
Int J Multimed Info Retr (2012) 1:205–222

DOI 10.1007/s13735-012-0022-4

TRENDS AND SURVEYS

Cost-sensitive learning in social image tagging: review, new ideas

and evaluation

Zhenyang Li · Michael S. Lew

Received: 26 August 2012 / Revised: 23 September 2012 / Accepted: 25 September 2012 / Published online: 14 October 2012

© Springer-Verlag London 2012

Abstract Visual concept learning typically requires a set

of expert labeled, manual training images. However, acquir-

ing a sufficient number of reliable annotations can be time-

consuming or impractical. Therefore, in many situations it

is preferable to perform unsupervised learning on user con-

tributed tags from abundant sources such as social Internet

communities and websites. Cost-sensitive learning is a nat-

ural approach toward unsupervised visual concept learning

because it fundamentally optimizes the learning system accu-

racy regarding the cost of an error. This paper reviews the

problem of cost-sensitive unsupervised learning of visual

concepts from social images, presents the new ideas, and

gives a comparative evaluation of representative approaches

from the research literature.

Keywords Visual concept learning · Unsupervised

learning · Social images · Social tagging · Tag relevance

learning · Cost-sensitive learning · Importance weighted

classification

1 Introduction

Visual concept learning is an important yet challenging

problem in content-based multimedia information retrieval

(CBMIR) areas [1]. It is fundamentally a classification task

that determines whether an image or video shot is relevant to a

given target concept. The semantic concepts can cover a wide
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range of topics such as those related to objects (e.g. car, lion),

indoor and outdoor scenes (e.g. classroom, beach), events

(e.g. parade, skiing), people, etc. Automatically detecting

these concepts helps in improving text-based image or video

retrieval, as well as complementing their manual annotations.

However, how to effectively bridge the semantic gap between

low-level visual features and high-level semantic concepts

is still a key hindrance [2]. The performance of existing

approaches can also be easily affected by the presence of

intra-class variations, occlusion, background clutter, view-

point and illumination changes in images and video clips

[3]. In addition, another critical step along this task is the

acquisition of sufficiently large amount of quality training

data.

It has been seen that large-scale data can directly ben-

efit visual concept detection [7]. Rather than designing

more intelligent classification algorithms and robust image

features, we can simply use more data. The acquisition

of reliable annotations, nevertheless, is a labor intensive

process. For each concept to be learnt, training exam-

ples have to be annotated manually by expert annotators

making these annotations expensive and limited. Labeling

TRECVID 2010 dataset, for instance, requires collaborative

annotation efforts from up to 47 research teams or orga-

nizations for 119,685 shots or keyframes with totally 130

concepts [5]. Such a tedious and costly manual labeling

process will become extremely hard for the ultimate aim

of annotating billions of images for thousands of visual

concepts.

On the other hand, with the popularity of social media,

there are increasingly large amounts of images and videos

available on the web. For example, Flickr now hosts over 5

billion images with roughly 10 million new uploaded photos

daily [4] and YouTube serves close to 3 billion video views

per day with 48 h of video uploaded every minute [6]. Apart
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Fig. 1 Examples of social images with user-contributed tags. The tags

in bold denote the ones we would consider their visual relevance with

respect to the image content. In particular, the tags with underlines are

thought of as truly relevant ones. It reveals three possible problems of

social tagging: a incomplete tags, b subjective tags and c ambiguous

tags.

from these rich multimedia databases, images and videos

on the social networks are often accompanied by various

forms of metadata like tags, ratings, comments and EXIF

information.

These social context cues offer meaningful information

about the content of multimedia and make it much easier

to amass training data for visual concept learning. In par-

ticular, the user-contributed tags provide valuable source of

descriptive information about the visual content of images

and video shots. However, these social tags tend to be uncon-

trolled, ambiguous and overly personalized. For example,

Fig. 1a includes two images in which the concept “bridge”

and “bird” is obviously missing respectively. The photos in

Fig. 1b are labeled with some subjective tags, such as “rain”,

“bus” or “horse”. These concepts are not easy to notice in

the photos. The concepts “wheel” and “bridge”, in the upper

image of Fig. 1c, are ambiguous, since “wheel” is commonly

referred to as a circular object under a car or bus rather than

the one used to steer them, and the “bridge” here means the

part of a ship where officers are controlling and steering the

ship. The other photo in Fig. 1c shows a dog wearing a rabbit

costume. It is somewhat confusing to annotate it with concept

either “dog” or “rabbit”. Automatically learning visual con-

cepts from these weakly labeled web images thus appears as a

nature way of replacing the expensive manual labeling. Some

efforts on filtering or sampling the noisy tagged social images

have been made in [8,9]. But how such weakly labeled train-

ing examples affect visual concept learning in terms of user

tagging accuracy, and compared with expert-labeled ones, is

yet to be addressed.

In this paper, we review and empirically compare meth-

ods of learning visual concepts from social images. First, we

investigate two dominant algorithms: support vector machine

(SVM) and boosting, using multiple image features for visual

concept learning. In particular, a common feature combi-

nation procedure is proposed to be integrated into differ-

ent variants of the boosting algorithm. Second, to analyze

social tagging, we discuss a visual neighbor voting model to

learn the visual relevance of tags with respect to the image

content.

This model was inspired by recent successful tag

relevance learning methods [10–12], that propagate the anno-

tation tags of training images to a target image. We sum-

marize their work by literature-based weighting schemes,

i.e. using uniform, distance-based and rank-based weights

for each visually similar image, associated with a weighted

nearest neighbor model. We also discuss a variation of cost

sensitive learning called “importance weighted” classifica-

tion that incorporates the example-dependent importance

weights into the learning frameworks of SVM and boost-

ing classifiers. These importance weights are based on the

tag relevance learned by visual neighbor voting, since more

relevant example images have to be emphasized more in the

training process for a given concept. Therefore, we aim to

discriminate between different training examples by their

importance weights in the classifier learning procedure using

cost-sensitive learning techniques. Apart from this, all the

proposed algorithms are evaluated by both the socially tagged

and manually tagged images so as to explore the impact

of the user-contributed tags, in terms of tagging accuracy,

towards visual concept learning, and in comparison with

manual annotations.

The remaining sections are organized as follows. Section

2 reviews some related works on visual concept learning and
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social image analysis. In Sect. 3, we introduce and discuss the

traditional SVM and boosting algorithms for visual concept

learning using multiple image features. A visual neighbor

voting model to exploit the tag relevance of social images is

presented in Sect. 4. Section 5 describes the cost-sensitive

learning problem and introduces the importance weighted

extensions of SVM and boosting classifiers instead of directly

learning visual concepts from weakly labeled social images.

The experimental setup is described in Sect. 6 and the com-

parative results are presented in Sect. 7. Finally, we give

conclusions in Sect. 8.

2 Related work

2.1 Visual concept learning

The large-scale visual concept detection and annotation task

(LS-VCDT) in ImageCLEF 2009 [13] used the MIR Flickr

collection [14] as the benchmarking dataset. In total, 53

semantic concepts were evaluated and the team with the

best results achieved an average AUC of 84 % on their

best run [15]. In their approach, they extract SIFT-like fea-

tures encoded with “bag-of-words” model in different color

spaces. Both salient point detector and dense grid are used for

point sampling and in combination with spatial pyramid. The

concept classifiers are trained using SVMs with χ2 kernel.

