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Cost-optimal energy management of hybrid electric
vehicles using fuel cell/battery health-aware

predictive control

Xiaosong Hu, Senior Member, IEEE, Changfu Zou, Member, IEEE, Xiaolin Tang,

Teng Liu, Member, IEEE, Lin Hu

Abstract—Energy management is an enabling technology for
increasing the economy of fuel cell/battery hybrid electric vehi-
cles. Existing efforts mostly focus on optimization of a certain
control objective (e.g., hydrogen consumption), without suffi-
ciently considering the implications for on-board power sources
degradation. To address this deficiency, this article proposes
a cost-optimal, predictive energy management strategy, with
an explicit consciousness of degradation of both fuel cell and
battery systems. Specifically, we contribute two main points to the
relevant literature, with the purpose of distinguishing our study
from existing ones. First, a model predictive control framework,
for the first time, is established to minimize the total running cost
of a fuel cell/battery hybrid electric bus, inclusive of hydrogen
cost and costs caused by fuel cell and battery degradation. The
efficacy of this framework is evaluated, accounting for various
sizes of prediction horizon and prediction uncertainties. Second,
the effects of driving and pricing scenarios on the optimized
vehicular economy are explored.

Index Terms—Batteries, energy management, fuel cell, hybrid
electric vehicle, predictive control, sustainable transport

I. INTRODUCTION

A. Motivation and Challenges

Increasingly severe fuel consumption and environmental

pollution have been strongly pushing the academia and auto-

motive sector to actively develop and deploy fuel cell hybrid

electric vehicles (FCHEVs) [1]–[4]. FCHEVs diversify energy

sources of mobility, enabling a good synergy of transportation

and renewables [5]. The fuel cell-battery-motor coupling fea-

tured by FCHEVs is, however, quite complicated and directly

influences overall vehicular performance [6], constituting the
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first challenge for system-level energy management. Unlike

internal combustion engines (ICEs), the lifetime of the two

electrochemical power sources (fuel cell and battery systems)

is highly vulnerable to their operating conditions. This causes

another challenge of how to coordinate the two energy units

such that the vehicular total cost of ownership can be reduced.

To address the two main challenges, we propose a look-ahead

health-conscious energy management strategy to maximize the

economy of an FCHEV.

B. Literature Review

Energy management of FCHEVs and ICE-included hybrid

electric vehicles (HEVs) is certainly a vast field of research

[7]–[9]. A large number of strategies have been proposed in the

literature, which can be roughly divided into two categories,

i.e., rule-based and optimization-based approaches. Each type

has its own advantages and disadvantages.

Rule-based energy management is centered on heuristic

rules governing the vehicle operating modes [10]. These rules

are invariably derived from engineering experiences, as simple

functions of battery and/or engine states. For example, when

the battery State-of-Charge (SOC) exceeds a higher bound,

the pure electric mode is adopted; when the battery SOC is

lower than a lower bound, the ICE mode is operated. Common

rule-based power management strategies include thermostat

control [11], fuzzy logic [12], etc. Salient upsides of this

type of method are simplicity, ease of real-time implemen-

tation, and strong resilience against driving patterns. For these

reasons, rule-based methods are predominantly being used

in HEVs in the current market. Nonetheless, the effects of

these rules are typically far away from the optimality of

vehicle design/control objectives, incenting alternatives to seek

noticeable improvements.

Optimization-based energy management strategies have

been actively developed in order to achieve better vehicular

performance [9]. The overarching goal of this type of method

is to optimize a predefined criterion, like fuel consumption,

subject to a set of operational constraints, given a hybrid

powertrain model [13]. Sometimes, multiple objectives are

considered to investigate tradeoffs of different concerns [14]–

[16]. As a globally optimal benchmark, dynamic programming

(DP) was often exploited to develop a theoretically optimum

energy management strategy and evaluate other algorithms
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[17], [18]. For instance, the operational cost of a fuel cell

hybrid electric vehicle was minimized by DP in [19]. The

computational efficiency of DP is, however, very low, espe-

cially for dynamic models with multiple states. Another global

optimization method, convex programming (CP), was also

leveraged to synthesize HEVs energy management strategies

[14], [20]–[22]. Due to the convexity, CP can guarantee a

globally optimal solution with exceptionally fast calculation.

