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

62 7896 × × ×
80 7166 7169 7847 ×

100 5366 31.5 5369 31.4 6047 22.8 7827
125 5347 31.7 5352 31.6 5843 25.3 7820
150 4032 43.8 4066 43.6 4747 32.8 7169
175 1604 66.2 2247 52.7 2947 37.9 4747
200 1587 66.3 1618 65.6 2318 50.7 4704
225 1580 46.4 1593 45.9 1647 44.1 2947
250 1580 31.9 1582 31.8 1604 30.8 2318
273 1580 4.1 1580 4.1 1580 4.1 1647
274 1580 1580 1580 1580
Ave. Redu.(%) 40.2 38.3 31.0

multiplication operations. For instance, at node 1, perform the add operation.
There are 3 ALUs (ALU A, B, and C) available for this add operation. At node 2
perform the multiplication operation, there are three multipliers (multiplier 1,
2, and 3) available for this multiply operation. Node 3 is a shift operation, and
there are three shifters available to implement this operation.

The distribution of execution times of each node is Gaussian. The probabil-
ities are obtained by building a historic table and using statistical profiling.
For each benchmark, the first timing constraint we used is the minimum ex-
ecution time. The experiments were performed on a Dell PC with a P4 2.1 G
processor and 512 MB memory running Red Hat Linux 7.3. In our experiments,
the instructions (represented by nodes) were obtained from TI TMS320C 6000
Instruction Set. We first obtained the linear assembly code based on TI C6000
for various benchmarks and then we modeled them as the PDFG.

The experiments on the voltera filter, the 4-stage lattice filter, and the
8-stage lattice filter finished in less than one second, in which we compared
our algorithms with the hard HA ILP algorithm [Ito and Parhi 1995]. The ex-
perimental results for these filters are shown in Tables VIII to X. In each table,
column TC represents the given timing constraint. The minimum total costs
obtained from different algorithms, Tree Assign and the optimal hard HA ILP
algorithm [Ito and Parhi 1995], are shown in each entry. Columns 1.0, 0.9,
0.8, and 0.7 show that the confidence probability is 1.0, 0.9, 0.8, and 0.7, re-
spectively. Algorithm Tree Assign covers all the probability columns, while the

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:25

Table IX. Minimum Total Costs with Computed Confidence

Probabilities under Various Timing Constraints for 4-Stage

Lattice Filter

4-stage Lattice IIR Filter

TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

81 3462 × × ×
100 3452 3472 × ×
125 3452 2290 3525 ×
150 1881 2257 2690 ×
166 1858 47.3 2250 36.2 2290 35.0 3525
175 1853 46.8 1890 45.7 1890 45.7 3481
200 1325 50.4 1325 50.4 1462 45.3 2672
226 1259 15.5 1259 15.5 1450 2.7 1490
227 1259 1259 1259 1259
Ave. Redu.(%) 40.0 36.9 32.4

Table X. Minimum Total Costs with Computed Confidence Probabilities under

Various Timing Constraints for 8-Stage Lattice Filter

8-stage Lattice IIR Filter

TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

94 4543 × × ×
100 4499 5039 × ×
125 1870 2375 4539 ×
144 1863 66.4 1863 66.4 2380 57.1 5543
150 1820 66.9 1849 66.3 2362 57.0 5495
175 795 67.4 951 61.0 1339 45.1 2439
200 732 43.5 732 43.5 775 40.2 1295
225 595 29.1 638 23.8 639 23.8 839
250 532 12.9 540 11.6 540 11.6 611
277 506 4.9 511 4.0 511 4.0 532
278 506 506 506 506
Ave. Redu.(%) 41.6 39.5 34.1

optimal hard HA ILP algorithm [Ito and Parhi 1995] only includes column 1.0,
which is in boldface. For example, in Table VIII, under the timing constraint
100, the entry under column 1.0 is 7827, which is the minimum total cost for
the hard HA problem. The entry under column 0.9 is 6047, which means we can
achieve minimum total cost 6047 with confidence probability 0.9 under timing
constraint 100. From the information provided in the structure of the linked list
in each entry of the dynamic table, we are able to trace how to get a satisfactory
assignment.

