
Costly circuits, submodular schedules
and approximate Carathéodory Theorems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Bojja Venkatakrishnan, Shaileshh, et al. “Costly Circuits,
Submodular Schedules and Approximate Carathéodory Theorems.”
Queueing Systems, vol. 88, no. 3–4, Apr. 2018, pp. 311–47.

As Published http://dx.doi.org/10.1007/s11134-017-9546-x

Publisher Springer US

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/116926

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/116926
http://creativecommons.org/licenses/by-nc-sa/4.0/

Noname manuscript No.
(will be inserted by the editor)

Costly Circuits, Submodular Schedules and
Approximate Carathéodory Theorems

Shaileshh Bojja Venkatakrishnan ·
Mohammad Alizadeh · Pramod
Viswanath

Received: date / Accepted: date

Abstract Hybrid switching – in which a high bandwidth circuit switch (op-
tical or wireless) is used in conjunction with a low bandwidth packet switch
– is a promising alternative to interconnect servers in today’s large scale data
centers. Circuit switches offer a very high link rate, but incur a non-trivial
reconfiguration delay which makes their scheduling challenging. In this paper,
we demonstrate a lightweight, simple and nearly-optimal scheduling algorithm
that trades-off reconfiguration costs with the benefits of reconfiguration that
match the traffic demands. Seen alternatively, the algorithm provides a fast
and approximate solution towards a constructive version of Carathéodory’s
Theorem for the Birkhoff polytope. The algorithm also has strong connections
to submodular optimization, achieves a performance at least half that of the
optimal schedule and strictly outperforms state of the art in a variety of traffic
demand settings. These ideas naturally generalize: we see that indirect routing
leads to exponential connectivity; this is another phenomenon of the power of
multi-hop routing, distinct from the well-known load balancing effects.

Keywords Data center networks · Bridges and switches · Circuit networks ·
Network flows · Submodular optimization · Approximation algorithms

Mathematics Subject Classification (2000) 68W25 · 68M12 · 68M20

Shaileshh Bojja Venkatakrishnan
University of Illinois Urbana-Champaign
E-mail: bjjvnkt2@illinois.edu

Mohammad Alizadeh
Massachusetts Institute of Technology
E-mail: alizadeh@csail.mit.edu

Pramod Viswanath
University of Illinois Urbana-Champaign
E-mail: pramodv@illinois.edu

2 Shaileshh Bojja Venkatakrishnan et al.

1 Introduction

Modern data centers are massively scaling up to support demanding applica-
tions such as large-scale web services, big data analytics, and cloud computing.
The computation in these applications is distributed across tens of thousands
of interconnected servers. As the number and speed of servers increases,1 pro-
viding a fast, dynamic, and economic switching interconnect in data centers
constitutes a topical networking challenge. Typically, data center networks use
multi-rooted tree designs: the servers are arranged in racks and an Ethernet
switch at the top of the rack (ToR) connects the rack of servers to one or more
aggregation (or spine) layers. These designs use multiple paths between the
ToRs to deliver uniform high bisection bandwidth, and consist of a large num-
ber of high speed electronic packet switches that provide fine-grained switching
capabilities but at poor speed/cost ratios.

Recent work has proposed the use of high speed circuit switches based on
optical [54,17,60] or wireless [32,63,29] links to interconnect the ToRs. These
architectures enable a dynamic topology tuned to actual traffic patterns, and
can provide a much higher aggregate capacity than a network of electronic
switches at the same price point, consume significantly less power, and reduce
cabling complexity. For instance, Farrington et al [16] report 2.8×, 6× and 4.7×
lower cost, power, and cabling complexity respectively using optical circuit
switching relative to a baseline network of electronic switches.

The drawback of circuit switches, however, is that their switching config-
uration time is much slower than electronic switches. Depending on the spe-
cific technology, reconfiguring the circuit switch can take a few milliseconds
(e.g., for 3D MEMS optical circuit switches [54,17,60]) to tens of microseconds
(e.g., for 2D MEMS wavelength-selective switches [48]). During this reconfig-
uration period, the circuit switch cannot carry any traffic. By contrast, elec-
tronic switches can make per-packet switching decisions at sub-microsecond
timescales. This makes the circuit switch suitable for routing stable traffic or
bursts of packets (e.g., hundreds to thousands of packets at a time), but not for
sporadic traffic or latency sensitive packets. A natural approach is then to have
a hybrid circuit/packet switch architecture: the circuit switch can handle traf-
fic flows that have heavy intensity but also require sparse connections, while
a lower capacity packet switch handles the complementary (low intensity, but
densely connected) traffic flows [17].

With this hybrid architecture, the relatively low intensity traffic is taken
care of by the packet switch — switch scheduling here can be done dynamically
based on the traffic arrival and is a well studied topic [43,33,42]. On the
other hand, scheduling the circuit switch, based on the heavy traffic demand
matrix, is still a fundamental unresolved question. Consider an architecture
where a centralized scheduler samples the traffic requirements at each of the
ToR ports at regular intervals (W , of the order of 100µs–1ms), and looks

1 Servers with 10Gbps network interfaces are common today and 40/100Gbps servers are
being deployed.

Title Suppressed Due to Excessive Length 3

to find the schedule of circuit switch configurations over the interval of W
that is “matched” to the traffic requirements. The challenge is to balance the
overhead of reconfiguring the circuits with the capability to be flexible and
meet the traffic demand requirements.

The centralized scheduler must essentially decide a sequence of matchings
between sending and receiving ToRs which the circuit switch then implements.
For an optical circuit switch, for instance, the switch realizes the schedule
by appropriately configuring its MEMS mirrors. As another example, in a
broadcast-select optical ring architecture [10], the ToRs implement the con-
troller’s schedule by tuning in to the appropriate wavelength to receive traffic
from their matching sender as dictated by the schedule.

Hence, we need a scheduling algorithm that decides the state (i.e., match-
ing) of the circuit switch at each time and also a routing protocol to decide on
an appropriate (direct or indirect) route packets can take to reach their des-
tination ToR port. This is a challenging problem and entails making several
choices on: (a) number of matchings, (b) choice of matchings (switch configu-
ration), (c) durations of the matchings and (d) the routing protocol, in each
interval W . Mathematically, this leads to a well defined optimization problem,
albeit involving both combinatorial and real-valued variables. Even special
cases of this problem [37] are NP hard to solve exactly.

Central to understanding this scheduling problem is finding a good sparse
representation of the traffic matrix – a fundamental algorithmic question in
Carathéodory’s Theorem that has remained largely unanswered so far [45].
Recent papers have proposed heuristic algorithms to address this schedul-
ing problem. In Solstice [40], the authors present a greedy perfect-matching
based heuristic for a hybrid electrical-optical switch. Experimental evaluations
show Solstice performing well over a simple baseline (where the schedules are
provided by a truncated Birkhoff-von Neumann decomposition of the traffic
matrix), although no theoretical guarantees are presented. Indirect routing in
a distributed setting, but without considerations of configuration switching
costs, is studied in another recent work [10].