The model simplification and convexification somewhat de-

grade the optimality, in contrast to DP. Typically, noncausal

DP and CP can only be implemented offline, as driving cycles

must be known beforehand. To explore the possibility of online

optimized energy management, causal optimization methods,

e.g., equivalent consumption minimization strategy (ECMS)

[23], [24], Pontryagin’s Minimum Principle (PMP) [25], [26],

and model predictive control (MPC) [27], [28], were adopted.

These controllers with appropriate design and tuning always

produce a satisfactory performance in energy consumption,

operating cost, or the total cost of vehicle ownership.

A vast majority of existing studies on FCHEVs energy

management merely consider how to minimize hydrogen

consumption, without involving performance degradation of

fuel cell/energy storage systems. The economy potential of

FCHEVs is insufficiently assessed. A few papers attempted

to establish power management strategies cognizant of the

tradeoff between fuel cell health and hydrogen economy. For

example, fuel efficiency, cost, and life-cycle carbon emissions

of an FCHEV were optimized via the genetic algorithm in

[29]. Fuel cell lifetime was governed by imposing constraints

on fuel cell output power in ECMS [30], PMP [31], and

CP [14] energy management controllers. A stochastic DP

controller to minimize the summation of hydrogen and fuel

cell costs was introduced in [32], [33] as well. However, these

studies did not take energy storage degradation into consid-

eration. A battery health-aware power management strategy

of an FCHEV equipped with hybrid energy storage was

constructed via CP in [34], where the impact of fuel cell

health was neglected. Xu et al. [35] incorporated both fuel cell

and battery degradation models into a bi-loop framework for

offline component sizing and DP-based energy management

of an FCHEV. To reduce the computational burden, such a

framework was modified by means of a DP-refined rule-based

controller in the inner loop [36], [37].

C. Main Contributions

To the best knowledge of the authors, no efforts have been

made to develop an FCHEV energy management strategy

perceptive of the lifetime of both fuel cell and battery systems

in a cost-optimal, predictive manner. In order to bridge such

a research gap, this article presents two original contributions

that distinguish our work from existing schemes. First, we

devise an MPC framework, for the first time, to minimize

the expenditure of an FCHEV, inclusive of hydrogen cost

and costs associated with fuel cell and battery degradation.

The performance and computational efficiency of this frame-

work are carefully examined, considering different sizes of

prediction horizon and prediction uncertainties. Second, the

Fig. 1: Configuration of the fuel cell hybrid electric bus.

sensitivity of the health-conscious MPC power management to

driving patterns and the component price is carried out, so that

the effects of driving and pricing scenarios on the optimized

vehicular economy can be revealed.

D. Organization

The rest of the paper proceeds as follows. The FCHEV pow-

ertrain model is detailed in Section II. Section III introduces

the MPC energy management framework. The control results

under various driving cycles are given in Section IV. The

implication of power-source pricing is discussed in Section

V, followed by conclusions summarized in Section VI.

II. FCHEV POWERTRAIN MODEL

Here, we consider a fuel cell hybrid bus powertrain, as

sketched in Fig. 1. The widely-used quasi-static modeling

method is leveraged to model the powertrain for a time-

efficient, accurate simulation [38], [39].

A. Configuration and Power Balance

An electric motor drives the bus with a hybrid power

source composed of a proton-exchange-membrane fuel cell

system (PEMFCS) and a lithium-ion battery system. A DC-DC

converter is adopted at the side of the PEMFCS to regulate

its current flow into the DC bus, while the battery system

is passively connected. The specifications of the principle

powertrain components are listed in Table I. The overall power

balance equation is described by

Tem(k)wem(k)+ Pem,loss(k) + Pau(k)

= Pbat(k) + Pfcs(k)ηdc (1)

where Tem and wem are the motor torque and speed, re-

spectively; Pem,loss is the motor loss as a function of Tem

and wem; Pbat and Pfcs are the battery terminal power and

the PEMFCS output power, respectively; ηdc is the averaged

efficiency of the DC-DC converter; Pau is the power of

auxiliaries that is assumed to be constant; k is the time index.