Overall, the current state-of-the-art approaches in visual

concept learning and annotation tasks are based on the “bag-

of-words” model obtained by clustering of SIFT-like fea-

tures. Within the “bag-of-words” representation, different

point sampling strategies (e.g. keypoint detector or dense

sampling), choices of descriptors (e.g. SIFT or SURF) and

visual word assignment (e.g. hard or soft assignment) have

also been studied. Specifically, salient point detectors, such

as Laplace-of-Gaussian [16] and Harris-Laplace [17] based

detectors, introduce robustness against viewpoint and illu-

mination changes. Nowak et al. [18] showed that sampling

on a regular dense grid in a uniform fashion consistently

outperforms complex salient point methods in scene classi-

fication, since using more image patches means that more of

the appearance of an image can be captured. However, salient

points have the advantages of ignoring the homogenous areas

in the image which is superior for object detection. SIFT

[19] and SURF [20] are two commonly used local feature

descriptors. Uijlings et al. [21] presented several improve-

ments upon speeding up the calculation of densely sampled

SIFT and SURF descriptors for real-time classification.

Additionally, visual vocabularies can be created with k-

means clustering or tree-based algorithms (e.g. Random

Forests [22]). Each descriptor is typically assigned to a single

predefined visual word. But it has been shown that assigning

each descriptor to multiple visual words using soft assign-

ment is beneficial [23]. Beyond the “bag-of-words” model,

Lazebnik et al. [24] proposed to use spatial pyramids of local

features to encode a weak form of spatial information. It

works by partitioning an image into increasingly fine sub-

regions and then the histograms of local features found inside

each sub-region are computed and weighted according to

their pyramid levels. Another idea is to construct a hierar-

chical organization of the visual vocabulary aiming to obtain

more discriminative image representations. Spatial patterns

of low-level visual words can be combined in to intermediate-

level phrases or even sentences of visual words [25].

Support vector machine classification has been widely

used for its outstanding performance and robustness against

large feature vectors. The choice of kernel functions is quite

important to the classification performance. Zhang et al. [26]

determined that in a “bag-of-words” approach to concept

detection, the earth movers’ distance and χ2 kernel give the

best accuracy and are to be preferred. Due to computational

efficiency, Maji et al. [27] proposed an efficient classifica-

tion method using SVMs with histogram intersection kernels.

Boosting is another popular classification algorithm which

has been successfully used for face recognition and object

detection [28,29].

Moreover, Huiskes et al. [7] also pointed out that large-

scale training data can directly benefit visual concept learn-

ing. Rather than designing more intelligent classification

algorithms and robust image features, we can simply use

more data. However, manually annotated image collections

are usually size-limited due to the labor intensive process of

manual labeling.

2.2 Social tagging analysis

The media on the social networking websites (e.g. Flickr,

YouTube and Facebook) are often linked with various forms

of metadata, such as tags, ratings, comments and EXIF infor-

mation. This abundance of social data makes it much easier

to amass training examples which could lead to performance

improvements of classic visual concept learning systems. As

shown in [7] and [30], the social data, in particular, the user-

contributed tags, can serve directly as image features for

learning visual concepts. Particularly for the concepts that

are difficult to learn with low-level visual features alone, the

improvements are often considerable.

Despite the high popularity and advantages of social tag-

ging, it is well known that tags provided by typical Internet

users may be inconsistent and incomplete. The study in [31]

revealed that user-provided tags are imprecise and only 50 %

of tags are related to the image content. Bischoff et al. [32]

provided the tag distributions in three tagging environments.

Their study indicated that there were a variety of user tagging

motivations, such as opinion expression, self-presentation or

attraction of attention. And only 45–50 % of tags can be used
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to enhance search experience. Aiming for improving tagging

quality, an effort on tag refinement was made by Liu et al.

[33]. They estimate the initial tag relevance scores based on

probability density estimation and adopted random walk over

a tag similarity graph to refine the relevance scores.

Another idea of learning visual relevance of the user-

supplied tags with respect to the image content is based

on the intuition that if users label visually similar images

using the same tags, these tags are likely to reflect objective

aspects of the visual content. Li et al. [11] and Verbeek et

al. [30] proposed to propagate the annotation tags of train-

ing images to a target image by considering the presence of

tags in its visual neighbors. Additionally, Ulges et al. [34]

provided a probabilistic framework for detecting semantic

concepts from weakly annotated training videos in the pres-

ence of irrelevant content. In their approach, the relevance

of keyframes in the sequence is modeled as a latent random

variable which is estimated during training. Therefore, we

consider such exploitation of social tagging as a good start-

ing point to aid visual concept learning.

3 Learning visual concepts

3.1 SVM

Support vector machine algorithm constructs a hyperplane

or set of hyperplanes in a high-dimensional space, which

can be used for classification and regression analysis. It is a

representation of the examples as points in space, mapped

so that a good separation is achieved by the hyperplane

that has the largest margin between the training data points

of different classes, since in general the larger the mar-

gin the lower the generalization error of the classifier. Let

S = {(xi , yi )|i = 1, . . . , N } ⊂ Rd × {−1,+1} be

the training samples, the two-class soft-margin SVM model

which allows for misclassified examples works by solving the

following optimization problem:

min
w,b,ξ

1

2
‖w‖2

H
+ C

N
∑

i=1

ξi (1)

s.t. yi (w · ϕ(xi ) + b) ≥ 1 − ξi

ξi ≥ 0 (2)

The non-zero slack variable ξi expresses how much the exam-

ple xi fails to have the required margin, so it is introduced to

measure the degree of misclassification in the optimization

function (1). ξi takes a value greater than 1 if the correspond-

ing training example lies to the wrong side of the decision

boundary. Therefore,
∑

i ξi indicates an upper bound on the

total number of training errors. C > 0 is a regularization

constant which determines the trade-off between the empir-

ical risk and model complexity. By means of applying the

kernel trick φ : Rd → H, we can map the input data points

into a higher-dimensional feature space H to create nonlinear

classifiers. The classification decision function is defined as

follows:

f (x) = sign(w · ϕ(x) + b) (3)

SVM is commonly regarded as a competitive choice for

classification. And many state-of-the-art visual concept

detection systems achieved their best results using SVM clas-

sifiers with χ2 [15,26]. Recently, multiple kernel learning

has been a topic of interest which associates image features

with kernel functions and jointly learn the optimal combina-

tion of the kernels [35]. In this paper, we combine several

kernels of multiple features into a single model by aver-

aging their values. The RBF-based kernel function is used

to measure the similarity between two images: k(xi , x j ) =

exp(−d(xi , x j )/λ), where d(xi , x j ) is the distance in a fea-

ture space between two images and λ is set as the average of

all pair-wise distances among all the training images.

3.2 Boosting

Boosting is an ensemble learning framework to construct a

strong classifier by combining a set of inaccurate classifica-

tion rules (weak learners). We propose to use three variants

of the boosting algorithm, including AdaBoost [36], Real-

Boost [37] and GentleBoost [37], for visual concept learn-

ing. Adaboost is the most commonly used version in which

the weak learner directly outputs discrete class labels and

the final classifier is defined to be a linear combination of

the weak learners from each stage. While in RealBoost pro-

cedures, the weak learner produces a class probability esti-

mate and its contribution to the final classifier is half the

logit-transform of this probability estimate. Friedman et al.

[37] also showed that boosting provides a generalized way

to sequentially fit additive regression models of the form:

H(x) =

T
∑

i=1

ht (x) (4)

where x is the input feature vector and T is the number of

boosting rounds. ht (x) denotes a weak learner at each round

t , and H(x) is the final strong classifier learner. Thereby, they

derive a “gentler” version called GentleBoost, which differs

from RealBoost in that it takes adaptive Newton stepping

rather than exact optimization at each stage and tends to put

less weight on the outlier data points.

In order to merge multiple visual features into our con-

cept learning system, a feature combinationprocedure is

123



Int J Multimed Info Retr (2012) 1:205–222 209

introduced to be integrated at each round of these three boost-

ing variants. The traditional boosting produces only one com-

ponent weak classifier at each iteration. By contrast, at each

round of our extension of the boosting procedures, several

weak classifiers are trained on samples of each feature, and

then combined into a single one (a middle final classifier)

[38]:

ht =

M
∑

m=1

βm fm(x) (5)

s.t.

