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Abstract: Cost overrun risks are declared to be dynamic and interdependent. Ignoring the relation-
ship between cost overrun risks during the risk assessment process is one of the primary reasons
construction projects go over budget. Conversely, recent studies have failed to account for potential
interrelationships between risk factors in their machine learning (ML) models. Additionally, the pre-
sented ML models are not interpretable. Thus, this study contributes to the entire ML process using a
Bayesian network (BN) classifier model by considering the possible interactions between predictors,
which are cost overrun risks, to predict cost overrun and assess cost overrun risks. Furthermore,
this study compared the BN classifier model’s performance accuracy to that of the Naive Bayes (NB)
and decision tree (DT) models to determine the effect of considering possible correlations between
cost overrun risks on prediction accuracy. Moreover, the most critical risks and their relationships
are identified by interpreting the learned BN model. The results indicated that the 18 BN models
demonstrated an average prediction accuracy of 78.86%, significantly higher than the NB and DT.
The present study identified the most significant risks as an increase in the cost of materials, lack of
knowledge and experience among human resources, and inflation.

Keywords: cost overrun; risk assessment; machine learning; Bayesian network classifier; naive Bayes;
decision tree

1. Introduction

Due to the complexity and dynamic nature of construction projects, they have histor-
ically encountered a series of cost overrun issues [1]. The difference between a project’s
initial estimated cost and the project’s bid or final cost can be significant. Controlling project
budgets throughout the project’s lifecycle, from start to finish, is a significant challenge for
construction companies [2]. A successful project meets technical specifications, adheres to
the schedule, and stays within budget [3]. However, approximately 86% of construction
projects encounter cost overruns, which is known as a common problem in emerging Asian
economies [4]. The interdependence of the factors contributing to the cost overrun should
be considered to minimize the risk of cost overruns. Despite its significance, it has largely
been overlooked when calculating the probability and impact of their occurrence [5].

Previous studies have implemented Artificial Intelligence (AI)-based techniques to
apply accurate decision-making processes in various fields, including risk assessment
and prediction. AI is a critical component of Industry 4.0. The term ‘AI’ refers to the
science and engineering of developing intelligent machines capable of reasoning, learning,
knowledge acquisition, communication, perception, planning, and the ability to move and
operate objects. Additionally, AI systems and technologies can tackle complex, nonlinear
practical problems and, once trained, can make rapid predictions and generalizations [6].
“Construction 0.4” is the construction industry’s current slogan, aiming to digitize and
automate the industry to boost productivity [7].
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Despite the industry’s ambitions, as expressed in Construction 4.0, it lags behind
other sectors in smart technology adoption [8]. According to [9], the primary research
issues and most frequently studied topics in construction and engineering management
are cost, planning, risk management, safety, and productivity. However, these subjects
require additional research to integrate and properly use AI [6]. AI enables a plethora of
opportunities for significant productivity gains. This is accomplished through the rapid and
accurate analysis of large volumes of data [10]. Compared to traditional methods, AI has
several advantages when dealing with uncertainty and can effectively assist in resolving
such complex problems. ML is a significant subfield of AI that focuses on studying,
designing, and developing algorithms that can learn from data and make predictions based
on learned data. ML refers to the capability of computers to learn without being explicitly
programmed. ML models can be predictive or descriptive when deriving knowledge from
data [11].

Risk management is a structured and fundamental process for enhancing project
performance by mitigating or eliminating the consequences of risks associated with project
objectives. Given the dynamic and interdependent nature of cost overrun risks, a credible
risk assessment framework should consider the interrelationships between risk factors [12].

Table 1 summarizes the most relevant studies that addressed the issues for predicting
and analyzing project cost overruns and delays using ML algorithms. It comprises an
overview of studies conducted at different scopes and methodologies. Table 1 reports the
data sources, output variables, feature selection methods, validation techniques, etc. As
can be seen, all of the studies relied on some specific ML models, which are not capable
of considering the interdependencies between risk factors. Moreover, there is a lack of an
interpretable ML model from which project stakeholders can extract information.

In recent years, ML algorithms have aided in resolving domain-specific problems
in various engineering fields, ranging from detecting defects in reinforced concrete to
monitoring natural disasters [13]. Recent studies have used ML models to predict and
assess the risk of delays and cost overruns in construction projects. However, previous
models, whether for prediction or assessment purposes, overlooked the critical nature of
the risks in their ML models. Moreover, previous studies did not present an interpretable
ML model for deriving additional information from the learned model.

To the best of the authors’ knowledge, the existing literature on cost overrun pre-
diction relies on inaccurate predictors. Considering the risk definition by PMBO (Project
Management Body of Knowledge) [14], which is “an uncertain event or condition, that if it
occurs, has a positive or negative effect on a project’s objective”, risk factors are the reasons
that cause deviations in cost objectives. Moreover, the literature’s outcomes are not very
explicit due to the inability to interpret their ML models.

Table 1. A taxonomy of the existing literature on project cost overrun and delay: prediction and analysis.

Study Scope ML
Model(s)

Risk
Factors as
Predictors

Number of
Identified
Features

Data
Source

Output
Variable

Feature
Selection
Method

Number of
Features

after
Feature

Selection

Training
and

Evaluation
Method

Informative
Learned
Model

[15]

Causes of
delays

identifica-
tion

DT and
NN - 98

RMS
(Resident
Manage-

ment
System)

Delays
(day) Wrapper 9 Hold-Out -

[16]

Conceptual
cost

estimates
quality

assessment

SVM - 20

Reviewing
past

research
and

interviews

Conceptual
cost

estimation
error range

- - 5-fold CV -

[17]
Cost per-
formance
prediction

SVM - 64

PDRI
(Project

Definition
Rating
Index)

Project cost
perfor-
mance

Wrapper 39 10-fold CV -
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Table 1. Cont.

Study Scope ML
Model(s)

Risk
Factors as
Predictors

Number of
Identified
Features

Data
Source

Output
Variable

Feature
Selection
Method

Number of
Features

after
Feature

Selection

Training
and

Evaluation
Method

Informative
Learned
Model

[18]
Cost

overrun in-
vestigation

NN classif
cation and
regression

- 1

DOT (De-
partment
of Trans-

portation)

Closest
ratio to the
actual cost

of the
project

- - 5-fold CV -

[19]
Causes of
delays in-

vestigation
NB and DT + 9

Surveys
and project

reports

Occurrence
or non-

occurrence
of delay

- - Hold-Out -

[20]

Cost
overrun

and delay
prediction

NNs classi-
fication - 15 El-Maaty

et al. [20]

Cost
overrun

and delay
percentage

- - Hold-Out -

[21]
Cost

overrun
prediction

NB, DT,
SVM, RF + 48

Reviewing
past

research

Cost
overrun

Correlation
attribute

eval,
Info gain
attribute

eval,
Wrapper

1 Hold-Out +

[22] Delay
prediction NB and DT + 9

Reviewing
past

research
and

holding
meetings

Delay - - 10-fold CV -

[8]

Delay
prediction

using delay
risk

analysis

ANN,
SVM,
K-NN

+ 36
Reviewing

past
research

Delay
Correlation

attribute
eval,

Wrapper
4 Hold-Out -

[23] Delay
prediction RF + 37

Reviewing
past

research
and

interviews

Delay - - Hold-Out -

[24] Delay
prediction

Ensemble
algorithms - 24 Expert

surveys Delay Chi-
squared 9 Hold-out -

[25]

Engineering
services’

cost
overruns

prediction

RF
regression - 12 Project

reports

Engineering
services’

cost
overruns

- - Hold-out -

[26]
Predict con-

struction
cost

SVM,
ANN,

GENLIN
(general-

ized linear
regression),

CART
(classifica-
tion and

regression-
based
tech-

niques),
CHAID

(chi-
squared

automatic
interaction
detection),
and DLNN

(deep
learning
neural

network)

- 10
Project

specifica-
tion

Preliminary
construc-

tion
cost

- - 5-fold CV -

Present
study

Step 1:
Cost

overrun
prediction,

Step 2:
Cost

overrun
risks

assessment

BN, NB,
and DT + 43 Expert

judgments
Cost

overrun
Step 1:

CFS, Step 2:
-

Step 1: 8,
Step 2: - 10-fold CV +
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Based on the abovementioned issues, this study aims to forecast cost overruns and
assess the associated risks in construction projects through a Bayesian Network Classifier.
The proposed model is capable of considering interrelationships between the predictors,
which are cost overrun risks. The research carried out all stages of the ML process using
the BN classifier model, which can be interpreted and address the possible relationships
between the risk factors. Finally, the learned BN model deduces the relationships between
cost overrun risks.