B. Motor Model

A permanent magnet synchronous motor is used to propel

the bus and do regenerative braking. The efficiency and loss

data of the motor taken from [20] are plotted in Fig. 2. The



IEEE TRANSACTIONS ON POWER ELECTRONICS 3

TABLE I. MAIN VEHICLE PARAMETERS.

Component Specifications

PEMFCS
A 1000-cell stack
Power rating: 100 kW

Battery system
A 2000-cell pack
Energy capacity: 15.18kWh

aMotor
Maximum power: 220kW
Maximum speed: 3000rpm

bDC-DC converter Averaged efficiency: 96%
aFinal drive Gear ratio: 4.7

cVehicle
Chassis mass: 13476kg
Auxiliary power: 7.0kW

aAdopted from [20]; bAdopted from [14]; cAdapted from [20].

motor torque and speed meet the vehicular power demand as

follows:

wem(k) =
λv(k)

r
(2a)

Tem(k) = max (Tv(k), Tem,min(k)) (2b)

where v, λ, and r are the vehicle speed, final drive gear ratio,

and wheel radius, respectively; Tem,min is the minimum nega-

tive torque during regenerative braking; Tvis the torque request

on the shaft between the motor and the final drive, which

can be readily derived by the vehicular longitudinal dynamics

(the derivation is detailed in Appendix of [22]). In this study,

the motor is sized enough to satisfy the propelling torque

request of the bus. When the braking torque request exceeds

Tem,min, the conventional frictional braking is activated as a

supplement.

C. PEMFCS Model

1) Hydrogen Consumption Model: We herein consider a

1000-cell PEMFCS with a power rating of 100 kW for an

electric bus, same as the fuel cell system used in [40], whose

configuration is sketched in Fig. 3. Its main elements include

a fuel cell stack and four auxiliary subsystems, i.e., hydrogen

circuit, air circuit, water circuit, and coolant circuit [14],

[22]. These auxiliaries consume a portion of the electricity

generated by the stack to ensure a normal operation of the

PEMFCS. A detailed description about how these subsystems

work can be found in [41]. The quasi-static hydrogen con-

sumption model, characterizing the relationship between the

hydrogen power Ph and the PEMFCS output power Pfcs,

is a scaled version of FC ANL50H2 in ADVISOR [42], as

indicated in Fig. 4.
2) Health Model: Performance degradation is an en-

trenched issue in electrochemical power sources. How to

model the PEMFCS health evolution plays an important role

in the economy-targeted power management of the bus. As

recognized in electrochemistry community, a multitude of

tangible and intangible factors impact membrane electrode

assembly (MEA) degradation, resulting in a great challenge

of establishing such a model. As introduced in [33], MEA

performance degradation mainly originates from the following

aspects.

a) Catalyst layer degradation [33]: electrochemical active

surface area (ECASA) reduction occurs, owing to agglomera-

tion, sintering together, and detachment of platinum particles

Fig. 2: (a) Motor efficiency map and (b) motor losses at

exemplary speeds.

Stack

+

-

 Purge valve

Recirculation pump
Hydrogen 

tank

Control valve

Air Compressor

Humidifier

Cooling circuit

Fig. 3: Schematic of the PEMFCS [22].

[33], [43], oxidation of carbon support caused by fuel star-

vation at high or transient loading [44]–[47], production of

surface oxides at very low loading [48]. It can be seen that

the PEMFCS operating condition has a substantial influence

on ECASA reduction. Extremum loads are very detrimental

to the catalyst layer.

b) Membrane degradation [33]: fuel impurity, mechani-

cal stress, and thermal stress lead to membrane degradation

[44]–[46]. The former two are related to contaminants and

congenital or assembly defects, respectively [44], [45]. They
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Fig. 4: Hydrogen consumption model of the PEMFCS.

are thus typically irrelevant to PEMFCS loading. However,

thermal stress is dependent on the PEMFCS output power.