Column % shows the percentage of reductions in the total cost, compared to
the results of the algorithm, with those obtained by the optimal hard HA ILP
algorithm [Ito and Parhi 1995]. The average percentage reduction is shown in
the last row: Ave. Redu(%) for Tables VIII to X. The entry with “×” means no
solution is available. In Table VIII, under timing constraint 80, the optimal
hard HA ILP algorithm [Ito and Parhi 1995] cannot find a solution. However,
we can find solution 7847 with 0.9 probability which guarantees that the total
execution time of the PDFG is less than or equal to the timing constraint 80.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:26 • M. Qiu and E. H. -M. Sha

Table XI. Minimum Total Costs with Computed Confidence Probabilities under

Various Timing Constraints for Differential Equation Solver

Diff. Eq. Solver

TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

35 5320 × × ×
40 5130 5230 × ×
50 5020 5040 5100 ×
60 3330 38.6 3430 36.7 3830 29.3 5420
70 2730 49.7 2830 47.9 3230 40.5 5430
80 2590 47.1 2620 46.5 3020 38.4 4900
90 2520 48.4 2540 48.0 3100 36.5 4880

100 1910 38.2 1930 37.5 2690 12.9 3090
117 1970 32.5 1970 32.5 1970 32.5 2920
118 1970 1970 1970 1970
Ave. Redu.(%) 42.4 41.5 31.7

Table XII. The Minimum Total Costs with Computed Confidence

Probabilities Under Various Timing Constraints for the

RLS-Laguerre Filter

RLS-Laguerre filter
TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

49 7803 × × ×
60 7790 7791 7793 ×
70 7082 7087 7787 ×
80 5403 30.6 5991 23.0 5993 23.0 7780

100 3969 48.9 4669 39.9 5380 30.8 7769
125 2165 59.8 2269 58.0 4664 13.6 5390
150 1564 66.4 2264 49.3 2864 38.6 4667
175 1564 66.5 1564 66.5 2264 51.5 4664
205 1564 30.9 1564 30.9 1564 30.9 2264
206 1564 1564 1564 1564
Ave. Redu.(%) 50.5 44.6 31.4

Through the experimental results, we find that our algorithms have better
performance compared with the optimal hard HA ILP algorithm [Ito and Parhi
1995]. On average, algorithm Tree Assign gives a cost reduction of 32.5% with
0.9 confidence probability in satisfying timing constraints, and a cost reduction
of 38.2% and 40.6% with 0.8 and 0.7 confidence probability, respectively, in
satisfying timing constraints.

We also conducted experiments on a different equation solver, a RLS-
Laguerre filter, and an elliptic filter; these are DAGs. The different equation
solver has 1 multichild node and 3 multiparent nodes. Using a top-down ap-
proach, we exhaust all 3 possible fixed assignments. The RLS-Laguerre filter
has 3 multichild nodes and 6 multiparent nodes. Using a top-down approach,
we implement all 33 = 27 possibilities. The elliptic filter has 5 multichild nodes
and 8 multiparent nodes. There are total 35 = 243 possibilities by the top-down
approach. The experimental results for these filters are shown in Tables XI to
XIII. Column % shows the percentage of reduction on system costs, compared
to the results for soft real-time with those for hard real-time. The average

