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ABSTRACT

Several interconnection structures for a distributed multi­
microcomputer message passing system are compared on the
basis of cost and performance. Among the structures analyzed are
huses. double rings, n-dimensional lorolds, trees, cube-connected
cycles. and chordal rIngs. Network cost is defined in terms of the
number of network nodes and the unit cost of communication Bnks
lind their associated connccUons. Simple asymptotic performance
bounds are derived based on the bottleneck analysis of a queueing
IIcLwark. In contrast Lo Lhe usual assumpLion of unlform mcssu~c

muLing', thc techn.ique permils lhe introduction of a rcfcrcllcc
locality notion to the message routing behavior of nelwork nodcs.
1·'inaHy, the cost, pedormance, and performance/cost functiolls
ilre examined as the number of network nodes becomes very large.
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Introduction

In recent years, many researchers have sought ways to exploit the rapid

development of LSI/VLSI technology in the construction of powerful computer

systems. Proposals for multiple processor systems containing up to 105 VLSI

chips have been made [Sull77, Witt76]. At first appearance, networks of

thousands of processors may not seem justifiable. There are, however, at least

two primary motivations for developing such systems. The most obvious is the

need to overcome the fundamental physical limits on computation speed

imposed by sequential processing. The need for performance increases of fae-

tors of 100 or even 1000 is painfully obvious to workers in such fields as speech

analysis. weather modeling, and nuclear fusion research. Only by injecting

parallelism into the solution of such problems can one realistically expect to

obtain truly large performance increases. Second. it has been suggested thaL

large multiple processor systems will provide appropriate architectural support

for new language proposals. In particular. the functional programming,

languages proposed by Backus [Back7B] and the communicating sequential

'. ~.rocesses of Hoare [Hoar7B] seem ideally suited to multiple processor systems
,.: I ' : 'll:,r~:,
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whose computational tasks communicate via message passing.

Many ways to interconnect multiple processors have been proposed, but no

real consensus on a best proposal has yet emerged. Not only is there a paucity

of knowledge concerning the effect of various interco:q.nection structures on per­

formance, there is also no widely accepted method for modeling such struc­

tures. This, coupled with the large number of design parameters for parallel

systems, has made comparison difficult.

Overview

The context of our discussion is Wittie's network computer [Witt81], an

MIMD (Multiple Instruction Multiple Data stream) system whose active comput­

ing nodes communicate by passing messa.ges to one another over passive com­

munication links. Nodes do not share any memory; all communication is per­

formed by message passing. Each network node is assumed to consist of a pro­

cessing element with some local memory, a communication processor capable

of routing messages without delaying the processing element, and some (small)

number of connections to communication links connecting the node to other

nodes.

On such a network computer, a parallel computation may require multiple

processing elements that exchange messages while executing cooperating tasks.

'There is no global synchronization among processing elements. Instead, compu­

tation at each processing element proceeds independently of all others except

when the processing element passes a message to or receives a message from

the communication processor.

The interconnection networks over which messages are passed can be

broadly classified as reconflgurable multistage SWitching networks and passive­

link interconnections. There is a considerable body of literature comparing
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reconfigurable multistage switching networks such as banyans [Goke73] and

shutIle-exchange [Lang76]. Since these structures have generally been con­

sidered for SIMD (Single Instruction Multiple Data stream) machines where all

processing elements execute the same instruction in lock step. they are not dis­

cussed further here. Instead, passive-link structures whose nodes are embed­

ded in the interconnection network are emphasized (see Figure I). For example,

we compare the single bus, double ring, D-dimensional toroid, bus hypercube,

cube-connec~ed cycles, chordal ring. and tree, among others, on the basis of

cost and performance.

The cost of each structure is defined as a function of the number of network

nodes and the Unit cost of communication links and their associated connec­

tions. Cost is significant only because it allows us to examine performance/cost

ratios for various interconnection networks.

Many definitions of networ:k performance have been proposed (e,g., average

message delay, message density, and bus load). These notions are usually based

on the assumption that the message routing distribution is uniform (Le., the

probability that node i se~ds messages to node j is the same for all i and j,

i r. j) and that nodes generate messages at some fixed rate. We present an

alternative definition of network performance based on the asymptotic or

bottleneck behavior of a queueing network that relaxes this assumption. In

mapping a distributed computation onto an interconnection structure, one

would hope that those tasks communicating with high frequency are placed phy­

sically close to one another in the interconnection network. Clearly this results

in a message routing distribution that is significantly different from the usual

assumption of uniform routing. To reflect this non-uniformity, we introduce a

notion of refe'tence locality to the message routing distribution. Furthermore,

we allow the rate at which nodes generate messages to depend on the rale at
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which messages arrive at the nodes.

Since Wittie [WittBl] recently analyzed a subset of the structures con-

sidered here under the uniform routing assumption and provided order of mag­

nitude values for the density of messages on links and the average number of

links traversed by a message, our results can be viewed as both a refinement

and an extension of his.

To simplify the presentation, we first discuss the methods used to derive

cost and performance functions, and then apply these methods to several pro-

posed networks. The notation employed throughout the remainder of the paper

is summarized in Table 1.

