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ABSTRACT

Several interconnection structures for a distributed multi-
microcompufer message passing system are compared on the
basis of cost and perlormance. Ameng the structures analyzed are
buses, double rings, D-dimensicnal toreids, trees, cube-connected
cycles, and chordal rings. Network cost is defined in terms of the
number of network nodes end the unit cost of communication links
and their associated connections. Simple asymptotic performance
bounds are derived based on the bottleneck analysis of a queueing
network. In conlrast to the usual assumplion of unilorm message
rouling, the technique perinils ihe introduction of a reference
locality notion Lo the message routing behavior of nelwork nodes.
I'inally, the cost, performance, and perfermance/cost functions
are examined as Lhe number of network nodes becomes very large.
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Infroduction

In recent years, many researchers have sought ways to exploit the rapid
development of LSI/VLSI technology in the construction of powerful computer
systems. Proposals for multiple processor systems containing up to 10% VLSI
chips have been made [Sull?7, Witt76]. At first appearance, networks of
thousands of processors may not seem justifiable. There are, however, at least
two primary motivations for developing such systems. The most obvious is the
need to overcome the fundarmental physical limits on computation speed
imposed by sequential processing. The need for performance increases of fac-
tors of 100 or even 1000 is painfully obvious to workers in such fields as speech
analysis. weather modeling, and nuclear fusion research. Only by injecling
parallelism into the solution of such problems can one realistically expect to
obtain truly large performance increases. Second, it has been suggested thal
large multiple processer systems will provide appropriate architectural support
for  new language proposals. In particular, the functicnal programming
languages proposed by Backus {Back78] and the communicating sequential

. . .- processes of Hoare [Hoar?8] seem ideally suited to multiple processor systems
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whose computational tasks communicate via message passing.

Many ways to interconnect multiple processors have been proposed, but no
real consensus on a best proposal has yet emerged. Not only is there a paucity
of knowledge concerning the effect of varicus interconnection structures on per-
formance, there is also no widely accepted methed for modeling such struc-
tures. This, coupled with the large number of design parameters for parallel

systems, has made comparisen difficult.

Overview

The context of our discussion is Wittie's network computer [WittBl], an
MIMD (#ultiple /nstruction Multiple Data stream) system whose active comput-
ing nodes communicate by passing messages to one another over passive com-
munication links. Nodes do not share any memeory: all comnmunication is per-
formed by message passing. Each network node is assumed to consist of a pro-
cessing element with some local memory, a communication processor capable
of routing messages without delaying the processing element, and some (small}
nurnber of connections to communication links connecting the node to other

nodes.

On such a network computer, a parallel computation may require multiple

processing elements that exchange messages while executing cooperating tasks.

‘There is no global synchronization among processing elements. Instead, compu-

tation at each processing element proceeds independently of aill others except
when the processing element passes a message Lo or receives a message irom
the communication processor.

The interconnection networks over which messages are passed can be

broadly classified as reconflgurable multistage switehing networks and passive-

link intercennections. There is a considerable body of literature comparing
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reconfigurable multistage switching networks such as banyans [Goke'73] and
shuffle-exchange [Lang76]. Since these structures have generally been con-
sidered for SIMD (Single [nstruction Multiple Data stream) machines where all
processing elements execute the same instruction in lock step, they are not dis-
cussed further here. Instead, passive-link structures whose nodes are embed-
ded in the interconnection network are emphasized (see Figure I}. For example,
we compare the single bus, double ring, D-dimensional toroid, bus hypercube,
cube-connected cycles, chordal ring, and tree, among others, on the basis of

cost and performance.

The cost of each structure is defined as a function of the nurmnber of network
nodes and the unit cbst of communication links and their associated connec-
tions. Cost is significant only because it allows us to examine performance/cost

ratios for various interconnection networks.

Many definitions of network performance have been proposed (e.g., average
message delay, message density, and bus load). These notions are usually based
on the assumption that the message routing distribution is uniform (i.e., the
probability that node i sends messages to node j is the same for all % and j,
i # §) and that nodes generate messages al some fixed rate. We preseni an
alternative definition of network performance based on the asymptotic or
bottleneck behavior of a queueing network that relaxes this assumption. In
mapping a distributed computation onto an interconnection structure, one
would hope that those tasks communicating with high frequency are placed phy-
sically close to one another in the interconnection network. Clearly this results
in a message routing distribution that is significantly different from the usual
assumption of uniform routing. To reflect this non-unifermity, we introduce a
notion of refefence locality to the message routing distribution. Furthermore,

we allow the rate at which nodes generéte messages to depend on the rale at



which messages arrive at the nodes.

Since Wittie [WittB1] recently analyzed a subset of the structures coen-
sidered here under the unlform routing assumption and provided order of mag-
nitude values for the density of messages on links and the average number of
; links traversed by a message, our results can be viewed as both a refinement

and an extension of his.

To simplify the presentation, we first discuss the methods used to derive
cost and performance functions, and then apply these methods to several pro-
posed networks. The notation employed throughout the remainder of the paper

is summarized in Table 1.