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:27

Table XIII. Minimum Total Costs with Computed Confidence

Probabilities under Various Timing Constraints for Elliptic Filter

Elliptic Filter

TC 0.7 0.8 0.9 1.0

cost % cost % cost % cost

120 6025 × × ×
130 5685 5722 × ×
140 4685 4722 7524 ×
150 4661 4680 5721 ×
157 2585 65.5 4681 37.6 5681 24.2 7496
160 2604 65.3 2641 64.8 5703 24.1 7511
170 1983 73.4 2571 65.5 4382 41.2 7449
180 1900 70.7 1933 70.2 2612 59.7 6482
190 1850 57.4 1872 56.9 2533 41.7 4344
200 1816 57.8 1823 57.6 1933 55.1 4301
210 1803 57.6 1807 57.5 1881 55.8 4257
220 1798 30.3 1798 30.3 1828 29.1 2579
230 1796 7.1 1796 7.1 1822 5.7 1933
231 1796 1796 1796 1796
Ave. Redu.(%) 53.9 49.7 37.4

percentage reduction is shown in the last row: Ave. Redu(%) in all these three
tables. The entry with “×” means no solutions is available. Under timing con-
straint 50 in Table XI, there is no solution for hard real-time. However, we can
find solution 5100 with 0.9 probability which guarantees that the total execu-
tion time of the PDFG is less than or equal to the timing constraint 50.

The experimental results show that our algorithm can greatly reduce the
total cost while having a guaranteed confidence probability. On average,
algorithm DAG Opt gives a cost reduction of 33.5% with 0.9 confidence proba-
bility under timing constraints, and a cost reduction of 45.3% and 48.9% with,
respectively, 0.8 and 0.7 confidence probabilities satisfying timing constraints.
The experiments using DAG Heu on these benchmarks are finished within sev-
eral seconds, and the experiments using DAG Opt on these benchmarks are
finished within several minutes.

The experimental results are the same for the experiments on these three
DAG benchmarks using algorithm DAG Heu or DAG Opt. When the number
of multiparent and multichild nodes is large, we can use algorithm DAG Heu,
which will give good results in most cases.

We also unfold all the benchmarks 10 times, 15 times, and 20 times, which
means that the number of nodes increases 10 times, 15 times, and 20 times.
The largest benchmark, the 8-stage lattice filter originally has only 42 nodes.
After unfolding 20 times, the benchmark has 840 nodes. We test the scalabil-
ity of our algorithms. When the input graph is a simple path or a tree, our
optimal algorithms Path Assign and Tree Assign run very fast (less than one
minute), while the ILP algorithm takes a much larger time to get results. When
the unfolding factor is 15, it cannot get the result even after a day for the
8-stage lattice filter. When the input graph is a DAG, our algorithm DAG Heu
runs very fast. It only takes several minutes to finish a 20 times unfolded
benchmark.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:28 • M. Qiu and E. H. -M. Sha

The advantages of our algorithms over the hard HAILP algorithm [Ito and
Parhi 1995] are summarized as follows. First, our algorithms are efficient and
provide an overview of all possible variations of minimum costs compared with
the the worst-case scenario generated by the hard HAILP algorithm [Ito and
Parhi 1995]. More information and choices are provided by our algorithms.
Second, it is possible to greatly reduce the system’s total cost while having
a very high confidence probability under different timing constraints. Third,
given an assignment, we are able to get a minimum total cost with different
confidence probabilities under each timing constraint. Finally, our algorithms
are very quick and practical.

6. CONCLUSION

This article proposed a probabilistic approach to high-level synthesis of
special-purpose architectures for real-time embedded systems using hetero-
geneous functional units with probabilistic execution times. For the heteroge-
neous assignment with probability (HAP) problem, algorithms Path Assign and
Tree Assign, were proposed to give optimal solutions when the input graphs are
a simple path and a tree, respectively. Two other algorithms, one is optimal and
the other is near-optimal heuristic, were proposed to solve the general prob-
lem. Experiments show that our algorithms achieved significant energy-saving
and provided more design choices to achieve a minimum total cost, while the
timing constraint was satisfied with a guaranteed confidence probability. Our
algorithms are useful for both hard and soft real-time systems.

REFERENCES

BANINO, C., BEAUMONT, O., CARTER, L., FERRANTE, J., LEGRAND, A., AND ROBERT, Y. 2004. Scheduling

strategies for master-slave tasking on heterogeneous processor platforms. IEEE Trans. Parall.
Distrib. Syst. 15, 4, 319–330.