1.1 Our Contributions

We first focus on routing policies where packets are sent from the source port
to the destination port only via a direct link connecting the two ports, leading
to direct or single-hop routing.
Approximate Carathéodory’s Theorem: Our main result here is an ap-
proximately optimal, very simple and fast algorithm for computing the switch
schedule in each interval. In turn this corresponds to a fast algorithm for com-
puting a sparse approximate representation of a point on the Birkhoff poly-
tope [11]. While Carathéodory’s Theorem guarantees the existence of such
a representation, an efficient algorithm to compute it has remained elusive
so far. Our algorithm, which we christen Eclipse, has a performance that is
at least half that of optimal for every instance of the traffic demands, and

4 Shaileshh Bojja Venkatakrishnan et al.

experimentally shows a strict and consistent improvement over the state-of-
the-art [40]. A key technical contribution here is the identification of a sub-
modularity structure [5] in the problem, which allows us to make connections
between submodular function maximization and the circuit switch scheduling
problem with reconfiguration delay.
Indirect Routing: Next, we consider routing polices where packets are al-
lowed to reach their destination after (potentially) transiting through many
intermediate ports, leading to indirect or multi-hop routing. This class of rout-
ing policies is motivated by our observation that if the number of matchings is
limited, multi-hop routing can exponentially improve the reachability of nodes;
a novel benefit of multi-hop routing distinct from the classical and well known
load balancing effects [50,57,26]. We again identify submodularity in the prob-
lem, but the constraints for this submodular maximization problem are no
longer linear and efficient solutions are challenging to find. However, for the
important special case where the sequence of switch configurations have al-
ready been calculated (and the indirect routing policy has to be decided) we
propose a simple and fast greedy algorithm that is near-optimal universally
for all traffic requirements. Detailed simulation results demonstrate strong
improvements over direct routing, which are especially pronounced when the
switch reconfiguration delays are relatively large. We also propose fast heuris-
tics for the case where the switch configurations are not pre-calculated and
provide key insights towards solving the general indirect routing problem.

The paper is organized as follows. In Section 2, the model, framework and
the problem objective are formally stated along with a succinct summary of
the state of the art. Section 3 focuses on direct routing and Section 4 on
indirect routing. In Section 5, we present a detailed evaluation of the proposed
algorithms on a variety of traffic inputs. Section 6 closes with a brief discussion.
Technical aspects of the algorithm and its evaluation, including connections to
submodularity and combinatorial optimization problems are deferred to the
Appendix.

2 System Model

In this section, we present our model for a hybrid circuit-packet switched
network fabric, and formally define our scheduling problem. Our model closely
follows [40].

2.1 Hybrid Switch Model

We consider an n-port network where each port is simultaneously connected
to a circuit switch and a packet switch as shown in Figure 1. A set of nodes
are attached to the ports and communicate over the network. The nodes could
either be individual servers or top-of-rack switches.

We model the circuit switch as an n × n crossbar comprising of n input
ports and n output ports. At any point in time, each input port can send

Title Suppressed Due to Excessive Length 5

Fig. 1 An illustration of our hybrid switch architechture.

packets to at most one output port and each output port can receive packets
from at most one input port over the circuit switch. The circuit switch can
be reconfigured to change the input-output connections. We assume that the
packets at the input ports are organized in virtual-output-queues [49] (VOQ)
which hold packets destined to different output ports.

In practice, the circuit switch is typically an optical switch [54,17,60].2

These switches have a key limitation: changing the circuit configuration im-
poses a reconfiguration delay during which the switch cannot carry any traffic.
The reconfiguration delay can range from few milliseconds to tens of microsec-
onds depending on the technology [48,39]. This makes the circuit switch suit-
able for routing stable traffic or bursts of packets (e.g., hundreds to thousands
of packets at a time), but not for sporadic traffic or latency sensitive packets.
Therefore, hybrid networks also use a (electrical) packet switch to carry traf-
fic that cannot be handled by the circuit switch. The packet switch operates
on a packet-by-packet basis, but has a much lower capacity than the circuit
switch. For example, the circuit and packet switches might respectively run at
100Gbps and 10Gbps per port.

We divide time into slots, with each slot corresponding to a (full-sized)
packet transmission time on the circuit switch. We consider a scheduling win-
dow of W ∈ Z time units. A central controller uses measurements of the
aggregated traffic demand between different ports to determine a schedule for
the circuit switch at the start of each scheduling window. The schedule com-
prises of a sequence of configurations and how long to use each configuration
(Section 2.3). The controller communicates the schedule to the circuit switch,
which then follows the schedule for the next scheduling window (W) without
involving the controller. We assume that the delay for each reconfiguration is
δ ∈ Z time units.

2 Designs based on point-to-point wireless links have also been proposed [32,63]. Our
abstract model is general.

6 Shaileshh Bojja Venkatakrishnan et al.

2.2 Traffic Demand

Let T ∈ Zn×n denote the accumulated traffic at the start of a schedul-
ing window. We assume T is a feasible traffic demand, i.e., T is such that∑n
j=1 T (i, j) ≤ W and

∑n
i=1 T (i, j) ≤ W for all i, j ∈ {1, 2, . . . , n}. The

(i, j)th entry of T denotes the amount of traffic that is in the VOQ at node i
destined for node j.

We assume that the controller knows T .3 We also assume that non-zero
entries in the traffic matrix T are bounded as 2δ ≤ T (i, j) ≤ εW for all
i, j ∈ [n] : T (i, j) > 0 and some parameter 0 < ε < 1. This is a mild condition
because traffic between pairs of ports that is small relative to δ is better served
by the packet switch anyway.

Previous measurement studies have shown that the inter-rack traffic in
production data centers is sparse [40,8,3,51]. Over short periods of time (e.g.,
10s of milliseconds), most nodes communicate with only a small number of
other nodes (e.g., few to low tens). Further, in many cases, a large fraction
of the traffic is sent by a small fraction of “elephant” flows [3]. While our
algorithms and analysis are general, it is important to note that such sparse
traffic patterns are necessary for hybrid networks to perform well (especially
with larger reconfiguration delay).

