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Abstract. We present the creation and use of a generalized cost function methodology based on costlets for

automated optimization for conformal and intensity modulated radiotherapy treatment plans. In our approach,

cost functions are created by combining clinically relevant “costlets”. Each costlet is created by the user, using

an “evaluator” of the plan or dose distribution which is incorporated into a function or “modifier” to create an

individual costlet. Dose statistics, dose-volume points, biological model results, non-dosimetric parameters, and

any other information can be converted into a costlet. A wide variety of different types of costlets can be used

concurrently. Individual costlet changes affect not only the results for that structure, but also all the other structures

in the plan (e.g., a change in a normal tissue costlet can have large effects on target volume results as well as the

normal tissue). Effective cost functions can be created from combinations of dose-based costlets, dose-volume

costlets, biological model costlets, and other parameters. Generalized cost functions based on costlets have been

demonstrated, and show potential for allowing input of numerous clinical issues into the optimization process,

thereby helping to achieve clinically useful optimized plans. In this paper, we describe and illustrate the use of

the costlets in an automated planning system developed and used clinically at the University of Michigan Medical

Center. We place particular emphasis on the flexibility of the system, and its ability to discover a variety of plans

making various trade-offs between clinical goals of the treatment that may be difficult to meet simultaneously.

Keywords: optimization, cancer, radiation therapy, mathematical programming, intensity modulated radiation

therapy, treatment planning

1. Introduction

Treatment planning for external-beam radiation therapy is inherently an optimization prob-

lem. Because it is not possible to irradiate a cancerous tissue without also partially irradiating
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surrounding healthy tissues, tradeoffs are made to balance the competing issues of control-

ling or reversing the growth of the tumor and reducing the probability of radiation-induced

side-effects to the healthy tissues. In order to reduce the doses to healthy tissues while still

delivering a high uniform dose of radiation to a tumor, conformal radiotherapy makes use

of a set of radiation beams produced by a gantry mounted linear accelerator (Greene, 1985)

and delivered from different angles so that all fields overlap at the tumor. Each beam is inde-

pendently shaped using a multileaf collimator device (Brahme, 1987) to help shield healthy

tissue. In conventional radiotherapy, the radiation beams have either uniform or linearly

varying intensity (created using metal filters). When designing a radiotherapy treatment

plan for a patient, the treatment planner selects the number of beams used, the direction

and shape of each beam and the relative intensities of the beams. A manually designed

treatment plan typically consists of between 2 and 9 beams. The planner iterates through

various candidate treatment plans, using both visual and numerical tools to help evaluate

the relative merits of the different tradeoffs made in each plan. By increasing the number of

the beams used, higher doses received by tissues outside the tumor can be “spread out” and

reduced. This also, however, increases the complexity of the manual treatment planning

process.

Another approach to reducing doses to healthy tissues while still delivering a therapeutic

dose to the tumor is to vary the intensity across each beam in a nonlinear fashion. A number of

investigators have reported on the theoretical advantages of this approach (Brahme, 1987,

1988, 1993; Webb, 1989, 1991; Bortfeld, 1993, 1994; Mohan, 1994). Several different

collimation and modulation systems currently available are capable of delivering radiation

beams with such intensity patterns. The general term for this delivery technique is intensity

modulated radiation therapy, or IMRT. Conceptually, this approach can be represented by

dividing each shaped beam into a larger number of smaller “beamlets,” whose intensity, or

weight, can be set independently.

Because of the large number of degrees of freedom available with IMRT (typically hun-

dreds or thousands of beamlets are used to define the intensity variation for each treatment

beam), manual planning of IMRT plans is not feasible. This has accelerated the development

and deployment of treatment planning systems that automate the process of generating and

evaluating alternative treatment plans. In these systems, instead of manipulating the beam

directions, shapes and weights, the treatment planner manipulates a set of numerical crite-

ria which represent the ultimate clinical goals of the treatment; these numerical criteria are

used by the planning system to guide the automated search for different candidate plans and

evaluate their relative merits and acceptability. The common term used for this approach

to treatment design is inverse treatment planning to differentiate it from the manual, or

forward, process of treatment planning.

Inverse treatment planning systems consist of several basic components, namely, patient-

specific anatomic models, a dose calculation model, a search algorithm used to generate

candidate treatment plans, and a mathematical model used to evaluate the relative value

and acceptability of different candidate treatment plans. While there are still considerable

research and development efforts underway to improve each of these components, the first

two are fairly well established and common to both forward and inverse treatment planning

systems. All modern treatment planning systems use volumetric medical imaging data and
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image processing and computer graphics tools to construct and represent three-dimensional

patient anatomy. X-ray computed tomography (CT) is the most common modality used to

acquire the necessary anatomic information, though most systems now support the use of

magnetic resonance (MR), nuclear medicine and ultrasound image data and provide tools to

geometrically register and combine the information from these complementary modalities

to construct patient models (Kessler, 1991; Ten Haken, 1992; Meyer, 1997).

In contrast to models for defining and representing patient anatomy and dose calculation

models, prediction and modeling of the clinical outcome from a delivered dose distribution is

still very much a research topic. A major focus of this area of research is the study of effects of

non-uniform or partial-volume irradiation of healthy, or normal, tissues. Clearly, the ability

to quantify these effects is necessary to design and implement a definitive mathematical

model to evaluate and compare acceptability and relative merits of candidate plans within an

automated planning system. However, in general, the impact of different dose distributions

delivered to various healthy tissues is not sufficiently well understood to give rise to a

universally acceptable mathematical model. Moreover, the flexibility of IMRT delivery,

which can produce a nearly infinite variation of doses delivered to normal tissues while

delivering fairly uniform high doses to tumors, complicates the discovery of the necessary

dose-volume-complication relationships.