Cost Function

As we noted earlier. each node of the system is assumed to consist of a pro-

cessing element (FE), communication processor (CP), and some number of link

connections (LC) joining the node to communication links (CL). We define the

following simple cost function:

Cost (Net-type ,Net -size ,GpE,CCL ' CLC ) =

CPE " Net -size +
GLC " Net -me " (number of connections per node) +

GCL " (number of links)

where the following definitions apply

Net-type

Net-size

type of interconnection structure

number of nodes in the structure

unit cost of a PE-CP pair

unit cost of a link connection

unit cost of a communication link

A word of caution is in order about the unit cost of communication links.

Links can be of two types, dedicated links between two nodes or buses shared by
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two or more nodes. In the first case, GeL is simply the cost of each link. In the

second case, we assume GCL is the cost of the bus divided by the number of con-

nectlons to it. Cost function parameters for the interconnections discussed in

the remainder of the paper can be found in Table ll.

Asymptotic Performance Function

Our performance analysis is based on asymptotic or bottleneck ma.lysis.

While its essentials are briefly reviewed here, the reader should consult Denning

and Buzen [DeBu7Bl for complete details and a statement of the assumptions

involved in the approach.

Each time a node sends a message to another node, the message must

cross some number of communication links and pass through some intermedi-

ate nodes before reaching its destination processing element. At the destina-

tion. it causes some computation to take place. ]f we consider all possible

source-destination pairs and the probabllity that they exchange messages, we

can calculate the number of visits to each communication link and processing

element made by an average message. Now consider such an average message

and ~n arbitrary device i (either a node br a link). This average message will

visit device i a certain number of times. This mean nwnber of visits is called

.~ this visit ratio of device i and is denoted by 1';,. Similarly, leL 8\ denote the

mean time reqUired for device i to service a message, Xi denote the mean 'rate

of message completions at device i (Xi ~ 1/ Si), and Vi denote the utilization of

device i. The follOWing laws are then known to hold:

x
Xo = -'- Forced Flow Law

V,

where X 0 is the message completion rate of the entire system. Simple algebra
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yields

Ui
X o =

v" Si

As the number of messages in the system becomes large. the utilization of the

device with the largest l/iSi product must approach one (1). Hence, the max-

imum value of the system message completion rale is

where

VbSb = max ViS,
i

In their general definition, the visit ratios are only unique up to a normalizing

constant. To insure their uniqueness in our analysis, we normo..Hze the Vi for the

nodes such that their sum is one (l). The ~S'l product can then be interpreled

'as the total service requirement of a message at device i. Summing the v"Si

over all i gives the total service requirement of a message in the system.

To simplify analysis, we assume that all processing elements have the same

mean service time Sps and all links have the same mean service time SCL· We

also assume that each node has the same message routing distribution. By this,

we mean that each node i has the same probability of sending a message to a

node reachable by traversing l links for all i. Messages follow the path requiring

the smallest number of link traversals to reach their destination. ]f there are

multiple shortest paths. we assume they are visited with equal probability unless

otherwise specified. Message delays due to internEll routing aL the communlca-

tion processors of intermediate nodes are ignored, We model only the queueing

delays and service times at the communication links and the destination pro·

cessing element.

The remainder of our analysis is devoted to derivation of the maximum Sy5-

tern message completion rate X o for various interconnection nelworks. This
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performance function Xo differs in several significant ways from earlier perfor-

rnance metries for distributed systems. Rather than fixing the message comple-

lion rate at the nodes and then determining the minimum message density that

must be supported by the links to attain this rate, one can actually determine

the message completion rate given the visit ratios and the mean service times

for the processing elements and communication links. As we shall see, one can

also systematically determine the effect of varying the number of network nodes

and device mean service times.

Uniform Message Routing - Symmetric Structures

Messages sent by each node of a symmetric interconnection structure can

reach the same number of nodes by traversing l communication links for alIt.

A bi-directional ring system is a simple example of a symmetric interconnection

since each message can always reach two nodes by crossing L links. Under uni-

form message routing, the probability of node i sending a message to node j is

the same for all i and j, i ;:e j. We assume that nodes do not send message to

themselves, hence i ~ j.

Consider such a symmetric structure with K nodes obeying the uniform

routing assumption. Since each processing element is Visited with equal proba.-

bility by an average message, the visit ratio for the processing elements is just

1
VpE = K

Similarly, all communication links must be visited with equal probability, Sup-

pose we look at an arbitrary network node and the K-l possible destinations for

messages sent from that node. Define, Reach (l ,Net -type) as the number of

nodes reachable from an arbitrary node by crossing l links in a network of type

-, ,Net -type. The average number of links traversed by a message is L ~y'*f':~c;,
:f' ,~,! (Uniform routing, Symmetric structure) and is given by

'"

I ' ,
. ",," '1" .", ., r' .. ' •

;" . ",
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'm~L: I Re~ch(I,Net-type)
1=1

K- 1

where lmax is the maximum number of links that must be crossed to reach any

.node.