2.3 The Scheduling Problem

Given the traffic demand, T , our goal is to compute a schedule that maximizes
the total amount of traffic sent over the circuit switch during the scheduling
window W . This is desirable to minimize the load on the slower packet switch.
In general, the scheduling problem involves two aspects:
1. Determining a schedule of circuit switch configurations: The al-
gorithm must determine a sequence of circuit switch configurations: (α1, P1),
(α2, P2), . . . , (αk, Pk). Here, αi ∈ Z denotes the duration of the ith switch
configuration, and Pi is an n × n permutation matrix, where Pi(s, t) = 1 if
input port s is connected to output port t in the ith configuration. For a valid
schedule, we must have α1 + α2 + . . .+ αk + kδ ≤W since the total duration
of the configurations cannot exceed the scheduling window W .
2. Deciding how to route traffic: The simplest approach is to use only
direct routes over the circuit switch. In other words, each node only sends
traffic to destinations to which it has a direct circuit during the scheduling
window. Alternatively, we can allow nodes to use indirect routes, where some
traffic is forwarded via (potentially multiple) intermediate nodes before being
delivered to the destination. Here, the intermediate nodes buffer traffic in their
VOQs for transmission over a circuit in a subsequent configuration.

3 Our work is orthogonal to how the controller obtains the traffic demand estimate. For
example, the nodes could simply report their backlogs before each scheduling window, or a
more sophisticated prediction algorithm could be used.

Title Suppressed Due to Excessive Length 7

In the next section, we begin by formally defining the problem in the sim-
pler setting with direct routing and developing an algorithm for this case.
Then, in Section 4, we consider the more general setting with indirect routing.
Remark 1. Prior work [40,37] has considered the objective of covering the
entire traffic demand in the least amount of time. For example, the ADJUST
algorithm in [37] takes the traffic demand T as input and computes a schedule
(α1, P1), . . . , (αk, Pk) such that

∑k
i=1 αi + kδ is minimized while

∑k
i=1 αiPi ≥

T . Our formulation (and solution) is more general, since an algorithm which
maximizes throughput over a given time period can also be used to find the
shortest duration to cover the traffic demand (e.g., via binary search).
Remark 2. From a systems viewpoint, the traffic demand estimation can
be done either by directly polling ToR switches or end-host NICs [39,60],
or indirectly through applications and flow information [17,2]. For systems
at scale, this represents a non-trivial task (and often taking 100s of µs [39])
necessitating the need for a window W to compute the schedule (vis-à-vis
dynamic policies; see following Section 2.4).

2.4 Related Work

Before presenting the work in this paper, we briefly summarize related work on
this topic. Scheduling in crossbar switches is a classical and well studied topic
in queuing theory. Traditionally the crossbar has been used to model packet
switches where the reconfiguration delay is very small. Hence the scheduling
solutions proposed – ranging from centralized Birkhoff-von-Neumann decom-
position scheduler [43] on one end to the decentralized load-balanced sched-
uler [12] on the other – did not account for reconfiguration delay. With the
proposals on hybrid circuit/packet switching systems [17,60], simplified mod-
els that factor for the reconfiguration delay were considered. A variant of the
well known MaxWeight algorithm is presented in [59] and is shown to be
throughput optimal. Fixed-Frame MaxWeight (FFMW) is a frame based pol-
icy proposed in [38] and has good delay performance. However it requires the
arrival statistics to be known in advance. A hysteresis based algorithm that
adapts many previously proposed algorithms for crossbar switch scheduling
to the case with reconfiguration delay is presented in [58]. All of these works
are “dynamic” policies where scheduling decisions are made time-slot by time-
slot and the analyses are probabilistic. They also require perfect queue state
information at every instant.

Another research direction is to consider “batch” policies [58] in which each
computational call returns a schedule for an entire window of time. Research
works in this category are often analyzed combinatorially or via real-world
system evaluations. Early works often assumed the delay to be either zero [31]
or infinity [56,61]. The infinite delay setting corresponds to a problem where
the number of matchings is minimized. However they still require O(n) match-
ings. In a different context (satellite-switched time-division multiple access),
works such as [25] also computed schedules that minimized the number of

8 Shaileshh Bojja Venkatakrishnan et al.

matchings. Moderate reconfiguration delays are considered in DOUBLE [56]
and other algorithms such as [22,37,62] that explicitly take reconfiguration
delay into account. The algorithm ADJUST [37] minimizes the covering time
but still requires around n configurations. All of these algorithms do not ben-
efit from sparse demands and continue to require O(n) configurations [40]. In
a complementary approach, [13] considers conditions on the input traffic ma-
trix under which efficient polynomial time algorithms to compute the optimal
schedule exists. Yet other approaches have been to introduce speedup [42], or
randomization in the algorithms [24], however they do not address the basic
optimization problem underlying this scenario head-on. Such is the goal of this
paper.

3 Direct Routing

The centralized scheduler samples the ToR ports and arrives at the traffic
demand (matrix) T to be met in the upcoming slot. In this section, we develop
an algorithm, named Eclipse, that takes the traffic demand, T , as input and
computes a schedule of matchings (circuit configurations) and their durations
to maximize throughput over the circuit switch; only direct routing of packets
from source to destination ports are allowed here. Eclipse is fast, simple and
nearly-optimal in every instance of the traffic matrix T . Towards a formal
understanding of the notion of optimality, consider the following optimization
problem:

maximize

∥∥∥∥∥min

(
k∑
i=1

αiPi, T

)∥∥∥∥∥
1

s.t. α1 + α2 + . . .+ αk + kδ ≤W
k ∈ N, Pi ∈ P, αi ≥ 0 ∀i ∈ {1, 2, . . . , k},

(1)

where N = {1, 2, . . .} and P is the set of permutation matrices.
This optimization problem is NP-hard [37], and a recent work [40] in the

literature has focused on heuristic solutions. Our proposed algorithm has some
similarities to the prior work in [40] in that the matchings and their durations
are computed successively in a greedy fashion. However, the algorithm is overall
quite different in terms of both ideas and details; we uncover and exploit the
underlying submodularity [52] structure inherent in the problem to design and
analyze the algorithm in a principled way.

We also note that this problem can be viewed as finding permutation ma-
trices P1, . . . , Pk and weightings α1, . . . , αk such that their weighted sum is a
good approximation of the traffic matrix T . Carathéodory’s Theorem applied
to the Birkhoff polytope guarantees the existence of such a dual representa-
tion; however till date we do not know of an efficient algorithm to compute
this representation. A recent work [6] proposes an approximation algorithm,
but it relies on an exhaustive search over the vertices of the polytope which

Title Suppressed Due to Excessive Length 9

Algorithm 1: A general greedy algorithm template
Input : Traffic demand T , reconfiguration delay δ and scheduling window size W
Output: Sequence of matchings P1, . . . , Pk and their corresponding durations

α1, . . . , αk:
sch← {} ; // schedule

k ← 0 ;
Trem ← T ; // traffic remaining

while
∑k
i=1(αi + δ) ≤W do

k ← k + 1;
Decide on a duration α for the matching;
M ← argmaxM∈M‖min(αM,Trem)‖1 ;
sch← sch ∪ {(α,M)} ;
Trem ← Trem −min(αM,Trem) ;

end

if
∑k
i=1(αi + δ) > W then

sch← sch\{(α,M)};
end
k ← k − 1;

can be very slow (moreover in the case of the Birkhoff polytope, the num-
ber of vertices is also exponential in the dimension). Our approach does not
involve such a search, and is also very efficient in obtaining an approximate
Carathéodory expansion.