A variety of inverse planning systems currently exist, both commercially available and

those developed at academic centers (Alber, 2001; Bortfeld, 1994; Brahme 1993; Carol,

1994; Langer, 1998; Holmes, 1995; Mohan, 1992; Spirou, 1998; Webb, 1991; Xing 1999).

While the various systems may use different approaches to generate and compare candidate

treatment plans, most are based on the use of a single type of mathematical model and

a single search algorithm. Most of the early inverse planning systems used simple dose-

based cost functions such as least-squares dose to one or more anatomic structures, and

employed gradient-based search algorithms which perform well for quadratic cost functions

(Bortfeld, 1999; Webb, 1989) although other more complicated functions were proposed

(Agren, 1990; Bortfeld, 1988; Kallman, 1988; Mohan, 1996; Niemierko, 1992; Wang,

1995).

More recently, a number of increasingly sophisticated mathematical programming mod-

els have been proposed for the inverse treatment planning problem and some of these have

made their way into clinical use. A survey by Shepard, et al. (1999) discusses several

possible linear, nonlinear, and mixed integer optimization models of the treatment plan-

ning problem. For example, linear programming models were considered in Holder (2001,

2003) and Romeijn (2003), integer programming formulations were presented in Ferris

(2002), Lee (2003), and Preciado (2004) while Lim (2002) described nonlinear models.

In other work, the inverse treatment planning problem is treated as a feasibility problem

(Xiao, 2003; Michalski 2003), as well as a linear or nonlinear multicriteria optimization

problem (Hamacher, 2002; Kyfer, 2003). While these references are not a comprehensive

overview of the literature on mathematical models developed for treatment planning, they

help demonstrate the diversity of models being investigated.

Despite the differences in specific mathematical techniques employed, a typical opti-

mization model for inverse treatment planning imposes a number of constraints on the

decision variables (e.g., beamlet weights) by restricting the doses delivered to the tumor
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and normal tissue, as prescribed by the physician (such as minimum and maximum doses

on various anatomic structures), and gives an objective or cost function to be optimized

subject to those constraints (e.g., the total dose received by healthy tissues, which should

be minimized). However, because of the complex nature of how a radiation beam deposits

dose in the patient, treatment planning is not a straightforward constrained optimization

problem. Since the ideal treatment—one that delivers a high uniform dose of radiation to

the tumor and essentially no radiation to other tissues—is impossible to deliver, the clini-

cian usually has to accept some compromises, achieving an appropriate tradeoff between

the contradicting goals above. A very important issue in the use of any planning system

is how to make tradeoffs between dose to the cancerous tissues, or target volumes, (to

increase tumor control probability) and dose to normal tissues (to decrease normal tissue

complication probabilities). In particular, it is critical to be able to evaluate and compare

plans that make different tradeoffs between competing goals. As noted above, most inverse

planning systems use a single prespecified type of objective, or cost, function. In contrast,

in this paper we describe an extremely flexible planning system which allows the planner

to construct and optimize a diverse family of cost functions and systematically compare the

resulting treatment plans.

From a mathematical programming standpoint, our approach is essentially a penalty

method for constrained optimization (see for example, Bazaraa, 1993). That is, we construct

the cost function to penalize plans that will result in clinically undesirable outcomes, and use

a search algorithm to find a solution (i.e., the optimal set of beamlet weights) that minimizes

the overall penalty. Our cost function is based on the use of costlets: individual “pieces”

of the cost function which describe, for a particular structure, the desired treatment goal

as well as the penalties for not achieving that goal. By combining costlets, it is possible to

develop complex yet understandable and clinically relevant overall cost functions for use in

clinical treatment planning protocols and optimization studies. Our methodology can help

the treatment planner to incorporate much of the true complexity of the radiotherapy plan

design into an automated planning system.

In this paper, we report the motivation, design and use of costlet-based plan scoring

capabilities. We illustrate the costlet-based methodology using a clinical example involv-

ing treatment plan design for a head-and-neck cancer. Clinical optimization studies using

this costlet-based approach have been reported for various clinical sites, including brain

(Vineberg, 1999), head-and-neck (Vineberg, 2000, 2002), prostate (Damen, 2001), lung

(Seppenwoolde, 2002), and breast (Krueger, 2003), and other studies are ongoing. The

contributions of this paper are two-fold. On the one hand, we use traditional optimization

methodology to solve problems arising from a novel and complex application. On the other

hand, we address the medically relevant issue of formulating optimization problems to aid

in design of plans that aim to satisfy different, often conflicting, clinical goals.

The remainder of this paper is organized as follows. In Section 2 we outline the preparatory

steps and calculations that need to be carried out prior to the construction of the optimization

problem for treatment plan design. In Section 3, we provide a detailed description of the

costlet-based model. In Section 4, we give an example of the planning process for a specific

head-and-neck case, and compare the plans developed when using various cost functions.