Cost M'unction

As we noted earlier, each node of the system is assumed to consist of a pro-
cessing element (PE), communication processor (CF), and some number of link
connections (LC) joining the node to communication links (CL). We define the
following simple cost function:

Cost (Net —type Net —size ,Cpg,Cer,. Cpc) =
CPE ¥ Net —size + )
Crc * Net—size * (number of connections per node) +

Cer * (number of links)
where the following definiticns apply

Net —type type of interconnection structure
Nel —size number of nodes in the structure
Cpp unit cost of a PE—CP pair

Cre unit cost of a link connection

Cer unit cost of a cornmunicatien link

A word of caution is in order about the unit cest of communication links.

Links can be of two types, dedicated links between Lwo nodes or buses shared by
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two or more nodes. In the first case, Cgg is simply the cost of each link. In the
second case, we assume Cg is the cost of the bus divided by the number of con-
nections to it. Cost function parameters for the interconnections discussed in

the remainder of the paper can be found in Table II.

Asymptotic Performance Funetion

Our performance analysis is based on asympiotic or bottleneck analysis.
While its essentials are briefly reviewed here, the reader should consult Denning
and Buzen [DeBu78] for complete details and a statement of the assumptions
invelved in the approach.

Each time a node sends a message to another node, the message must
cross some number of communication links and pass through some intermedi-
ate nodes before reaching its destination processing element, At the destina-
tion, it causes some computation to take place. I1f we consider all possible
source-destination pairs and the probability that they exchange messages, we
can calculate the number of visits to each communication link and processing
element made by an average message. Now consider such an average message

and an arbitrary device i (either a node dr a link). This average message will

' visit device i a certain number of times. This mean number ol visits is called

this visit ratio of device 1 and is denoted by ¥;. Similarly, lel 5; denote the

mean time required for device i to service a message, X; denote the mean rate
of message completions at device © (X; = 1/ 5;), and U; denote the utilization of

device 1. The following laws are then known te hold:

Ui = Xi S'; Utilization Law

X
Xo = V; Forced Flow Law
1

where Xg is the message completion rate of the entire system. Simple algebra



yields

X0 = s

As the number of messages in the system becomes large, the utilization of the

device with the largest ¥ S; product must approach one (1). Hence, the max-

imum value of the system message completion rate is

1

=
Xo< 35,

where
Vp Sy = max K.5;
In their general definition, the visit ratios are only unique up to a normalizing
constant. To insure their uniqueness in our analysis, we normalize the ¥ [or Lhe
nodes such that their sum is one {1). The ¥5; product can then be interpreled
:'as the total service requirement of a message at device 1. Summing the ¥;5

over all i gives the total service requirement of a message in the system.

To simplify analysis, we assume that all processing elements have the same
mean service time Spp and all links have the same mean service time 5S¢, We
also assume that each node has the same message routing distribution. By this,
we mean that each node i has the same probability of sending a message to a
node reachable by traversing I links for all . Messages follow the path requiring
the smallest number of link traversals to reach their destination. If there are
multiple shortest paths, we assume they are visited with equal probability unless
otherwise specified. Message delays due to internal routing al the communica-
tion processors of intermediate nodes are ignored. We model only the queuemg
delays and service times at the communication links and the destination pro-

cessing element.

The remainder of our analysis is devoted to derivation of the maximum sys-

tem message completion rate Xo for various interconnection nelworks. This
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performance function Xp differs in s‘everal significant ways from earﬁer perior-
mance metrics for distributed systems. Rather than fixing the message comple-
tion rate at the nodes and then determining the minimum message density that
must be supported by the links to attain this rate, one can actually determine
the message completion rate given the visit ratios and the mean service times
for the processing elements and communication links. As we shall see, one can
also systematically determine the efiect of varying the number of network nodes

and device mean service times.

Uniform Message Routing - Symmetric Structures

Messages sent by each node of a symmetric interconnection structure can

reach the same number of nodes by traversing ! communication links for ail {.

" . A bi-directional ring system is a simple example of a symrnefric interconnection

N F o

s rad

since each message can always reach two nodes by crossing [ links. Under uni-
form message routing, the probability of node ¢ sending a message to node j is
the same for all 4 and 7, ¢ # §. We assume that nodes do not send message to

themselves, hence i # 7.

Consider such a symmetric structure with K nodes obeying the uniform
routing assumption. Since each processing element is visited with equal proba-

bility by an average message, the visit ratio for the processing elements is just

1

Veg = =
PE K
Similarly, all cornmunication links must be visited with equal probability, Sup-
‘ pose we look at an arbitrary network node and the X-1 possible destinations for

messages sent from that node. Define, Reach(l,Net—type) as the number of

nodes reachable from an arbitrary node by crossing ¢ links in a network of type

niform

+,Net —type. The average number of links traversed by a message is LViymimetric
I
¢ (Uniform routing, Symmetric structure) and is given by

. Y
T n"l'hla"
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Imez

> 1 Reach(l,Net—type)
Lvaptan, = <=

K—-1
where imaz is the maximum number of links that must be crossed to reach any

node.
Now deflne Numlinks (K Nef—type) as the number of communication links

in a network of size K and type Net —type. The link visit ratio is then simply

Vo = LV etric
¢ = Numlinks{K Net —type )

We immediately have

1 1

1 .
= min ,
] [ VreSer ' VerSer |

Xo =
max {VPESPE  YerScer

Local Message Routing - Symmetric Structures

Now suppose the assumption of a uniform message routing distribution is
relaxed. Each node of the structure is allowed to have a symmetrie locality sur-

rounding it that is visited with some high prebability ¢ while the nodes outside

the locality are visited with probability 1 — ¢.