3.1 Intuition

Before a formal presentation and analysis of the algorithm, we begin with
an intuitive and less-formal approach to how one might solve this optimiza-
tion problem. Consider greedy algorithms with the template shown in Algo-
rithm 1. The template starts with an empty schedule, and proceeds to add a
new matching to the schedule in each iteration. This process continues until
the total duration of the matchings exceeds the allotted time budget of W , at
which point the algorithm terminates and outputs the schedule computed so
far. In each iteration, the algorithm first picks the duration of the matching, α.
It then selects the maximum weight matching in the traffic graph whose edge
weights are thresholded by α (i.e., edge weights > α are clipped to α). The
traffic graph is a bipartite graph between n input and n output vertices, with
an edge of weight T (i, j) between input node i and output node j. It remains
to specify how to choose α in each iteration.

Consider an exercise where we vary the matching duration α from 0 to
W and compute the maximum weight matching in the thresholded traffic
graph for each α. For a typical traffic matrix, this results in a curve similar
to the solid-blue line in Fig. 2. Notice that the value of the maximum weight
matching is precisely equal to the sum-throughput that can be achieved in that
round of the switch schedule. It is straightforward to see that the maximum
weight matching curve has the following properties: (a) it is non-decreasing
and (b) piecewise linear. These are explained as follows: when α is very small

10 Shaileshh Bojja Venkatakrishnan et al.

threshold

w
ei

gh
t,

ut
ili

za
tio

n

slo
pe

 =
 %

 u
tili

za
tio

n

max. weight matching
effective utilization

/

,
1

,
2

,

Fig. 2 Throughput of max. weight matching as a function of threshold duration. The
effective utilization curve of the matchings is also shown.

a lot of the edges in the traffic graph have a weight that is saturated at
α. Hence it is likely to find a perfect matching with total weight of nα. As
such the slope of the curve when α is small is n. However, as α becomes
large there are increasingly fewer edges whose weights are saturated at α and,
correspondingly, the slope reduces. When α is so large that all of the edge
weights are strictly smaller than α, then the value of the maximum weight
matching does not change even with any further increase in α and the curve
ultimately flattens out.

Two operating points of interest, considering Fig. 2, are (a) the largest
α where the slope of the curve is maximum (= n in the typical case where
every ingress/egress port has traffic) and (b) the smallest α where the value of
the maximum weight matching is the largest. These points have been denoted
by α1 and α2 in Fig. 2 respectively. Setting α = α1 is interesting because it
results in a matching where the links are all fully utilized. For example, the
Solstice algorithm presented in [40] implicitly adopts this operating point. On
the other hand, α = α2 gives a matching that achieves the largest possible
sum-throughput in that round.

However we note that both choices of α are less than ideal for the following
reasons. Recall that after every round of switching we incur a delay of δ time
units. As such if the value of α1 is small (say comparable to δ) in each round,
then the number of matchings, and hence the time wasted due to the recon-
figuration delay, becomes large. As a concrete example, consider the transpose
of the traffic matrix T1 = [At1b

t
1] where A1 is a sparse (n − 1) × n matrix

and b = [2δ, 2δ, . . . , 2δ, 0, 0, . . . , 0] comprises of some k entries of value 2δ and
n− k entries of value 0. In other words, we are considering an input where a

Title Suppressed Due to Excessive Length 11

node or a collection of nodes have a large number of small flows to a particular
node or vice-versa. For such an instance it is clear that if we insist on match-
ings with 100% utilized links, then the maximum duration of the matching
is 2δ (i.e., α1 = 2δ). Thus, continuing the process described in Algorithm 1
results in a sequence of k matchings each of which is only 2δ time units long.
Hence in the worst case (if k > 1/(3δ)) about 1/3rd of the entire scheduling
window is wasted just due to reconfiguration delay limiting the maximum pos-
sible throughput to 2n/3. On the other hand, if we had ignored the entries
in b, then we could have scheduled just A1 achieving a total throughput of
n− 2kδ ≈ n for large n. We point out that the phenomenon described above
happens in a large family of instances, of which T1 is a specific example. We
also emphasize that such instances are pretty likely to occur in practice; for
example, [51, Fig.5-b] shows traffic measurements in a Facebook data center
where the interactions between Cache and Web servers lead to traffic matrices
having this property.

Similarly for the operating point with α = α2, consider the traffic matrix

T2 =
[
A2 0
0 B2

]
where A2 is a sparse (n−2)× (n−2) matrix and B2 =

[
0 1
1 0

]
.

This is a diametrically opposite situation from T1 where a small collection of
nodes interact only amongst themselves with no interaction outside. Such a sit-
uation occurs, for example, in multi-tenant cloud-computing data centers [53]
where individual tenants run their jobs on small clusters of servers. In such a
case, the value of the maximum weight matching can be maximum for a large
α. For T2 the maximum value occurs at α = 1− δ (i.e., α2 = 1− δ), resulting
in a schedule with just one matching of duration 1− δ and potentially missing
a lot of traffic for A2. For example, if A2 is uniformly k-sparse, we miss out
roughly (k−1)n/k units of traffic. On the other hand, by choosing the duration
of the matching to be 1/k − δ in each step we can achieve a sum throughput
of n−O(δ) ≈ n.

In scenarios exemplified by T2, setting α = 1 is bad because the utilization
of the resulting matching is poor, i.e., a vast majority of the matching links
carry only a fraction of their capacity. This can be overcome by insisting that
we choose only those matchings with utilization of at least 75% (say). However,
in the case of T1 we observe a poor performance in spite of all matchings
having a utilization of 100%. The issue in this case is that the duration of the
matchings are small compared to the reconfiguration delay. Hence to avoid
this scenario we can insist on α ≥ 20δ (say) in Algorithm 1.

Our first main observation is that both of the above heuristics are captured
if we consider the effective utilization of the matchings. We define effective
utilization as the ratio mwm(α)/(α + δ) where mwm(α) denotes the value of
the maximum weight matching at α. This ratio indicates the overall efficiency
of a matching by including the reconfiguration delay into the duration. In Fig. 2
we plot the effective utilization of the matchings as the red-dotted curve. As
can be seen there, the effective utilization at both α1 and α2 is suboptimal.
We propose an algorithm that selects α to maximize effective utilization; a
detailed description is deferred to Section 3.3.