Section 5 contains a discussion and concluding remarks.
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2. Treatment planning preparation

The treatment planning process begins by creating 3-D models of the patient anatomy in

the treatment position. X-ray CT is the primary imaging modality used for this, although

magnetic resonance and nuclear medicine data might also be used to help improve localiza-

tion of the disease and critical structures. Using this image data, the clinician outlines the

regions to treat and the relevant healthy tissues to avoid (Figure 1). While some amount of

automation is possible, manual outlining is still a labor intensive process. In most cases, the

clinician manually defines a gross tumor volume (GTV), which is the visible gross disease,

and also a clinical tumor volume (CTV), which is either an isotropic or anisotropic expan-

sion of the GTV that includes areas of probable microscopic spread that are not detected

by imaging. In some cases, the CTV is defined directly based on known patterns of disease

spread. The CTV is then expanded to account for estimated physiological movement such

as breathing and small variations in patient position over the course of treatment (a typical

course of radiotherapy is delivered in daily fractions over a four to six week period). This

expansion is called the planning target volume (PTV) and it is designed so that radiation

beams shaped to this volume will encompass the actual tumor volume 100% of the time

(ICRU, 1993). While most treatments involve a single PTV, it is possible to have several

different target volumes that may be prescribed to different dose levels reflecting different

levels of risk.

Using the 3-D anatomic model as a guide, the treatment planner selects the number and

locations of the radiation beams to be used in the treatment. In conformal therapy using

uniform or flat fields, the arrangement of beams is carefully selected to minimize the overlap

with healthy tissues. Most IMRT treatments involve simple beam arrangements of 5, 7 or 9

coplanar beams equally spaced around the patient, since the intensity pattern of each beam

varies by design. Odd numbers of beams are used so that no two beams directly oppose each

other. Each beam is subdivided into a rectilinear grid of beamlets. Typical size beamlets

are 1 cm × 1 cm but may be as small as 0.2 cm × 0.5 cm. Beamlets which do not intersect

a PTV (plus some margin) are not considered in the optimization (weight is fixed at zero)

and are not displayed. Figure 2(a) shows a beam arrangement for a case involving a tumor

of the head-and-neck. The various level of shading of the beamlets in the figure represents

various levels of intensity, or weights, of the beamlets used for treatment (brighter = higher

intensity). In some of the beams, a darker region can be seen near the center of the intensity

map. The beamlets in this part of the intensity map intersect the spinal cord and have been

kept to low intensities by the optimization process. Lower intensity beamlets that intersect

the parotid glands can also be seen.

In our current implementation the number and orientation of the beams are held fixed.

While there can be advantages to varying these parameters during the optimization process,

each new beam or beam direction requires a computationally expensive dose calculation

(Bortfeld, 1993; Rowbottom, 2001; Meedt, 2003). With current hardware configurations

available in clinical settings, this would add significant time (hours to days) to the overall

optimization process and reduce the clinical utility of the system, especially when multiple

optimizations representing different clinical tradeoffs may be required. By using a sufficient

number of beams, the importance of beam orientation is usually reduced.
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Figure 1. (a) CT images at different levels (oral cavity and bottom of the jaw) with outlines of the different

structures to be considered during optimization. (b) 3-D models derived from the outlines.

Figure 2. (a) 7-field beam arrangement for head-and-neck cancer patient, (b) Dose calculation points sampled

from structures.
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Once the patient anatomy and beams are defined, the elemental dose (unit weight) to a

set of sample points for each structure from each beamlet is computed. The locations of

the sample points are determined using a pseudo-random algorithm that attempts to place

points uniformly throughout the 3D structure (Press, 1992). The density of sample points is

chosen to adequately represent both the shape of the particular structure and the expected

dose variation across the structure. The volume of each sample point is determined by the

volume of the structure divided by the number of sample points per structure. Typical sample

volume sizes range from 0.001 cc to 1.0 cc. For example, a PTV with a volume of 100 cc

might consist of 10,000 points. For the head-and-neck example case a total of 33,117 points

were used to represent 7 structures. It is also common to create sample points for composite

or partial structures using Boolean operations. An example is the normal brain which

might be constructed by removing the PTV from the whole brain. Figure 2(b) illustrates

the point-based representation of the patient anatomy for the example case described in

Section 4.

The dose calculation engine used to compute the elemental doses in this work is part of

our clinical 3-D treatment planning system, U-MPlan, which was developed in-house and

has been in clinical use for over 18 years (Fraass, 1987a, 1987b; McShan, 1987, 1990). This

system runs on OpenVMS-based workstations and servers (Hewlett-Packard, Palo Alto, CA)

using software written in FORTRAN and C. Three-dimensional photon dose calculations

for the beamlet IMRT fields are performed using a convolution/superposition algorithm

based on an algorithm originally provided by Mackie and colleagues (Mackie, 1985). Since

only the beamlet weights are manipulated during each iteration of the optimization process,

it is possible to express the dose delivered by any set of intensity maps as a sum of the

contributions of the individual beamlets, making it unnecessary to calculate the elemental

doses at each iteration.

3. Costlets and construction of the objective function

Once the initial dose calculation to the sampled points from each defined beam has been

performed, an objective or cost function, i.e., a mathematical formulation of the plan de-

sign problem, is constructed. Overall cost functions are built up using three components:

evaluators, modifiers and costlets. In this section we provide a general description of each

component and its contribution to the overall cost function. A simple example is also pro-

vided. In the following section we provide examples of cost functions designed to address

the planning problem for a particular patient and compare the resulting solutions.

3.1 Evaluators, modifiers and costlets

The first step in the construction of an objective function consists of interactively choosing

one or more evaluators from a predefined list. Broadly defined, an evaluator is a function

E(·) mapping the calculated dose distribution (or some other information, e.g., the number

of beamlets with nonzero intensity) into a scalar; thus an evaluator is a simple numeric
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Figure 3. Example evaluators.

metric of a plan. Each evaluator is designed so that its value quantifies and conveys a

relevant feature of the plan.