Now define Numlinks (K.Net -type) as the number of communication links

in a network of size K and type Net -type, The link visit ratio is then simply

L 'lU.nijarTn
.,.-7C=:.:'""¥,m",m,,,.~'=c!·'---,--......,,...VCL = cNumlinks (K,Net -type)

We immediately have

Local. Message Routing - Symmetric Structures

Now suppose the assumption of a uniform message routing distribution is

relaxed. Each node of the structure is allowed to have a symmetric locality sur-

rounding it that is visited with some high probability rp while the nodes outside

the locality are visited with probability 1 - rp.

Let LocSize (L.Net -type) be defined as

L
LocSize(L,Net-type) = L:Re~ch(I.Net-type)

l= 1

Then the LocSize(L,Net-type) nodes reachable in L or fewer links from a node

constitute its locality and are visited with probability rp while the

K -LOcS1",ze (L ,Net -type )-1 other nodes are visited with probability l-rp.

Since the interconnection network is symmetric, ea.ch node is contained in

the localities of LacSize (L ,Net -type) other nodes and is outside the locaUtles of

K-LocSize(L,Net-type)-l nodes. Thus, each node is still visited with equal

probability. and the processing element visit ratio is just

1
VPE =­

K
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To obtain link visit ratios. consider again an arbitrary source node and all

K.l possible message destinations. The mean number of communication links

traversed by a message Lyt~~ut"" is

L
~ L; L Reach (L, Ne' -type)

L l~metTi.e = -'-'7~!..'---------+
L;Reach(L ,Net -type)
1=1

L
~ L; L Reach (L .Net -'ype )
_

.!.'-;.-''--:","""--;..,---;;-..,--..,---,-= +
LOGSize (L,Nel type)

'm~
(1 -~) L; L Reach(L.Net-type)

I=L+I
L

K- L;Reach(L.Ne'-type) - 1
L=l

'.

(1 - ~+v;'~;r", (K - 1) - ,t/ ReaCh(L,Net-,ype)]

K LocSize (L, Net type) 1

The first term is simply the product of the average number of links traversed

while visiting a node in the locality and the probability of visiting the locality rp.

The second term has a similar interpretation for nodes outside the locality. The

link visit r:atio is then

LHIO"~
riymmolric

Va ;::
Numlinks (K,Net -type)

and the system message completion rate is bounded by

xosmi~lv ~ I ~sPE PE VCLSCLJ

Uniform. Message Routing - Asymmetric Structures

In an asymmetric interconnection structure the number of nodes reachable

in L links from a given node depends on the location of the source node in the

network. Primary examples are b-ary trees and snowflakes [FiSoBO].

Under uniform message routing, each node is visited with equal probability

so the processing element visit ratio is again

1
VPE =­

K
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To derive the link visit ratios, consider some interval during which each

node sends K - 1 Irl:essages (each node receives K - 1 messages) and the total

number of messages sent is K(K - 1). For each communication link j, calculate

the number of messages that cross that link; call this number Msg (j ,Nrd -typf!. ).

The visit ratio for link j is

VCL;

The maximum link visit ratio is

~ Msg (j Xet -type)
K(K - 1)

VEflIU. = m~x Vcr.,;,
and the system message completion rate is bounded by

Interconnection structures

The techniques described above have been applied to eleven often cited

lnterconnection structures: seven symmetric ones and four asymmetric ones.

An example of each structure is shown in Figure I. Space, unfortunately, docs

not permit detailed derivations of the results for each interconnection; [or a

complete exposition see [Reed82]. To provide some insight into the technique's

application, the spanning bus hypercube. a symmetric structure. and the

snowflake, an asymmetric structure, are analyzed in detail. For the other struc-

tures, only a simple description of salient points is provided. The results of the

cost and performance analyses are summarized in Tables Il-N and wHl be

referred to frequently in the remaining discussion.

Symmetric Structures

Spanning Bus Hypercubes (SBH)

The spanning bus hypercube [WittB1] is a D-dimensionn1 structure connect-
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ing each node to D buses in D orthogonal dimensions; w nodes share a bus in

each dimension. This structure is identical to aD-dimensional w-wide lattice

except the w connections in each dimension are replaced with a single bus.

Wiltie [Witt6l] gives a simple distributed routing algorithm for spanning bus

hypercubes. Consider the routing of a message between two arbitrary nodes A

and B. The node addresses of A and B can be expressed as D. base w, coordi-

nates in a w D lattice. Compare the ith coordinates of A and B. If they differ.

route the message along the ith dimension bus to the node whose ith coordinate

is equal to that of B. Repeat this process until all D coordinate positions agree.

Since each move brings the message closer to its destination in ODe dimension,

the order in which the D coordinates are checked does not matter.