12 Shaileshh Bojja Venkatakrishnan et al.

The justification for selecting matchings according to the above is further
reinforced by the submodularity structure of the problem (we discuss submod-
ularity in Section 3.2). It turns out that for a certain class of submodular max-
imization problems with linear packing constraints, greedy algorithms take a
form that precisely matches the intuitive thought process above [5]: the pro-
posed intuitively correct algorithm is borne out naturally from submodular
combinatorial optimization theory. We briefly recall relevant aspects of sub-
modularity and associated optimization algorithms next.

3.2 Submodularity

A set function f : 2[n] → R is said to be submodular if it has the following
property: for every A,B ⊆ [n] we have f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B).
Alternatively, submodular functions are also defined through the property of
decreasing marginal values: for any S, T such that T ⊆ S ⊆ [n] and j /∈ S, we
have

f(S ∪ {j})− f(S) ≤ f(T ∪ {j})− f(T).

The difference f(S ∪ {j}) − f(S) is called the incremental marginal value of
element j to set S and is denoted by fS(j). For our purpose we will only
focus on submodular functions that are monotone and normalized, i.e., for
any S ⊆ T ⊆ [n] we have f(S) ≤ f(T) and further f({}) = 0.

Many applications in computer science involve maximizing submodular
functions with linear packing constraints. This refers to problems of the form:

max f(S) s.t. AxS ≤ b and S ⊆ [n],

where A ∈ [0, 1]m×n, b ∈ [1,∞)m and xS denotes the characteristic vector of
the set S. Each of the Aij ’s is a cost incurred for including element j in the
solution. The bi’s represent a total budget constraint. A well-known example of
a problem in the above form is the Knapsack problem (the objective function
in this case is in fact modular).

With the above background, we formulate the optimization problem under
direct routing as one of submodular function maximization. Recall that for
any given input traffic matrix T , the schedule that is computed is described
by a sequence of matchings and corresponding durations. Consider the setM
of all perfect matchings in the complete bipartite graph Kn×n with n nodes in
each partite. Then any round in the schedule is simply (α, P) ∈ Z×M. The
key observation we make now is to view the schedules as a subset of Z×M.
Formally, define a switch schedule as any subset {(α1,M1), . . . , (αk,Mk)} of
Z×M. The objective function in our case is the sum-throughput defined as

f({(α1,M1), . . . , (αk,Mk)}) =
∥∥∥∥min

(k∑
i=1

αiMi, T
)∥∥∥∥

1

, (2)

Title Suppressed Due to Excessive Length 13

Algorithm 2: Eclipse: greedy direct routing algorithm
Input : Traffic demand T , reconfiguration delay δ and scheduling window size W
Output: Sequence of matchings P1, . . . , Pk and their corresponding durations

α1, . . . , αk:
sch← {} ; // schedule

k ← 0 ;
Trem ← T ; // traffic remaining

while
∑k
i=1(αi + δ) ≤W do

k ← k + 1;

(α,M)← argmaxM∈M,α∈Z
‖min(αM,Trem)‖1

(α+δ)
;

sch← sch ∪ {(α,M)} ;
Trem ← Trem −min(αM,Trem) ;

end

if
∑k
i=1(αi + δ) > W then

sch← sch\{(α,M)};
end
k ← k − 1 ;

where the minimum is taken entrywise and ‖ · ‖1 refers to the entrywise L1-
norm of the matrix. We observe that the function f is submodular, deferring
the proof to the Appendix.

Theorem 1 The function f : 2Z×M → R defined by Equation (2) is a mono-
tone, normalized submodular function.

We have established that optical switch scheduling under the sum-through-
put metric is a submodular maximization problem. With this, we are ready
to present a greedy algorithm that achieves a sum-throughput of at least a
constant factor of the optimal algorithm for every instance of the traffic matrix.

3.3 Algorithm

Algorithm 2 – Eclipse – captures our proposed solution under direct routing.
Eclipse takes the traffic matrix T , the time window W and reconfiguration
delay δ as inputs, and computes a sequence of matchings and durations as the
output. The algorithm proceeds in rounds (the “while loop”), where in each
round a new matching is added to the existing sequence of matchings. The
sequence terminates whenever the sum of the matching durations exceeds the
allocated time window W or whenever the traffic matrix T is fully covered.

Consider any round t in the algorithm; let (α1,M1), . . . , (αt−1,Mt−1) de-
note the schedule computed so far in t − 1 rounds (stored in variable sch)
and let Trem(t) denote the amount of traffic yet to be routed. The matching
that is selected in the t-th round is the one for which utilization – the per-
centage of the total matching capacity that is actually used – is maximum.
Mathematically, we choose an (α,M) pair such that ‖min(αM,Trem)‖1

α+δ is max-
imized. In the Appendix we have given a proof that the maximum (for α)
occurs on the support of Trem. Hence this can be easily found by looking at

14 Shaileshh Bojja Venkatakrishnan et al.

Algorithm 3: Finding the greedy maximum
Input : Traffic demand T , reconfiguration delay δ

Output: (α,M) ∈ Z×M such that (α,M) = argmaxM∈M,α∈Z
‖min(αM,T)‖1

(α+δ)

H ← distinct entries of T sorted in ascending order;
ilb ← 1 and iub ← length(H);
while ilb < iub do

i← (ilb + iub)/2 ;
T1 ← min{T,H(i)} ; // thresholding T to H(i)
T2 ← min{T,H(i+ 1)} ;
v1 ← (max. weight matching in T1)/(H(i) + δ) ;
v2 ← (max. weight matching in T2)/(H(i+ 1) + δ) ;
if v1 < v2 then

ilb ← i;
else if v1 > v2 then

iub ← i;
else

return (H(i), max. weight matching in T1);
end

end

the support of the (sparse) matrix Trem. We also propose a simple binary-
search procedure, discussed in Algorithm 3, that finds only a local maximum
but performs extremely well in our evaluations (Section 5). This process of
selecting a matching is repeated in each round until the sum-duration of the
matchings exceeds the scheduling window W , when the last chosen matching
is discarded and the remaining set of matchings are returned. Eclipse is simple
and also fast, a fact the following calculation demonstrates.