BEAUMONT, O., LEGRAND, A., MARCHAL, L., AND ROBERT, Y. 2004. Pipelining broadcasts on hetero-

geneous platforms. In Proceedings of the International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), IEEE.

BEAUMONT, O., LEGRAND, A., MARCHAL, L., AND ROBERT, Y. 2003a. Scheduling strategies for mixed

data and task parallelism on heterogeneous clusters. Parall. Process. Lett. 13, 2, 225–244.

BEAUMONT, O., LEGRAND, A., AND ROBERT, Y. 2003b. The master-slave paradigm with heterogeneous

processors. IEEE Trans. Parall. Distrib. Syst. 14, 9, 897–908.

BEAUMONT, O., LEGRAND, A., AND ROBERT, Y. 2002. Static scheduling strategies for heterogeneous

systems. Comput. Informatics 21, 413–430.

BETTATI, R. AND LIU, J. W.-S. 1992. End-to-end scheduling to meet deadlines in distributed sys-

tems. In Proceedings of the International Conference. on Distributed Computing Systems. 452–

459.

CHANG, Y.-N., WANG, C.-Y., AND PARHI, K. K. 1996. Loop-list scheduling for heterogeneous func-

tional units. In Proceedings of the 6th Great Lakes Symposium on Very Large-Scale Integration.

2–7.

CHAO, L.-F. AND SHA, E. H. -M. 1997. Scheduling dataflow graphs via retiming and unfolding.

IEEE Trans. Parall. Distrib. Syst. 8, 1259–1267.

CHAO, L. -F. AND SHA, E. H. -M. 1995. Static scheduling for synthesis of dsp algorithms on various

models. J.VLSI Signal Process. Syst. 10, 207–223.

DE MAN, H., CATTHOOR, F., GOOSSENS, G., VANHOOF, J., VAN MEERBERGEN, S. N., AND HUISKEN, J. A.

1990. Architecture-driven synthesis techniques for VLSI implementation of DSP algorithms.

Proc. IEEE 78, 2, 319–335.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

Cost Minimization while Satisfying Hard/Soft Timing Constraints • 25:29

DOGAN, A. AND ÖZGüNER, F. 2002. Matching and scheduling algorithms for minimizing execution

time and failure probability of applications in heterogeneous computing. IEEE Trans. Parall.
Distrib. Syst. 13, 308–323.

FOSTER, I. 1994. Designing and Building Parallel Program: Concepts and Tools for Parallel Soft-
ware Engineering. Addison-Wesley.

GEBOTYS, C. H. AND ELMASRY, M. 1993. Global optimization approach for architectural synthesis.

IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 12, 1266–1278.

HE, Y., SHAO, Z., XIAO, B., ZHUGE, Q., AND SHA, E. H. -M. 2003. Reliability driven task scheduling for

tightly coupled heterogeneous systems. In Proceedings of the IASTED International Conference
on Parallel and Distributed Computing and Systems.

HOU, C. -J. AND SHIN, K. G. 1997. Allocation of periodic task modules with precedence and deadline

constraints in distributed real-time systems. IEEE Trans. Computers 46, 1338–1356.

HUA, S. AND QU, G. 2003. Approaching the maximum energy saving on embedded systems with

multiple voltages. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD). 26–29.

HUA, S., QU, G., AND BHATTACHARYYA, S. S. 2003a. Energy reduction techniques for multimedia ap-

plications with tolerance to deadline misses. In Proceedings of the Design Automation Conference
(DAC’03). 131–136.

HUA, S., QU, G., AND BHATTACHARYYA, S. S. 2003b. Exploring the probabilistic design space of multi-

media systems. In Proceedings of the IEEE International Workshop on Rapid System Prototyping.

233–240.

HWANG, C. -T., LEE, J. -H., AND HSU, Y. -C. 1991. A formal approach to the scheduling problem in

high level synthesis. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 10, 464–475.

ITO, K., LUCKE, L., AND PARHI, K. 1998. ILP-based cost-optimal DSP synthesis with module selec-

tion and data format conversion. IEEE Trans. VLSI Syst. 6, 582–594.