M
∑

m=1

βm = 1 (6)

where ht denotes the final weak classifier at each round t ,

and fm is the separately learned weak classifier using fea-

ture m . βm indicates the linear combination weights, we

can uniformly weight it by βm = 1
K

. Yet, another option

for AdaBoost is to weight according to the same criteria of

weighting the weak classifier at each round:

ǫm = E [w · I (y �= fm(x))] (7)

βm =
1

2
log((1 − ǫm)/ǫm) (8)

where I (·) denotes the indicator function which takes on the

value 1 whenever the statement is true, and value 0 otherwise.

w is the training weight for each example in boosting. Thus,

these combination weights depend on the weighted training

error rate of each weak classifier. Since RealBoost and Gen-

tleBoost use real-valued confidence-rated predictions rather

than discrete positive or negative class labels {−1, +1}, a

second weighting method of feature combination for them

is defined based on generalization error (out-of-sample error

rate):

βm = E

[

w ·
1

e−y fm (x)

]

= E
[

w · ey fm (x)
]

(9)

where the term y fm(x) indicates the margin, which is related

to the generalization error. All the weights are normalized

such that they sum up to 1, i.e. Eq. (6). In addition to linear

combination, we also propose to select the best one, obtaining

the largest combination weight, of all the weak classifiers

trained on each feature as the final weak classifier at each

round:

ht = arg max
fm∈M

βm (10)

This way is much like a feature selection process.

Our AdaBoost, RealBoost and GentleBoost algorithms are

respectively described in Figs. 2, 3 and 4.

Fig. 2 AdaBoost algorithm

Fig. 3 RealBoost algorithm

Fig. 4 GentleBoost algorithm
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Fig. 5 Visual neighbor voting model. The tag relevance with respect

to the visual content of an image is modeled by accumulating the neigh-

bor votes received from visually most similar images of the seed image.

For example, since four neighboring images are annotated with concept

“butterfly”, the seed image will obtain four votes for its tag relevance

estimation. Moreover, if we consider to recommend new tags for the

seed image, the concept “garden” would be preferred, because the accu-

mulated neighbor votes for it is three

4 Exploiting tag relevance

4.1 Visual neighbor voting model

A recent research topic on determining the visual relevance

of the social tags has been studied in [11,30,39]. In gen-

eral, the key idea is based on the nearest neighbor model

that propagates the annotation tags of the visually most sim-

ilar training images to a target image. Here, inspired by their

work, we summarize it as a weighted nearest neighbor voting

model: for each tag, a seed image will receive relevance votes

from its visual neighbors which are labeled with this tag by

users and the votes can be weighted according to their visual

similarities. Figure 5 illustrates an overview of this visual

neighbor voting model without considering the contribution

weight for each vote. Specifically, given an annotation con-

cept w, its visual relevance r with respect to a seed image xi

is defined by taking a weighted sum of the votes from its K

nearest neighboring images:

r(xi , w) =

K
∑

j=1

πi jv(x j , w) (11)

v(x j , w) =

{

1 − ε if w ∈ x ′
j s tag list

ε otherwise
(12)

where v(x j , w) indicates the vote from the neighbor image

x j , i.e. whether x j is labeled with target concept w. And

we use πi j to denote the contribution weight when image x j

is voting on image xi . The introduction of the non-negative

constant ε (e.g. 10−5) is a technicality to avoid zero prediction

when none of the K nearest neighbor x j is annotated with

concept w. To ensure proper distribution and normalization

so that r ∈ (0, 1), we require that πi j > 0 and
∑

j πi j = 1.

The only parameter of this model is thereby πi j , and we

see that this leads to three weighting schemes for this

weighted nearest neighbor model:

1. Uniform weighting: πi j is equally weighted for all the

visual neighbors.

2. Distance-based weighting: πi j is weighted according to

the measure of distance in the feature space between

image xi and neighboring image x j .

3. Rank-based weighting: πi j is weighted according to the

ranking of image x j among all the xi ’s visual neighbors

which are well ranked by their distance measure.

Based on these weighting approaches, below we present

two effective tag relevance learning models driven by diverse

features in an unsupervised or supervised manner.
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4.2 Unsupervised tag relevance learning

In order to seek a generic and unsupervised tag relevance

learning model using the weighted neighbor voting strat-

egy, we employ the uniform weighting scheme for all the

visual neighbors, as well as the multiple feature learners

[11,39]. Specifically, we first perform tag relevance learn-

ing by searching for the nearest neighbors using each feature

measure. Then, several base learners trained under different

feature measures are combined in an uniform manner, since

we have no prior knowledge of which base learner is most

appropriate for a given target tag. Assume we just consider

the K nearest neighbors of the seed image xi . Since each

visual neighbor will be weighted by πi j = 1
K

, the model

(11) can be inferred as:

r(xi , w) =

K
∑

j=1

1

K
v(x j , w) (13)

However, tags occurring frequently in the training image col-

lection may dominate the results. To restrain such effects, we

take into account the tag’s prior frequency to estimate its prior

probability [11]. Concretely, the prior probability for a given

concept w is approximated as:

pprior(w) =
Nw

N
(14)

where Nw is the number of training images tagged with con-

cept w, and N denotes the size of the entire training set. In

general, the more neighboring images annotated with the tar-

get concept, the larger the tag relevance value would be. In the

meanwhile, tags with high frequency are penalized for their

high prior probabilities. As a result, we obtain the unsuper-

vised tag relevance learning model using multiple features

as follows [39]:

rm(xi , w) =

K
∑

j=1

1

K
vm(x j , w) −

Nw

N
(15)

r(xi , w) =
1

M

M
∑

m=1

rm(xi , w) (16)

where rm is the tag relevance learner trained using feature m.

Note that function (15) does not necessarily obtain positive

results, so in practice we set the minimum value ϕ, a very

small constant (e.g. 10−5), to avoid negative results in our

experiments.

4.3 Supervised tag relevance learning

When manually-labeled training images of given tags are

available, the weighting parameter πi j can be optimized to

fit the tag relevance function. To this end, we employ two

supervised tag relevance learning methods by performing

distance-based and rank-based weighting. We follow the

method proposed in [30], maximizing the log-likelihood of

the tag relevance predictions for training images. The objec-

tive function is defined as follows:

L =
∑

i,w

µiw log(r ′(xi , w)) (17)

Note that if the annotation concept w is visually relevant to

an image xi , we aim to maximize its tag relevance r ′ = r;

however, r ′ = 1 − r should be maximized if concept w

is irrelevant to image xi . And µiw is the bias cost that

takes into account the imbalance between concept presence

and absence. Indeed, in practice, there are much more tag

absences than presences, and absences are often much nois-

ier than presences. This is because even if most concepts

in annotations are relevant, the annotation often does not

include all relevant concepts. We set µiw = 1/N+ if con-

cept w is relevant, where N+ is the total number of positive

training examples, and likewise µiw = 1/N− when irrele-

vant, where N− is the number of negative examples.

To define the weights directly as a function of the distance

or rank metric, we use the weighting function introduced in

[30] which was defined for distance-based weights, and here

we also apply it to getting rank-based weights:

πi j =
exp(−dθ (xi , x j ))

∑

j ′ exp(−dθ (xi , x j ′))
(18)

where dθ is a distance or rank metric with parameter θ that

we want to optimize. Therefore, the weights πi j decay expo-

nentially with the distance or rank metric. Here, we use linear

combination for dθ (xi , x j ) = θ
T

di j , where di j is a vector

of all base distances between image xi and image x j , or a

vector of ranks for image x j among the K nearest neighbors

of image xi under each distance measure, and the parameter

θ = (θ1, . . . , θM ) contains the positive coefficients of the

linear distance or rank combination.