Complexity: We begin with the complexity of Algorithm 3. Since iub is no
more than the number of distinct entries of T , we have iub ≤ n2. In each
iteration, the algorithm only considers entries of H that have indices between
ilb and iub. However, binary-search halves the effective size of H (i.e., those
numbers in H with array indices ilb, ilb+1, . . . , iub), and the number of itera-
tions of the while loop is bounded by log n2 = 2 log n. Within the while loop,
computing the maximum weight matching can be done in O(dn3/2 log(Wε))
time (a basic fact of submodular optimization [15,52]) where dn is the number
of edges in bipartite graph formed by T (i.e., d is the average sparsity). Fur-
ther (1−ε) approximate maximum weight matching can be computed in linear
time, e.g. O(dnε−1 log ε−1) [14], and efficient implementations in practice have
been studied extensively in the literature [44,46,18]. Hence the overall time
complexity is O(dn3/2 log n log(Wε)). Now, in Algorithm 2 the number of it-
erations in the while loop is bounded by W/δ. As such the total complexity
of the algorithm is Õ(dn3/2W

δ). An exact search over the support of Trem in
the maximization step results in a overall complexity of Õ(d2n5/2W

δ).

Approximation Guarantee: Since the proposed direct routing algorithm is
connected to submodular maximization with linear constraints, we can adapt
standard combinatorial optimization techniques to show an approximation
factor of 1−1/e. Let OPT denote the sum-throughput of the optimal algorithm

Title Suppressed Due to Excessive Length 15

for given inputs T, δ and W . Let ALG2 denote the sum-throughput achieved
by Eclipse. We then have the following.

Theorem 2 If the entries of T are bounded by εW + δ then Eclipse approx-
imates the optimal algorithm to within a factor of 1 − 1/e(1−ε), i.e., ALG2 ≥
(1− 1/e(1−ε))OPT.

The proof of the above Theorem is deferred to the Appendix. As a concluding
remark, we note that the constant ε in the approximation factor comes from
the requirement that α + δ ≤ εW hold. We observe that this mild technical
condition, required to show that Eclipse is a constant factor approximation of
the optimal algorithm, has an added implication. Informally, it ensures that
no single matching occupies the bulk of the scheduling window.

4 Indirect Routing

In the previous section, we focused on direct routing where packets are for-
warded to their destination ports only if a link directly connecting the source
port to the destination port appeared in the schedule – this is essentially a
“single-hop” protocol. In this section, we explore allowing packets to be for-
warded to (potentially) multiple intermediate ports before arriving at its final
destination. In terms of implementing this more involved protocol, we note
that there is no extra overhead needed: the destination of any received packet
is read first upon reception and since the queues are maintained on a per-
destination basis at each ToR port, any received packet can be diverted to
the appropriate queue. The key point of allowing indirect routing is the vastly
increased range of ports that can be reached from a small number of matchings.

Consider Fig. 3 which illustrates a 6-port network and a sequence of 3
consecutive matchings in the schedule. With direct routing, port 3 can only
forward packets to ports 2, 5 and 4 in rounds 1, 2 and 3 respectively, i.e.,
the set of egress ports reachable by port 3 is {2, 4, 5}. In the indirect routing
framework of this section, port 3 can also forward packets to port 1. This
can be achieved by first forwarding the packets to port 2 in the first round
where the packets are queued. Then in the second round we let port 2 forward
those packets to the destination port 1. Thus the reachability of the nodes is
enhanced by allowing for indirect routing. Indirect routing can also be viewed
as “multi-hop” routing.

Traditionally multi-hop routing has been used as a means of load balancing.
This is known to be true in the context of networks such as the Internet where
the benefits of “Valiant load-balancing” are legion [50,57,26]. The benefits
of load balancing are also well known in the switching context – a classic
example is the two-stage load-balancing algorithm in crossbar switches without
reconfiguration delay [55]. The benefit of multi-hop routing in our context is
markedly different: the reachability benefits of indirect routing are especially
well suited to the setting where input ports are directly connected to only a few
output ports due to the small number of matchings in the scheduling window.

16 Shaileshh Bojja Venkatakrishnan et al.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 3 Reachability of nodes under multi-hop routing.

In fact, an elementary calculation shows that over a period of k matchings in
the schedule, indirect routing can allow a node to forward packets to O(2k)
other nodes, compared to only O(k) nodes possible with direct routing. This is
because of the recursion f(k) = 2f(k− 1) + 1 where f(k) denotes the number
of nodes reachable by any node in k rounds. If a node (say, node 1) can reach
f(k − 1) nodes in k − 1 rounds, then in the k-th round (i) there is a new
node directly connected to node 1 and (ii) each of the f(k − 1) nodes can
be connected to a new node. Thus the number of nodes connected to node 1
in the k-th round becomes f(k − 1) + (f(k − 1) + 1). Fig. 3 also illustrates
this phenomenon where reachability from node 3 is shown. As a corollary we
observe that O(log2 n) rounds of matchings are sufficient to reach all other
nodes in a n-port network.

As in the direct routing case, computing the optimal schedule remains a
challenging problem. While it is clear that we can achieve a performance at
least as good as with direct routing, the gain is different for each instance of
the traffic matrix – precisely quantifying the gain in an instance-specific way
appears to be challenging. Our main result here is that the submodularity
property of the objective function continues to hold, provided the variables
are considered in an appropriate format. However, unlike direct routing, we
are able to use submodularity in this case and obtain fast, natural solutions
only under settings where some of the variables are restricted (matchings and
durations).

Notice that in general specifying a schedule entails computing (i) a se-
quence of matchings, (ii) their durations and (iii) a multi-hop routing policy.
As steps towards jointly computing all the three quantities listed, we also
present a sequence of heuristics, where we restrict different classes of the vari-
ables. In Eclipse++ we present a simple and fast greedy algorithm to compute
the switching schedule under fixed matchings and durations. This heuristic is
borne naturally from the submodularity of the problem and is shown to be
approximately optimal for each instance of the traffic matrix. Next, in Eclip-
seX we restrict only the matchings and jointly compute their durations and
the routing policy. Finally, in Eclipse# we present a heuristic where none of

Title Suppressed Due to Excessive Length 17

Matchings Durations Routing Algorithm

yes yes no Eclipse
no no yes Eclipse++
no yes yes EclipseX
yes yes yes Eclipse#

Table 1 Summary of the solution variables that are computed by our proposed algorithms.

the variables are restricted. The restrictions followed in the above algorithms
have been summarized in Table 1. We present these results, following the same
format as in the direct routing section, leaving numerical evaluations to a later
section. We follow the model as discussed in Section 2.

4.1 Submodularity of objective function

We first adopt an alternative way of describing the switch schedule by speci-
fying the multi-hop path taken by each packet. Such a formulation serves us
well in the causal structure of the routed traffic patterns that naturally occur
here.