Extensive heat at extremum loads may reduce the membrane

protonic conductivity and incur membrane-drying-caused gas

permeability [33], [44], [45].

c) Gas diffusion layer (GDL) degradation [33]: it has some

overlapping aging mechanisms with the catalyst support. For

example, fuel starvation at high or transient loading induces

oxidation of carbon that is often exacerbated at high tempera-

tures [33], [44], [45]. In addition, increased humidity at high

loads may cause flooding [44], [49].

According to the foregoing descriptions [33], [44]–[49], the

main MEA degradation mechanisms with respect to PEMFCS

loading are summarized in Fig. 5. Since vehicular applications

are invariably subject to drastically dynamic loading, it is

of particular significance and practicality to carefully govern

the PEMFCS loading (i.e., output power) to alleviate its

performance degradation and increase the overall vehicular

economy. It has been demonstrated in [32], [33], [40] that

on/off loading has a predominately negative impact on the

lifetime of PEMFCS, especially in heavy-duty vehicular ap-

plications. Therefore, as manipulated in [14], [22], [34], the

bus PEMFCS is herein always on. We adopt a similar approach

to [33], [40], so as to account for the effects of other loads.

When the PEMFC output power Pfcs is equal to or larger than

80% of the power rating, the voltage degradation rate per hour

at high load is portrayed by γhigh; when the PEMFC output

power Pfcs is lower than 20% of the power rating, the voltage

degradation rate per hour at low load is denoted by γlow; the

voltage degradation rate per kW during transient load change

is depicted by γchg . The values of these rates used in this

work are listed in Table II. As treated in [33], these sources

of degradation are assumed to be mostly independent, and thus

their effects can be summed up to embody the total voltage

degradation.

D. Battery Model

1) Electrical Model: A 2000-cell lithium iron phosphate

battery pack with the nominal energy capacity of 15.18 kWh is

employed as the energy storage unit of the hybrid powertrain,

Fig. 5: Main MEA degradation mechanisms with respect to

PEMFCS loading.

TABLE II. PEMFCS DEGRADATION RATE (CELL

LEVEL).

Load Degradation rate
aHigh load 10.00 µV/h
aLow load 8.662 µV/h
bLoad change 0.04185 µV/kW

aAdopted from [40]; bAdapted from [33] and [40].

whose configuration is illustrated in Fig. 6. Each battery cell

is emulated by the internal resistance model as follows:

Vcell(k) = u(k)− i(k)R (3)

where Vcell, u, i, and R represent the terminal voltage, open-

circuit voltage, current, and internal resistance of battery cell,

respectively. Note that the open-circuit voltage u is a monoton-

ically increasing function of cell SOC, which is often provided

by the manufacturer (see [50] for A123’s ANR26650m1 used

here). Given the terminal cell power Pcell(k) = Vcell(k)i(k)
and (3), we can obtain the following current equation:

i(k) =
u(k)−

√

u2(k)− 4RPcell(k)

2R
(4)

where Pcell(k) =
Pbat(k)
nall

= Pbat(k)
nsnp

= Pbat(k)
2000 . And then the

SOC dynamics can be delineated by

soc(k + 1) = soc(k)−
i(k)∆t

Q
(5)

where soc, Q and ∆t are the cell SOC, the nominal cell

capacity, and the sampling interval, respectively. The following

electrical constraints must be fulfilled when operating the

hybrid powertrain:

imin ≤ i(k) ≤ imax (6a)

socmin ≤ soc(k) ≤ socmax (6b)

soc(0) = soc0 (6c)

where imin and imax are the cell current bounds (maximum

charge/discharge current); socmin and socmax are the SOC

bounds, and soc0 is the initial SOC.

2) Health Model: A semi-empirical battery aging model

developed in [51] is adopted in this paper to simulate the

capacity loss of the battery cell. This model was already

widely used for vehicular energy management [52], battery

charging control [53], power-source sizing [34], [54], [55],
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Fig. 6: Battery pack configuration [14].

TABLE III. PRE-EXPONENTIAL FACTOR AS A

FUNCTION OF THE C-RATE [51].

C-rate 0.5 2 6 10

M 31630 21681 12934 15512

etc. To ensure a completeness of model description, next, we

brief this capacity loss model. More details are given in [51].