Since each of the w D nodes has D connections, there are f)wD total co~ec-

lions. Each bus is shared by w nodes so there are DwD - 1 buses. Recalling that

the cost of a bus is proportional to the number of connections to it, the cost

function is

To derive link visit ratios for uniform message routing, consider again the

base w representation of an arbitrary source-destination pair. Any two of the D

coordinate positions differ with probability w - 1. Since each of these D coor­w

dinate positions is independent, the average number of buses traversed by a

message is

LVN»jf'~" [D(W -1)][ w
D 1" DwD-'(w 1)

w ~ w D -1

w D
The correction factor accounts for the fact that the source and destina-

w D - 1

lion must differ. The ViSi products are then

, I
and VCZSCL =

SCLDwD-'(w - 1)

DwD '(wD - 1) "
scdw - 1)

w D -1
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and

(
w D wD - 1

Xo:s:; min SPE ' Scdw - 1)

Because of fanout limitations, D must fixed at a small constant and the system

size increased by increasing w. If D is fixed and w increases. the buses become

the performance bottlenecks, and performance increases at approximately the

W D - 1

rate SCL .

To see the effect of locality on performance, consider the number of ways

source and destination addresses can ditrer in l positions. Since there are w-1

ways each position can differ and each position is independent, this number is

(w - l)t. There are [f) ways to select l positions so there are

R.a.ch(l,SBH) = [flew - 1)'

nodes reachable using exactly l buses. The size of the reference locality is

L
LocSiz.(L,SBH) = 'f,Reach(I,SBH)

l=l

(Recall that L is the maximum distance to any node in the reference locality.)

Then the mean number of link visits by a message is

~tl [flew -1)' (1 - ~)lrDwD-'(W - 1) - ,t'! [flew - 1)']
L'0.acBt = -,."=.',,'~---,.,,-==-+

SOH LocSize(L,SBH) w D -LocSize(L,SBH) - 1

The YiSi products are

SPE SCLLVkOj'jf
SPE VYE = w D and VCLSCL = Dw D - 1

and the bound on the system message processing rate is

As w increases, the bound for the system message completion rate, Xo,

wD -I
increases at the rate cS~CL!!:'(-l---:"'~~)' If one compares this with the uniform routing
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case, it becomes clear that this definition of locality does not change the order

of the performance bound, only the constant of proportionality.

Single Global Bus

The simplest possible interconnection drops all K nodes of a system from a

single global bus. One communication link traversal is required to route any

message from source. to destination. Because of this, no notion of a message

routing distribution is relevant. Unfortunately, the single bus rapidly becomes

the system bottleneck an~ bounds system performance by the reciprocal of its

mean service time.

Complete Connection

The most expensive and best performing interconnection provides direct

links between all pairs of the K system nodes. The prohibitive O(,K2) intercon-

neelion cost makes this approach unsuitable for large systems, but it provides a

useful.point of reference. Since one link traversal sutIices to reach any destina-

lion. no notion of message routing distribution is relevant here either.

Double Ring

Several proposals for cyclic or ring intercon.D.ections have been made

[Liu7B, Jara7B]. Typically, messages cEln pass in only direclion around the ring.

Performance improves if each node is connected to two counter-rotElting rings.

A node sending a message places it on the ring requiring the .smallest number of

link traversals to reach its destination. After traversing a link, a message

queues for service on the next link in the direction of its travel until its destina­

tion is reached. Hence, no message ever needs to traverse more than l~ links

,in a K node system.
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Since messages can travel varying distances along the circumference of a

ring, it is possible to define a node's reference locality. In this case, a node's

locality is just all nodes lying on an arc of length 2£ centered at the node (Le"

the nearest 2£ nodes).

D-Dimensional Toroid.

The D-dimensional toroid (D-dimensional w-wide lattice) connects each of

its w D nodes to a ring of size w in each of the D orthogonal dimensions. Because

of this, no message need traverse more than l~ links in any dimension.

Message routing in the n-dimensional toroid is very similar to that in span­

ning bus hypercubes. Instead of a single bus visit in each dimension that source

and destination addresses differ, several moves along the ring in each dimension'

are required. As with the spanning bus hypercube, the order in which the coor­

dinate differences are resolved does no~ matter.

Deriving a formula for the size of a node's reference locality requires a look

at the nature of the interconnection. For the special case w = 2. Sullivan's

CHoPP machine [Sull??], the analysis is similar to that of spanning bus hyper­

cubes. To reduce the analysis' complexity, consider the case w odd (w > 2).

Then without loss of generality, any node can be assumed to be at the center of

the toroid. That is. the node is at the center of a D-l dimensional hyperplane

and l~ hyperplanes of dimension D-l are above it and below it. A message

going up or down l links can then traverse at most L-l links in the D·l dimcn~

sional hyperplane it has reached. This leads to a fairly simple recurrence rela­

tion for the size of the reference locality. The results o[ its soluLion [or the

cases D=2,3 are shown in Table N.
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C'u.bB-Connected-Oycles (cee)

The cube-connected cycle (GeG) interconnection was recently proposed by

Preparata and Vuillemin [PrVuBl] as an efficient topology for several types of

parallel algorithms. A eee with D-dimensions contains D2D nodes arranged as

cycles of D nodes around each of the ZD vertices of a binary (w ;:: 2) hypercube

of D dimensions (see Figure I). The ith node of a cycle is connected to the ith

dimension link incident upon the vertex. Each node is connected to exactly

three other nodes no matter what the dimensionality of the system. Hence,

fixed fanout nodes can be used to expand the system.