2. Literature Review
2.1. Previous Studies

Previous studies have assessed the risks of construction projects through various meth-
ods. Traditional approaches, however, have been widely used for construction project risk
assessment. Analytical network processing (ANP), a modified form of analytical hierarchy
process (AHP), has increasingly been used to solve many projects’ cost-related problems
with subjectivity since 2000 [27,28]. However, the fundamental limitation of this approach
is that it performs a pairwise comparison while assigning a crisp value [29] to capture uncer-
tainty and stochastic behavior in risk data of complex projects [30]. Monte Carlo simulation
(MCS)—a decision-making tool—is based on the probabilistic theory of an event from
historical data [1]. Pehlivan and Öztemir [31] developed an MCS-based model to measure
the impact of schedule delays on cost overruns. MCS is a valuable technique for making
better decisions to solve problems in which uncertainty and variability in information
have traditionally distorted forecasts [32]. However, MCS still has difficulty recognizing
probabilities since risk and unpredictability cannot be characterized as probabilistic [12].
Another approach to assessing construction management risk is using structural equation
modeling (SEM). Using SEM, multiple variables’ direct and indirect impacts can be mea-
sured by establishing a causal relationship between them [4,33]. One of the limitations
of SEM is that it does not assume the uncertainty and stochastic behavior of events [34];
therefore, it has limited applications for complex projects under high uncertainty [1]. This
paragraph examined the advantages and disadvantages of traditional methods used in the
risk assessment of construction projects. One significant drawback of these conventional
methods is that the industry and academia are trying to move towards using “Construction
4.0” tools and techniques in their practices (e.g., AI, ML, etc.). This shift in approach has
faded conventional methods applications for construction risk assessment gradually.

An artificial neural network (ANN) is an AI-based tool used extensively in project
risk management processes to better estimate cost under high complexity and uncertainty
(e.g., [35]). An ANN-based model, however, could be appropriate if adequate cost-related
data are available [1]. Furthermore, ANNs are black box models that cannot be interpreted.
Another AI-based technique is fuzzy logic, introduced by Carr and Tah [36] to construction
risk assessment in 2001. However, the plain fuzzy logic can not cope with the correlations
between the variables. Therefore, numerous researchers have since modified fuzzy logic to
increase its practicality [12]. For example, modified fuzzy logic or fuzzy logic combined
with other methods such as AHP ([37]), ANP ([38]), and TOPSIS ([39]) have received much
attention as construction risk assessment tools. However, Fuzzy-AHP and Fuzzy-ANP
have similar drawbacks, requiring many tedious pairwise comparisons [40,41]. The issue
with Fuzzy-TOPSIS is that it does not consider the correlation between attributes, and it is
difficult to weigh the attributes and maintain the consistency of judgment [42].

Over the last two decades, ML algorithms have been widely used in various fields.
Despite its highly regarded promising potential, ML remains a new prospect in the construc-
tion sector [22]. It is worth noting that the terminology used to describe ML applications for
risk assessment is not standardized; e.g., data mining, AI, and deep learning are all used
interchangeably [13]. The current study examined prior research and made comparisons
using ten criteria. These criteria, chosen after researching previous studies, are exhaustive
and encompass all pertinent information about an ML model (Table 1).
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Soibelman and Kim [15] used DT and neural networks (NN) to deduce the causes of
construction delays using the RMS dataset to predict daily delays. The proposed approach
can be used as a guide for the knowledge discovery process from a dataset. An et al. [16]
used the support vector machine (SVM) to predict the error range of conceptual cost
estimates in three classes. Initially, this study reviewed prior research to determine the
factors influencing the conceptual cost estimate. Then, through interviews with three
cost estimators, 20 input variables were selected in five categories: information, project
definition, cost estimating team, process, and uncertainty. This study employed five-
fold cross-validation (CV). According to the results, the SVM model outperformed the
Discriminant analysis method. Lee et al. [17] also applied the SVM model to forecast project
cost performance. Among the 64 features available in PDRI, 39 variables were selected and
used to predict the project’s cost performance in this study. The 10-fold CV method was
used to train and evaluate the model. The proposed model exhibited a 4.72% error rate. A
study conducted by Art Chaovalitwongse et al. [18] investigated the relationship between
cost increases and the bidding policy in construction projects to evaluate cost overrun. Two
NN classification and regression models were employed for this purpose. The bid selection
policy was identified from the DOT dataset and used as the model’s input variable. The
ratio closest to the project’s actual cost was the output variable. This study used a five-fold
CV to train and evaluate the models.

Asadi et al. [19] used NB and DT to predict whether or not the delay occurred in
construction projects using nine delay factors. The results indicated that NB outperforms
DT by 5.89% in accuracy prediction. Gondia et al. [22] proved the advantages of ML
algorithms over statistical learning in a highly interdependent environment of delay risks
and complex relationships between them and used NB and DT to predict delays. The
results indicated that the NB outperformed the DT with a prediction accuracy of 78.4%.

Sanni-Anibire et al. [8] analyzed delay risks using ML models based on artificial
neural networks (ANN), SVMs, K-nearest neighbors (KNN), and ensemble methods. The
algorithms were trained and evaluated using the hold-out method. The results indicated
that the ANN had the highest prediction accuracy compared to other algorithms. A study by
Yaseen et al. [23] showed that random forest (RF) optimized with a genetic algorithm is more
accurate than standard RF in predicting delays. Egwim et al. [24] developed an ensemble of
ensemble predictive models for delay prediction and used Chi-squared for feature selection
among 24 delay factors. The result showed that when predicting construction project
delays, ensemble algorithms were found to be more accurate than single algorithms. Shoar
et al. [25] used the RF regression model to predict engineering services’ cost overruns. This
study collected a database consisting of 95 high-rise residential building projects in Iran
with 12 project-related and organizational-related variables. Comparing the model with
support vector regression and multiple linear regression revealed that the RF regression
model performed better than the baseline models. Dang-Trinh et al. [26] showed that
DLNN is more accurate than SVM, ANN, GENLIN, CART, and CHAID in predicting
preliminary factory construction costs.

Through reviewing the past studies comprehensively, the literature’s main research
gaps are as follows: (1) all the studies skipped explaining the reason behind selecting the
ML models used in their studies except for Ghazal and Hammad [21]. However, the model
developed by Ghazal and Hammad [21] had only a 60.87% accuracy prediction for cost
overrun, which is not significant. (2) the studies failed to develop and present an inter-
pretable ML model from which project stakeholders can gain knowledge by interpreting
the learned model. (3) most of the studies used inaccurate predictors for cost overrun
prediction since risks are the factors that influence the project’s objectives. Although Ghazal
and Hammad [21] selected risks as the models’ predictors, the importance of considering
the interdependencies between the risks was overlooked in the study. 4) most studies used
the hold-out method to train and validate their models. However, the major drawbacks
of the hold-out method include difficulties with arriving at a random testing set split that
would be representative of the entire data set in terms of (1) the true variability of the
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independent variables; and (2) the distributions of the class labels of the dependent variable
in a way that avoids class imbalance [22].