Simple evaluators include dose statistics such as the minimum, maximum, mean (aver-

age), or variance of the dose to a structure. The meanings of these evaluators are easy to

understand and allow the planner and physician to relate the optimization system results to

their clinical experience; they help to provide an intuitive understanding of the trade-offs

made during optimization. More complex evaluators can also be included. Evaluators that

reflect some aspect of the dose-volume relationship for a particular structure are common.

Specification of one or more parameters is often required to define such evaluators. Figure 3

illustrates a DVHpoint evaluator with parameter dosec, defined as the fraction of the volume

of the structure receiving a dose larger than dosec, and the DVH LE with parameters (d, v)

which is a desired dose-volume endpoint for a particular structure (see next section for a

detailed explanation).

Simple biological model functions such as normal tissue complication probability

(NTCP) (Lyman, 1985), tumor control probability (TCP) (Goitein, 1987) and equivalent

uniform dose (EUD) (Niemierko, 1997) may also be used as evaluators since they specify,

for each dose level d , what fraction of the volume of the structure receives a dose greater

than or equal to d . For a description of a multi-criteria modeling paradigm using biological

model functions see Küfer (2003). Table 1 lists some common evaluators that have proven

useful in both inverse and forward 3-D planning experience.

For each evaluator chosen, a modifier is used to convert the evaluator into a costlet. A

modifier is a function of one variable, usually restricted to have nonnegative values. Each

resulting costlet c has the form c = f (E), where E is the evaluator used, and f is the

modifier chosen for this evaluator. Each costlet is meant to convey a specific clinical goal
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Table 1. Typical evaluators.

Name Parameters Description/definition Example of output

Min Minimum dose to

structure

Minimum dose to points in

PTV

Max Minimum dose to

structure

Minimum dose to points in

the spinal cord

Mean Mean (average) dose

to structure

Average dose to PTV

DVHpoint Dt : Target dose to the

structure

% vol. of the structure

above specified

dose Dt

% vol. of cord receiving dose

greater than 50 Gy

nDVHpoint Dt : Target dose to the

structure

% vol. of the structure

below specified

dose Dt

% vol. of PTV receiving dose

less than 80 Gy

Threshold Dt : Upper dose threshold

p: Power

Sum, over all points in

the structure, of the

positive part of the

difference between

dose to the point

and Dt raised to the

power p

∑

i∈pt in cord(max(di −50, 0))4

here Dt = 50, p = 4

nThreshold Dt : Lower dose threshold

p: Power

Similar to Threshold,

with penalty

incurred for

delivering dose

below Dt

∑

i∈pt inPTV(max(63−di , 0))4

here Dt = 63, p = 4

Tolerance Dt : Target dose to the

structure l:% violation,

p : power

Similar to Threshold,

with penalty

incurred for

delivering dose

outside the range

Dt ± l • 100%

∑

i∈pt in PTV(max(di −

105, 95 − di , 0))2

here Dt = 100, l = 5, p = 2

DoseLSQ Dt : Target dose to the

structure

Sum, over all points in

the structure, of

squares of

difference between

dose to the point

and Dt

∑

i∈pt in PTV(di − 100)2

here Dt = 100

NTCP m, n, TD50 (see

references)

Normal tissue

complication

probability (Lyman,

1985, 1992).

NTCP for lung

EUD a: volume parameter Equivalent uniform

dose (Niemierko,

1997). Uniform

dose to the organ

that leads to the

same effect as

non-uniform dose.

(

1
ntps

∑

l∈pt in lung d4
t

)1/4

here a = 4

(continued on next page.)
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Table 1. (continued).

Name Parameters Description/definition Example of output

Veff reference dose, n (see

reference)

Effective volume

(Kutcher, 1989).

Volume of organ

that if treated with a

uniform dose leads

to the same effect as

non-uniform dose.

Veff for right lung

# segments Number of treatment

segments,

estimated from plan

description

Tx time est Time required to

deliver treatment,

estimated from plan

description

of the physician with respect to an individual clinical issue via a quantitative “cost,” or

“penalty,” incurred by a plan and resulting dose distribution. Therefore, the form of the

modifier chosen for an evaluator is meant to convey a particular nature of dependence of the

penalty on the property of the plan expressed in the evaluator. In particular, a combination

of an evaluator and modifier for each costlet should be chosen so that higher values of

the resulting costlet correspond to less desirable outcomes with respect to the clinical goal

that the costlet is meant to convey. For example, if the clinical goal at hand is to make the

mean dose to a certain structure (e.g., the liver) as small as possible, a possible costlet is

c1 = max(0, E1), where E1 is the “Mean” evaluator for the structure. If, on the other hand,

the clinical goal is to keep the mean dose to PTV within the prescribed range (say, between

85 and 95 Gy), then the costlet chosen to reflect this goal might be c2 = max(E2 − 95, 0) +

(max(85 − E2, 0))2, where E2 is the “Mean” evaluator for PTV. Notice that this costlet

imposes a penalty for both underdosing and overdosing the structure, with a steeper penalty

for underdosing than for overdosing. As the example demonstrates, the relative importance

of different plan properties expressed through evaluators can be reflected in the choice of

modifiers.