Our analysis is based on the simple, non-optimal, distributed message rout-

ing algorithm given by Wittie [Wittel]. The address of' any node can be

expressed as a cycle position followed by the binary coordinates of the cycle in

D-space:

CdD _1 .. , do

To route a message toward its destination, traverse cycle-links in the clockwise

direction until a d;, in the destination address is found that differs from the

current address. Traverse that cross-link to another vertex. Repeat this pro-

cess until the correct position in D-space has been reached. Then find the shor-

test distance. clockwise or counterclockWise. to the correct cycle position of the

destination.

Obviously, this routing algorithm is far from optimal. and it would seem that

performance could be increased significantly by improving it. The average

number of cross-link traversals cannot be reduced except by altering the mes-

sage routing distribution so any improvement must come from reducing the

number of., cycle-link traversals. It can be shown that, asymptoticaUy, the
. j~, '

cycle-link visit ratios are only 1.25 those of the cross-links, but [or all dimen-
" '"

sions
, ' ,1,. I'

of practical interest (say, D:s;; 15) the performance increase obtainable
·f·
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from a better routing algorithm could be significant.

Since cross-link traversals move one to a node with the same cycle position

at another vertex, finding the shortest path from any source to any destination

in a cube-connected cycle is equivalent to solving the folloWing optimiza.tion

problem:

(1) Consider a ring of K nodes

(2) Distinguish a start node. end node, and k intermediate nodes

(O"k"K-2)

(3) Find the shortest path from the start node to the end node that passes

through all the intermediate nodes

While it is also possible to derive formulas for the cube-connected cycles

under local message routing, the formulas are quite unwieldy. Details of tbis

derivation can be found in (Reed82].

Chordal Rings

Arden and Lee [ArLeBl] proposed a variation of the simple bi-directional

ring called a chordal ring. Each node of a ring is augmented with an additional

connection to a link joining two ring nodes via a chord.. To be precise, number

the nodes D, ... ,K·1 where K is even and select an odd chord length c (1 ~ c ~ ~~.

Then each odd numbered node i is connected to node (i + c) mod K and each

even numbered node j is connected to node (j - c) mod K in addiLion to the

normal ring connections.

The distributed routing algorithm presented by Arden and Lec Cmds a

minimum path from any source to any destination using both cyclE! links and

chord Hnl.:s. It does not employ aU shortest paths with equal probability bul

tries to evenly distribute link traversals between the two types of links. An

analysis of this routing algorithm is given in Appendix A. Unlike the simple ring.
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which has a constant performance bound. the performance bound for the chor-

dal hng can be increased by increasing the chord length as the nwnber of nodes

becomes larger.

Asymmetric Structures

All of the asymmetric structures discussed below have constant perCor-

rnance bounds. That is, if one fixes all parameters of the system except the

number of nodes and examines the upper bound on the system message comple-

lion rate as the number of nodes approaches infinity, the upper bound

approaches a constant independent of the number of nodes. This would seem to

indicate the fundamental unsuitability of asymmetric interconnections for very

large parallel asynchronous computations unless communication is constrained

to have very high locality.

Snowflake

Finkel and Solomon [FiSoBO] describe a class of asymmetric structures

they call snowflakes (see Figure 1). A snowflake of n levels is recursively con-

structed as follows:

(1) A level one snowflake is composed of b nodes connected to a bus. Each

of these nodes is called a corner of the snowflake.

(2) A le,\Tcl two snowfiake connects one corner of b level one snowfiakes to a

new bus. Another corner of each level one snowtlake is designated a

corner of the level two snowtiake.

(3) In general, a level n snowfiake connects the corners of b level n-1

snowflakes to a new bus.

b" - 1There are b n nodes, b buses, and 2b" connections if one assumes all
- 1

nodes are standard modules with a fixed number of connections. Since lhere is
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a unique path from every source to every destination, the message routing algo~

rithI;n is straightforward and is detailed in [FiSoBO].

To derive the link visit ratios for uniform message routing, consider the bus

at level j

b; - 1 nodes
I

b' - 1 nodes
I

b n _ (b - l)bi - 1 nodes

b -1 of the connections are to level j -1, but one connects to the b th level j-1

snowflake and the rest of the structure. Now consider some interval during

which each node sends a message to each of the other b n
- 1 nodes. The source

and destination can be in one of two places:

(1) Two levelj-1 snowflakes

There are 2b 2(; - I) such messages. Since there are [b 21) ways to choose a

pair of level j -1 snowflakes,

2[b 21)b2(J -1)

messages cross the level j bus due to messages between level j-1

snowflakes.

(2) Levelj-1 snowtlake and bn - (b -1)b j
-

1 group

By an argument similar to the one above, there are

2bH(b - l)(b n - (b - l)b H )

messages contributed by these combinations.