The cell capacity loss is characterized by the following

equation [51]

∆Q = M(c) exp

(

−Ea(c)

RcTc
A(c)z

)

(7)

where ∆Q is the percentage of capacity loss in [%], c is the

C-rate, and M is the pre-exponential factor as a function of

the C-rate, as indicated in Table III. The ideal gas constant

is Rc (8.31 J/mol·K), Tc is the lumped battery temperature in

[K], and A is the discharged ampere-hour (Ah) throughput.

The activation energy Ea in [J/mol] and the power-law factor

z are determined by [51]

Ea(c) = 31700− 370.3c (8a)

z = 0.55. (8b)

When using (8) and Table III, 1C (c = 1) corresponds to 2A

[51], where a de-rated 2Ah was used to ease experimentation.

20% capacity loss is considered as the end-of-life (EOL) of

an automotive battery, and the total discharged Ah throughput

Atol is, therefore, acquired by

Atol(c, Tc) =





20

M(c) exp
(

−Ea(c)
RcTc

)





1/z

. (9)

Then, the number of cycles until the battery EOL, N , is

attained by [52]

N(c, Tc) =
3600Atol(c, Tc)

Q
. (10)

As a result, the State-of-Health (SOH) is defined below [52]:

soh(t) = 1−

∫ t

0
|i(τ)|dτ

2N(c, Tc)Q
. (11)

TABLE IV. MAIN ELECTRICAL SPECIFICATIONS OF

THE BATTERY CELL.

Parameter Value
aInternal resistance 0.01 Ohm
aNominal capacity 8280 As
bMaximal charge current -35 A
bMaximal discharge current 70 A
Maximal SOC 75%
Minimal SOC 55%
Initial SOC 65%
Maximal SOH 100%
Minimal SOH 0%
Initial SOH 100%

aAdopted from [50]; bAdopted from [52].

The corresponding dynamic SOH model is thereby established

as [52]

soh(k + 1) = soh(k)−
|i(k)|∆t

2N(c, Tc)Q
. (12)

Based on the SOH model, the values of N and SOH decline

rate at various temperatures and C-rates can be easily calcu-

lated (e.g., see Fig. 15 in [55] with a C-rate with respect to the

nominal capacity of 2.3 Ah). The following health constraints

must be fulfilled when operating the hybrid powertrain:

sohmin ≤ soh(k) ≤ sohmax (13a)

soh(0) = soh0 (13b)

where sohmin and sohmax are the SOH bounds, and soh0 is

the initial SOH. The main electrical and SOH specifications

of the battery are listed in Table IV.

III. MPC ENERGY MANAGEMENT FRAMEWORK

In this section, we mathematically formularize the predic-

tive, cost-optimal power management strategy in an MPC

framework.

A. Objective function

To minimize the total running cost of the bus over each

prediction horizon, the objective function J includes four

terms, which is defined by

Jj = Ch,j + Cfcs,j + Cbat,j +Dsoc,j , j = 0, 1, 2 . . . (14)

where

1) Ch,j is the hydrogen cost over the prediction horizon j,

i.e.,

Ch,j =

j+Th−1
∑

m=j

βhPh(m)∆t, j = 0, 1, 2 . . . (15)

with Th being the size of prediction/control horizon and βh

the hydrogen price per Joule.

2) The PEMFCS degradation cost Cfcs,j is computed by

Cfcs,j = Clow,j + Chigh,j + Cchg,j , j = 0, 1, 2 . . . (16)

where Clow,j is the degradation cost caused by low load, which

is calculated by

Clow,j =
γlowTlow,jMfcs

Vfcs,eol
, j = 0, 1, 2 . . . (17)
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with Tlow,j being the duration of low load in hour over the pre-

diction horizon j, Vfcs,eol the voltage drop until the PEMFCS

EOL (i.e., 10% voltage decrease of fuel cell at rated current

[40]), and Mfcs the PEMFCS cost, i.e., Mfcs = 100βfcs

where βfcs is the PEMFCS price per kW. Moreover, Chigh,j

is the degradation cost caused by high load, as defined by

Chigh,j =
γhighThigh,jMfcs

Vfcs,eol
, j = 0, 1, 2 . . . (18)

with Thigh,j being the duration of high load in hour over

the prediction horizon j. Then, Cchg,j is the degradation cost

caused by load change, which is derived by

Cchg,j =

γchgMfcs

j+Th−2
∑

m=j

|Pfcs(m+ 1)− Pfcs(m)|

1000nfcsVfcs,eol
(19)

j = 0, 1, 2 . . . with nfcs = 1000 being the number of fuel

cells.