2.2. Application of ML to Construction Project Risk Analysis

ML is one of the most promising tools in predictive data analytics. It combines
methods from statistics, database analysis, data mining, pattern recognition, and artificial
intelligence to extract trends, interrelationships, patterns of interest, and useful insights
from complex data sets [43,44]. Gondia et al. [22] proved that ML-based approaches are
superior in predicting construction projects’ delay risk over statistical learning. They
declared two main reasons for this: (1) delay risks are highly interrelated, and (2) complex
relationships between the risks and the time overrun classes. Similarly, cost overrun risks
are said to be dynamic, interdependent, complicated, uncertain, subjective, and fuzzy due
to their large size, higher complexity, and unique project contexts and environment [45].
Therefore, ML offers an ideal set of techniques to tackle such complex problems. On the
other hand, previous studies revealed that ML models could predict construction project
time overrun with high prediction accuracy. However, only a few studies have applied ML
models to predict cost overruns, and none used an interpretable ML model to assess cost
overrun risks.

2.3. Problem Definition

Risk management is a formal and fundamental process for enhancing project perfor-
mance by mitigating or controlling the consequences of the risks associated with project
objectives. It typically entails the steps of risk identification, risk assessment, risk treatment,
and stage monitoring throughout the project’s life cycle [12,46]. Among these critical steps
in the risk management process, risk identification and risk assessment are the essential
components that enable decision-makers to develop proper risk management plans and
implement appropriate preventive measures [47]. Due to cost overrun risks’ dynamic
and interdependent nature [12], a reliable risk assessment framework should consider the
interrelationships between risk factors. Ignoring the interdependence of risks can result in
an ineffective reflection of the actual risk conditions associated with construction projects.
It may provide less reliable risk assessment results for decision-making [4].

On the other hand, according to the PMBOK [14] definition of risk, construction project
risks result in deviations from project objectives (including cost objectives). As a result, cost
overruns negatively affect construction projects worldwide [21].

Nonetheless, no previous study has used cost overrun risks as input variables for ML
models to predict cost overruns. Furthermore, they did not account for possible relation-
ships between cost overrun risks in their ML models, which would have provided more
reliable results for risk assessment. Simultaneously, the literature lacks an interpretable ML
model through which additional information can be obtained.

As a result, this study used risks as input variables to predict cost overruns using an
ML model with two prominent features: (1) capable of considering possible relationships
between input variables; and (2) interpretable. The ML process was implemented in this
study using the Waikato Environment for Knowledge Analysis (WEKA). WEKA is a robust,
open-source, and user-friendly piece of software. This software can perform all stages
of knowledge discovery from a dataset and incorporates a diverse set of algorithms [48].
Moreover, construction firms have used this software to deliver ML models [21]. The
University of Waikato developed WEKA in Hamilton, New Zealand [49].

3. Materials and Methods
3.1. ML Algorithms

The primary goal of ML is to optimize a model by utilizing data or prior experiences
to predict or obtain information from data [50]. By combining statistics, database analysis,
data mining, pattern recognition, and AI, ML models enable the extraction of valuable
knowledge from complex datasets. This technique identifies trends, interactions, patterns
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of interest, and valuable insights [43,44]. Stakeholders in the project can leverage this
knowledge to make accurate and timely decisions. Algorithms of various types include
supervised, unsupervised, semi-supervised, and reinforcement algorithms [51].

The choice of the ML algorithm is highly dependent on the data collected and the
nature of the problem. Each ML algorithm is unique in terms of applicable data and has
its own set of advantages and disadvantages [52]. The majority of studies in the field
of construction management that have been reviewed have used supervised learning
algorithms to create their models. As a result, this research examined explanations related
to the supervised method.

The supervised learning algorithm generates a function that maps the input(s) to
the desired output(s). Classification and regression are two types of supervised learning.
Classification is a supervised learning problem in which the objective is a nominal class,
whereas regression has a numeric goal. The classification problem is a well-known super-
vised learning issue. In this case, the learner must learn several input-output examples to
align the vector with one of the classes. The purpose of classification is to group similar
items [51]. Examples of supervised classification algorithms are neural networks, NB, DT,
SVM, and BN classifiers.

3.2. ML Process

The ML process is divided into five stages: problem definition, data collection, data
preparation and preprocessing, ML algorithm selection, and model training and evaluation.

The first step in any project is the problem definition. This is the most critical step in
the ML application. In this step, the most potent algorithms can be utilized, but the results
will be insignificant if the wrong problem is solved. The data in supervised learning are
made up of examples. Each instance contains an input element delivered to a model and an
output element that the model predicts. The training dataset is the sample of data used to
train the model, while the test dataset is the sample of data used to evaluate the model [53].

The construction industry collects data in two ways: objective data from recorded
reports on completed projects and subjective data from industry experts. Preparing and
preprocessing the data for the modeling process is necessary after data collection. Data
preparation entails transforming raw data into a more conducive form of predictive model-
ing. Because the collected data may initially contain errors or inaccuracies, and the selected
algorithm(s) may have assumptions about the data’s type and distribution [54]. For in-
stance, the NB accepts only nominal values and presupposes that the input variables are
independent. This stage also includes the feature selection process. This process reduces
the size of the dataset by selecting and removing unrelated features, allowing the ML
algorithm to operate more efficiently and quickly [51]. Nonetheless, because ML is an
experimental science, it is not always ensured to improve the model’s accuracy through
the feature selection step [55]. According to [15], the most time-consuming stage of the ML
process is data preparation and preprocessing.

The next step is to select an ML algorithm. To this end, it is necessary to classify
ML algorithms according to whether the collected data are labeled or not. The category’s
algorithms are then examined. One of the most important criteria for selecting an ML
algorithm is considering different algorithms’ assumptions. Each algorithm is based
on certain assumptions. Additionally, the algorithm’s requirements must be followed.
Otherwise, the model’s accuracy degrades. These assumptions may include the number of
observations, the relationship between features, the maximum number of categories, the
linearity or nonlinearity of features, and the discrete or continuous nature of feature values,
to name a few [56].

The next step is to train and evaluate the ML algorithm. At this stage, two approaches
are available: the hold-out method and the K-fold CV. The hold-out method is frequently
used to determine the model performance accuracy. This method randomly divides the data
set into 60% to 80% training data and 40% to 20% test data. However, the main downside
of this method is that the data are randomly distributed, resulting in an unbalanced
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distribution of class labels. CV on a k-fold scale divides the entire dataset into k distinct and
nearly equal subsets or folds, where k is a positive integer. The hold-out method is then
repeated k times with one of the k folds rotated as the test set and the remaining k-1 folds
combined for training. A confusion matrix is generated for each repetition from which
overall and class performance indices can be extracted. After averaging these k individual
indices, the final k-fold CV performance indices are computed [22]. Finally, regardless of
the training and testing method used, the ML algorithm’s performance is determined using
various indicators such as accuracy, misclassification error, precision, recall, and area under
the ROC (Receiver Operator Characteristic).

4. Case Study

In this research, the presented approach was implemented using data retrieved from
experts and specialists with experience in government construction projects in Zanjan
province. The case studies are construction projects that government agencies in Zanjan
province have carried out. Therefore, the projects were all similar in terms of the project’s
owner (i.e., government), location (i.e., Zanjan province), and type (i.e., construction
project). The questionnaires were delivered to the experts in employer, consultant, and
contractor organizations of these projects. Therefore, the results of the present study can be
generalized to government construction projects in Zanjan province.

5. Research Methodology

This study aims to predict cost overruns and assess the risk factors associated with
cost overruns using an interpretable ML model that considers the potential relationships
between the risks. To this end, and per the ML process, this study implemented ML models
in two steps (Figure 1). The current study implemented three different ML algorithms and
compared their performance accuracy in the first step using the feature selection step to
predict cost overrun. This study examined the effect of considering possible relationships
between cost overrun risks on the accuracy of cost overrun prediction in ML models at this
stage. On the other hand, the second step’s objective was to assess the risk of cost overruns
by interpreting the learned model and identifying all possible relationships between the
risks. The model included all risks; the feature selection step was omitted. Additionally,
this research presented a preventive decision-making tool to assist stakeholders in risk
management by interpreting the learned model.

