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Abstract. This study is concerned with whether it is possible to detect
what information contained in the training data and background knowl-
edge is relevant for solving the learning problem, and whether irrelevant
information can be eliminated in preprocessing before starting the learn-
ing process. A case study of data preprocessing for a hybrid genetic
algorithm shows that the elimination of irrelevant features can substan-
tially improve the e�ciency of learning. In addition, cost-sensitive feature
elimination can be e�ective for reducing costs of induced hypotheses.

1 Introduction

The problem of relevance was addressed in early research on inductive concept
learning [10]. Recently, this problem has also attracted much attention in the
context of feature selection in attribute-value learning [1, 4, 12]. Basically one
can say that all learners are concerned with the selection of `good' literals which
will be used to construct the hypothesis.

This study is concerned with whether it is possible to detect what information
contained in the training data and background knowledge is relevant for solv-
ing the learning problem, and whether irrelevant information can be eliminated
in preprocessing before starting the learning process. An important di�erence
between our approach and most other approaches is that, when deciding about
the relevance of literals, we are concerned with �nding `globally relevant' literals
w.r.t. the entire set of training examples, as opposed to �nding the `good literals'
in the given local training set.

This paper presents a case study of data preprocessing for a hybrid genetic
algorithm which shows that the elimination of irrelevant features can substan-
tially improve the e�ciency of learning. In addition, cost-sensitive feature elim-
ination can be e�ective for reducing costs of induced hypotheses. The paper is
organized as follows: Section 2 introduces the representational formalism, the
so-called p=n pairs of examples, gives the de�nition of irrelevant literals and
presents the theorem which is the basis for literal elimination. Section 3 presents
the cost-sensitive literal elimination algorithm REDUCE. Section 4 introduces
the problem domain, the 20 and the 24 trains East-West Challenges, and presents
the results of our experiments that show that the performance of a hybrid genetic



algorithm RL-ICET [14] can be signi�cantly improved by applying REDUCE in
preprocessing of the dataset.

2 Relevance of literals

The representation formalism. In REDUCE, the basic language elements
are literals of the formAttribute = V alue for discrete attributes, andAttribute �
V alue and Attribute > V alue for continuous attributes, as well as logical nega-
tions of these literals (the so-called negative literals). Training examples are bit-
strings (tuples) of truth-values of these literals (1 - true, 0 - false).

In our experiments we are dealing only with discrete attributes, therefore
only literals Attribute = V alue and :(Attribute = V alue) (i.e., Attribute 6=
V alue) will be considered. To illustrate this representation, consider two dis-
crete attributes A and B, with respective sets of values typeA = fa1; a2; a3g and
typeB = fb1; b2g. In this representational framework, there are �ve positive liter-
als (A = a1, A = a2, A = a3, B = b1, B = b2) and �ve negative literals. Suppose
that there are two training examples e1 and e2. In the selected formalism, the
training example e1 = (a2; b2) is represented by the bitstring 0100110110, and
e2 = (a3; b1) by 0011011001.

The p/n pairs of examples and relevance of literals.We assume that
the set of training examples E is represented by a two-dimensional matrix with
columns corresponding to the set of positive and negative literals L, and rows
that are bitstrings of truth-values of literals, corresponding to training examples
ei. The matrix is divided in two parts: P corresponds to the positive examples,
and N to the negative examples.

To enable a formal discussion of the relevance of literals we the following
de�nitions are introduced [3].

De�nition1. A p=n pair is a pair of training examples where p 2 P and n 2 N .

De�nition2. Literal l 2 L covers a p=n pair if in column l of the matrix E of
training examples the positive example p has value 1 and the negative example
n has value 0. In other words, l covers a p=n pair if the value of literal l is true
for p and false for n. The set of all p=n pairs covered by literal l will be denoted
by E(l).

De�nition3. Literal l covers literal l0 if E(l0) � E(l).

Assume that literals are assigned costs. In our study, cost is a measure of
complexity { the more complex is the literal, the higher is its cost. Let c(l)
denote the cost of literal l 2 L.

De�nition4. Literal l0 is irrelevant if there exists a literal l 2 L such that l
covers l0 (E(l0) � E(l)) and the cost of l is lower than the cost of l0 (c(l) � c(l0)).