For simplicity let us fix the number of rounds k in the schedule. Consider
a fully connected k-round time-layered directed graph G consisting of k + 1
partites, V0, V1, . . . , Vk (of n nodes each), with nodes in each partite i having
directed edges to all the nodes in partite i+1. Let P denote the set of all paths
in G that begin at a node in V0 and end at a node in Vk. Any such p ∈ P
describes a multi-hop route for a packet in the system. If we are able to choose
a path for every packet in the traffic matrix T , subject to capacity constraints,
then we have a valid sequence of switch configurations and routing policy for
the schedule. Now, for a set of paths (β1, p1), . . . , (βm, pm), where βi denotes
the number of packets sharing the same path pi, consider the sum-throughput
given by a function f : 2Z×P → Z defined as f({(β1, p1), . . . , (βm, pm)}) ,

∑
i,j∈[n]

min

(
m∑
l=1

βl1 pl(0)=i,
pl(k+1)=j

, Tij

)
, (3)

where p(0) and p(k+1) denote the starting and ending nodes of path p and 1{·}
is the indicator function. Then the main observation is that f is submodular.

Theorem 3 The function f : 2Z×P → Z defined by Equation (3) is submod-
ular.

The proof is analogous to Theorem 1 and is omitted. So far we have not
imposed any restrictions on the set of paths that we choose for the schedule.
This can be incorporated in the form of constraints to the problem, thus
rephrasing the objective as a constrained submodular maximization problem.

18 Shaileshh Bojja Venkatakrishnan et al.

Constraints: Since we can choose arbitrary weighted paths, we need con-
straints to ensure that
(i) the set of paths form a matching in each round and
(ii) the total duration of the matchings is at most W − kδ.
This can be written mathematically as follows for any subset of weighted paths
{(β1, p1), . . . , (βm, pm)} ∈ 2Z×P :

∑
e:v∈e,
e∈Ej

1

{
m∑
i=1

1{e∈pi}βi > 0

}
≤ 1 ∀v ∈ Vj−1, j ∈ [k] (4)

∑
e:v∈e,
e∈Ej

1

{
m∑
i=1

1{e∈pi}βi > 0

}
≤ 1 ∀v ∈ Vj , j ∈ [k] (5)

k∑
j=1

((
max
e∈Ej

m∑
i=1

1{e∈pi}βi

)
+ δ

)
≤W (6)

where Ej stands for the edges between Vj−1 and Vj in G. Hence we can express
the problem as maximization of objective (3) subject to the constraints (4)–
(6).

However, the key challenge here is that the constraints (4)–(6) are nonlin-
ear – it is not clear whether an efficient (approximation) algorithm exists. The
nonlinearities appear only in the sense of membership tests and a correspond-
ing thresholding function – so it is possible that an efficient nearly-optimal
greedy algorithm exists, but we leave this study for future work. We do note,
however, that for the special case in which the configurations are fixed and we
only have to decide on the indirect routing policies, the constraints take on a
linear form – in this setting, we are able to construct fast and efficient greedy
algorithms. This case represents a composition of direct routing (where switch
schedules are computed) and indirect routing (where the multi-hop routing
policies are described), and is discussed next.

Multi-Hop Routing Policies: Consider a fixed sequence M1, . . . ,Mk of
switch configurations and an input traffic demand matrix T . Let G denote the
time-layered edge-capacitated graph obtained from the sequence of matchings,
i.e., G consists of k + 1 partites V0, . . . , Vk with n nodes each, and Mi is the
matching between partites Vi−1 and Vi. In addition to the matching edges,
there are also edges, with unlimited edge capacities, connecting the j-th nodes
of Vi−1 and Vi for all j ∈ [n], i ∈ [k]. In this setting, by constraining the
total duration of the matchings, we can maximize our required objective by
formulating the following linear program (LP) relaxation,

Title Suppressed Due to Excessive Length 19

maximize
∑
p∈P

xp

s.t.
∑
p∈Pi,j

xp ≤ Ti,j ∀i, j ∈ [n]

∑
p:e∈p

xp ≤ αl ∀ e ∈Ml, ∀ l ∈ [k]

α1 + . . .+ αk ≤W − kδ
xp ≥ 0 ∀p ∈ P, αi ≥ 0 ∀i ∈ [k],

(7)

where Pi,j denotes the set of paths starting from a node i in G and termi-
nating at node j, P denotes the set of all paths ∪i,j∈[n]Pi,j , xp is the flow
along path p and αi is the duration of the i-th matching. We note that though
the present form of the LP can contain an exponential number of variables,
equivalent edge-based formulations exist with only a polynomial number of
variables and constraints. As such one could use a generic LP solver to ob-
tain the desired schedule. A closely related problem is the classical multi-
commodity flow problem [1,28,7] that was predominantly solved using linear
programming based approaches. However, despite many years of research in
this direction the proposed algorithms were often too slow even for moderate
sized instances [36]. Since then there has been a renewed effort in providing ef-
ficient approximate solutions to the multicommodity flow problem [23,4]. The
algorithms we present are also a step in this direction, favoring efficiency over
exactness of the solution. To do this, we consider the following two settings:
(1) where the durations αi of the matchings are fixed – this case allows for a
natural, simple, fast and nearly-optimal algorithm by exploiting the submod-
ularity and is disussed in the following Section 4.2 and (2) under arbitrary
durations by using an approach similar to the primal-dual method in LP –
this is discussed subsequently in Section 4.3.

4.2 Algorithm: Eclipse++

Consider the graph G discussed above under a fixed matching, duration se-
quence (M1, α1), . . . , (Mk, αk). Let R(e) denote the capacity of edge e ∈ G.
In this setting, the capacity constraints on the end-to-end paths are the sole
constraints to the submodular optimization problem – we consider subsets
{(β1, p1), . . . , (βm, pm)} that obey

m∑
i=1

βi1{e∈pi} ≤ R(e) ∀e ∈ G. (8)

Notice that the constraints above have a linear form, and there are a total
of kn such constraints (one for each edge). Hence, motivated by [5], which
presents a fast and efficient multiplicative weights algorithm for submodular

20 Shaileshh Bojja Venkatakrishnan et al.

Algorithm 4: Eclipse++ : greedy indirect routing algorithm
Input : Traffic demand T , switch configurations with residue capacities

R1, . . . , Rk, update factor λ
Output: Sequence of paths p1, . . . , pm and corresponding weights β1, . . . , βm
sch← {} ; // schedule

Trem ← T ; // traffic remaining

we ← 1/R(e) for all e ∈ E;
m← 1;
while

∑
e∈E R(e)we ≤ λ and ‖Trem‖1 > 0 do

(βm, pm)← argmaxp∈P,β∈Z
min(β,Trem(p(0,p(k+1))∑

e∈E β1{e∈p}we
;

sch← sch ∪ {(βm, pm)} ;
Trem(pm(0), pm(k + 1))← Trem(pm(0), pm(k + 1))− β ;

we ← weλ
βm1{e∈p}/R(e) ∀e ∈ G ;

m← m+ 1;

end

if
∑m−1
i=1 βi1{e∈pi} ≤ R(e) ∀e ∈ E then

return sch
else

return sch\(βm−1, pm−1)
end

maximization under linear constraints, we propose Eclipse++ in Algorithm 4.
The structure of Eclipse++ is similar in spirit to Eclipse (Algorithm 2) in the
sense that (a) the algorithm proceeds in rounds, where one new path is added
to the schedule in each round and (b) we select a path that offers the greatest
utility per unit of cost incurred. However, unlike Algorithm 2 where there
was only one linear constraint, we have multiple linear constraints now. This
is addressed by assigning weights to the constraints and considering a linear
combination of the costs as the true cost in each round. In the following, we
describe the salient features of Eclipse++.