Then the VS for the level j bus is

ScLb;-'(b - 1)(2b n - b;)
VCLjSCLi ;; bn(bn _ 1)

This clearly attains its maximum when j ;;n. Hence, the system message com-

pletion rate is bounded by

(

bn
Xo:s: min SPE '
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As the number of levels becomes large, the system throughput rate approaches

S~d:_1)· By way of comparison, the performance asymptote for a single bus

system is _1_
SCL'

Notice that b =2 maximizes the performance bound. ]0 other

words, a snowflake with many levels and a small branching factor b is preferable

to one with a smaller number of levels and a larger branching factor.

fJerrse Snowflake

The dense snowflake attempts to alleviate the communication bottleneck of

the snowflake by replacing the single bus at each level with b -1 buses. As with

the snoVYf.Lake, a simple distributed routing algorithm is presented by Finkel and

Solomon [FiSoBOJ. As shown in Table Ill, the additional message paths result in a

significant performance improvement over the snowflake. lnterestingly. the per-

formance of a dense snowflake is maximized by haVing a larger branching factor

and a smaller number of levels. the opposite of the snowflake.

Star

Instead of connecting the sublevels of a snowflake by their corners, they

can be connected by their centers to form a star as follows:

(1) A level one subs tar has b -1 nodes connected to a single bus.

(2) A level two substar introduces an additional bus with b -1 nodes

. attached. Each of these nodes is attached to the empty slot on the bus

of a different level one substar.

(3) In general. a level j substar introduces a new bus with b -1 nodes.

Each of these is connected to a slot on the central bus of a difIerent

level j -1 substar.
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(4) :finally. a new bus with b nodes is used to connect b level n-l substars

to form a level n star.

Finkel and Solomon [FiSoBO] also present a distributed message routing

algorithm for this structure. As can also be seen in Table III. the star has

no better asymptotic performance that the snowflake.

Trees

The best known asymmetric interconnection is undoubtedly the n-level b­

ary tree. Message routing is simple since there is a unique path [rom any source

to any destination. Unfortunately, the b communication links below the root

rapidly become the performance bottlenecks. Like the dense snowflake. trees

with a larger branching factor and smaller number of levels give better perfor­

mance than trees with a small branching factor and more levels.

Applications

There is no single "best" system: depending on the intended application,

one system may be preferred over another. By specifying a subset of the sys­

tem parameters (e.g., cost, number of nodes, or performance), one can deter­

mine the optimal values of the remaining parameters..

The follOWing are but a few of the many possibilities:

(1) Given a desired performance level, determine the mi.ni.mum number of

nodes and type of interconnection necessary to attain it.

(2) Given a system cost, determine the maximum performance attainable

using any of the systems we have discussed.

(3) Given two different systems with the same number of nodes, determine

the ratio of SPE to SCL needed to equalize performance.

As an extended example of the power of this technique, consider the span­

ning bus hypercube discussed earlier. Under uniform routing we have



- 21 -

VPESPE =

Recall that

X -11 ~05; mID ,
VPESPE VCLSCL

Suppose we equate VPESPE and VCL5CL and solve for the ratio of processing ele-

meut to link service times:

SPE _ wD(w - 1)
SGL - w D -1

At thi.s critical ratio, the communication links and the processing elements are

equally the performance bottlenecks. If the ratio falls below this value. the com-

munication links determine the upper bound on the system performance.

Now suppose the number of nodes is increased by increasing w. the width of

the spanning bus hypercube. For the bound on the system message completion

rale to increase linearly with the number of nodes, the ratio of processing ele-

meul to communication link senioe times must increase linearly with w. In

other words, as the number of nodes in the system becomes larger and larger,

nodes must exchange messages less frequently if performance is to increase

linearly with the number of nodes.

Under locality. we have

VCLSCL =

and

SPE wLv':ml--=
SCL D

where the mean number of link visits by a message L 0j'Ajft was defined earlier

when discussing the spanning bus hypercube.

If the size of the locality and the probability of visiting it remain constant.

then the nodes must exchange messages with less frequency as the number of
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nodes becomes larger if the performance bound is to increase linearly with the

number of nodes. Conversely, if the node and link service times remain con­

stant, the probability of a message visiting a node in the locality must increase

as the number of system nodes increases if the performance bound is to

increase linearly.

This phenomenon is not unique to the spanning bus hypercube. 10 general,

as the number of nodes increases, the ratio of computation time to communica­

tion time must increase or the locality of communication must increase if the

performance bound is to increase linearly with the number of network nodes.

The technique we have discussed permits us to quantify these relationships (Le.,

determine the amount of locality needed or the minimum computation time ­

communication time ratio).

Comparisons

A look at Table III shows the following:

(1) Performance of the D-dimensional toroid is four times that of the span­

ning bus hypercube with the same number of nodes. The smaller

number Df link traversals required by a message in the spanning bus

hypercube is more than offset by the additional number of links in the

toroid.

(2) Neglecting the complete connection, only the spanning bus hypercube,

D-dimensional toroid, and the cube-connected cycle have non-constant

performance bounds if all parameters are fixed and the number of

nodes is made very large.

(3) The cube~connectedcycle has, asymptotically, the best performance of

any interconnection. In [act, its performance bound difIers from that

of the binary hypercube with D dimensions by only the faclor D. Unfor-
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tunately, lower order terms in the performance bound prevent the

cube-connected cycle's performance from exceeding that of the 3-D

loroid until the number of nodes exceeds 500.000 (if the processing

element and link service times are e_qual).