Typically, modifiers with simple functional forms are used when there is no evidence

to defend any particular costlet shape. Linear, quadratic and higher power functions of

evaluators, as well as more complex threshold-based functions, can be used. Figure 4

illustrates two types of modifiers which can be used for nonnegative evaluators. In the first

example, the modifier is a piecewise linear function, which uses a small slope for small

values of the evaluator and a larger slope for the values of evaluator above Eb (modifiers

of this type are referred to as “3ptCeiling”). The second example modifier creates a costlet

with no penalty until the threshold value Et is reached, and then uses a high power (here,

power 6) of the difference between the evaluator and the threshold value Et . Other example

modifiers are listed in Table 2, expressed as functions of the value of a generic evaluator, E .
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Table 2. Typical modifiers.

Name Parameters Functional form

Passthrough E

Power A: Weight, p: Power A • E P

FloorPower A: Weight, F : Floor, p: Power A(max(0, E − F))P

CeilingPower A: Weight, C : Ceiling, p: Power A(max(0, C − E))P

EqPower A: Weight, Et : Target value, p: power A • |E − Et |
P

3ptCelling Et : Target value, Eb: Breakpoint (Eb > Et ), A1 • max(0, E − Et ) + A2 • max(0, E − Eb)

A1: Slope 1, A2: Slope 2 (A2 > A1)

Figure 4. Example modifiers.

3.2 Overall cost function

The overall cost function C(·) is obtained by combining all the defined costlets. Specifically,

C = F(c1, c2, . . . , cI ),

where ci , i = 1, . . . , I, are the costlets created as described earlier in this section, and the

form of the function F(·) reflects the overall optimization strategy. The most obvious way

to combine costlets into a penalty function, and the one used in the examples presented in

this paper, is to use a weighted sum of costlets: C = �i wi ci , where wi , i = 1, . . . , I ,

are nonnegative weights used to further emphasize clinical tradeoffs between individual

costlets. Other forms of F(·) implemented include the product of costlets, the probability

of uncomplicated control (P+) (Kallman, 1992) as well as a method which combines the

sum and product methods.
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Figure 5. Structure browser with dose statistics and costs.

Figure 6. Costlet browser.

In our optimization system, costlets are chosen and reviewed using a costlet browser.

Screenshots of the system interface are shown in Figures 5–7. First, one selects the desired

anatomical structure from the structure browser and then the individual costlet. The evaluator

and its parameters (if any) are selected. The modifier is then selected, and any modifier

parameter(s) set, including the relative weight of the costlet. Various other controls for cost

function template creation and selection are also included. Our implementation also allows

one to label a cost as a true constraint which means that only plans which completely satisfy

the costlet (value = 0) are considered viable.
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Figure 7. Data visualization interface. Graphics are updated during plan optimization.

3.3 Designing a cost function

With the costlet browser feature implemented, the mechanics of creating a cost function for

any particular clinical situation become straightforward. The time-consuming part of the

planning process is the creation of an appropriate cost function whose minimization will

allow us to achieve the desired overall results.

The most important part of the process is the first step, a non-technical decision process

which is performed mainly by the physician. The physician must identify clinical issues

that should influence the optimization and prioritize their importance. The ranking of these

clinical issues is critical, since some consequences may be extremely important to avoid

(e.g., spinal cord injury), while others are clinically less important. An example of a clinical

prioritization list for a plan for a head-and-neck case is shown below:
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1. Do not give the spinal cord more than 45 Gy.

2. Do not underdose targets.

3. Do not overdose targets.

4. Give a mean dose of 60 Gy to targets.

5. Give as little dose as possible to the spinal cord.

6. Give as little dose as possible to other normal tissues.

Once all the clinical issues have been stated and prioritized, the planner must define the cost

function which will attempt to reflect the specified clinical goals. For the current example

priority list, at least 6 different groups of costlets would be developed, to incorporate each of

the six clinical issues listed. The shape of the costlet (i.e., the functional form of the modifier)

is often determined based on the priority assigned to the particular clinical property of the

plan expressed by the evaluator used in the costlet (though the weight of the costlet in the

objective function can also, in part, reflect its priority). For the example priority list above,

the first costlet might be a dose-based costlet which penalizes points in the spinal cord

whose dose is larger than 45 Gy using a high power of the dose above the threshold (power

10, for example). Such costlet will have the form

c =
∑

j∈SC

max(d j − 45, 0)10,

where SC denotes the set of all points in the spinal cord identified for planning purposes.

Here, for each point, we used evaluator Threshold with parameter 45, and modifier Power

with parameters 1 and 10. This setting of the parameter in the modifier makes for a very

steep penalty for exceeding the dose of 45 Gy to any point of the spinal cord, which will

prevent high spinal cord doses. A similar costlet, but with a different power parameter in

the modifier, would be appropriate for the lowest priority item on the above list (#6):

c =
∑

j∈N T

max(d j , 0)2,

where NT denotes the set of all points in the normal tissues. The remaining costlets are

defined and prioritized using functional forms and parameters of evaluators and modifiers,

so that the relative penalty induced by the individual costlets varies in concert with the

priorities of the corresponding clinical goals and restrictions.