As we mentioned above, the weighted nearest neighbor

voting model (11) tends to have relatively low recall scores

for rare annotation keywords: to receive a high probability

for the presence of a tag, it needs to be present among most

visual neighbors with a significant weight. This, however, is

unlikely to be the case for rare annotation terms. To over-

come this problem, Verbeek et al. [30] introduced to perform

concept-specific logistic transformation to boost the proba-

bility for rare concepts and decrease it for frequent ones. The

logistic model uses the weighted neighbor voting predictions

by defining:

riw =

K
∑

j=1

πi jv(x j , w) (19)

r(xi , w) = σ(αw · riw + βw) (20)
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where σ(z) = 1/(1 + exp(−z)) is the sigmoid or logistic

function and riw is the relevance estimation of concept w with

respect to image xi , which is learned by visual neighbor vot-

ing and using weighting function (18). This concept-specific

model is equivalent to (11) up to an affine transformation. In

practice, we estimate the parameters {αw, βw} and θ in an

alternating fashion.

5 Cost/importance weighted concept learning

Despite the high popularity and advantages of social tagging,

it is well known that tags provided by the grassroot Internet

users are actually far from satisfactory as qualified descriptive

indexing keywords for the visual content of the web images.

Therefore, in this section, several cost/importance weighted

concept learning algorithms are considered to solve the prob-

lem of directly using noisy tags of social images for visual

concept learning. These approaches are inspired by current

cost-sensitive learning techniques. First, we exploit the visual

relevance of the tags that are present in the social images as

shown in the previous section. Second, the tag relevance with

respect to each training examples is integrated into the super-

vised learning process of SVM and boosting classifiers, in the

form of importance weights.

5.1 Cost-sensitive learning

The design of optimal classifiers with respect to losses that

weight certain types of errors of training examples more

heavily than others is denoted as cost-sensitive learning in

machine learning and data mining communities. Classifica-

tion problems such as fraud detection, medical diagnosis or

object detection in computer vision are naturally cost sen-

sitive. For example, in a face recognition-based door locker

system, the cost of mistakenly allowing an imposter to enter

the house may be much higher than that of mistakenly reject-

ing a host, because the former kind of error would be a dis-

aster and obviously much more serious than the latter.

Actually, the cost-sensitive learning process may involve

many kinds of costs, such as test cost, teaching cost, inter-

vention cost, etc., among which the most studied type is

the misclassification cost [40]. Furthermore, the misclassi-

fication cost can also be categorized into two groups, i.e.

problems with class-dependent cost [41–43] and example-

dependent cost [44,45]. In the former kind of problems, the

cost is determined by error type, that is, misclassifying any

example of a certain class into another class will always have

the same cost, while misclassifying an example into differ-

ent classes may result in different cost. In the latter kind of

problems, the cost is determined by the example, while differ-

ent examples may have different misclassification cost even

when their error types are the same. Our work will focus on

example-dependent cost-sensitive learning. Denote an exam-

ple image x and its class label y. Given a set of examples

x ∈ X with class labels y ∈ Y and |Y | = L , the traditional

machine learning or classification methods try to generate a

hypothesis h : X → {1, . . . , L} minimizing the expected

misclassification error:

arg min
h

Ex,y [I (h(x) �= y)] (21)

where we use I (·) to denote the indicator function which

takes on the value 1 whenever the statement is true, and value

0 otherwise. Thus, these methods implicitly assume that the

costs of all kinds of mistakes are the same. In our concern

problem of example-dependent cost-sensitive learning, the

general cost function Ch(x) = C(x, y, h(x)) specifies how

much classification cost is incurred when an example x with

correct label y is predicted to belong to class h(x). Thereby

it allows for cost dependence on each example x . We can

also assume that the correct predictions are normalized so

that Cy = C(x, y, y) = 0. Again, given a set of training

examples S = (x, C)N , where C is a vector of costs of mis-

classifying an example x as all possible labels, our goal is to

find a classifier h which minimizes the expected misclassifi-

cation cost:

arg min
h

Ex,y,C

[

Ch(x) · I (h(x) �= y)
]

(22)

Our problem of learning visual concepts from weakly labeled

social images can be viewed as a cost-sensitive learning prob-

lem, since for a given concept misclassifying a more relevant

image should result in a higher cost than misclassifying an

irrelevant image.

5.2 From misclassification cost to importance weight

Recently, significant work has attempted to convert machine

learning algorithms and classification theory into cost-

sensitive algorithms and theory. The research in this area

falls mainly into three categories: (1) extending a particular

classifier learning algorithm so as to produce cost-sensitive

generalizations; (2) using Bayes risk theory to assign each

example to its lowest risk class; (3) making arbitrary clas-

sification algorithms into cost-sensitive ones. In particular,

a general conversion proposed in [44] (and further study

on multi-class case in [45]) is based on cost-proportionate

weighting of the training examples, which can be realized

either by feeding the weights to specific classification learn-

ers (e.g. boosting), or by carefully subsampling the training

examples drawn from a weighted distribution. Rather than

using “cost matrix” formulation which is more typical in cost-

sensitive learning, they formulate example-dependent mis-

classification cost in the form of one importance weight per

example and reduce this cost-sensitive learning problem into
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an importance weighted classification problem which can be

solved very well by weighted rejection sampling techniques.

When the output space of the classification problem is

binary, costs are associated with false negative and false

positive, true negative and true positive predictions in the

cost matrix formulation. Given an example and its cost

matrix, only two entries, i.e. (false positive, true negative)

or (true positive, false negative), are relevant for that exam-

ple in the learning process, because it can only actually be

either positive or negative example. Elkan et al. [42] and

Zadrozny et al. [44] pointed out that these misclassification

costs can be further reduced to one degree of freedom from

a decision-making perspective: (false positive–true negative)

or (false negative–true positive), which is the difference in

cost between classifying an example incorrectly and cor-

rectly. For instance, consider the cost matrix in Table 1, the

cost difference we denote as example importance c here is

defined as follows:

c =

{

c01 − c00, if y = −1

c10 − c11, if y = +1
(23)

This cost difference controls the importance of correct classi-

fication and just vary on an example-by-example basis. Then

given a set of examples with the form (x, y, c), we aim to

find a classifier h achieving the minimal importance weighted

misclassification error:

arg min
h

Ex,y,c [c · I (h(x) �= y)] (24)

An iterative weighting method was proposed for multi-class

cost-sensitive learning problems in [45]. It also makes use

of the importance weighted classification method, but criti-

cally differs from per-example formulation of the two-class

cost-sensitive learning problem described above in that there

is one classification cost associated with each possible pre-

diction h(x), whereas in the binary case there is a single

importance weight associated with each example x . In order

to take into account the different costs associated with multi-

ple ways of misclassifying examples, they make a conversion

by use of expanding data space. Specifically, given a set of

examples consisting of S = (x,
−→
C ) of size N , where

−→
C is

the cost vector specified above. The expanded data space S′

of size N L , where L = |Y | is the size of the class label set,

is defined as follows:

S′ =

{

(x, y, max
y′

Cy′ − Cy)| ∀y ∈ Y

}

(25)

The importance weights given here, thereby, are more

like benefits than costs, since larger costs will be mapped to

smaller weights. However, as we adopt one-against-all strat-

egy to solve multi-class classification problem using binary

classifiers, in the following study we will focus on two-class

cost-sensitive learning in which there is only one importance

weight per example. How to further formulate this problem

Table 1 An example of cost matrix for binary classification

Predict negative Predict positive

Actual negative c00 c01

Actual positive c10 c11

when the output space is out of binary is our future work

and beyond the scope of this paper. Below, we will make an

attempt to incorporate these importance weights into SVM

and boosting classifier learning process, rather than employ-

ing resampling techniques, though it is more general and can

be applied to arbitrary classifier learners.