Let LocSize (L. . Nef —~type) be defined as

L
LocSize (L. Net —type) = ), Reach (1, Net —type )
i=1
Then the LocSize (L,Net —type) nodes reachable in L or fewer links from a node
constitute its locality and are visited with probability ¢ while the

K—-ILocSize (L ,Net —type )—1 other nodes are visited with probability 1—¢.

Since the interconnection network is symmetric, ezch node is contained in

- the localities of LocSize (L, Net —type) other nodes and is outside the localities of

K—LocSize (L, Net ~type }—-1 nodes, Thus, each node is still visited with cqual

probability, and the processing element visit ratie is just

1
Veg = ra
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To obtain link visit ratios, consider again an arbitrary source node and all
K-1 possible message destinations. The mean number of communication links

traversed by a message LV airic is

L
pY, L Reach(l Net—type} (1 -— ;o) 2 ! Reach(l .Net-type)

= =L+1
11 + =L+

Eﬁ’each (L Net ~type) K- EReach(z Net —type) - 1
=1 =1

L V;—;%zdms ric

L
E Reach (l.Net —type)

- LocSzze(L.Net —type ) *

L
(1 ~ p)|LVEniform (K — 1) = )1 Reach(l,Net~type)
=1

K — LocSize (L, Nef —type) — 1

The first term is simply the product of the averaée number of links traversed
while visiting a node in the locality and the probability of visiting the locality ¢.
The second term has a similar interpretation for nodes outside the locality. The
linlk visit r_atilo is then

I ocal .
symmotric

Ver =
€ 7 Numlinks (K, Net —type)
and the system message completion ralte is bounded by

1|

1
VeeSee ' VeuSer |

Xp =< min

Uniform Message Routing - Asymmetric Structures
In an asymmetric interconnection structure the number of nodes reachable
in L links from a given node depends on the location of the source node in the

networl. Primary examples are b-ary trees and snowflakes [FiSo80].
Under uniform message routing, each node is visited with equal probability
so the processing element visit ratic is again

1
Vee = 3
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To derive the link visit ratios, consider some interval during which each
node sends X ~ 1 messages (each node receives K — 1 messages) and the total
pumber of messages sent is K (X — 1). For each communication link 4, calculate
the number of messages that cross that link; call this number Msg (j.Net —type).

The visit ratio for link 7 is

_ Msg (f Ket —type)
Vai; = K(K - 1)

The maximum link visit ratic is

Vae = m?x Veis

and the system message completion rate is bounded by

1 1
VeeSer | VE™Sa |

Xoﬁmm{

Interconnection Structures

The techniques described above have been applied to eleven often cited
interconnection structures: seven symmetric ones and four asymmetric ones.
An example of each structure is shown in Figure 1. Space, unfortunately, does
not permit detailed derivations of the results for each interconnection; for a
complete exposition see [Reed82]. To provide some insight into the technique’s
application, the spanning bus hypercube, a symmetric strueture, and the
snowflake, an asymmetric structure, are analyzed in detail. For the other struc-
tures, only a simple description of salient points is provided. The resulls of the
cost and performance analyses are summarized in Tables II-IV and will be

referred to frequently in the remaining discussion.
Symmetric Structures

Spemning Hus Hypercubes (SBH)

The spanning bus hypercube {WittB1] is a D-dimensional structure connect-



<11 -

ing each node to D buses in D orthogonal dimensions; w nodes share a bus in

enach dimension. This structure is identical to a D-dimensional w-wide lattice

except the w connections in each dimension are replaced with a single bus.

Wittie [Witt81] gives a simple distributed routing algorithm for spanning bus
hypercubes. Consider the routing of a message between two arbitrary nodes A
and B. The node addresses of A and B can be expressed as D, base w, coordi-
nates in a w? lattice. Compare the ith coordinates of A and B. 1f they difier.
rouke the message 'along the ith dimension bus te the nede whose ith coordinate
is equal te that of B. Repeat this proecess until all D coordinate positions agree.
Since each move brings the message closer to its destination in one dimension,

the order in which the D coordinates are checked does not matter,

Since each of the w? nodes has D connections, there are Dw? total con:nec—
tions. Each bus is shared by w nodes so there are Dw?™! buses. Recalling that
. Ithe cost of a bus is proportional to the number of connections to it, the cost
_ function s

Cost (SBH .Cpe.Cuo.Cer) = wP(Cpg + D(Cue + Cer))
To derive link visit ratios for uniform message routing, consider again the
base w representation of an arbitrary source-destination pair. Any two of the D