5.1. Data Collection

In the construction industry, data are collected in two ways: objective data from
recorded reports on construction projects and subjective data from industry experts. While
the methods for generating and collecting data in the construction industry have improved,
the data may still not be stored in a way that facilitates knowledge extraction [21]. Un-
fortunately, objective data are challenging to obtain, as the construction industry is still
chronically behind the curve when recording and publishing data suitable for ML applica-
tions [8]. Researchers have identified quantitative and qualitative factors associated with
construction cost overruns. 43 cost overrun factors were identified in a literature review
as appearing most frequently or in highly cited papers. These factors were gathered from
seven research papers that addressed the cost overrun problem in construction projects.
Then, on a 1–5 Likert scale, experts were asked to rate the probability and impact of the
identified risks (1: very low, 2: low, 3: medium, 4: high, 5: very high). The experts were
selected randomly by visiting the related organizations to the case study. One expert
refused to answer the questionnaire. There were 41 experienced specialists involved in
total. These individuals are involved in organizations representing employers, contractors,
consultants, and project management (Table 2). Two responses were excluded from the
dataset due to their ineligibility: a lack of experience with construction projects and a high
rate of missing data. Finally, 39 responses were qualified for the development of the dataset.
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Table 3 summarizes the risks identified and each risk’s average probability and impact, as
determined by expert responses.
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Figure 1. Methodology for developing the proposed cost overrun prediction and cost overrun risk
assessment model.

Table 2. Respondents’ profile.

Category Type Number Percent

Organization

Employer 10 25.6

Consultant 9 23.1

Contractor 11 28.2

Consultant/Employer 3 7.7

Consultant/Contractor 4 10.3

Government supervisor 2 5.1

Experience (years)

=<20 13 33.3

=<15 12 30.8

=<10 11 28.2

=<5 3 7.7

Discipline

Civil Engineering 33 84.6

Architecture 3 7.7

Electrical Engineering 2 5.1

Industrial Engineering 1 2.6

Education level

Bachelor’s 20 51.3

Master’s 17 43.6

Ph.D. 2 5.1
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Table 3. Identified Risks’ Specifications.

No. Source Risk Factors Reference Code
Probability Impact

Mean Stdv. Mean Stdv.

1

Managerial

Poor feasibility study [57] Mg1 3.28 1.21 3.95 1.02

2 Contractor managerial weakness [45,57] Mg2 3.05 1.05 4.28 0.76

3 Poor communication between the parties [45,58] Mg3 2.59 0.68 3.28 1.02

4 Conflict between the project parties [45] Mg4 2.67 1.03 3.33 0.98

5 Consultant managerial weakness [58] Mg5 2.90 0.97 3.82 0.82

6 Owner incapable of project manager [58] Mg6 2.97 1.29 3.77 1.06

7

Materials and
Equipment

Increased price of materials [59] Mt1 4.59 0.55 4.74 0.59

8 Shortage of equipment [58] Mt2 2.79 1.20 3.18 1.27

9 Delay by the suppliers in delivering
equipment to the site [45,58,60] Mt3 2.74 1.04 3.23 1.13

10 Shortage of materials [59] Mt4 2.56 1.19 3.18 1.23

11 New equipment/technology issues [61] Mt5 2.23 1.20 2.69 1.19

12

Workforce

Lack of knowledge and experience [45] Hu1 2.74 0.88 3.28 1.02

13 Labour shortage [45,60] Hu2 2.18 1.10 3.26 1.07

14 Lack of skilled personnel (technical staff)
on site [45,60] Hu3 2.61 1.14 3.56 1.05

15

Financial

Currency exchange rate [59–61] Fi1 4.20 1.13 4.49 0.91

16 Inflation [59,61] Fi2 4.69 0.52 4.85 0.36

17 Owner fund shortage and payment delays [57,61] Fi3 4.05 1.10 4.36 0.84

18 Multiple sources of funds [57] Fi4 2.54 1.00 3.13 1.15

19 Contractor fund shortage [57] Fi5 3.38 0.78 3.92 1.06

20

Project

Adverse change in geological conditions [45,60] Pr1 2.10 1.14 3.08 1.26

21 Site constraints [45] Pr2 2.23 1.01 2.69 1.05

22 Project complexity [45,60] Pr3 2.51 1.05 3.20 1.15

23

Owner

Site availability [59] Ow1 2.26 0.97 3 1.32

24 Change orders during construction [58–61] Ow2 3.44 1.16 3.77 0.96

25 Delays in decision making [58] Ow3 3.38 1.02 3.77 0.96

26 Owner customs policy and complexity
(procurement delay) [45] Ow4 2.95 1.34 3.48 1.33

27 Delays in land acquisition [58] Ow5 2.54 1.21 3.28 1.39

28 Utility supply [59] Ow6 4.08 0.84 2.13 1.00

29 Lowest bidder selection [41] Ow7 3.67 1.11 3.74 1.12

30

Contractor

Lack of knowledge and experience [45,59,60] Cn1 3.20 0.92 3.85 0.93

31 Procurement delays [45] Cn2 2.85 0.84 3.54 0.91

32 Sub-contractor delays from preceding work [60] Cn3 3.05 0.97 3.33 1.06

33 Improper finance management [41] Cn4 3.15 1.09 3.77 0.90

34 Site safety [45,59] Cn5 2.979 1.22 3.38 1.39

35 Construction (defect) quality [45,59] Cn6 3.10 1.12 3.74 1.19

36 Poor planning and scheduling [58] Cn7 3.28 1.19 3.97 0.90

37

Consultant

Lack of knowledge and experience [45,58] Cs1 2.74 1.09 3.67 1.08

38 Improper design/design errors [45,59,60] Cs2 2.95 1.02 3.79 1.13

39 Delays in delivering design [45,58] Cs3 2.70 1.03 3.49 0.97

40 Change of equipment, or specification of
equipment, during construction [58] Cs4 2.64 0.99 3.26 1.07

41

Environment

Bad weather or emergency condition [45,57–
59,61] Ev1 2.64 0.93 3.28 0.94

42 Unexpected casualties/injuries [59–61] Ev2 1.77 1.01 2.36 1.33

43 Environment preservation law [41] Ev3 1.46 0.82 1.92 1.18
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5.2. Data Reliability

The present study used the Alpha Test of Cronbach because several studies have used
this method to check the validity of the results of questionnaires conducted by the Likert
scale method (e.g., [23,24]). This method is used to assess the internal consistency of the
questionnaire. Thus, as the internal consistency of the questionnaire increases, the alpha
coefficient also increases, implying that if the questionnaire items have the most relevance to
the target variable, this coefficient increases. The main purpose of the coefficient is to assess
how accurate the data obtained from the survey are by evaluating the internal consistency
coefficient of data. In addition, it was important to decide whether the combined factors
help predict cost overrun [24]. Alpha of Cronbach can be written as:

α =
N

(N − 1)

(
1− ∑N

i=1 σ2
i

σ2
x

)
(1)

where N is the number of factors, σ2
i is the covariance between responses, and σ2

x is the
variance of the sum of the answers. While there is no lower bound, the higher the Alpha
coefficient of Cronbach is to 1, the greater the internal accuracy of the factors [62]. The
findings of this study on the 43 factors resulted in Cronbach’s Alpha of 0.92, implying
excellent internal consistency in the questionnaire, and the answers obtained from the
questionnaire have high reliability.

5.3. Data Preparation and Preprocessing

After collecting the data, the probability and impact of the risks were multiplied,
and the magnitude of each risk was assigned to each response (Equation (2)) under the
definition of risk magnitude in ISO 31000:2018. Then, for each sample, the values of the
output variables were determined and quantified (Equation (3)), where n equals 43, the
total number of identified risks. After specifying the dataset’s numerical values, the input
and output variables were converted to nominal values using matrixes (4) (Figure 2) and (5)
(Figure 3), respectively. Finally, Table 4 summarizes the research’s dataset, which is ready
for ML models. Thus, 38.5% of the instances were classified as moderate-class, 61.5% as
high-class, and none as low-class (Table 5). The first step involved applying the feature
selection process following the research objectives. As a result, the Correlation-based
Feature Selection (CFS) method was used in this study. The method’s central hypothesis
is that good feature sets contain highly correlated features with the class but not one
another. An operational definition of this hypothesis is provided by a feature evaluation
formula based on concepts from test theory. CFS is an algorithm that combines this
evaluation formula with an appropriate correlation measure and a heuristic search strategy
to produce a heuristic search strategy. Hall [63] compared CFS to a wrapper—a well-known
approach to feature selection that evaluates feature sets using the target learning algorithm.
CFS produced results comparable to those of the wrapper in many cases and generally
outperformed the wrapper on small datasets. Additionally, CFS executes faster than the
wrapper, allowing it to scale to larger datasets.