3) The battery degradation cost Cbat,j is calculated by

Cbat,j = Mbat (soh(j)− soh(j + Th)) , j = 0, 1, 2 . . . (20)

where Mbat is the cost of the battery system, i.e., Mbat =
15.18βbat with βbat being the battery price per kWh.

4) Dsoc,j is a deliberate penalty term to make the battery

charge-sustaining as much as possible [56], i.e.,

Dsoc,j = Dp

j+Th
∑

m=j

(soc(m)− soc0)
2
, j = 0, 1, 2 . . . (21)

with Dp being a large, positive constant.

B. Constraints

Equations (1) and (2) enable us to only choose the PEMFCS

output power Pfcs as the optimization variable to reduce com-

putational burden (the battery power Pbat can be invariably

represented as a function of Pfcs). And then, the constraints

of the optimal control problem consist of (5), (6), (12), (13),

which can be described as functions of Pfcs, as well as the

physical bounds on Pfcs,

Pfcs,min ≤ Pfcs(k) ≤ Pfcs,max (22)

with Pfcs,min and Pfcs,max equal to 0 and 100000, respec-

tively.

C. Framework formulation

Given the objective function and constraints above, the cost

minimization problem over the prediction/control horizon at

the time step j can be mathematically framed as follows:

min
Pfcs(k),k=j,...,j+Th−1

Jj = Ch,j + Cfcs,j

+ Cbat,j +Dsoc,j (23a)

s.t. ∀k∈{j, . . . , j + Th − 1}, q∈{j, . . . , j + Th},

soc(k + 1) = soc(k)−
i(k)∆t

Q
(23b)

imin ≤ i(k) ≤ imax (23c)

socmin ≤ soc(q) ≤ socmax (23d)

soc(0) = soc0 (23e)

TABLE V. BASELINE PRICES OF THE HYDROGEN,

PEMFCS, AND BATTERY UNIT.

Price Value
aHydrogen 4.00 $/kg
bPEMFCS 93.00 $/kW
cBattery unit 178.41 $/kWh

aAdopted from [60]; bAdopted from [61] with medium-volume manufactur-
ing of 10000 units/year; cAdopted from [62].

Fig. 7: MBC driving cycle [22]: (a) speed and slope, (b) accel-

eration, (c) speed distribution, and (d) acceleration distribution.

soh(k + 1) = soh(k)−
|i(k)|∆t

2N(c, Tc)Q
(23f)

sohmin ≤ soh(q) ≤ sohmax (23g)

soh(0) = soh0 (23h)

Pfcs,min ≤ Pfcs(k) ≤ Pfcs,max. (23i)

Note that the current i in (23) is only an expression of

Pfcs, with the consideration of (1), (2) and (4). We harness

sequential quadratic programming (SQP) algorithm to solve

the optimal control problem (23), as this algorithm has been

corroborated to work well in a spectrum of MPC engineer-

ing applications [57]–[59]. For the solution over the current

horizon [P ∗

fcs(j),· · · ,P ∗

fcs(j + Th − 1)], only the first element

P ∗

fcs(j) is applied to the hybrid powertrain to evolve the

system dynamics, while the remaining elements are discarded.

Such a manipulation is repeated at the next time step k + 1
and is called the receding-horizon principle.

IV. RESULTS AND DISCUSSIONS

In this section, we present optimization results via running

the aforementioned MPC energy management framework. The

baseline prices of the hydrogen, PEMFCS, and battery unit are

given in Table V. As an example, the standard Manhattan bus

cycle (MBC) from [22] is herein considered (see Fig. 7).

A. Optimized cost and power split

Given an exemplary prediction/control horizon Th = 3,

equivalent to three seconds, the optimized cost outcome is
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Fig. 8: Optimal cost result.