Our claim is that irrelevant literals can be eliminated in preprocessing. This
claim is based on the following theorem, which assumes that the hypothesis
language L is rich enough to allow for a complete and consistent hypothesis H
to be induced from the set of training examples E.4

Theorem 1. Let L be a set of literals, and L0 � L. A complete and consistent
hypothesis H can be found using only literals from the set L0 if and only if for
each possible p=n pair from the training set E there exists at least one literal
l 2 L0 that covers the p=n pair.

The proof of this theorem can be found in [3]. The importance of the theorem
is manifold. First, it points out that when deciding about the relevance of literals
it will be signi�cant to detect which p=n pairs are covered by the literal. Second,
the theorem enables us to directly detect useless literals that do not cover any p=n
pair. This theorem is the basis of the REDUCE algorithm for literal elimination.

3 A cost-sensitive literal elimination algorithm

Algorithm 1 implements the cost-sensitive literal elimination algorithm, initially
developed within the ILLM learner [2]. This algorithm is the core of REDUCE.

Algorithm 1. Cost-sensitive literal elimination

Given: CL { costs of literals in L

Input: P , N { tables of positive and negative examples, L { set of literals
RP  P , RN  N , RL L

for 8 li 2 RL, i 2 [1; jLj] do
if li has value 0 (false) for all rows of RP then

eliminate li from RL

eliminate column li from RP and RN tables
if li has value 1 (true) for all rows of RN then

eliminate li from RL

eliminate column li from RP and RN tables
if li is covered by any lj 2 RL for which c(lj) � c(li) then

eliminate li from RL

eliminate column li from RP and RN tables
endfor

Output: RP , RN { reduced tables of positive and negative examples, RL { reduced
set of literals

The complexity of Algorithm 1 is O(jLj2 � jEj), where jLj is the number
of literals and jEj is the number of examples. The algorithm can be e�ciently
implemented using simple bitstring manipulation on the matrix of training ex-
amples. Moreover, this algorithm can be easily transformed into an iterative
algorithm that can be used during the process of generation of literals (see [6]).

4 Hypothesis H is complete if it covers all the positive examples p 2 P . Hypothesis H
is consistent if it does not cover any negative example n 2 N .



4 Experimental results

4.1 The East-West Challenge and RL-ICET

Michie et al. [11] issued a \challenge to the international computing commu-
nity" to discover low size-complexity Prolog programs for classifying trains as
Eastbound or Westbound. The challenge was inspired by a problem posed by
Ryszard Michalski [9].

The original challenge issued by Michie et al. [11] included three separate
tasks. Donald Michie later issued a second challenge, involving a fourth task.
Our experiments described here involve the �rst and fourth tasks. The �rst
task was to discover a simple rule for distinguishing 20 trains, 10 Eastbound
and 10 Westbound, whereas the fourth task involved 24 trains, 12 Eastbound
and 12 Westbound. For both tasks, the winner was decided by representing the
given rule as a Prolog program and measuring its size-complexity. The size-
complexity of the Prolog program was calculated as the sum of the number of
clause occurrences, the number of term occurrences, and the number of atom
occurrences.

A cost-sensitive algorithm ICET was developed for generating low-cost deci-
sion trees [13]. ICET is a hybrid of a genetic algorithm and a decision tree in-
duction algorithm: it takes feature vectors as input and generates decision trees
as output. The algorithm is sensitive to both the cost of features (attributes)
and the cost of classi�cation errors. For the East-West Challenge, ICET was
extended to handle Prolog input. The decision tree output was converted to
Prolog manually. This algorithm is called RL-ICET (Relational Learning with
ICET) [14]. RL-ICET is similar to the LINUS learning system [5]. RL-ICET
uses a three-part strategy. First, a preprocessor translates the Prolog relations
and predicates into a feature vector format. The preprocessor in RL-ICET was
designed specially for the East-West Challenge, whereas LINUS has a general-
purpose preprocessor. Second, an attribute-value learner applies a decision tree
induction algorithm (ICET) to the feature vectors. Each feature is assigned a
cost, based on the size of the fragment of Prolog code that represents the corre-
sponding predicate or relation. A decision tree that has a low cost corresponds
(roughly) to a Prolog program that has a low size-complexity. When it searches
for a low cost decision tree, ICET is in e�ect searching for a low size-complexity
Prolog program. Third, a postprocessor translates the decision tree into a Prolog
program. Postprocessing with RL-ICET is done manually.