ITO, K. AND PARHI, K. 1995. Register minimization in cost-optimal synthesis of dsp architecture.

In Proceedings of the IEEE VLSI Signal Processing Workshop.

KALAVADE, A. AND MOGHE, P. 1998. A tool for performance estimation of networked embedded

end-systems. In Proceedings of the IEEE/ACM Design Automation Conference. 257–262.

PARHI, K. AND MESSERSCHMITT, D. G. 1991. Static rate-optimal scheduling of iterative data-flow

programs via optimum unfolding. IEEE Trans. Computers 40, 178–195.

LESTER, B. P. 1993. The Art of Parallel Programming. Prentice Hall, Englewood Cliffs, NJ.

LI, W. N., LIM, A., AGARWAL, P., AND SAHNI, S. 1993. On the circuit implementation problem. IEEE
Trans. Comput.-Aid. Des. Integr. Circ. Syst. 12, 1147–1156.

MCFARLAND, M. C., PARKER, A. C., AND CAMPOSANO, R. 1990. The high-level synthesis of digital

systems. Proc. IEEE 78, 301–318.

PASSOS, N. L., SHA, E. H. -M., AND BASS, S. C. 1994. Loop pipelining for scheduling multi- dimen-

sional systems via rotation. In Proceedings of the 31st Design Automation Conference .485–490.

PAULIN, P. G. AND KNIGHT, J. P. 1989. Force-directed scheduling for the behavioral synthesis of

ASICs. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 8, 661–679.

RAMAMRITHAM, K., STANKOVIC, J. A., AND SHIAH, P. -F. 1990. Efficient scheduling algorithms for

real-time multiprocessor systems. IEEE Trans. Parall. Distrib. Syst. 1, 184–194.

SHAO, Z., ZHUGE, Q., XUE, C., AND SHA, E. H. -M. 2005. Efficient assignment and scheduling for

heterogeneous dsp systems. IEEE Trans. Parall. Distrib. Syst. 16, 516–525.

SHATZ, S. M., WANG, J. -P., AND GOTO, M. 1992. Task allocation for maximizing reliability of dis-

tributed computer systems. IEEE Trans. Computers 41, 1156–1168.

SRINIVASAN, S. AND JHA, N. K. 1999. Safety and reliability driven task allocation in distributed

systems. IEEE Trans. Parall. Distrib. Syst. 10, 238–251.

TIA, T., DENG, Z., SHANKAR, M., STORCH, M., SUN, J., WU, L.-C., AND LIU, J. -S. 1995. Prob- abilistic

performance guarantee for real-time tasks with varying computation times. In Proceedings of
the IEEE Real-Time Technology and Applications Symposium. 164–173.

TONGSIMA, S., SHA, E. H. -M., CHANTRAPORNCHAI, C., SURMA, D., AND PASSOSE, N. 2000. Probabilistic

loop scheduling for applications with uncertain execution time. IEEE Trans. Computers 49, 65–

80.

VAHID, F. AND GIVARGIS, T. 2002. Embedded System Design, A Unified Hardware/Software Intro-
duction. Wiley, New York.

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

25:30 • M. Qiu and E. H. -M. Sha

WANG, C. -Y. AND PARHI, K. K. 1995. High-level synthesis using concurrent transformations,

scheduling, and allocation. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 14, 274–295.

WOLF, W. 2006. Design challenges in multiprocessor Systems-On-Chip. In From Model-Driven
Design to Resource Management for Distributed Embedded Systems, B. Kleinjohann et al. Eds.,

vol. 225, Springer, 1-8.

WOLFE, M. E. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley.

ZADEH, L. A. 1996. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28.

ZHOU, T., HU, X., AND SHA, E. H. -M. 2001. Estimating probabilistic timing performance for real-

time embedded systems. IEEE Trans. VLSI Syst. 9, 6, 833–844.

Received May 2008; revised November 2008; accepted December 2008

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 2, Article 25, Pub. date: March 2009.