W =1 gince each of these D coor-

coordinate positions differ with probability

dinate positions is independent, the average number of buses traversed by a

message is

" ; Dfw —1 1 w? ] DwPw - 1)
LVER o™ = =
¥BH w  J{w? - 1] w? -1
D
The correction factor —;—y—laccou.nts for the fact that the source and destina-
w? —

tion must differ. The V;S; products are then

SCLDID'D_I(‘LU — 1) _ Ser (w - 1)
DwP N (w? ~1) ~ wP -1

Spe
VegSpr = D and Ver Ser =
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and

w? w? —1 1
Spp ' Selw — 1)

Because of fanout limitations, D must fixed at a small constant and the system

XGSmin[

_ gize increased by increasing w. If D is fixed and w increases, the buses become

the performance bottlenecks, and performance increases at approximately the

D-1
Ser

rate

To see the effect of locality on performance, consider the number ol ways
source and destination addresses can differ in ! positions. Since there are w-1

ways each position can differ and each position is independent, this number is
(w — 1)*. There are hD] ways to select ! positions so there are
Reach(l,SBH) = [’i’] (w — 1)
nodes reachable using exactly { buses. The size of the reference locality is
L
LocSize (L ,SBH) = ), Reach(l,SBH)
i=1

(Recall that L is the maximum distance Lo any node in the reference locality.)

Then the mean number of link visits by a message is

B -t -0 - 1 Py
21 + =1

gool —
LVSB = LooSine (L,SBH)

The ¥ .5; products are

w? — LocSize (L, SBH) — 1

SpE Ser LVESH
SppVip = -’ and VerSa, = E-E:l_

and the bound on the system message processing rate is

w? DwD-1 ]
Ser ' SciLVESH |

Xp = min

'As w increases, the bound for the system message completion rate, Xy,

D-1

Y ifone compares this with the uniform routing
Ser(l — @)

increases at the rate
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case, it becomes clear that this definition of locality does not change the order

of the performance bound, enly the constant of preportionality.

Single Global Bus

The simplest possible interconnection drops all K nodes of a sysiem from a
single global bus. One communication link traversal is required to route any
message {rom source to destination. Because of this, no notion of a message
routing distribution is relevant. Unfortunately, the single bus rapidly becomes
the system bottleneck and bounds system performance by the reciprocal of its

mean service time.

Complete Connection
The most expensive and best performing interconnection provides direct
links between all pairs of the X system nodes. The prohibitive O(X*?) intercon-

nection cost makes this approach unsuitable for large systems, but it provides a

- useful .point of reference. Since one link traversal suffices to reach any destina-

tion. no notion of message routing distribution is relevant here either.

Double Ring

Several proposals for eyclic or ring interconnections have been made
[Liu78, Jala7B]. Typically, messages can pass in only direclion around the ring.
Perforrmance improves if each node is connected to two counter-rotating rings.
A node sending a message places it on the ring requiring the smallest number of
link traversals to reach its destination. After traversing a link, a message
queues [or service on the next link in the direction of its travel until its destina-

K] ,.
2—1 links

“tion is reached. Hence, no message ever needs to traverse more than

.in a K node system.
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Since messages can travel varying distances along the circumicrence of a
ring, it is possible to define a node’s reference locality. In this case, a node’s
locality is just all nodes lying on an arc of length 2L centered at the node (i.e..

the nearest 2L nodes),

D-Dimensional Taroid

The D-dimensional toroid (D-dimensional w-wide lattice) connects each of

its w? nodes to a ring of size w in each of the D orthogenal dimensions. Because

of this, no message need traverse more than

% links in any dimension.

Message routing in the D-dimensional toroid is very similar to that in span-

ning bus hypercubes. Instead of a single bus visit in each dimension that source

and destination addresses differ, several moves along the ring in each dimension-

are required. As with the spanning bus hypercube, the order in which the coor-

dinate differences are resolved does not matter.

Deriving a formula for the size of a node's reference locality requires a look
at the nature of the interconnection. For the special case w = 2, Sullivan's
CHoPP machine [Sull77)], the analysis is similar to that of spanning bus hyper-
cubes. To reduce the analysis' complexity, consider the case w odd {w > 2).
Then without loss of generality, any node can be assumed to be at the center of

the toroid. That is, the node is at the center of a D-1 dirnensicnal hyperplane

and

% hyperplanes of dimension D-1 are above it and below it. A message

going up or down ! links can then traverse at most L—=1 links in the D-1 dimcn=

sional hyperplane it has reached. This leads to a fairly simple recurrence rela-
tion for the size of the reference locality. The resulls of its solulion {or the

cases D=2.3 are shown in Table IV.
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Gube-Connected-Cycles (CCC)

The cube-connected eycle (CCC) interconnection was recently proposed by
Preparata and Vuillemin [PrVuBi] as an eflicient topology for several types of
parallel algorithms. A CCC with D-dimensions contains D2P nodes arranged as
cycles of D nodes around each of the 27 vertices of a binary (w = 2) hypercube
of D dimensions (see Figure I). The ith node of a cycle is connected to the ith
“dimension link incident upon the vertex. Each node is connected to exactly
three other nodes no matter what the dimensionelity of the system. Hence,
fixed fanout nodes can be used to expand the system.