Fig. 9: Optimal power split: (a) hydrogen power, (b) PEMFCS

power, and (c) battery power.

shown in Fig. 8. The total running cost in MBC is approxi-

mately $1.5390, to which the hydrogen cost of $1.0331 con-

tributes most. The PEMFCS degradation cost of about $0.3941

constitutes the second large expense, to which three sources,

i.e., high load, low load, and load change, contribute. Clearly,

the contribution of low load to the PEMFCS degradation is

dominant. The battery degradation cost of $0.1118 is smallest,

compared to those of hydrogen and PEMFCS degradation.

The optimized power split between the PEMFCS and the

battery pack is depicted in Fig. 9 and the corresponding motor

electric power is presented in Fig. 10. It is clear that the

PEMFCS largely operates at low load to mitigate its degrada-

tion, with the aid of battery power variances. The associated

trajectories of battery SOC and SOH are illustrated in Fig. 11.

It can be found that the proposed MPC energy management

solution works well to ensure the battery charge sustenance.

The battery SOH decline is slight, less than 0.005%.
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Fig. 10: Trajectory of the motor electric power.

Fig. 11: Optimal battery states: (a) SOC and (b) SOH.

B. Horizon effect

In this subsection, we investigate how the size of the pre-

diction/control horizon affects the optimization accuracy and

computational burden. As shown in Fig. 12, the total running

cost reduces, as the horizon size increases. The computational

burden, however, becomes increasingly heavy, particularly

when the size exceeds 10s. Therefore, the choice of the horizon

size needs a balance between the optimality and computational

efficiency for a specific case study. For example, as for low-

cost energy controllers with limited computational capability,

it is probably sensible to pick a relatively small horizon

size, e.g., less than 5s, to assure real-time implementability.

On the contrary, in the case of a computationally powerful

controller, we most possibly prioritize the optimality over the

computational load, so as to seek a large horizon size, e.g.,

greater than 9s.

C. Effect of prediction uncertainty

In the above discussion, we assume that the bus velocity

trajectory in the prediction horizon is exactly known. This

assumption is highly judicious, as bus routes are typically

fixed, especially in city transit applications. With the develop-

ment of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure

(V2I) communication, highly credible velocity predictors are

expected even in the context of varying, complex routes.

Vehicular velocity forecasting itself is a vast area of intensive

studies, leading to a diversity of prediction methods. Please,

for example, refer to [63], [64] for more related details. Since

the main contributions and focus of this endeavor do not

lie in velocity prediction, we straightforwardly evaluate how
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Fig. 12: Optimal cost and average calculation time per step as

functions of horizon size (a 3.5GHz CPU with 32GB RAM

was used).

Fig. 13: Optimal cost versus prediction error.

potential prediction uncertainty influences the optimal cost

by adding artificial Gaussian prediction errors of different

standard deviations to the MBC data. To maintain physical

viability, the contaminated negative velocity is set to zero.

Take a prediction/control horizon Th = 5 as an example.

The associated result is illustrated in Fig. 13. It is clear that

the optimized cost increases with augmented prediction error.

When the standard deviation of the error equals to 1, the

total cost virtually doubles, in contrast to the benchmark with

perfect velocity. Hence, it is of great importance to obtain

sufficiently precise velocity evolution, from a perspective of

saving vehicular running cost.

It is worth mentioning that, in the case of imperfect ve-

locity forecasting, as the prediction horizon increases, the

prediction uncertainty most probably increases. Such an error

increase may somewhat offset the optimality gain obtained by

increasing the prediction horizon. As such, the performance

improvement of the predictive controller resulting from the

horizon increase may saturate. As a result, we cannot arbitrar-

ily augment the prediction horizon, which should be decided

by a nontrivial, comprehensive consideration of the prediction

uncertainty, optimality gain, and computational load.

Fig. 14: Comparative result among MBC, CSC, and Gothen-

burg cycle.

V. DRIVING AND PRICING IMPACT

In this section, the influence of driving and pricing scenarios

on the optimization outcome is elucidated.