Risk Magnitude(RM1) = Probability × Impact (2)

Risk Magnitude(RM2) = ∑(RM1)/n (3)
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Table 4. Dataset.

Instance
Input Variables

Class
Mg1 Mg2 Mg3 ... Ev3

1 Low Low Low ... Very Low Moderate

2 High High Moderate ... Very Low Moderate

3 Moderate High High ... Very Low Moderate

... ... ... ... ... ... ...

38 Very High Very High Moderate ... Very Low High

39 Very High High Moderate ... Very Low High

Table 5. Class label distribution.

Label Number Percent

Low 0 0

Moderate 15 38.5

High 24 61.5

5.4. Algorithm Selection: An Experimental Analysis

Algorithms in the genera category of ML algorithms must be defined concerning the
collected data to select the optimal algorithm. Due to the labeled dataset, this research
examined supervised algorithms. Then, learning algorithms from the supervised algo-
rithms were selected based on the problem definition of developing an interpretable ML
model that considers the possible relationships between risks. Therefore, the BN classifier,
NB, and DT classifiers were used in this study. The BN classifier is capable of consider-
ing possible relationships between variables. Additionally, this is an interpretable model.
Despite the method’s unique characteristics and its successful application to real-world
problems [64], this algorithm has not been used in risk prediction and assessment in con-
struction management literature. The NB classifier, which assumes independent variables,
was developed to compare the results of cost overrun prediction with the BN classifier. This
comparison enabled us to determine whether considering possible relationships between
cost overrun risks affects the accuracy of cost overrun prediction in ML models. On the
other hand, due to their widespread implementation in previous studies, both DT and NB
models can be considered benchmark algorithms for evaluating the performance of the BN
classifier model.

5.5. Decision Tree

The DT is a collection of ML algorithms used in statistical classification [65]. DTs
are a subset of supervised learning algorithms, most of which are based on the objective
of minimizing a function called entropy. There are, however, additional functions for
learning the DT. Earlier models of the DT could only use discrete variables, but newer
algorithms are capable of learning with both discrete and continuous variables. One of
the significant advantages of the DT algorithm is its simplicity of comprehension and
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interpretation [66–68]. DTs are classified into two categories: ID3 and C4.5. ID3 can only
learn from discrete variables. Conversely, C4.5 can learn from discrete and continuous
variables [67]. J48 is a WEKA algorithm that generates pruned and unpruned C4.5. DTs
may employ a variety of learning metrics. Entropy is one of the most frequently used
metrics (information gain). Information gain IE is one of the DT learning metrics based on
entropy and is formulated as follows:

H(T) = IE
(

p1, p2, . . . , pJ
)
= −

J

∑
i−1

pi log2 pi (4)

where H(T) is entropy and p1, p2,. . . denote fractions that sum to one and represent each
class’s percentages in the child node after division. Therefore, the information gained is
obtained in the system IG(T, a) from the division of a node by subtracting the entropy of
the system before and after the division (i.e., parent entropy H(T) minus child entropy
H(T|a)) as follows:

IG(T, a) = H(T)− H(T|a) = −
J

∑
i=1

pi log2 pi −
J

∑
i=1
−Pr(i|a) log2 Pr(i|a) (5)

Tree learning is the process of first determining which variable results in the greatest
change in entropy (i.e., the greatest information gain) and then dividing the dataset accord-
ing to this variable. This procedure is repeated for each newly created subcategory and
continues until they achieve a certain level of purity [65]. As a result, the order of variables
in a DT structure indicates the amount of information they contain.

5.6. Naïve Bayes

The NB classifier is a Bayesian-based statistical technique that determines an observa-
tion’s probability of belonging to a particular class. Using a training dataset, the technique
calculates the prior probabilities of an observation occurring in a particular class within a
predefined set of classes. Then, it employs the prior probabilities to determine the posterior
probabilities that an observation belongs to each class. Finally, class membership is defined
for a tested observation by selecting the most posterior probability class [21]. The NB can
be considered a conditional probability model. Suppose X = (x1, . . . , xn) represents the
vector of n attributes that are independent variables. Thus, the probability of encountering
Ck i.e., p(Ck|x1, . . . , xn), can be expressed as one of the states of various event classes for k
as follows:

P(Ck|X) =
P(X|Ck)P(Ck)

P(X)
(6)

As seen, Equation (6) is identical to the Bayesian theorem. Thus, to calculate the
probability of p(Ck|x1, . . . , xn) it is sufficient to use the joint probability and simplify it
using the conditional probability according to the variables’ independence:

p(Ck|x1, . . . , xn) = p(x1|x2 . . . , xn, Ck)p(x2|x3 . . . , xn, Ck)p(xn − 1|xn, Ck)p(Ck) (7)

If the variables in x1 are assumed to be independent, the probabilities can be expressed
more simply. Consider the following relation:

p(xi|xi+1, . . . , xn, Ck) ≈ p(xi|Ck) (8)

The probability can be expressed in this manner as a multiplication of the conditional
probability:

p(Ck|x1, . . . , xn) = p(Ck)
n

∏
i=1

p(xi|Ck) (9)
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because the fraction’s denominator is constant throughout the calculation in relation (6), the
conditional probability can be considered proportional to the combined probability. Given
the preceding and the relation (9), the conditional probability presented in Equation (8)
can be calculated as follows. As a result, the probability of an observation belonging to the
category or group Ck based on X observations is determined by the following relation:

p(Ck|x1, . . . , xn) =
1
Z

p(Ck)
n

∏
i=1

p(xi|Ck) (10)

Only the output variable (child) is dependent on all of the input variables (parents) in
the NB; there is no interdependence between the input variables.

5.7. Bayesian Network Classifier

Recent work in supervised learning has demonstrated that a surprisingly simple
Bayesian classifier called NB, which makes strong assumptions about feature indepen-
dence, is competitive with state-of-the-art classifiers such as C4.5. This fact leads to whether
a classifier with less restrictive assumptions could perform even better [69]. BN classifiers
are a subset of Bayesian networks that are optimized for classification problems. These
classifiers have several advantages, including model interpretation, compliance with com-
plex data and classification problem environments, efficient learning and classification
algorithms, and successful application to real-world problems [64].

Consider the following set of variables. On a set of variables U, BN B is a directed
acyclic network structure with BS on it, as well as a collection of possible tables. where
pa(u) is u’s parent set in assumptions: Each variable is discrete and finite, and no data are
missing. The BN algorithm is implemented in BS. BN provides probable distributions PU =
Qu∈U p(u|pa(u)). WEKA’s BN algorithms start with two steps: first, the network structure
must be learned, followed by the probability tables. After determining an appropriate
network structure, conditional probability tables for each variable can be estimated [70].

This research built 18 BNs to determine the optimal network among them. The
learning algorithm, network type, and the maximum number of parents differ between
these networks. In general, three types of learning algorithms: K2, hill-climbing, and tabu
search; two types of networks: InitAsNaiveBayes and General; and three modes for the
maximum number of parents, 2, 3, and None, were considered.

5.7.1. Learning Bayesian Networks

A learning algorithm for BNs is constructed by defining two components: a function
for evaluating a given network against the available data and a method for searching
through the space of possible networks. The quality of a network is determined by the
probability of the data it transmits.

K2, a fast and straightforward learning algorithm, begins with a predefined ordering
of the attributes (i.e., nodes). Then it processes each node in turn, greedily considering
adding edges to the current node from previously processed nodes. Each step maximizes
the network’s score by adding an edge. Attention is directed to the next node when no
further improvement is apparent.