Qur analysis is based on the simple, non-optimal, distributed message rout-
ing algorithm given by Wittie [WittB1]. The address of ‘any node can be
expressed as a cycle position followed by the binary coordinates of the cycle in
D-space:

Cdp-y - dg D=C=<D-1 0D=d;=1
To route a message toward its destination, traverse cycle-links in the clockwise
direction until a d; in the destination address is found that differs from the
current address. Traverse that cross-link to another vertex. Repeat this pro-
cess until the correct positien in D-space has been reached. Then find the shor-
test distance, clockwise or counterclockwise, to the correct cycle position of the

destinatien.

Obviously, this routing algorithm is far from optimal, and it would seem that
performance could be increased significantly by improving it. The average
number of cross-link traversals cannot be reduced except by allering the mes-

sage routing distribution so any improvement must come from reducing the

. number of cycle-link traversals. It can be shown that, asymptotically, the

’

. L% ' '
. eycle-link visit ratios are only 1.25 those of the cross-links, but [or all dimen-

L

sions of practical interest (say, D < 15) the performance increase obtainabie

A £
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from a better routing algorithm could be significant.

Since cross-link traversals move one to a node with the same eycle position

' at another vertex, finding the shortest path from any source to any destination

in a cube-connected cycle is eqguivalent to solving the following optimization

problem:

(1) Consider a ring of Klnodes

(2) Distinguish a start node, end neode, and & intermediate nodes
(0<k =K -2)

(3) TFind the shortest path from the start node to the end node that passes

through all the intermediate nodes

While it is also possible to derive formulas for the cube-connected cycles
under local message routing, the formulas are quite unwieldy. Details of Lhis

derivation can be found in {ReedB82},

Chordal Fings

Arden and Lee {ArLeBl] proposed a variation of the simple bi-directional
ring called a chordal ring. Each node of a ring is augmented with an additional

connection to a link joining two ring nodes via a chord.. To be precise, number

the nodes 0,...,K-1 where K is even and select an odd chord lengthc (1 <c =< ';—().

Then each odd numbered node ¢ is connected to node (i + ¢) mod K and cach
even numbered node § is connected to node (j —c) mod K in addilion to the

normal ring connections.

The distributed routing algorithm presented by Arden and Lec finds a
minimum path from any source to any destination using both cycle links and
chord links. It does not employ all shortest paths with equal prob_ability but
tries to evenly distribute link traversals between the two types of links. An

analysis of this routing algorithm is given in Appendix A. Unlike the simple ring,
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which has a constant performance bound, the perfermance bound for the chor-

dal ring can be increased by increasing the chord length as the number of nodes

becomes larger.

Asymmetric Structures

All ol the asymmetric structures discussed below have constant perler-
mance bounds. That is, if one fixes all parameters of the syslem except the
number of nodes and examines the upper bound on the system message comple-
tion rate as the number of nodes approaches infinity, the upper bound
approaches a constant independent of the number of nodes. This would seem to
indicate the fundamental unsuitability of asymmetric interconnections for very
large parallel asynchronous computations untess communication is constrained

to have very high locality.

Snowfiake
Finkel and Solomon [FiSoB80] describe a class of asymmetric structures
they call snowflakes (see Figure I). A snowflake of » levels is recursivély con-
structed as follows:
(1) A level one snowflake is composed of b nodes connected to a bus. Each
of these nodes is called a corner of the snowflake.
(2) A level two snowflake connects one corner of b level one snowflakes to a
new bus. Another corner of each level one snowflake is designated a
corner of the level two snowflake.
(3) In general, a level n snowflake connects the corners of b level n—1

snowfiakes to a new bus.

n .
There are ™ nodes, %—_—-—ll—buses, and 2b™ connections il one assumes all

nodes are standard medules with a fixed number of cennections. Since Lhere is
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a unique path from every source to every destination, the message routing algo-

rithm is straightforward and is detailed in [FiSo80].

To derive the link visit ratios for uniform message routing, consider the bus

at level 7

| ! |

b3~ lmades --- b7 'nodes ™ - (b —1)b7 T nodes

b—1 of the connections are to level 7—1, but one connects to the bth level j—1
snowflake and the rest of the structure. Now consider some interval during
which each node sends a message to each of the other ™ — 1 nodes. The source

and destination can be in one of two places:
(1} Two level j -1 snowflakes
There are 2620 1) such messages. Since there are [b El] ways to choose a
pair of level j—1 snowfiakes,
gt 3 om0 -
messages cross the level 7 bus due to messages between level §-—1

snowflalkes.
(2) Level j—1 snowflake and &™ = (b — 1}b7~" group
By an argument similar to the one above, there are

26771k — 1)(B™ = (b — 1)bITY)

messages contributed by these combinatiens.