5.3 Importance weighted SVM

The problem of designing a cost-sensitive extension to the

SVM learning model has been studied in [46–48]. In addi-

tion to a general conversion by resampling, [46] proposed

to shift the decision boundary by simply adjusting the

threshold of the standard SVM classifier. This boundary

movement method is obviously flawed when the data are

non-separable, in which case cost-sensitivity requires a mod-

ification of both the separating hyperplane w and classifier

threshold b. Another widely researched approach is to bias

the penalties in the loss function [44,47,48]. It consists of

introducing different penalty factors for different SVM slack

variables of examples during training. Based on this idea,

we modify the optimization formula (1) to incorporate the

importance weights associated with each example:

min
w,b,ξ

1

2
‖w‖2

H
+ C

N
∑

i=1

ci · ξi (26)

where ci is the importance weight of example xi and now

regularization constant C controls model complexity versus

importance weighted training errors. As shown in Eq. (26),

the biased penalties method has direct effect on the support

vectors of SVM classifier. However, it suffers from a flaw

that it has limited ability to enforce cost-sensitivity when

the training data points are separable, which is the opposite

case of boundary movement method. Since, in practice, the

training data are more likely to be non-separable, our imple-

mentation is based on the loss function (26) employing the

biased penalties.

5.4 Importance weighted boosting

5.4.1 Importance weighted AdaBoost

Various cost-sensitive extensions of AdaBoost algorithm

are available in the literature, including AdaCost [49],

CSB0, CSB1, CSB2 [50], and AdaC1, AdaC2, AdaC3 [51].
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A straightforward idea to feed example importance weights

to boosting procedures is to modify the initial boosting

weights so as to break the importance symmetry. However,

boosting re-updates all the weights at each iteration which

may quickly destroy the initial asymmetry, and the predic-

tor obtained after convergence usually makes little differ-

ence from that produced with symmetric initial conditions.

Another natural heuristic is to modify the way of updating

weights in the boosting procedures. Most of the previously

proposed approaches [49–51] attempt to address this problem

in AdaBoost, achieving cost-sensitivity by manipulation of

its re-weighting mechanism and confidence parameters. Ada-

Cost [49], for instance, introduces a cost adjustment function

into weight updating rule of AdaBoost, aiming to increase the

weight of a training example with higher importance “more”

if it is misclassified, but decrease its weights “less” if oth-

erwise. However, the selection of the cost adjustment factor

in AdaCost is ad-hoc and may easily induce poor perfor-

mance [50]. Sun et al. [51] suggested a justified inference

of weight updating parameter to maintain the boosting effi-

ciency in reducing the weighted training error, while inte-

grating the misclassification cost into the weight updating

formula. Our importance weighted extensions of Adaboost

are implemented using AdaC2 and AdaC3 algorithms [51],

which respectively feed the importance weights to the weight

updating rule of Eqs. (28) and (28) at each round:

αt =
1

2
log

∑

i, yi =ht (xi )
ci wi

∑

i, yi �=ht (xi )
ci wi

wi ← ci wi e−αt yi ht (xi ), i = 1, . . . , N

(27)

αt =
1

2
log

∑

i ci wi +
∑

i, yi=ht (xi )
c2

i
wi −

∑

i, yi �=ht (xi )
c2

i
wi

∑

i ci wi −
∑

i, yi=ht (xi )
c2

i
wi +

∑

i, yi �=ht (xi )
c2

i
wi

wi ← ci wi e−αt ci yi ht (xi ), i = 1, . . . , N

(28)

where ci denotes the importance weight for each example

xi . The weight updating function of AdaC2 or AdaC3, i.e.

Eq. (28) or (28), will be equivalent to the weight updating

function of original AdaBoost algorithm in Fig. 2, when the

importance weight items are all set to 1.

5.4.2 Importance weighted Gentleboost

As far as we know, there have been no cost-sensitive exten-

sion reported for GentleBoost in the literature. Furthermore,

none of the weight manipulations in cost-sensitive AdaBoost

can be easily applied to derive cost-sensitive extensions for

other boosting variants, such as GentleBoost. Therefore, we

next attempt to derive the importance weighted extensions

for GentleBoost by following the formulation of the additive

logistic regression mode [37].

Boosting provides a generalized way to sequentially fit an

additive regression model (4) and it minimizes the following

exponential cost function, one term of the additive model at

a time:

J (H) = E
[

e−y H(x)
]

(29)

where y denotes the class label {−1, +1}, and the term

y H(x) indicates the margin, which is related to the gener-

alization error (out-of-sample error rate). This cost function

can be thought of as a differentiable upper bound on the mis-

classification rate [52]. It also shows that J (H) is minimized

at:

H(x) =
1

2
log

P(y = +1|x)

P(y = −1|x)
(30)

Hence we haveP(y = +1|x) = σ(2H(x)), where σ(z) =

1/(1 + exp(−z)) is the logistic or sigmoid function. This is

equivalent to the usual logistic transform of P(y = +1|x)

up to a factor 2. Boosting, consequently, can be viewed as

step-wise estimation procedures for fitting an additive logis-

tic regression model. In particular, GentleBoost optimizes

J (H) using adaptive Newton steps, which corresponds to

minimizing a weighted squared error at each step. Specifi-

cally, at each round t , the function H is updated as H(x) ←

H(x)+ht (x),where ht (x) take one Newton step to minimize

a second order Taylor approximation of the cost function J :

arg min
ht

J (H + ht ) = arg min
ht

E
[

e−y(H(x)+ht (x))
]

≃ arg min
ht

E
[

e−y H(x)(y−h t (x))2
]

(31)

= arg min
ht

E
[

w · (y−h t (x))2
]

s.t. w = e−y H(x) (32)

Replacing the expectation with empirical cost over training

data, it reduces to minimizing the weighted squared error:

Jwse =

N
∑

i=1

wi (yi − ht (xi ))
2 (33)

where N is the number of training examples.

First, we propose to incorporate importance weight into

the cost function formula as a linear factor:

J (H) = E
[

c · e−y H(x)
]

(34)

where c denote the importance weight for each example x .
Hence, we also choose to minimize the second order Taylor
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approximation of this new cost function:

arg min
ht

J (H +ht ) = arg min
ht

E
[

c · e−y(H(x)+ht (x))
]

≃ arg min
ht

E
[

c · e−y H(x)(y − ht (x))2
]

(35)

= arg min
ht

E
[

w · (y − ht (x))2
]

s.t. w = c · e−y H(x) (36)

Empirically, this also reduces to minimizing the weighted

square error in (33), but with a new weight function (36).

The weighs thus get updated by:

w(t+1) = ce−y(H(x)+ht+1(x))

= ce−y H(x) · e−yht+1(x)

= w(t) · e−yht+1(x)

(37)

This is equivalent to initializing the boosting weights with

importance weights, but updating them using the same rule

in GentleBoost.

Compared with the exponential influence of the term

y H(x) which is associated with the generalization error, the

importance weight c has much less effect on the cost function

(34) as a linear factor. Therefore, a second heuristic idea is

to formulate it inside the exponent of the cost function:

J (H) = E
[

e−cy H(x)
]

(38)

Now the second order Taylor approximation we want to
optimize is defined as follows:

arg min
ht

J (H +ht )=arg min
ht

E
[

e−cy(H(x)+ht (x))
]

≃ arg min
ht

E
[

e−cy H(x)(y−c · ht (x))2
] (39)

It then, empirically, reduces to minimizing the weighted

squared error of the form:

Jwse =

N
∑

i=1

wi (yi − ci · ht (xi ))
2 (40)

where wi = e−ci yi H(xi ). However, in order to minimize the

sum of squared residuals, the target value of ht (xi ) for each

example xi depends on its importance weight factor ci . It

makes no sense at all that the weak learner seeks different

prediction ranges for different examples and we are not able

to solve this problem by following the formulation of Gen-

tleBoost any more. Overall, our importance weighted Gen-

tleboost is implemented according to the cost function (34),

which only modifies the initialization procedure of the orig-

inal GentleBoost in Fig. 4.