A more sophisticated but slower version of K2 is hill-climbing, which considers adding
or deleting edges between arbitrary pairs of nodes without regard for order. Additionally,
consider inverting the direction of existing edges. As with any greedy algorithm, the
resulting network only represents a local maximum of the scoring function: it is always
prudent to run such algorithms multiple times with different random initial configurations.

Furthermore, more sophisticated optimization techniques, such as tabu search, can
be used [49]. Tabu search performs hill-climbing until it reaches a local optimum. Then
it steps to the least worse candidate in the neighborhood. However, it does not consider
points in the neighborhood it just visited in the last tl steps. These steps are stored in a
so-called tabu-list [71].
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5.7.2. Network Type

There are two types of BN classifiers in general. These two networks are created in
WEKA using the initAsNaiveBayes criterion. The first is when initAsNaiveBayes is set
to True.

The primary network structure used to search the search space, in this case, is a simple
NB structure. In this case, a structure is created by connecting the class variable to each
feature variable via an arrow. This kind is referred to as an initAsNaiveBayes network. The
other possibility is when initAsNaiveBayes is set to False. In this case, the primary network
structure is an empty network. This state is referred to as General in this study.

5.7.3. Maximum Number of Parents

This is an upper bound on the number of parents of each node in the learned network
structure. This research examined three modes: 2, 3, and None. This value is specified in
WEKA using the maxNrOfParents criterion. When the network type initAsNaiveBayes
is selected, setting this parameter to 2 results in a Tree Augmented Naive Bayes (TAN)
network. Similarly, specifying number 3 results in a Bayesian Network Augmented Naive
Bayes (BAN). By setting it to a significantly greater than the number of network nodes
(100,000 almost guarantees this), no restriction on the number of parents is imposed. The
final mode is referred to as None in this study, and the network created in this manner is
referred to as Un, which stands for Unlimited.

5.8. Training and Evaluation Method and Performance Metrics

This study used the k-fold CV method to train and evaluate models because it uses
the entire data set for training and testing, unlike the hold-out method. The present study
considered a 10-fold CV because numerous studies have indicated that this is the optimal
value for computational time, error estimation, and indices variance [22]. Five performance
metrics were selected for evaluation to show the model’s performance comprehensively,
accuracy, the area under ROC, precision, recall, and f1-score. The precision and recall
indices are appropriate when there is an unbalanced distribution of classes, which is the
case in the present study. Before proceeding to model performance metrics, a few key terms
for each class need to be clarified first [22]:

1. True positives (TPs): Number of predictions that were correctly assigned to a class
(i.e., value in the matrix diagonal for the corresponding class).

2. False positives (FPs): Number of predictions that were incorrectly assigned to a class
(i.e., the sum of values in the corresponding class column excluding the TPs).

3. False negatives (FNs): Number of predictions incorrectly unrecognized as class as-
signments (i.e., the sum of values in the corresponding class row excluding the TPs).

4. True negatives (TNs): Number of predictions correctly recognized as not belonging to
a class (i.e., the sum of values of all rows and columns excluding the row and column
of that class).

accuracy =
TP + TN

TP + FN + FP + TN
(11)

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F1− score = 2× precision× recall
precision + recall

(14)
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6. Results
6.1. Models Implementation

The current study implemented the identified algorithms in two distinct steps to meet
the research objectives. In the first step, 18 BN classifiers, NB, and DT, were implemented
to predict cost overrun, and the results were compared. This comparison demonstrates
the effect of considering the relationships between cost overrun risks on the predictive
accuracy of cost overruns in ML models. The second step involved implementing the best
BN classifier identified in the first step without using the feature selection method. The
purpose of including all risks in the second step was to establish relationships between
them and to create a comprehensive, proactive decision-making tool.

6.2. First Step: Cost Overrun Prediction

At this stage, 18 different BN classifiers, NB and DT, along with the CFS feature
selection stage, have been implemented to predict the cost increase. Furthermore, from the
results of this step and comparing the performance metrics of the mentioned models, the
best model can be identified and implemented to analyze the risks of cost overrun in the
second step.

In this study, five performance metrics, accuracy, area under ROC curve, precision,
recall, and F1-score, have been selected to compare the performance of algorithms. Table 6
compares the performance of the developed models. The results of implementing the
algorithms in the first step show that the average performance accuracy of 18 BN classifiers
is 78.86%, which is higher than the accuracy of NB at 77.92% and DT at 65.25%. The best
models for this stage are K2-TAN and K2GN-2, with excellent performance accuracy of
80.25. In the area under the ROC curve, the average of 18 BN classifiers and NB is equal to
0.89, and DT shows a performance of 0.68.

Table 6. Models performance.

Name Learning
Algorithm Network Type Max. Num.

of Parents Accuracy Area under
ROC Precision Recall F1-Score

K2-TAN

K2

initAsNaive Bayes 2 80.25 0.89 0.87 0.80 0.83

K2-BAN initAsNaive Bayes 3 79.75 0.89 0.86 0.80 0.83

K2-Un initAsNaive Bayes None 79.75 0.89 0.86 0.80 0.83

K2GN-2 General 2 80.25 0.90 0.87 0.80 0.83

K2GN-3 General 3 79.75 0.89 0.86 0.80 0.83

K2GN-Un General None 79.75 0.89 0.86 0.80 0.83

HC-TAN

hill-
climbing

initAsNaive Bayes 2 79.25 0.89 0.86 0.79 0.82

HC-BAN initAsNaive Bayes 3 79 0.88 0.86 0.79 0.82

HC-Un initAsNaive Bayes None 79 0.88 0.86 0.79 0.82

HCGN-2 General 2 77.75 0.88 0.84 0.78 0.81

HCGN-3 General 3 77.50 0.88 0.84 0.78 0.81

HCGN-Un General None 77.50 0.88 0.84 0.78 0.81

TS-TAN

tabu search

initAsNaive Bayes 2 79.25 0.88 0.86 0.79 0.82

TS-BAN initAsNaive Bayes 3 78.75 0.88 0.85 0.79 0.82

TS-Un initAsNaive Bayes None 78.75 0.88 0.85 0.79 0.82

TSGN-2 General 2 77.75 0.90 0.85 0.78 0.81

TSGN-3 General 3 77.75 0.90 0.85 0.78 0.81

TSGN-Un General None 77.75 0.90 0.85 0.78 0.81

BN classifier models (average) 78.86 0.89 0.85 0.79 0.82

NB 77.92 0.89 0.85 0.78 0.81

DT 65.25 0.68 0.76 0.65 0.70
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Despite being faster and more straightforward than the hill-climbing and tabu search
methods, the K2 algorithm performed well among BN learning algorithms (Table 6).

Thus, it can be concluded that the BN classifier can be used as a robust learning algo-
rithm to predict cost overruns in construction projects while making reasonable assump-
tions about the relationship between risks. Moreover, considering possible relationships
between cost overrun risks improves the ML model’s cost overrun prediction accuracy for
construction projects.

6.3. Second Step: Cost Overrun Risk Analysis

The second step aims to analyze the risks of cost overrun by interpreting the learned
model. Therefore, the feature selection step was omitted to develop a comprehensive model
to analyze all the risks. This feature allows risk relationships to be fully defined without any
limits. Furthermore, a model should be chosen that imposes no constraints on modeling.
Among K2GN- Un, HCGN-Un, and TSGN-Un, which lacked a cap on the maximum
number of parents and the creation of the first network, the K2GN-Un model was chosen
to determine the relationships between cost overrun risks due to its simplicity, speed, and
high accuracy. A noteworthy point during this stage was that the model’s performance
was improved despite the absence of a feature selection stage, implying that including
all cost overrun risks in the BN classifier improves cost overrun prediction performance
(Table 7). This study used the learned BN (Figure 4) to establish relationships between cost
overrun risks (Figure 5). This enabled us to introduce a proactive decision-making tool
to assist the risk management process (Figure 5). Additionally, this study identified the
most critical construction cost overrun risks based on the number of relationships (Table 8).
The increased price of materials, lack of knowledge and experience, and inflation were
identified as the most critical risks regarding the number of relationships with other risks.
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Table 7. K2GN-Un accuracy without the feature selection step.