Then the VS for the level 7 bus is

Serbi~i(b — 1)(Bb™ — bI)
Verj Setj = bn (b7 - 1)

This clearly attains its maximwm when j=n. Hence, the system message com-

pletion rate is bounded by

b7 p™ —1 |
Spr ' Sgd™ b ~ 1) ]

Xo= min[
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As the number of levels becomes large, the system throughput rate approaches

S (b — 1) (: R By way of comparison, the performance asymptote for a single bus

cL\Y T

system is Sl . Notice that b = 2 meximizes the performance bound. In other
cL

words, a snowflake with many levels and a small branching factor & is preferable

to one with a smaller number of levels and a larger branching factor.

Dense Snowjlake

The dense snowflake attempts to alleviate the communication bottleneck of
the snowflake by replacing the single bus at each level with » —1 buses. As with
the snowflake, a simple distributed routing algorithm is presented by Finkel and
Solomon [FiSeB80]. As shown in Table I, the additional message paths result ina
significant performance improvement over the snowflake. Interestingly. the per-
formance of a dense snowflake is maximized by having a larger branching factor

and a smaller number of levels, the opposite of the snowflake.

Stor
Instead of connecting the sublevels of a snowflake by their corners, they
can be connected by their centers to form a star as follows:
(1) A level one substar has & ~1 nodes connected to a singie bus.
(2) A level two substar introduces an additional bus with b-1 nodes
attached. Bach of these nodes is attached to the emptly slot on the bus

of a different level one substar.

(3) In general, a level j substar introduces a new bus with b—1 nodes.
Each of these is connected to a slot on the central bus of & different

level -1 substar.
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(4) Finally, a new bus with & nodes is used to connect b level n—1 substars

to form a level n star.
Finkel and Solomon [FiSoB0] also present a distributed message routing

algorithm for this structure. As can also be seen in Table IlII, the star has

no better asymptotic performance that the snowflake.

Trees

The best known asymmetric interconnection is undoubtedly the n-level b-
ary tree. Message routing is simple since there is a unique path from any source

to any destination. Unfortunately, the b communication links below the root

rapidly become the performance bottlenecks. Like the dense snowflake, trees ’

with a larger branching factor and smaller number of levels give better perfor-

mance than trees with a small branching factor and more levels.

Applications

There is no single "best” system; depending on the iniended application,
one system may be preferred over ancther. By specifying a subset ol Lhe sys-
tem parameters (e.g., cost, number of nodes, or performance), one can deter-
mine the optimal values of the remaining parameters. .

The following are but a few of the many possibilities:

(1) Given a desired performance level, determine the minimum number of

nodes and type of interconnection necessary to attain it.

(2) Given a system cost, determine the maximum performance attainable
using any of the systems we have discussed.

(3) Given two different systems with the same number of nodes, determine
the ratio of Spr to S¢z needed to equalize performance.

As an extended example of the power of this technique, consider the span-

ning bus hypercube discussed earlier. Under uniform routing we have
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Spr Ser(w — 1)
- V. S T i —
VeeSPE = D aLSer I —
Recall that
. 1 1]
Xo =< min ,
° {VPESPE Ver Sex |

Suppose we equate VppSpr and VerSg and solve for the ratic of processing ele-

ment te link service times:

Spg _ wl(w —1)

Ser wl -1

At this eritical ratio, the communication links and the processing elements are

equally the performance bottlenecks. If the ratio falls below this value, the com-
munication links determine the upper bound on the system performance.

Now suppose the nurnber of nodes is increased by increasing w, the width of
the spanning bus hypercube. For the bound on the system message completion
rate to increase linearly with the number of nodes, the ratio of processing ele-
ment to communication link service times must increase linearly with w. In
other words, as the number of nodes in the system becomes larger and larger,
nodes must exchange messages less frequently if performance is to increase

linearly with the number of nodes.

Under locality, we have

SpE _ Se  LVESH
Ve Ser = Dbt

VeeSpPE = —5
w

and

Spg _ wLVSEH
S D
211

where the mean number of link visits by a message LVZ5F was defined earlier

when discussing the spanning bus hypercube.

If the size of the locality and the probability of visiting it remain censtant,

then the nodes must exchange messages with less frequency as the number of
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nodes becomes larger if the performance bound is to inerease linearly with the
number of nodes. Conversely, if the node and link service times remain con-
stant, the probability of a message visiting a node in the locality must increase
as the number of system nodes increases if the performan-ce bound is to
increase linearly.

This phenomenon is not unique to the spanning bus hypercube. In general,
as the number of nodes increases, the ratio of computation time to communica-
tion time must increase or the locality of communication must increase if the
performance bound is to increase linearly with the num]:;}ar ol network nodes.
The technique we have discussed permits us to quantify tﬁese relatiopships (i.e.,
determine the amount of locality needed or the minimum computation time -

cormmunication time ratio}.

Comparisons

A look at Table III shows the following:

(1) Performance of the D-dimensional toroid is four times that of the span-
ning bus hypercube with the same number of nodes. The smaller
number of link traversals required by a message in the spanning bus
hypercube is more than offset by the additional nurnber of links in the

toroid.

(2) Neglecting the complete connection, only the spanning bus hypercube,
D-dimensional toroid, and the cube-connected cycle have non-constant
performance bounds if all parameters are fixed and the number of
nodes is made very large.