5.5 Tag relevance-based importance weighting

Since one-against-all strategy is performed to reduce our

multi-class classification problem into multiple binary prob-

lems, two tag relevance-based importance weighting schemes

are proposed, namely per-concept weighting and per-image

weighting, concentrating on the binary distinction of posi-

tive versus negative. In general, for a given concept, higher

relevance value leads to a higher importance weight in the

training process. And we assume that all tag relevance values

are normalized into (0, 1).

In per-concept weighting scheme, for each annotation con-

cept, we first learn the visual relevance of this concept with

respect to all the training images even if it is not present

in the user-contributed tags of an image. Then, to solve

the binary classification problem of a target concept, all

the images labeled with this concept are trained as positive

examples and take importance weights that equal to their

tag relevance value, while images not labeled with this con-

cept, as negative examples, take importance weights accord-

ing to (1 − T agRelevance). On the other hand, for each

training image, we only learn the relevance of all its user-

provided tags in per-image weighting scheme. And then their

tag relevance and importance weights are equivalently used

regardless of an image being trained as positive or nega-

tive example in a binary classification problem of a given

concept.

6 Experimental setup

6.1 Dataset

Social20 [53] is a collection of 19,972 social-tagged images

with 20 diverse visual concepts randomly collected from

Flickr. For each concept, it consists of 1,000 example images

labeled with that concept, as well as other annotation con-

cepts, by user tagging. It has been known that social tags can

be very subjective and overly personalized, as a result, often

irrelevant to the visual contents of images. Therefore, these

social images have also been manually relabeled in terms

of their visual relevance: we consider a semantic concept

and an image relevant if the concept is clearly visible in the

image and we shall relate the concept to the visual content

easily and consistently with common knowledge. Finally,

only 5,241 images are preserved after the manual relabeling,

because some of the images are visually irrelevant to all of

our target 20 concepts. The dataset is evenly split into train-

ing data and testing data. In our experiments, we have used

both social and manual tags to investigate our algorithms and

the performance evaluation is always based on the manual

annotations.
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6.2 Evaluation criteria

6.2.1 Image ranking evaluation

To measure image ranking performance we use average pre-

cision (AP) and break event point precision (BEP). For a

given semantic concept, we rank all the images by their pre-

dicted probabilities and evaluate precisions at each position

according to the manual annotations. AP averages the preci-

sion over all positions of relevant images, whereas BEP com-

putes the precision just at one position, which is the number

of relevant images that are manually labeled with that con-

cept. Both measures are evaluated per concept, and finally

averaged over all the concepts to obtain a single measure.

These measures indicate how well we can retrieve relevant

images from the database in response to the keyword-based

user queries.

6.2.2 Concept ranking evaluation

In addition to image ranking measures, we also evaluate con-

cept ranking performance by mean reciprocal rank (MRR).

For each image, we rank all its possible concepts by their

predictions, then compute mean of the reciprocal ranks of

the manually annotated concepts for this image and finally

average them over all the images. This measures how well we

can automatically identify or recommend relevant annotation

concepts for images.

6.3 Visual feature extraction

We extract global features and local features of images which

are commonly used for image retrieval and categorization to

enhance the performance of visual concept learning. There

are two types of global visual features: Color and Gist. The

Color features consist of the color correlogram [54], the tex-

ture moments [55] and the RGB color moments. The Gist is

a popular global feature which represents the dominant spa-

tial structure of a scene by a set of perceptual dimensions,

such as naturalness, openness, roughness, expansion, rugged-

ness [56]. As for local features we use the SIFT descrip-

tor [19], and both dense grid and Laplacian of Gaussian

(LoG) keypoint detector are used for point sampling. Each

local feature descriptor is quantized using k-means clus-

tering (1,000 cluster centers) on samples from the training

set, and images are then represented as “bag-of-words” his-

tograms. In order to encode the spatial layout of the image to

some degree, we follow the approach of [24], and compute

the histogram by two-level spatial pyramids over different

image regions. The images are sampled over three horizontal

sub-regions, i.e. 1 × 3, reflecting the typical top, middle

and bottom layout of landscape photography. At last, two-

level histograms are weighted and combined into a single

histogram (4 × 1,000 − d). To compute distances from the

feature descriptors in the visual neighbor voting model and

SVMs kernel functions, we use Euclidean distance (L2) for

Color and Gist features, Chi-square distance (χ2) for SIFT

and Dense SIFT histograms.

7 Experimental results

7.1 Experiment 1: tag relevance learning

In our first set of experiments, we used different variants of

the visual neighbor voting model to predict the visual rele-

vance of the target 20 annotated concepts. The tag relevance

learning methods we evaluated include one unsupervised

model using uniform weights and two supervised models

using distance- or rank-based weights. A common parame-

ter to optimize for all these models is K , which is the number

of visual neighbors used to vote a seed image. We test and

choose K from the set {10, 20, 50, 100, 200, 500, 1,000}.

The supervised learning models, particularly, required to be

trained on a set of manually labeled example images. This

can be done either using held-out data or in a leave-one-out

manner. In our experiments, we have used the same training

set for neighbor voting and supervised learning in leave-one-

out manner. Moreover, we investigate this visual neighbor

voting model both by use of images with social tags and

manual annotations. The social-tagged dataset was filtered

by relabeling and the resultant manually tagged dataset has

a smaller size than the former. Because of the noise in the

social tags, performance was always evaluated based on the

manual annotations. In Fig. 6, we give an overview of perfor-

mance of the three tag relevance learning methods in terms

of AP, BEP and MRR, as a function of the number of visual

neighbors K which is used in the nearest neighbor searching

process.

As shown in Fig. 6a when trained on social-tagged images,

all the variants of the weighted nearest neighbor voting

model, i.e. using uniform, distance-based and rank-based

weights, can make constant improvements in terms of AP,

BEP and MRR performance with an increasing number of

visual neighbors used for voting. Meanwhile, using much

more neighbors has a slight negative effect on performance.

This is easy to understand that it is more likely to include

useful visual neighbors from more different neighborhoods,

however, more neighbors will lead to more noise when most

of the useful neighbors have been included. The optimal para-

meter setting for our three variant models is K = 100, K =

200, and K = 500, respectively. In addition, we observe

that the uniform and rank-based weighting models get very

comparable results in terms of AP and BEP. But the MRR

score evaluated using uniform weights drops significantly
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Fig. 6 Comparison in terms of AP, BEP and MRR performance of

visual neighbor voting model using uniform, distance-based and rank-

based weights. All the models are trained with different values for para-

meter K, as well as using a social tags or b manual tags. Note the log

scale on the horizontal axis.

as a result of using more and more neighbors, and it is

mostly much lower than that when using distance-based or

rank-based weights. Therefore the supervised tag relevance

learning model has much better discriminative capabilities

between semantic concepts than the unsupervised learning

model in this case. Using rank-based weights always yields

higher values of AP, BEP and MRR than using distance-based

weights.

The results of using manual annotations, in Fig. 6b, illus-

trate a considerable performance improvement compared to

using social tags. And the increase is more pronounced in

terms of AP and BEP than in MRR. We can observe very simi-

lar impact of using an increasing number of visual neighbors

on performance. However, the AP, BEP and MRR scores

yielded by the uniform weighting model start to decrease

quickly from the beginning with a relatively small value of

parameter K . The optimal choice of K neighbors, in this

case, is K = 50, K = 200 and K = 200 respectively. The

unsupervised tag relevance learning model now is largely

outperformed by the supervised learning models in terms

of all the evaluation criteria. Likewise, using rank-based

weights achieves better performance than using distance-

based weights.