How well the resulting cost function reproduces the desired clinical priorities is deter-

mined by performing preliminary optimization runs and evaluating the tradeoffs chosen

by the planner (as described below), or by experience. Often, the clinical tradeoffs which

must be allowed, especially in the “middle priority” costlets, are not easy to determine at

the start, and a number of trial optimization runs must be performed to discover what is

achievable. During these trials, the physician or planner will alter one or several costlets

and then assess the impact of the change on the overall plan which results. For example,

the target overdose criterion (#3) can be relaxed to see if this allows a further decrease of

dose to the spinal cord.
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In practice, these techniques can be used in two general ways for any particular clinical

protocol. The goal of our efforts to this point has been to include enough clinical information

into the cost function so that once the cost function is determined for a particular protocol, all

treatments for patients treated on that protocol can be planned using the same cost function.

(A form of the cost function that can be used for a class of treatment protocols is referred

to as a class solution.) At the other end of the spectrum, the physician/planner may also

choose to derive a new cost function for each individual clinical case. Future research will

study the potential benefit to individual patients by making individualized modifications to

the class solution cost function.

3.4 Optimization algorithms

Recall that although the evaluators, and hence the costlets, are typically expressed in terms of

doses to points, the doses can be computed as a known linear function of the beamlet weights.

Therefore, once the treatment planner has constructed a cost function as described above, it

serves as the means for comparing candidate treatment plans specified as the collection of

beamlet weights within the automated planning system. With the cost function in place, an

optimization algorithm is applied to minimize this function over all nonnegative beamlet

weights. Depending on the nature of the evaluators and modifiers used in the construction

of the cost function, various optimization methods can be used as a search mechanism

to generate candidate plans. Our system allows the user to select an algorithm from a

menu containing fast simulated annealing (Szu, 1987), dynamic hill climbing (Yuret, 1993,

1994), sequential quadratic programming (Gill, 2002), and quasi-Newton method (Byrd,

1995; Zhu, 1997).

4. Implementation and example

The optimization software described here has been designed and implemented as a prototype

system to allow both clinical use and quantitative research in optimization for IMRT. The

software has been written in C/C++ and runs on OpenVMS-based workstations. The

user interface and graphical display features have been implemented using the Application

Visualization System (Advanced Visual Systems Inc., Waltham, MA).

In this section we demonstrate the use and flexibility of the costlet-based optimization

systems by developing a prototype cost function for patients with head-and-neck cancer.

Most head-and-neck treatments involve several different target volumes with different pri-

orities and numerous critical structures (Figure 1). The volumes were defined using images

from X-ray CT and MR imaging. The primary planning target volume (PTV) was defined

by geometrically expanding the macroscopic tumor volume (as visualized on the imaging

studies) by 0.5 cm to account for patient positioning variations during the course of treat-

ment. The left and right lymph node chains are at risk for disease, so they are also considered

as targets but treated to a lower dose to reflect a lower level of risk. In addition to the spinal

cord, it is important to “spare” the parotid glands which produce saliva (Eisbruch, 1998,

1999). Specific consideration of other clinically relevant structures, such as the oral cavity
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Table 3. Clinical criteria for head-and-neck cancer treatment protocol.

Structure Type Min Max Mean

Planning target T : Primary PTV 70 Gy <77 Gy (1.1 × min) <72 Gy (∼1.03 × min)

volume

Right boost T : High risk 70 Gy <77 Gy (1.1 × min) <72 Gy (∼1.03 × min)

volume PTV nodal volume

Right nodal volume T : Medium risk 64 Gy <70.4 Gy (1.1 × min) <66 Gy (∼1.03 × min)

Left nodal volume T : Low risk 60 Gy <66 Gy (1.1 × min) <62 Gy (∼1.03 × min)

Right parotid gland N : Healthy tissue ≤26 Gy

Left parotid gland N : Healthy tissue ≤26 Gy

Spinal cord N : Critical 45 Gy

healthy tissue

T = target, N = normal tissue.

and submandibular glands, were not performed here to keep the example straightforward

and easy to present.

Table 3 contains a list of clinical goals set forth for the treatment in terms of the minimum,

maximum, and/or mean doses to various structures. The relative priorities of meeting each

of these goals are not specified, but will become apparent from the discussion below. Note

that, as the treatment goals stated in the table suggest, the first four structures are volumes

to be treated, while the remaining three are to be spared.

The beam arrangement used for this example was 7 equi-spaced coplanar beams placed

axially around the patient spanning the entire 360 degrees (Figure 2(a)). The total number

of beamlets was 1667 and the total number of points in all structures combined was 31,117.

In our initial example experiment, we attempted to meet the criteria for the four target

volumes only, by designing a cost function which includes three costlets for each of the

four treatment volumes. To penalize underdosing, DVH GE evaluator with Passthrough

modifier was used (100% of the volume should receive a dose greater than or equal to the

minimum dose specified in the table). The DVH GE evaluator is defined as follows: given

a dose value d1 and a parameter v such that it is desirable that at least v% of the volume

of the structure under consideration receives a dose of d1 or greater, we first find the dose

value d2 such that v% of the volume receives d2 Gy or more in the current plan. Next, the

value of the evaluator is computed as

E =
∑

j :d2≤d j <d1

(d1 − d j )
2,

where the summation is taken over all points j in the structure such that d2 ≤ d j < d1; the

value of the evaluator is 0 if v% of the volume already receives a dose of d1 Gy or higher

(see Wu, 2000). A DVH LE evaluator (defined similarly to DVH GE, but computed as

E =
∑

j :d1<d j ≤d2

(d j − d1)2,
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Figure 8. DVH results for optimization with costlets applied to target volumes only.

to penalize overdosing) with Passthrough modifier was used to penalize overdosing (0% of

the volume should receive a dose less than or equal to the maximum dose). For the mean

dose criteria, a Mean evaluator with a CeilingPower modifier (ceiling set at the desired

maximum value of the mean and power 2) was used. A weighted sum of all the costlets (all

with a weight of 1) was used to produce the overall cost function. An optimization performed

using this cost function was able to find a plan that satisfied all target volume criteria (all

costlet values were zero). The resulting dose-volume histograms are shown in Figure 8. The

dose-volume histograms for the critical structures show significant overdosing, which was

to be expected since clinical goals for those structures were not incorporated into the cost

function.