RL-ICET was the winning algorithm for the second task in the �rst East-
West Challenge and it performed very well in the other three tasks. Much of
the success of RL-ICET may be attributed to its preprocessor which translates
the Prolog descriptions of the trains into a feature vector representation. The
relatively compact Prolog descriptions were translated into rather large feature
vectors of 1199 elements. The large vectors were required to ensure that all the
features that were potentially interesting for the �nal solution would be available
for ICET.

Although this approach can be recommended also for other applications of



inductive learning methods, one should be aware of the main limiting factor
of the transformation approach which is that the number of generated features
grows rapidly with the complexity of the application. This potentially results
in a space complexity that cannot be handled by standard inductive learners.
Furthermore, the idea of using a genetic algorithm for the selection of signi�cant
features (as in ICET) is interesting but it su�ers from time complexity with large
initial feature sets.

4.2 The experimental setting and results of experiments

The objective of the experiments was to show the utility of the literal elimination
algorithmREDUCE. Two experiments were performed separately for the 20 and
24 trains problems [7, 8]. In both experiments, the RL-ICET preprocessor was
used to generate the appropriate features and to transform the training examples
into a feature vector format. This resulted in two training sets of 20 and 24
examples each, described by 1199 features.

In order to apply the REDUCE algorithm descibed in Section 3 we �rst have
to convert the starting feature vector of 1199 elements to the corresponding lit-
eral vector which has twice as many elements, containing 1199 features generated
by the RL-ICET preprocessor (positive literals) as well as their negated coun-
terparts (1199 negative literals). After that, we eliminate the irrelevant literals
and, in the third phase, we construct the reduced set of features which includes
all the features which have at least one of their literals in the reduced literal set.
The reasons for this three-step procedure are explained in [8].

The experimental setup, designed to test the utility of REDUCE, was as fol-
lows. First, 10 runs of the ICET algorithm were performed on the set of training
examples described with 1199 features. Second, 10 runs of ICET were performed
on the training examples described with the reduced set of features selected by
REDUCE. The results were compared with respect to costs of decision trees and
execution times.5 Ten runs were needed because of the stochastic nature of the
ICET algorithm: each time it runs, it yields a di�erent result (assuming that
the random number seed is changed). If we compared one single run of ICET
on 1199 features to one run of ICET on the reduced feature set, the outcome of
the comparison could be due to chance.

The results of the experiment are summarized in Table 1. The average results
of 10 runs of RL-ICET were compared with respect to the costs of decision trees
and execution times. Notice that all the experiments are independent of each
other, e.g., results of experiment 4 should not be compared to the results of
experiment 14. Only average results are relevant for the comparison.

5 The performance in previous experiments by RL-ICET was measured by the cost of
decision trees induced by ICET, as well as the complexity of Prolog programs after
the RL-ICET transformation of decision trees into the Prolog program form [14].
Here we skip the latter, since the transformation into the Prolog form is currently
manual and sub-optimal, which means that a tree with lowest cost found by ICET
is not necessarily transformed into a Prolog program with lowest complexity.



20 trains 24 trains

86 features 1199 features 86 features 1199 features

Trial T ime Cost Trial T ime Cost Trial T ime Cost Trial T ime Cost

t1 c1 t2 c2 t1 c1 t2 c2

1 11 : 05 18 11 2 : 21 : 32 24 1 14 : 35 20 11 1 : 54 : 15 27
2 11 : 19 21 12 2 : 21 : 34 21 2 14 : 26 18 12 1 : 55 : 29 21
3 12 : 55 18 13 2 : 19 : 15 20 3 14 : 59 18 13 2 : 00 : 25 26
4 11 : 35 18 14 2 : 19 : 32 20 4 14 : 17 21 14 1 : 56 : 31 25
5 15 : 16 18 15 2 : 16 : 20 18 5 13 : 32 18 15 1 : 56 : 47 25
6 11 : 35 18 16 2 : 23 : 52 22 6 13 : 31 22 16 1 : 57 : 14 24
7 11 : 32 18 17 2 : 24 : 09 21 7 14 : 29 18 17 1 : 56 : 52 28
8 11 : 38 18 18 2 : 18 : 41 16 8 13 : 54 23 18 1 : 56 : 33 23
9 11 : 28 18 19 2 : 16 : 58 18 9 13 : 51 23 19 1 : 49 : 08 27
10 11 : 18 21 20 2 : 23 : 09 20 10 14 : 30 18 20 1 : 47 : 46 28