(3) The cube-connected cycle has, asymptotically, the best performance of
any interconnection. In fact, its performance bound differs from thatl

of the binary hypercube with D dimensions by only the factor D. Unfor-
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tunately, lower order terms in the performance bound prevent the
cube-connected cycle's performance from exceeding that of the 3-D
toroid until the number of nodes exceeds 500,000 (if the processing

element and link service times are equal).

(4) Of the asymmetric structures, the dense snowflake gives the best per-

formance.

| Table IV shows thal asymptotically, our definition of locality changes only
the constant of proportionality not the order of the system performance bound.
As long as there exists any non-zero probability of a message traversing a dis-
tance proportional te the size of the structure, this must, in the limit, bound the

system performance.

Finally, Figures II-IX show some representative instances of these cost and
performance bounds. The unit cost of nodes, connections, and links is assumed
to be unity and the processing element and link service times are also assumed
to be unity. These curves are but a [ew of an entire family of such curves obtain-
able by varying the cost, service times. or locality.

The ratio of performance to cost obvicusly depends on the values specified
for Spg S¢r. locality, and the unit cost of the nodes and their connections. For
all of the interconnection networks we have discussed here, the performance
bound increases at most linearly with the number of nodes. Cost, on the other
hand, increases at least linearly with the number of nodes. Hence, the
performance/cost ratio approaches either some constant or zere. This is evi-

dent in Figures VI,VII, and IX

Conclusions

We have described a method for determining cost and performance bounds

for a distributed message passing system. We introduced the notion of a mes-
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sage routing distribution and showed how it could be used to derive performance
bounds under more realistic assumptions than uniform message routing.

Finally, we applied the technique to several proposed interconneciion struc-
tures.

Several interesting areas remain to be investigated. The most obvious is
the extension of the locality results to asymmetric structures. This is likely to
be more difficult since locality in asymmetric structures invalidates the assump-
tlon that all nodes are visited \;rith equal probability. Second, the locality result
for symmetric structures can easily be extended to include non-constant . One
extended locality definition might make the probability of sending a message to
a node ! links away inversely proportional to {. Finally, performance and cost
are.not the only flgures of merit for distributed systems. A weighted function of
such things as cost, periormance, reliability, broadcast delay, and expansion

inerements should provide a more precise method of selection.
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Appendix A
Chordal Ring Performance Bounds

 Uniform Routij'zg

Since the chordal ring is symmetric, one can, without loss of generality,
assume that a message's source node is node 0 and the destination is some node
i (1=1i= K~ 1). Arden and Lee [ArLeB80] give formulas for the number of chord
links (i) and ring links required to reach node ¢ from node 0. Analysis of these
formulas shows that for a fixed chord length ¢ and increasing X, the number of
ring link iraversals required to reach all possible destination nodes is less than
twice the number of chord link traversals needed. Because there are twice as
many ring links as chord links, for large enough X, the chord links become the

bottleneck.

From the formulas given by Arden and Lee, it is apparent that
| i | k-1
c+1]’ c+1]'|c+1

Furthermore, the ceiling case occurs much more frequently than the floor case.

K —i
c+1]

min

< Cli) < mm[

An upper bound on the mean number of chord traversals required is then

o (g ] [k
Elmmjc{_l "le +1
UpperBaund = _ =1
K K [ &
- +

(¢ + D5y ﬂZ(c ) 2|B(c ) 1] [k ]

- K-1 +h@+1ﬂ
Since there are -'glchord links, we have
RS, VpperBound

<
VerSer e

Similarly, a lower bound on the mean number of chord link traversals is

ks [ 8 g -4
1§1m‘“c+1'c+1j "

d =2 -
LowerBoun K -1 a(c + 1K - 1)




and

25 oy LowerBound
VerScL = X

Both the lower and upper bound are asymptoticly exact and converge to a

performance bound of E(%:Ei)- as K becomes large. Using these upper and

lower bounds, one canl trade accuracy with computational cost on an almost
continuous spectrum by caleulating the exact visit ratios until the difference
petween them and the estimated visit ratios falls below some desired error

tolerance. Thereafter, the approximation may be employed.

Locality
Unfortunately. we know of no closed form for the link visit ratios under
locality. By exhaustively enumnerating the K-1 message destinations {rom node

0, they can be calculated in O(K) time.



Table 1

Notation

b Branching factor for asgymmetric structures
c Chord length
D Dimension of mesh or hy-percube.
K Number of network nodes
L Mazimum distance to a nod_e in the locality
imax Haximum source-dertination distance
n Number of levels in an asymmetric structure
w Lattice width of mesh or hypercube
@ Probability of visiting locality
PE . Processing element
Lc Communication link connection
cL Communication link
Spe Hean processing elemeni service time
Sey, Mean communication link service time
Vog Processing element vigit ratie
Ve, Communication link visit ratio
Xo System message completion rate
LocSize (L, Net -type) Size of locality
LW,’J‘,,‘,{,‘::}",{: Average number of links traversed in

a symmetric structure with uniferrn routing
LW,;%,W Average number of links traversed in

a symmetric structure with locality
LVH"_‘,’.},‘{-,%’;. e Average number -of links traversed in

an asymmetlric structure with uniform routing
MNumLinks (K,Net —type) Number of communication links in network of mize
Reach (L, Nel —fype) Number of nodes reachable by traversing 1 links