Metrics Performance

Accuracy 81.67

Area Under ROC 0.93

Precision 0.89

Recall 0.82

F1-score 0.84
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Table 8. Most critical risks.

Rank Risk Number of
Connections

1 Increased price of materials 10

2 Lack of knowledge and experience 10

3 Inflation 9

4 Owner customs policy and complexity (procurement delay) 6

5 Shortage of equipment 6

6 Adverse change in geological conditions 6

7 Construction (defect) quality 5

8 Project complexity 5

9 Delays in land acquisition 5

10 Site availability 5

7. Discussion

This study trained and evaluated ML models by the 10-fold CV in both steps. The
results obtained in the first step from implementing 18 different BN classifiers using the
CFS feature selection method demonstrated that all 18 models performed satisfactorily,
with the K2Gn-Un model performing at 80.25% and 0.8 WROC index. The study compared
this research model to recently implemented models in comparable fields with similar
performance metrics to give an overview of the literature’s models (Table 9). However, this
comparison does not imply the proposed model’s performance superiority over previous
studies due to different datasets being used. For instance, in a Gondia et al. [22] study, the
best ML model was the NB, which had a 51.2% accuracy rate. Additionally, according to
research by Ghazal and Hammad [21], the best ML model was the random forest, with
an accuracy of 65.22% and a WROC index of 0.76. In another study by Egwim et al. [24],
the best model was Gaussian naive Bayes with an area under ROC of 0.74. In this study,
the 18 BN classifiers predict cost overruns with a higher degree of accuracy than those
reported in previous research. This ML model can potentially be a highly effective tool for
predicting cost overruns in construction projects, as it makes more realistic assumptions
about the relationships between risks than other models. The current study interpreted
the BN classifier’s learned model to aid in proactive decision-making in risk management.
This study implemented the second step of executing the BN classifier for this purpose.
The K2Gn-Un model was implemented because it was the best-performing unrestricted
model identified in the first step. Surprisingly, the model’s accuracy and WRC index
increased by about 2% and 4% in the second step, respectively, despite the absence of the
feature selection stage. This increased prediction accuracy demonstrates the importance of
considering all cost overrun risks when predicting cost overruns in construction projects.

Table 9. Compared studies.

Study Best Model Performance

Gondia et al. [22] NB Accuracy: 78.4%

Ghazal and Hammad [21] RF Accuracy: 65.22%

Egwim et al. [24] Gaussian NB Area under ROC: 0.74

The distinction to be made is between correlation and causation. Causation is often
inferred from networks that human experts construct. These networks are usually straight-
forward and have few parameters. However, when ML techniques are applied to induce
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models from data whose causal structure is unknown, they can construct a network based
on the correlations observed in the data [49].

This study interpreted the learned K2Gn-Un network, which resulted in developing a
tool that assists project stakeholders in making preventive decisions. Figure 5 demonstrates
the direct correlations between cost overrun risks and the total number of relationships
extracted from the learned network for each risk. This table can be used as a tool to
determine the impact of various risks on other risks before their occurrence. Additionally,
the outcomes are used to identify ten critical risks based on the total number of relationships
with other risks.

Finally, the novelties of this study are summarized in the following:

1. Utilizing the BN classifier model to predict cost overruns and assess cost overrun
risks for the first time in construction management

2. Evaluating the effect of considering possible relationships between cost overrun risks
on the predictive accuracy of cost overruns in construction projects in ML models

3. Determining the correlations between cost overrun risks and identifying the most
critical cost overrun risks in terms of the number of relationships with other risks by
interpreting the learned BN classifier model.

4. Developing a proactive decision-making tool to assist stakeholders with risk
management.

8. Conclusions

Cost overrun is a significant challenge in construction projects due to its dynamic, com-
plex nature and the possible interrelationships between cost overrun risks. This problem is
mitigated by considering relationships between cost overrun risks in the risk assessment
process. The current study proposes an ML approach based on the BN classifier algorithm
to predict cost overruns and assess the associated risks. Considering the possible rela-
tionships between the input variables—cost overrun risks—and interpretability are two
significant advantages of this model. Two distinct steps were taken to implement the BN
classifier. The first step was to implement the BN classifier, NB classifier, and DT for cost
overrun prediction and their performance comparison. This step applied the CFS feature
selection step to all models. This step revealed that the average prediction accuracy of the
18 BNs classifiers was 78.86%, which is higher than the NB and DT classifiers. Additionally,
this stage demonstrated that considering possible relationships between cost overrun risks
improves the ML model’s cost overrun prediction accuracy for construction projects. In the
second step, the best BN model was implemented for cost overrun risk analysis. The model
was implemented without feature selection to analyze relationships between all the risks,
and the learned model was interpreted. The second step results demonstrated that the
BN classifier, which includes all cost overrun risks, outperforms the model with selected
risks in cost overrun prediction accuracy. Moreover, this study developed a proactive
decision-making tool capable of assisting the risk management process by interpreting the
learned model at the second stage. This tool established direct correlations between all risks
and identified the most critical risks based on the number of correlations between them. As
a result of this research, the most significant risks are identified as the increased price of
materials, lack of knowledge and experience among human resources, and inflation.
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33. Chandra, H.P. Structural equation model for investigating risk factors affecting project success in Surabaya. Procedia Eng. 2015,

125, 53–59. [CrossRef]
34. Adeleke, A.Q.; Bahaudin, A.Y.; Kamaruddeen, A.M.; Bamgbade, J.A.; Salimon, M.G.; Khan, M.W.A.; Sorooshian, S. The influence

of organizational external factors on construction risk management among Nigerian construction companies. Saf. Health Work.
2018, 9, 115–124. [CrossRef] [PubMed]

35. Hung, L. A risk assessment framework for construction project using artificial neural network. J. Sci. Technol. Civ. Eng. 2018, 12,
51–62.

36. Carr, V.; Tah, J. A fuzzy approach to construction project risk assessment and analysis: Construction project risk management
system. Adv. Eng. Softw. 2001, 32, 847–857. [CrossRef]

37. Taylan, O.; Bafail, A.O.; Abdulaal, R.M.; Kabli, M.R. Construction projects selection and risk assessment by fuzzy AHP and fuzzy
TOPSIS methodologies. Appl. Soft Comput. 2014, 17, 105–116. [CrossRef]

38. Prascevic, N.; Prascevic, Z. Application of fuzzy AHP for ranking and selection of alternatives in construction project management.
J. Civ. Eng. Manag. 2017, 23, 1123–1135. [CrossRef]

39. Shariat, R.; Roozbahani, A.; Ebrahimian, A. Risk analysis of urban stormwater infrastructure systems using fuzzy spatial
multi-criteria decision making. Sci. Total Environ. 2019, 647, 1468–1477. [CrossRef]

40. Ebrahimnejad, S.; Mousavi, S.; Tavakkoli-Moghaddam, R.; Hashemi, H.; Vahdani, B. A novel two-phase group decision making
approach for construction project selection in a fuzzy environment. Appl. Math. Model. 2012, 36, 4197–4217. [CrossRef]

41. Islam, M.S.; Nepal, M.; Skitmore, M. Modified fuzzy group decision-making approach to cost overrun risk assessment of power
plant projects. J. Constr. Eng. Manag.-ASCE 2019, 145, 40181261-15. [CrossRef]

42. Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. International journal of operations research 2013,
10, 56–66.

43. Aburrous, M.; Hossain, M.A.; Dahal, K.; Thabtah, F. Predicting Phishing Websites Using Classification Mining Techniques with
Experimental Case Studies. In Proceedings of the 2010 Seventh International Conference on Information Technology: New
Generations, Las Vegas, NV, USA, 12–14 April 2010; IEEE: Manhattan, NY, USA, 2010.