(4) Of the asymmetric structures, the dense snowflake gives the best per­

formance.

Table IV shows that asymploticaUy, our definition of locality changes only

the constant of proportionality not the order of the system performance bound.

As long as there exists any non-zero probability of a message traversing a dis­

tance proportional to the size of the structure, this must. in the limit. bound the

system performance.

Finally, Figures D-IX show some representative instances of these cost and

performance bounds. The unit cost of nodes. connections, and links is assumed

to be unity and the processing element and link service times are als.o assumed

to be unity. These curves are but a few of an entire family of such curves obtain­

able by varying the cost, service times. or locality.

The ratio of performance to cost obviously depends on the values specified

for SPE. SeL, locality, and the unit cost of the nodes and their connections. For

all of the interconnection networks we have discussed here, the performance

bound increases at most linearly with the number of nodes. Cost, on the other

hand, increases at least linearly with the number of nodes. Hence. the

performance/cost ratio approaches either some constant or zero, This is evi­

dent in Figures VI.VII. and IX.

Conclusions

We have described a method for determining cost and performance bounds

for a distributed message passing system. We introduced the nolion of a mes-
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sage routing distribution and showed how it could be used to derive performance

bounds under more realistic assumptions than uniform message routing.

Finally. we applied the technique to several proposed interconnection struc-

tures.

Several interesting areas remain to be investigated. The most obvious is

the extension of the locality results to asymmetric structures. This is likely to

be more diffictill since locality in asymmetric structures invalidates the assump­

tion that all nodes are visited with equal probability. Second, the locality result

for symmetric structures can easily be extended to include non~constanl rp. One

extended locality definition might make the probability of sending a message to

a node l links away inversely proportional to L. Finally. performance and cosl

are not the only figures of merit for distributed systems. A weighted function of

such things as cost, performance, reliability, broadcast delay, and expansion

increments should provide a more precise method of selection.
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UpperBound =

Appendix A

Chordal Ring Performance Bounds

Uniform Routing

Since the chordal ring is symmetric, one can. without loss of generality.

a.ssume that a message's source node is node 0 and the destination is some node

i (1 ~ i ~ K - 1). Arden and Lee [ArLeBO] give formulas for the number of chord

links C(i) and ring links required to reach node i from node o. Analysis of these

formUlas shows that for a fixed chord length c and increasing K. the number of

ring link traversals required to reach all possible destination nodes is less than

twice the number of chord link traversals needed. Because there are twice as

many ring links as chord links. far large enough K, the chord links become the

bottleneck.

From the formulas given by Arden and Lee I it is apparent that

[l~ [!I'd] . [I~ IK-i.TImin C+T]' C+T] ~ C(i) ~ min C+T] I C+llJ
Furthermore, the ceiling case occurs much more frequently than the .floor case.

An upper bound on the mean number o! chord traversals required is then

~~:min[I~·I~)
K-l

= (c +l)I~ij2(c:l) -21~+11 r J( 1
K 1 +I~

Since there are ~ chord links, we have

2SCL UpperBound
VCLSCL ~ K

Similarly. a lower bound on the mean number of chord link traversals is

~'~:':Io.lm_in-,[C:C,;,~",:l:.,-'_;:.,-:~;.!...J ,-,...,}!it".;.,.,_.,.,...
LowerBound ::: - = -:-K-l 4(c+l)(K-l)
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and

2SCL LowerBound
VCLSCL ~ K

Both the lower and upper bound are asymploticly exact and converge to a

.c+l) .performance bound of Sa as K becomes large. Usmg these upper and

lower bounds. one can trade accuracy with computational cost on an almos.t

continuous spectrum by calculating the exact visit ratios until the difference

between them and the estimated visit ratios falls below some desired error

tolerance. Thereafter, the approximation may be employed.

Locality

Unfortunately. we know of no closed form for the link visit ratios under

locality. By exhaustively enumerating the K-l message destinations from node

0, they can be calculated in O(K) time.
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D

K

L

n

w

•
PE

LC

CL

SPE

x,

LTJUftl/orm
r-vinm.tr/.c:

Nu,mLinks (K,Net -type)

Rew;h.(L ,Net -type)

Table I

Notation

Branching factor:for asymmetric structures

Chord leDgt.h

Dimension of mesh ar hypercube

Number of network nodes

Mll%imum distance to 8 node in the loctility

Ma:zimum source·deBtination di!Jtance

Number of levels in an asymmetric structure

Lattice l'Iidth of meBh. or hypercube

Probability of visiting loceJ..ity

Processing element

Communication link connection

Communication link

Mean processing element service time

Mean communication link service time

Processing element visit ratio

Communication link visit ratio

System messnge completion rate

Size of locality

Average number of links traversed in
0. symmetric structure with uniiorm routins

Averll{tc number of links traversed in

II. symmetric BlrUclurc wit.h locality

Averllse number of linlcs traversed in
an asymmetric struct.ure with UJJi:form routine