Table II

System Size

System Nodes Conneclions Links
Single Global Bus K K 1
Complete Connection K K(K — 1) f_(ifz__l)_
Double Ring K 4K 2K
Spanning Bus Hypercube w? pw?P Dw?!
D-dimensional Toroid w? R Dw? Dw?
Cube-Connected Cycle D2? 3p2P qp2D-1
Chordal Ring K 3K Bzi
Snowilake " opn bb“ _— 11
Dense Snowflake b™ _6™ 2" -1
Star b((b b-i); — 1) Eb((bb—_l); —1) b (b _bl_)_nz_l _5
Tree bb" _—11 (b + ;)Eb’l‘ - 1) bb"_—lb

Cost { Net —type Net —size ,Cpp,C10.Ccr) =
Cpg * Nodes +

Prc * Connections +

Ceor * Links

where the following definitions apply

Net —type
Cre
Cre

Cet

type of interconnection structure

unit cost of a node

unit cost of a link connection

unit cost of a communication link



Table I

Performance Bounds - Uniform Message Routing
System Xy Asymplote VogSpe ng‘Su
) 1 Spe
Single Global Bus 5a ' Se
- X Spe 25¢
Complete Connection e e KK = 1)
K¢
K even
- B Spp 8K ~ 1)
Double Ring Sa e .
Sc (K +1)
K odd T4
. wP-1 Spe S (w = 1)
Spanning Bus Hypercube 5a 5 53
w SCL‘HJ'
even ———
]
. . . 4wP-1 Spp - 4(w? - 1)
Ddimensional Toreid 5o D
w o Ser (wa -1)
qw(w? - 1)
Sp D
oo —h
T
' o2 Spp Dian® _pgp —
Cube-Connected-Cycle —_ 4q SCL27807 ~00 1) + 8D
55q, DeP Orele Do ap2?(p2? - 1)
Sp2P(D - 8) + 8
Oyzle D pvin 425(529— "
. 1 ]
X = min .
VPE S BE V&us CL J

Note: The X, asymptote is the limit on performance as the number of nodes

becomes very large. For the single global bus and double ring il is the absolute

upper bound on system performance as the number of nodes becomes infinite.

For the other systems, it is the dominant term of the performance bound.
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Table I Continued

Perlormance Bounds - Uniform Message Routing

System XD Asymplole VPE‘SPE V&usm
Chordal Ring %‘l f;i See Appendix A
b Spx Sy (b - 1)pm1
Snowflake OES] - Y
b Spx Se bt
Dense Snowflake 5 o T
[ " L
Star b Spe(b = 2) Sen(d = 1)i(b = 1)" =1
Salt =1) b{(b - - 1] b{(b —1) - 1] —b+2
B Spglb — 1) 25 6™ Bb = 1)
Tree 25¢, b = 1 bm —1
. 1 1}
X< min .
° { VerSpr | VEP*Sgy |

Note: The X, asymptote is the limit on performance as the number of nodes

nodes becomes infinite.

'

becomes very large. For the chordal ring, snowflake, dense snowflake, star, and

tree it is the absolute upper bound on system performance as the nurmber of



Table IV

Selected Performance Bounds - Local Message Routing

Double Ring

aK T 8K(K —2L - 1) i

pli #1) , (1= )2 —aL(L +1))]
aK 8K(X ~ 2L — 1)

sa,[ L)), Q-g)kt=1-aLE+ O 400y

VerSes =
K even

Ser

; 8
Xg Asymplate is TS

Spanning Bus Hypercube

sa | o2t flw - a- w)iﬂwﬂ-*(w -9- 3 Pl - n‘H

+
DwD‘lj hf:l[l?](w _ 1) w? - Zb: [?](w -1 -1

VerSeg, = [

D-1

- w
XO fh‘ymptate 15 m

2-Dimensional Toroid (w 0dd, L = I%l)

&
YerSer = [mig]

: Jw
X Asymplote is So0-v

pl2l +1) (1- sv)[w'{wa -1 -4L(L + 1)”
3 2wt-2L(L+1)-1) |

- 3-Dimensional Toroid (w 0dd, L =

2

Vo G = [Sul ] so(L + 1)(LB+ L + 1) . 31 - ¢)[3we(w2 — )= AL(L + 1MLE+ L + 1)”
CLoC ™ |gud) 2(L + 1)(8L + 1) + 8 a(@uw? - 2L(L + 1)(2L + 1) —6L -3) |
; 4wr
Xg Asymptlote is PET)

The values of VppSep are the same as for the uniform message routing case.
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FIGURE II - UNIFORM ROUTING
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PTIGURE ITI - UNIFORM ROUTING
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FIGURE IV - SYSTEM COST
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FIGURE VI - UNIFORM ROUTING
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FIGURE VII — UNIFORM ROUTING
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FIGURE IX - LOCALITY
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