For the following experiments, we also use these three

tag relevance learning methods for comparisons with other

visual concept learning algorithms, and the parameter of K

neighbors is always set optimally.

7.2 Experiment 2: visual concept learning

In this section we investigate SVMs, boosting variants, as

well as their importance weighted extensions for visual con-

cept learning by use of social tags or manual annotations.

First, we evaluate different variants of the boosting algorithm,

and feature combination approaches integrated at each round

of boosting procedures. Second, an overall comparison of

performance between SVMs, boosting variants and tag rele-

vance learning methods is presented. Third, we analyze the

results of our importance weighted SVMs and boosting algo-

rithms when learning visual concepts from weakly labeled

social images.

7.2.1 Evaluating boosting variants

We compare three boosting variants, including AdaBoost,

RealBoost and GentleBoost. Three different feature combi-

nation approaches are also integrated into each boosting vari-

ant and evaluated. Moreover, we follow the AdaBoost.MH

algorithm [37] to convert the multi-class problem using one-

against-all strategy. However, rather than building one large
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Table 2 Comparison on AP, BEP and MRR (%) for different boosting variants

Ada(b) Real(b) Gentle(b) Ada(u) Real(u) Gentle(u) Ada(e) Real(e) Gentle(e)

(a) Social tags

AP 69.1 62.5 71.6 71.3 67.5 71.9 70.4 66.6 71.8

BEP 65.6 59.8 68.0 67.8 64.8 68.5 67.4 64.0 68.6

MRR 59.5 41.6 68.3 70.1 55.9 71.0 65.8 51.9 71.3

(b) Manual tags

AP 81.8 76.3 83.4 84.6 81.3 85.0 83.1 80.2 84.7

BEP 75.7 71.3 77.3 78.6 75.8 78.8 77.3 74.9 78.6

MRR 53.2 47.6 69.8 61.9 64.5 72.6 53.7 62.1 72.8

(b), (u) and (e), respectively, denote selecting the best feature, uniform and error-based weighting scheme for feature combination at each round

of boosting procedures. The better performance between boosting variants using each weighting scheme is italicized, while the best performance

among all methods is bolded

tree using class label as an additional input feature, we

implemented it using the more traditional direct approach

of building separate trees to solve each binary problem. All

the boosting variants used classification and regression tress

(CART) as weak learners. The parameters of CART classi-

fiers are optimally selected. Unless otherwise noted, we at

most construct 100 trees for each feature, i.e. the maximal

number of boosting rounds is 100.

From the results in Table 2 we can make several observa-

tions. For both choices of using social tags and manual tags,

GentleBoost achieves the best performance among all the

boosting variants. AdaBoost and RealBoost over-emphasize

on the atypical examples which eventually result in inferior

rules. By contrast, GentleBoost is numerically robust and

gives less emphasis to misclassified examples at each round

since the increase in the weight of the example is quadratic

in the negative margin, rather than exponential [57]. Addi-

tionally, combining the weak learners trained on multiple

features at each round of boosting procedures consistently

has a beneficial effect on all the boosting variants, since the

uniform or error-based weighting scheme completely out-

performs the feature selection approach (selecting the best

one). In general, the uniform weighting works slightly bet-

ter than the error-based weighting. However, the contrary is

the case for GentleBoost when using social tags. Using man-

ual annotations greatly improves the performance of using

social tags. But the improvement is more noticeable in terms

of AP and BEP than in MRR. In particular, the MRR score

of AdaBoost even drops a little when using manual anno-

tations. The reason for this might be that there are much

less training examples in the manually labeled dataset. We

note that the boosting algorithm might be improved, particu-

larly in terms of MRR performance, using other multi-class

algorithms, such as [58]. In the following experiments of

visual concept learning, we just consider the better perform-

ing uniform weighting scheme in all the boosting algorithms

forcomparisons.

Table 3 Overall comparison on AP, BEP and MRR (%) for visual

concept learning

AP BEP MRR

(a) Social tags

Uniform 74.8 69.8 64.2

Distance 72.1 68.8 70.3

Rank 74.6 70.0 70.7

Ada 71.3 67.8 70.1

Real 67.5 64.8 55.9

Gentle 71.9 68.5 71.0

SVM 73.6 69.5 74.2

(b) Manual tags

Uniform 82.8 77.2 68.0

Distance 83.6 77.8 72.3

Rank 84.3 78.3 72.8

Ada 84.6 78.6 61.9

Real 81.3 75.8 64.5

Gentle 85.0 78.8 72.6

SVM 86.9 80.0 78.9

The best performance among all methods in terms of each evaluation

criterion is italicized and bolded

7.2.2 Learning visual concepts

In addition to boosting algorithms, we also use SVMs to learn

separate classifiers for each concept by one-against-all strat-

egy. In order to rank the concepts for a given image we need

to compare the output scores of different SVM classifiers.

To this end we perform cross-validation on the training data

to fit a sigmoid function to map the SVM scores to proba-

bilities. The regularization parameter C of the SVMs is also

optimally selected by fivefold cross-validation.

In Table 3, we present the overall results of all the visual

concept learning algorithms described in this paper. As illus-

trated in Table 3a when learned from social-tagged images,
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Table 4 Comparison on AP, BEP and MRR (%) for cost-sensitive and importance weighted concept learning

AdaC2(i) AdaC3(i) Gentle-IW(i) SVM-IW(i) AdaC2(c) AdaC3(c) Gentle-IW(c) SVM-IW(c)

AP 73.0 72.1 72.0 75.8 73.6 73.1 72.1 76.1

BEP 68.1 67.5 68.5 71.3 69.2 68.6 68.7 71.2

MRR 66.5 60.0 72.1 75.0 63.4 61.1 71.5 75.1

Gentle-IW and SVM-IW denote the importance weighted GentleBoost and SVM. (i) and (c) denote per-image and per-concept weighing scheme

for tag relevance-based importance weighting. The better performance between methods using each weighing scheme is italicized, while the best

performance among all methods is bolded

the visual neighbor voting model using uniform and rank-

based weights obtains the best results in terms of AP and

BEP respectively, while the SVM approach outperforms

other classification algorithms in terms of concept ranking

evaluation. In Table 3b, by contrast, we observe an obvi-

ous improvement in performance when trained using man-

ual annotations. SVMs now achieve the best performance

in terms of all of our evaluation criteria. Furthermore, in

both cases, visual neighbor voting model using rank-based

weights and GentleBoost classifier gives more competitive

performance than other variants of the tag relevance learning

model or the boosting algorithm. We have to emphasize that

SVM classifier exhibits more powerful discriminative capa-

bilities between semantic concepts than all the other classi-

fiers in our experiments, as it yields much higher MRR scores

in both cases.

In order to feed the importance weights to our importance

weighted classifiers, we first perform tag relevance learning

on the training dataset. Specifically, we learn the tag rele-

vance of each training example by visual neighbor voting in

a leave-one-out manner. Here, the unsupervised tag relevance

learning model using uniform weights is preferred, since the

supervised learning models require manually labeled training

data. We also study two relevance-based importance weight-

ing schemes, i.e. per-image and per-concept weighting, to

convert the tag relevance into importance weights for each

training example. Apart from this, we use the same configura-

tions, such as the choice of kernel function in SVM or weak

learner in boosting, as above for our importance weighted

SVMs and boosting algorithms in the following experiments.