To satisfy the maximum dose requirement for the spinal cord, DVH LE evaluator with

Passthrough modifier was added to the cost function, and the new optimal solution found.

Both target and spinal cord criteria were met by the resulting plan. The resulting dose-

volume histograms show a slight increase in heterogeneity of the dose received by the

target volumes (Figure 9). The increase is a consequence of the beamlets overlapping the

spinal cord being pushed to lower weights to meet the maximum dose criteria, and some

of the remaining beamlets having a higher weight to compensate. The reduction in the

overdosing of the parotids is also to be expected even though no costlets reflecting this

criterion were explicitly included in the cost function, since weights of the beamlets that

intersect both the spinal cord and the parotids are reduced.

Naturally, it is desirable to minimize the dose to all healthy structures. To demonstrate the

impact of reduction of the dose to both the right and left parotid glands on the target volumes,
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Figure 9. DVH results for optimization with costlets applied to target volumes and spinal cord.

costlets for these structures, consisting of Mean evaluator with Passthrough modifier, were

added to the cost function with a weight of one. The Mean evaluator was used (instead

of, for example, Max, or DVH LE) since it was known that a portion of parotids overlaps

with a target and would unavoidably receive some high dose. The resulting dose-volume

histograms illustrate the tradeoff between target volume homogeneity and reduction of the

dose to both parotids (Figure 10). Lowering the dose to the right parotid negatively affects

the homogeneity of the right nodal target. The same is true for the left parotid and left nodal

target, but to a lesser extent. This is illustrated by the solution obtained by removing the

right parotid costlets from the cost function and re-optimizing the plan (Figure 11).

Taking into account the fact that the clinician would be willing to accept a treatment plan

that delivers a mean dose of 26 Gy or less to a parotid, a CeilingPower modifier with a

ceiling of 26 Gy and a power of 2 was applied to the Mean evaluator. Figure 12 shows that

relaxing the penalty on the left parotid allows the goals for the left nodal target to be met

for all but 1% of the volume.

When the above costlet is used for both left and right parotids, the amount of under-

dosing of the right nodal target becomes clinically unacceptable (Figure 13). To improve

the homogeneity in the right nodal target, a CeilingPower modifier with a ceiling of 0 and

successively increasing powers (2, 4, 10) was included (in addition to DVH GE evaluator

already present in the cost function). Figure 14 illustrates the results of these three opti-

mizations and shows that only small improvements in the homogeneity of the right nodal

target are gained for modest increases in the mean dose to the right parotid. This is due to

the degree of geometric overlap between these two structures and the differences in their
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Figure 10. DVH results for optimization with costlets applied to all structures.

Figure 11. DVH results for optimization with costlets applied to all structures except right parotid.
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Figure 12. DHV results for optimization with clinically acceptable mean dose for left parotid.

Figure 13. DVH results for optimization with clinically acceptable mean for left and right parotid.
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Figure 14. Comparison of effects of different modifier powers applied to right nodes.

volume relative to this overlap. The ability to interactively specify different cost functions,

and find and analyze resulting solutions, helps the clinician to understand the advantages

and disadvantages of different trade-offs, and to elucidate the underlying reasons for these

trade-offs.

As a final example of the use and flexibility of the optimization system, the costlets that

were introduced in an attempt to achieve a mean dose of at most 26 Gy for both parotids

by using Mean evaluator in the example above were replaced with an NTCP evaluator for

the right parotid. A CeilingPower modifier was used to produce a dose distribution that still

met the mean dose criteria. The dose-volume histograms comparing these two solutions are

shown in Figure 15. Although the trade-offs with the other structures are very similar, the

shapes of the right parotid dose-volume histograms are very different. This difference is

due to the sigmoid shape of the NTCP evaluator, which penalizes higher doses much more

significantly than lower doses (Lyman, 1987).

5. Discussion and conclusions

Although work on automated optimization for radiotherapy planning has been pursued for

35 years, dramatic progress has been made mostly over the past 10 years. One aspect of this

progress has been development of clinically relevant cost functions, since the cost func-

tion is the key which drives an inverse plan toward the “optimal” result. A cost function

which accurately reflects clinical goals is a fundamental and crucial part of all plan opti-

mization efforts. Various cost functions have been reported, including linear (Rosen, 1991;



442 KESSLER ET AL.

Figure 15. Comparison of effects of mean versus NTCP costlets for right parotid.

Langer, 1990) or quadratic (Holmes, 1994; De Wagter, 1998; Oldham, 1995; Redpath,

1976) functions, the probability of uncomplicated control (P+) (Kallman, 1992; Agren,

1990; Soderstrom, 1993), and other methods based on biological indices (such as TCP,

NTCP, Veff ).

Each type of cost function has its inherent advantages and disadvantages, depending on the

optimization system, clinical goals, clinical knowledge, expectations, and other features.

Dose-based cost functions are limited in that they do not take into account biological

response (Wang, 1995), however, they also do not have the large uncertainties which are

currently associated with biologically-based functions (Webb, 1997). In addition, they may

be simpler and faster to calculate than some other candidate cost functions (Wang, 1995).