Number of communication links in network of size K

Number of nodes Teachable by tr8versin,g I links



Tablell

System Size

System Nodes Connections Links

Single Global Bus K K 1

Complete Connection K K(K -1) K(I( - 1)
2

Double Ring K 4K 2K

Spanning Bus Hypercube w D IJwD DwD - 1

D-dimensional Toroid w D 2Uw D Uw D

Cube-Connected Cycle D2D SD2D 3D2D - 1

Chordal Ring K SK
Sf(
2

Snowilake bn 2b n bJl. - 1

b - 1

Dense Snow1lnke bn 2b n 2b n - 1

Star
b((b _1)n -1) 2b((b - l)n - 1) b (b - 1)n-1 - 2

b - 2 b - 2 b - 2

Tree
b n - 1 (b + l)(b n - 1) b l1 - b

b 1 b 1 b - 1

Cost(Net-type ,Net -size, Cps, CLe , Ccd =

CPE ,; Nodes +

PLC ,; Connections +

CeL .. Li:nJcs

where the following definitions apply

Net-type

CeL

type of interconnection structure

unit cost of a node

unit cost of a link connection

unit cost of a communication link
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Table ill

Performance Bounds - Uniform. Message Routing

System Xo Asymptote VpsSps vUt'S"

Single Global Bus -'- SPE
S"S" K

Complete Connection K SPE 2SCL

SPE J( K(K ')

Keven
KSCL

Double Ring 0 SPE B(K - 1)

S" J(

K ,""
SCL(K + 1)

Of(

Spanning Bus Hypercube
w D - 1 SpE SeL(W - 1)

S" w D w D _ 1

SCL'W
W IiIVlln

4(wD - 1)
4WD- 1 SPED-dimensional Toroid s;;;:- w D

w ,""
sCJ..(w2 - 1)

4w(wD -1)

"'n .!£J!!....
D'tP-l

Cube-Connccted-Cycle 2 DH SPE ~g D Dlid SCL2DCSD E! - DO -1) + aD
5S", D,D

4DeD{D2D -1)

SCLeD{OD-llj+O
C\l:l. D nm ~ D

4 (02 1)

Xo" min ("-V,-'ls;o;-_,
PE PE

1

Note: The Xo asymptote is th~ limit on performance as the number of nodes

becomes very large. For the single global bus and double ring iL is the absolute

upper bound on system performance as the number oJ nodes becomes infinite.

For the other systems, it is the dominant term of the performance bound.
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Table ill Continued

Perlormance Bounds - Uniform Message Routing

System X0 kyrnptote VpESPE V#lZ.SCL

Chordal Ring
2(c + 1) Sps See Appendix A

Sa. K

Snowtlake
, Sps BeLCh - 1)11"'-1

BeLCh -1) '" bn - 1

, SPE S b l1 - 1

Dense Snow::O.ake
a. .

Sa. '" bn -1

Star
, SPE(b - 2) SCL(b - 1)[(11 - I)'" - lL

Sct..(b - 1) b[Cb - I)'" - 1] bleb - I)'" - 1]- II + 2

Tree -'- SPE(b - 1) 2Sc.Lbn-2(b - 1)

2Sa. bn - 1
b n _ 1

Nole: The Xo asymptote is the limit on performance as the number of nodes

becomes very large. For the chordal ring, snowtlake, dense snowfiake, star, and

tree it is the absolute upper bound on system performance as the number of

nodes becomes infinite.

'.",

.,

, .. "
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Table IV

Selected Performanee Bounds - LocallIessage Routing

Double Ring

S [,(L + 1) + (l-If)([(2-1-4L(L+ 1nl K,""
CL 4K 8K(K 2L - 1)

S [reel + 1) + (l-tp)(R'2-4L(L + 1»1 Kevan.
CL 4K 8K(K - 2L - 1)

X o Asymptote is BCL(~- fI)

Spanning Bus Hypercube

L r L [I9'~l W](UI _1)1 (1- cp)IDwD-1(w -1) - ~l f (w _1)'

[
BCL 1 1=1 1..1

VCLSCL = D;D=il L + L
/)w- ~[D)(W_l)' wD-~[fl(W-l)I_l

h=1 t . 1"1

W D - 1

Xo Asymptote is S ( )CL 1 -1jI'

2-Dimensional Toroid (w Odd L s l~)

v. s == [SeL 1['P(2L + l) + (1_p)w(w
2

_1) -4L(L + 1)
CL CL 2we 3 2(we _ 2L(L + 1) - 1)

XoAsymptote is SCLt1
w

- f)

3-Dimensional Toroid (w Odd L s l~)

v. S = [Sa 1[3,/,(L + 1)(Le + L + 1) + 3(1 - 1jI') 3w
2
(w

2
- ]) - 4L(L + 1)(L2 + L + 1)

CL CL 3w3 2(L + 1)(2L + 1) + 6 4(3w 3 _ 2L(L + ])(2L + ]) - 6£ - 3)

. 4w2
XoAs1.rmptote 'IS SCL(l _ cp)

The values of VpESpE are the same as for the uniform message routing case.
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