As shown in Tables 3a and 4, the cost-sensitive extensions

of AdaBoost, i.e. AdaC2 and AdaC3, have very poor perfor-

mance in terms of MRR, while they make some improve-

ments in AP or BEP in comparison to classic AdaBoost

without using importance weights. The importance weighted

GentleBoost works much better than them. In particu-

lar, compared with original GentleBoost, its MRR score

increases by up to 1.1 %, which is hard to achieve for

GentleBoost even using manual annotations. Note that there

was not a comparison on GentleBoost using cost-sensitive

versus importance weighting because we were not aware

of a cost-sensitive GentleBoost in the research literature.

Incorporating the importance weights into SVM classifiers

gives the best performance. And the largest improvement

made in terms of AP, BEP and MRR score is 2.5, 1.7 and

0.9 %, respectively. A limitation of the importance weighted

classification is that for visual concepts that have large intra-

class variations, it may fail to learn the example images with

relatively rare visual appearance, since these examples prob-

ably have less visual neighbors in the training dataset, thus

have smaller importance weights. As a result, the semantic

concepts that are hard to learn due to intra-class variations

will become harder to learn.

Table 5 lists the performance in terms of AP for all 20

annotation concepts in our evaluation dataset. It reveals that

only around 52 % of the user-supplied annotation concepts

are truly related to the visual content of the training images. In

general, concepts with higher user tagging accuracy achieve

higher AP scores. For example, the most precisely user-

labeled concept “flower” yields a higher score than the others

when training with social tags, and the concept “lion” obtains

a significant improvement when using manual annotations.

However, some concepts can still perform well even with

bad tagging accuracy, such as “kitchen” and “classroom”.

On the other hand, there is no obvious rise in terms of AP

score for semantic concepts, such as “boat”, even though

when learning from manually annotated images. And simi-

lar observations can be made on the performance in terms of

BEP and MRR which are not given here.

8 Conclusions

We have explored two dominant classification paradigms,

namely, SVM and Boosting, for visual concept learning. In

our experiments, we considered both the use of social tags

and manual annotations of training images to evaluate the

proposed methods. The results show that the visual neighbor

voting model works well for image ranking when learning

from user-tagged images, while SVM classifiers perform best

using manual annotations. Visual neighbor voting using rank-

based weights and GentleBoost classification also achieve

top tier performance relative to other variants of the tag
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Table 5 Comparison on AP (%) for All 20 concepts

AP Uniform Distance Rank Gentle SVM Gentle-IW SVM-IW Tagging accuracy

(a) Social tags

Airplane 49.4 57.3 52.2 50.0 53.6 51.0 51.2 45.3

Beach 68.5 68.4 67.7 66.6 68.8 68.9 71.8 33.1

Boat 57.2 58.6 59.4 55.6 53.2 55.2 58.8 44.9

Bridge 85.7 86.1 86.7 86.1 86.3 87.0 86.9 76.6

Bus 91.5 90.4 92.0 92.5 94.5 92.6 94.3 62.8

Utterfly 92.7 85.0 88.2 86.5 91.3 86.4 93.1 68.8

Car 82.6 82.5 83.2 78.7 82.0 79.3 83.1 55.2

Cityscape 97.4 91.6 96.2 91.1 91.6 90.5 96.4 64.0

Classroom 75.5 66.1 76.6 65.0 76.8 61.6 76.5 38.6

Dog 87.1 83.8 85.4 88.3 88.9 88.6 88.6 75.2

Flower 96.6 97.0 97.1 97.8 97.5 97.7 97.7 82.9

Harbor 78.2 70.3 74.6 68.0 69.8 68.4 76.6 50.4

Horse 86.2 87.5 89.3 82.7 83.1 83.1 85.8 73.6

Kitchen 84.3 81.3 84.7 81.2 88.9 84.1 89.2 38.6

Lion 48.2 45.0 46.1 45.1 39.4 45.2 48.3 34.6

Mountain 82.7 80.0 83.6 83.1 83.7 84.0 85.5 47.6

Rhino 70.4 61.3 73.2 60.7 71.8 62.6 75.5 36.0

Sheep 75.3 64.3 68.3 74.0 70.1 72.8 75.1 53.0

Street 69.5 69.1 71.0 68.2 66.1 66.3 71.6 43.8

Tiger 16.7 16.6 16.5 16.5 15.3 16.8 16.6 23.4

Mean 74.8 72.1 74.6 71.9 73.6 72.1 76.1 52.4

AP Uniform Distance Rank Gentle SVM

(b) Manual tags

Airplane 71.2 76.2 77.2 69.6 80.9

Beach 70.2 69.6 70.9 73.4 75.1

Boat 58.1 59.8 61.2 62.6 61.9

Bridge 85.2 86.4 86.5 87.6 88.9

Bus 91.8 92.4 92.6 93.9 95.5

Butterfly 93.8 93.5 94.0 94.1 94.6

Car 83.9 84.7 84.6 84.0 84.9

Cityscape 98.1 97.8 98.4 98.0 97.3

Classroom 81.9 79.0 80.9 83.0 86.5

Dog 87.3 86.2 86.3 90.1 90.7

Flower 96.3 96.5 96.6 97.2 97.3

Harbor 90.0 90.4 90.1 91.6 92.2

Horse 88.7 91.9 91.5 85.7 89.4

Kitchen 85.3 84.5 85.5 88.1 91.3

Lion 65.5 68.8 70.8 78.7 79.3

Mountain 83.6 85.6 85.7 86.2 87.2

Rhino 83.4 86.4 86.9 88.9 91.3

Sheep 77.2 76.7 78.0 81.7 81.6

Street 74.7 73.3 75.8 76.3 78.6

Tiger 90.1 91.9 91.5 88.7 92.8

Mean 82.8 83.6 84.3 85.0 86.9

Comparison in terms of AP of all 20 concepts, as well as their mean. (a) and (b) illustrate the results when learning from social tags and manual

tags respectively. Only the best performing boosting algorithm—GentleBoost, and its importance weighted extension Gentle-IW are given here. In

addition, per-concept weighting is used for Gentle-IW and SVM-IW. The user tagging accuracy of each concept in our training dataset is also given

at the last column in (a). The best performance among all methods for each concept is italicized, while the highest mean values are both italicized

and bolded
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relevance learning model or the boosting algorithm. Note that

a limiting aspect of our work is that there are many diverse

parameters in each approach. It would not be surprising that

any single approach can be optimized further and this would

logically have an effect on the quantitative performance.

Indeed, for a given concept, relevant images have to be

emphasized more in the training process than irrelevant

images. Therefore we introduced an importance weighted

extension to incorporate the example-dependent importance

weights into SVM and boosting classifiers. Experimental

results demonstrate that the importance weighted approaches

are competitive with the state of the art approaches.

We found that some semantic concepts remain difficult

to learn in our experiments. Regarding unsupervised visual

concept learning, it was found in the experiments that classes

such as tiger and airplane had low average precision across

all the machine learning algorithms. From studying the man-

ual visual concept learning results, it appears that a significant

reason is the noise in the social training tags.

In the case of visual concept learning using approaches

from the research literature on the unsupervised social imag-

ing test set, three different algorithms performed best for

three different performance measures. Specifically, the Uni-

form, Rank and SVM methods performed best for the perfor-

mance measures AP, BEP and MRR, respectively. No single

research literature approach had the best performance for all

accuracy measures.

Learning visual concepts from social images is a difficult

and challenging problem. This is in large part due to the fact

that user supplied tags are typically ambiguous, subjective

and incomplete. We have two conclusions from this study.

First, overall, the “cost-sensitive” and “importance weight-

ing” approaches are promising and typically have top tier

performance in our experiments. Second, the performance

measure does have a major impact on the comparative results.

Any single algorithm is unlikely to perform best for all per-

formance measures. One grand challenge in the future will be

designing algorithms which address the issues of tag ambi-

guity, subjectivity and incompleteness. Another grand chal-

lenge is to design new social tagging learning methods to

optimize different performance measures which arise due to

the needs of different real life situations.
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