Sum 119 : 41 186 Sum 23 : 25 : 02 200 Sum 2 : 22 : 04 199 Sum 19 : 11 : 00 254
Mean 11 : 57 18:6 Mean 2 : 16 : 54 20 Mean 14 : 12 19:9 Mean 1 : 55 : 05 25:4

Table 1. Results of the experiments.

Results of the 20 trains experiment.With the 20 train data, REDUCE cut
the original set of 1199 features down to 86 features. In this way, the complexity
of the learning problemwas reduced to about 7% (86/1199) of the initial learning
problem [7]. Results of 10 runs of ICET on the 1199 feature set are the results
reported in [14], whereas results of 10 runs of ICET on the training examples
described with 86 features are new.

The results show that the e�ciency of learning signi�cantly increased. In the
initial problem with 1199 features, the average time per experiment was about 2
hours and 17 minutes, whereas in the reduced problem setting with 86 features
the average time per experiment was about 12 minutes. The di�erence between
times t1 and t2 is signi�cant at the 99.99% con�dence level. This shows the utility
of literal reduction for genetic algorithms which are typically greedy regarding
CPU time.

The average cost of descriptions induced from the 86 feature set has decreased
(from 20 to 18.6), but the di�erence between decision tree costs c1 and c2 is not
signi�cant. In addition, the variance (or the standard deviation) of the costs
was reduced, i.e., the costs of the decision trees generated from 1199 features
vary more than the costs of the trees generated from 86 features: var(c1) = 1:6
(sd(c1) = 1:3) and var(c2) = 5:1 (sd(c2) = 2:3).

Results of the 24 trains experiment. In this experiment, REDUCE de-
creased the number of features from 1199 to 116. In this way, the complexity of
the learning problem was reduced to about 10% (116/1199) of the initial learn-
ing problem [8]. The results show that the e�ciency of learning signi�cantly
increased. In the initial problem with 1199 features, the average time per exper-



iment was nearly two hours, whereas in the reduced problem setting with 116
features the average time per experiment was about 14 minutes. The di�erence
between times t1 and t2 is signi�cant at the 99.99% con�dence level.

The average cost of decision trees induced from the 116 feature set has also
decreased. The di�erence between decision tree costs c1 and c2 is signi�cant at
the 99.99% con�dence level. Our hypothesis that variance (standard deviation)
of the output of RL-ICET can be reduced is only weakly supported since the
inequality of variance is insigni�cant: var(c1) = 4:8 (sd(c1) = 2:2) and var(c2) =
5:2 (sd(c2) = 2:3).

5 Discussion and further work

This paper presents a case study of data preprocessing which shows that cost-
sensitive elimination of irrelevant features can substantially improve the e�-
ciency of learning and can reduce the costs of induced hypotheses. This study,
using a hybrid genetic decision tree induction algorithm RL-ICET on two East-
West Challenge problems, together with the previous results in feature reduction
[2, 3] con�rm the usefulness of feature reduction in preprocessing.

Some other experiments were performed and further experimentation is plan-
ned along these lines. In order to evaluate the e�ects of feature reduction, we
have compared the results of ICET (with and without feature reduction) with
the results achieved using C4.5 [15]. In both experiments, feature reduction (re-
duction to 86 and 116 features, respectively) helped ICET to outperform C4.5
when comparing costs of decision trees, both in terms of minimal and average
costs [8]. On the other hand, the application of REDUCE did not help C4.5 itself
to induce a lower cost solution from examples described with fewer features.

This study is also a step towards a better understanding of the notion of
relevance for inductive concept learning. We are aware of some assumptions and
simpli�cationswhich need to be elaborated in further work since they may hinder
the application of the proposed approach in real-life applications. For example,
we do not consider missing values of training examples. On the other hand, some
of the important practical aspects are taken into account, such as the costs of
literals.
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