A. Driving Impact

In addition to MBC, we consider another two bus cycles,

i.e., the standard city suburban cycle (CSC) and a realistic

Gothenburg city cycle with slope knowledge (see Figs. 8

and 9 of [22]). In this way, how the driving pattern affects

the optimal cost can be unveiled. Given Th = 5, the total

costs under the three driving cycles in $/km are compared in

Fig. 14. It is evident that the harshest MBC induces the highest

expense, i.e., about $0.44/km. In MBC, the prime mover,

PEMFCS, experiences the most dynamic loads, giving rise to

higher hydrogen cost and PEMFCS degradation. In the other

extremum, the smoothest CSC leads to the lowest expense,

i.e., about $0.28/km (36.4% reduction versus MBC). In CSC,

the hydrogen cost, PEMFCS cost, and battery cost are all

lowest in the three cycles. The total expense in the Gothenburg

cycle is in between MBC and CSC, i.e., $0.34/km (22.7%

reduction versus MBC). In this cycle, the battery degradation

is, however, largest, because the hilly driving requires more

frequent utilization of the battery system.

B. Pricing Impact

We examine the pricing impact on the optimization result,

through considering price evolutions of hydrogen, PEMFCS,

and battery in the most recent three years (from 2017 to 2019).

Table V is used as the baseline prices in 2017. The annual price

increase of hydrogen is assumed to be 20%, due to increas-

ingly serious energy shortage. The PEMFCS price decrease is

from [61] (about 5% annually), while that of the battery is

from [62] (about 11% annually), due to economies of scale

and growing maturity of design/manufacturing technologies.

The price evolutions are shown in Fig. 15.

The optimization results are plotted in Fig. 16. It is pro-

nounced that the optimal cost gradually increases from 2017

to 2019. For example, in MBC, the increases in 2018 and 2019

reach 11.27% and 26.02%, respectively, with respect to the
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Fig. 15: Price evolutions of hydrogen (a), PEMFCS (b), and

battery (c) in the three years.

Fig. 16: Optimization results in the three years (from 2017 to

2019).

baseline case in 2017. The reason is the noticeably augmented

hydrogen cost, due to its price increase. From the results in

all the three cycles, we can see that the costs of PEMFCS and

battery degradation are only slightly reduced.

In the future, more sophisticated models can be established

to predict price evolutions of hydrogen, PEMFCS, and bat-

tery. The obtained results will then be incorporated into the

proposed energy management framework to investigate their

effects.

VI. CONCLUSIONS

This paper devises a cost-optimal, predictive energy man-

agement strategy for hybrid powertrains, which is cognizant

of the lifetime of both fuel cell and battery systems. In

the strategy, the total running expense of a PEMFCS/battery

hybrid electric bus, inclusive of hydrogen cost and costs of

fuel cell and battery degradation, is minimized in an MPC

setting. The effectiveness and computational efficiency of this

strategy are validated via numerous simulation campaigns, and

the effects of prediction horizon and prediction uncertainties

are assessed. Furthermore, how driving and pricing scenarios

impact the optimization results are investigated.

The key findings include the following five points:

1) The proposed method presents an alternative idea for

developing cost-optimal energy management strategies of

fuel cell/battery hybrid electric vehicles.

2) How to pick an appropriate horizon size entails a trade-

off between the optimality and computational efficiency,

according to controller properties. As the horizon size

becomes larger, the total running cost reduces, whereas

the computational load increases.

3) Velocity prediction uncertainties thwart the reduction

of total running cost. When the standard deviation of

uncertainty equals to 1, the total cost of the bus increases

by nearly 100%.

4) Driving patterns significantly influences the optimized

cost. The highest expense, i.e., about $0.44/km, occurs

in the harshest MBC. As the driving becomes smoother,

we can accomplish 22.7% and 36.4% cost reductions in

the Gothenburg and CSC cycles, respectively.

5) The potential price changes of hydrogen, PEMFCS, and

battery will increase the optimized cost, due to pre-

dominantly augmented hydrogen cost. In MBC, the cost

increases in 2018 and 2019 are 11.27% and 26.02%,

respectively, versus the baseline case in 2017. The cost

decreases of PEMFCS and battery degradation are very

slight.
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