44. Flath, C.; Nicolay, D.; Conte, T.; van Dinther, C.; Filipova-Neumann, L. Cluster analysis of smart metering data. Bus. Inf. Syst. Eng.
2012, 4, 31–39. [CrossRef]

45. Eybpoosh, M.; Dikmen, I.; Birgonul, M.T. Identification of risk paths in international construction projects using structural
equation modeling. J. Constr. Eng. Manag. 2011, 137, 1164–1175. [CrossRef]

46. El-Sayegh, S.M. Risk assessment and allocation in the UAE construction industry. Int. J. Proj. Manag. 2008, 26, 431–438. [CrossRef]
47. Guan, L.; Liu, Q.; Abbasi, A.; Ryan, M.J. Developing a comprehensive risk assessment model based on fuzzy Bayesian belief

network (FBBN). J. Civ. Eng. Manag. 2020, 26, 614–634. [CrossRef]
48. Yan, H.; Yang, N.; Peng, Y.; Ren, Y. Data mining in the construction industry: Present status, opportunities, and future trends.

Autom. Constr. 2020, 119, 103331. [CrossRef]
49. Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: San Francisco,

CA, USA, 2005.
50. Hu, Y.; Wang, Y.; Zhao, T.; Phoon, K.-K. Bayesian supervised learning of site-specific geotechnical spatial variability from sparse

measurements. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2020, 6, 4020019. [CrossRef]
51. Ayodele, T.O. Types of machine learning algorithms. New Adv. Mach. Learn. 2010, 3, 19–48.
52. Fan, C.-L. Defect risk assessment using a hybrid machine learning method. J. Constr. Eng. Manag. 2020, 146, 04020102. [CrossRef]
53. Brownlee, J. Why Data Preparation is so Important in Machine Learning. 2020. Available online: https://machinelearningmastery.

com/data-preparation-is-important/ (accessed on 31 July 2022).
54. Brownlee, J. Framework for Data Preparation Techniques in Machine Learning. 2020. Available online: https://

machinelearningmastery.com/framework-for-data-preparation-for-machine-learning/ (accessed on 18 July 2021).
55. Langley, P. Machine learning as an experimental science. Mach. Learn. 1988, 3, 5–8. [CrossRef]
56. Mehrjoo, M. What to Consider before Selecting a Machine Learning Algorithm. 2017. Available online: https://www.linkedin.

com/pulse/what-consider-before-selecting-machine-learning-marzieh-mehrjoo-phd (accessed on 18 July 2021).

http://doi.org/10.1139/L09-061
http://doi.org/10.1016/j.ijproman.2013.03.004
http://doi.org/10.1016/j.knosys.2013.10.010
http://doi.org/10.3846/13923730.2015.1051104
http://doi.org/10.1080/10429247.2018.1439636
http://doi.org/10.1007/s12046-018-0846-6
http://doi.org/10.1016/j.proeng.2015.11.009
http://doi.org/10.1016/j.shaw.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/30363069
http://doi.org/10.1016/S0965-9978(01)00036-9
http://doi.org/10.1016/j.asoc.2014.01.003
http://doi.org/10.3846/13923730.2017.1388278
http://doi.org/10.1016/j.scitotenv.2018.08.074
http://doi.org/10.1016/j.apm.2011.11.050
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001593
http://doi.org/10.1007/s12599-011-0201-5
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000382
http://doi.org/10.1016/j.ijproman.2007.07.004
http://doi.org/10.3846/jcem.2020.12322
http://doi.org/10.1016/j.autcon.2020.103331
http://doi.org/10.1061/AJRUA6.0001059
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001897
https://machinelearningmastery.com/data-preparation-is-important/
https://machinelearningmastery.com/data-preparation-is-important/
https://machinelearningmastery.com/framework-for-data-preparation-for-machine-learning/
https://machinelearningmastery.com/framework-for-data-preparation-for-machine-learning/
http://doi.org/10.1007/BF00115008
https://www.linkedin.com/pulse/what-consider-before-selecting-machine-learning-marzieh-mehrjoo-phd
https://www.linkedin.com/pulse/what-consider-before-selecting-machine-learning-marzieh-mehrjoo-phd


Buildings 2022, 12, 1660 23 of 23

57. Ebrahimnejad, S.; Mousavi, S.; Mojtahedi, S. A Model for Risk Evaluation in Construction Projects Based on Fuzzy MADM. In
Proceedings of the 2008 4th IEEE International Conference on Management of Innovation and Technology, Bangkok, Thailand,
21–24 September 2008; IEEE: Manhattan, NY, USA, 2008.

58. Liu, J.; Xie, Q.; Xia, B.; Bridge, A.J. Impact of design risk on the performance of design-build projects. J. Constr. Eng. Manag.-ASCE
2017, 143, 40170101-10. [CrossRef]

59. Ke, Y.; Wang, S.; Chan, A.P.; Lam, P.T. Preferred risk allocation in China’s public–private partnership (PPP) projects. Int. J. Proj.
Manag. 2010, 28, 482–492. [CrossRef]

60. Rebeiz, K.S. Public–private partnership risk factors in emerging countries: BOOT illustrative case study. J. Manag. Eng. 2012, 28,
421–428. [CrossRef]

61. Li, Y.; Wang, X. Risk assessment for public–private partnership projects: Using a fuzzy analytic hierarchical process method and
expert opinion in China. J. Risk Res. 2018, 21, 952–973. [CrossRef]

62. Gliem, J.A.; Gliem, R.R. Calculating, Interpreting, and Reporting Cronbach’s Alpha Reliability Coefficient for Likert-Type Scales; Midwest
Research-to-Practice Conference in Adult, Continuing, and Community: DeKalb, IL, USA, 2003.

63. Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Dissertation, The University of Waikato, Hamilton,
New Zealand, 1999.

64. Bielza, C.; Larranaga, P. Discrete Bayesian network classifiers: A survey. ACM Comput. Surv. (CSUR) 2014, 47, 1–43. [CrossRef]
65. Provost, F.; Fawcett, T. Data Science for Business: What you Need to Know about Data Mining and Data-Analytic Thinking; O’Reilly

Media, Inc.: Sebastopol, CA, USA, 2013.
66. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction; Springer: New York,

NY, USA, 2009.
67. Piryonesi, S.M.; El-Diraby, T.E. Data analytics in asset management: Cost-effective prediction of the pavement condition index. J.

Infrastruct. Syst. 2020, 26, 4019036. [CrossRef]
68. Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in

data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]
69. Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classifiers. Mach. Learn. 1997, 29, 131–163. [CrossRef]
70. Bouckaert, R.R.; Eibe, F.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, S. WEKA Manual for Version 3-9-1; University of

Waikato: Hamilton, New Zealand, 2016.
71. Bouckaert, R.R. Bayesian Network Classifiers in WEKA for Version 3-5-7; Artificial Intelligence Tools; University of Waikato: Hamilton,

New Zealand, 2008; Volume 11, pp. 369–387.

http://doi.org/10.1061/(ASCE)CO.1943-7862.0001299
http://doi.org/10.1016/j.ijproman.2009.08.007
http://doi.org/10.1061/(ASCE)ME.1943-5479.0000079
http://doi.org/10.1080/13669877.2016.1264451
http://doi.org/10.1145/2576868
http://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
http://doi.org/10.1007/s10115-007-0114-2
http://doi.org/10.1023/A:1007465528199

	Introduction 
	Literature Review 
	Previous Studies 
	Application of ML to Construction Project Risk Analysis 
	Problem Definition 

	Materials and Methods 
	ML Algorithms 
	ML Process 

	Case Study 
	Research Methodology 
	Data Collection 
	Data Reliability 
	Data Preparation and Preprocessing 
	Algorithm Selection: An Experimental Analysis 
	Decision Tree 
	Naïve Bayes 
	Bayesian Network Classifier 
	Learning Bayesian Networks 
	Network Type 
	Maximum Number of Parents 

	Training and Evaluation Method and Performance Metrics 

	Results 
	Models Implementation 
	First Step: Cost Overrun Prediction 
	Second Step: Cost Overrun Risk Analysis 

	Discussion 
	Conclusions 
	References