Quadratic least-squares dose-based functions (Holmes, 1994) have the advantage that they

can always achieve some solution (albeit sometimes a poor solution), and are implemented

efficiently into some search strategies, while at the same time they have a fundamental

difficulty achieving rigorous dosimetric limits for particular structures (Mohan, 1994).

The various limitations and advantages of the many published methods for optimization

cost functions have led us to develop the generalized cost function methodology described in

this paper. This method allows the planner to create a cost function by selecting appropriate

components from a wide variety of techniques. Individual “costlets” are used to describe

individual aspects of the clinical goals of the planning. The planner is given the freedom to

combine different types of costlets, to use different methods for combining costlets, and to

define rigid constraints as well as costs. In addition to use for clinical IMRT planning, the

methodology has been designed to allow investigation of various parts of the IMRT planning
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process, including possible improvements in cost function formulation and optimization

methods (Vineberg, 1999, 2000, 2002) as well as comparing optimization-based planning

of IMRT and non-IMRT conformal therapy (Fraass, 2000).

It is expected that automated optimization of IMRT will really begin to make a significant

impact as clinical knowledge and biological effects are quantitatively incorporated into the

planning process. There are still many questions that remain concerning how this biological

information should be incorporated into the optimization system. The most straightforward

method might involve the use of the probability of uncomplicated control implemented

using the P+ function. However, there are a number of limitations to this simple function,

including our incomplete knowledge of the details of how each structure’s NTCP varies

with the parameters of different plan techniques and how to weight the various complication

endpoints for each structure. In addition, the data used to create the appropriate TCP func-

tions for each grade of tumor is also extremely limited. Third, it is not clear that using P+ as

a cost function for optimization is the most efficient way to obtain the optimal result, given

that the sensitivity of the various biological models may not be large enough to force the

optimization toward the desired result. It is also possible that control and/or complication

endpoints might be correlated (i.e., a late complication like lung fibrosis might be correlated

with a more immediate complication like pneumonitis), and this should be taken into ac-

count in probabilities and weighting of the individual costlets. Finally, there are additional

costlets which are probably important in the overall optimization of a plan, including issues

like treatment delivery time and complexity, the stability of the plan against various patient

setup, organ motion, and treatment delivery uncertainties. The approach chosen here, in

contrast to the P+ approach, allows any kind of biological or clinical information to be

incorporated into the problem. In addition, this approach allows use of limited data without

forcing the entire cost function to be driven by biological data: it is possible to incorporate

the use of a single organ NTCP into the problem, while other pieces of the cost function

remain dose or dose-volume based.

One of the aims of computer-assisted optimization is to help the planner and physician

develop better treatment plans for patient treatments. In the context of this paper on cost

functions and optimization, it is interesting to note that almost all planning protocols in use

today, including virtually all formal planning studies, consist almost entirely of constraints,

not optimization criteria. Constraint-defined protocols have been the basis of many of

the clinical study results which have helped advance the field of radiation oncology, and

they should not be removed without careful analysis of our ability to continue to perform

quantitative analysis of the results of planning and treatment-related studies which are

performed based on non-constraint defined treatments. However, these constraint-based

protocol designs make the introduction of formally-optimized planning into the planning

process a difficult task.

Certainly, inverse planning performed by systems which use simple quadratic dose differ-

ence cost functions often leads to dose distributions which do not satisfy the dose uniformity

constraints typically required for standard conformal therapy (dose uniformity inside the

PTV of ± 5%). There are many examples of “optimized” treatments generated with an in-

verse planning system which contain dose cold spots (under-dosed regions in the target(s))

as large as 30 or 40% and dose hot spots (unwanted over-dosed regions) of 30–40% inside
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the PTV (Boyer, 1997; Butler, 1999; Chao, 2000). Often, these large dose variations are

considered to be a result of the optimization process. However, these differences are actually

due to the specific construction of the cost function which was used, and they can be avoided

if desired (Vineberg, 2000). The examination of the different tradeoffs which result from

using hard optimization constraints (with more quantitatively-controlled results) versus us-

ing simple costlets (possibly leading to more easily achieved solutions, but with less precise

adherence to the desired limitations) must be performed, so we can better understand when

the two different methods should be used. When rigid constraints are necessary, and when

more flexibility can be tolerated, is an important clinical issue for each protocol. It is critical

that future conformal therapy trials which are based on inverse planning and/or optimized

IMRT plans correctly handle the potentially qualitative differences in normal tissue and

tumor dose distributions which result from the different kinds of cost functions which may

be used.

One should also note that general optimization of most planning problems will require

numerous costlets and/or constraints which are now only implicitly included in planning or

study protocols. Due to the complexity of the overall optimization problem, many current

optimization approaches make use of a very limited degree of flexibility in the possible

solutions, and these “arbitrary” decisions may seriously affect the overall quality of the

“optimized” treatment plan which results from the optimization process. Further, many basic

assumptions of treatment planning which are known intuitively by the experienced human

treatment planner must be explicitly integrated into the overall optimization cost function.

These issues may include full knowledge of machine-table-patient combinations which

are possible, delivery time limits, safety limits, and complexity limits, among others. The

implementation of more clinically-intuitive interactions with the optimization strategy may

also help improve the quality and efficiency of the planning process and results. These more

sophisticated developments will become clearer as clinical studies begin to give feedback

on which to base costlet and cost function definition.
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