Recall the capacity constraints in Equation (8) for each edge e ∈ G; let
we denote the weight assigned to the constraint involving edge e. We set
we = 1/R(e) for all e initially, i.e., edges with a large capacity are assigned a
small weight and vice-versa. We can now have another graph Gw (with same
topology as G) whose edges are weighted by we. Now, for any path p the “ef-
fective cost” of the path per packet is simply the total cost of p in Gw. Thus for
the path (β, p) carrying β packets, the effective cost is given by

∑
e∈E βwe1e∈p.

On the other hand, the benefit we get due to adding path (β, p) is given by
min(β, T (p(0), p(k + 1))) where p(0) and p(k + 1) stand for the starting and
terminating nodes along path p. Thus, the ratio min(β,T (p(0),p(k+1)))∑

e∈E βwe1e∈p
denotes

the benefit of path p per unit cost incurred. In Algorithm 4 we select p such
that the utility per unit cost is maximized.

Now, once we have selected a weighted path (β1, p1) in the first round, we
update the weights we on the edges. This is done as we ← weλ

β1/R(e) for each
edge e ∈ p, where λ is an input parameter. For the remaining edges the weights
remain unchanged. Thus repeating the above iteratively until the while loop
condition

∑
e∈E R(e)we ≤ λ becomes invalid, we get a schedule that is the

Title Suppressed Due to Excessive Length 21

output of the algorithm. It can also be shown that if the schedule returned
sch violates any of the constraints (Equation (8)) then it must have happened
at the very last iteration and hence we return a schedule with the last added
path removed from it. It only remains to show how the maximizer of

min(β, Trem(p(0, p(k + 1))∑
e∈E β1{e∈p}we

(9)

is computed efficiently in each round (first line inside the while loop). Consider
the set of shortest paths in Gw (smallest we-weighted path) from vertices in
V0 to vertices in Vk. Let p∗ denote the shortest among them. Then by setting
β∗ ← Trem(p∗(0), p∗(k + 1)) we claim that Equation (9) is maximized. This is
because,

min(β, Trem(p(0, p(k + 1))∑
e∈E β1{e∈p}we

≤ β∑
e∈E β1{e∈p}we

≤ 1
min

∑
e∈E 1{e∈p}we

.

If Trem(p∗(0), p∗(k + 1)) = 0 we proceed to the second smallest shortest path
and so on. This allows a very efficient implementation of the internal maxi-
mization step.
Approximation Guarantee: We show, as in the direct-routing scenario,
that Eclipse++ has a constant factor approximation guarantee. Specifically,
for a fixed instance of the traffic matrix, let OPT and ALG4 denote the value
of the objectives achieved by the optimal algorithm (under fixed matchings,
durations) and Eclipse++ respectively. Let η := maxi,j∈[n],e∈E T (i, j)/R(e).
Then one can show that ALG4 = Ω(1/(nk)η)OPT for λ = e1/ηnk; the proof is
analogous to the direct-routing case and follows [5, Theorem 1.1]. Further, if
η = O(ε2/ log(nk)) for some fixed ε > 0 then we get a approximation ratio of
(1− ε)(1− 1/e) by letting λ = eε/(4η) (using [5, Theorem 1.2]). An interesting
regime where this occurs is when the traffic matrices are dense with small
skew. For example, we get a constant factor approximation if the sparsity of
the traffic matrix grows at least logarithmically fast. This is in stark contrast
to direct routing, where sparse matrices generally perform better.
Complexity: The proposed algorithm is simple and fast. In this subsection,
we explicitly enumerate the time complexity of the full algorithm and show
that the complexity is at most cubic in n and nearly linear in k. Let W
denote a bound on the total incoming or outgoing traffic for a node. In each
iteration of the while loop at least one packet is sent. Therefore there are
at most W iterations of the while loop. Now, in each iteration finding the
shortest paths between nodes in V0 to nodes in Vk takes kn2(log k + log n)
operations using Dijkstra’s algorithm [21]. Sorting the computed distances
takes kn2(log k + log n)2 time and at most n2 more operations to find a pair
i, j such that Trem(i, j) > 0. Finally the weights update step takes kn time.
Therefore overall it takes O(kn2(log k+ log n)2) time per iteration. Hence the
time complexity of the complete algorithm is O(Wkn3(log k + log n)2).

22 Shaileshh Bojja Venkatakrishnan et al.

4.3 Algorithm: EclipseX

While Eclipse++ presents a fast algorithm to compute the multi-hop routing
policy, its performance to a large extent depends on the choice of the match-
ing sequence. Yet it is apriori not clear how to choose these matchings and
durations. In this section, we provide a fast approximation heuristic to jointly
compute the optimal (i) durations of the matchings and (ii) multi-hop rout-
ing, under a fixed matching sequence. Such an heuristic can be helpful in the
search for an optimal matching sequence. Following the same model as be-
fore, let M1,M2, . . . ,Mk denote a sequence of k matchings. Then using these
matchings, our goal is to maximize the total amount of traffic sent. To do this,
let us consider a time-layered directed graph G, as before, that is constructed
by cascading the k matchings M1, . . . ,Mk. Let E = ∪ki=1Mi denote the set
of all matching edges in G.4 In Equation (7) we have seen a linear program-
ming relaxation for maximing our required sum-throughput objective. Such
an LP has a form similar to multicommodity flow except that the matching
durations also have to be decided. This additional constraint unfortunately
violates the packing structure of the constraints under which case techniques
from fractional packing problems could have been used. Hence as an alterna-
tive approach, we consider the dual of the path-flow LP as shown in the box
below,

minimize (W − kδ)β+
∑
i,j∈[n]

T (i, j)zi,j

s.t. zi,j +
∑

e:e∈p∩E
ye ≥ 1 ∀p ∈ Pi,j ,∀i, j ∈ [n]

β −
∑
e∈Ml

ye ≥ 0 ∀l ∈ [k]

zi,j ≥ 0 ∀i, j ∈ [n], ye ≥ 0 ∀e ∈ E, β ≥ 0.

(10)

Here the y(e) represent weights on the edges e ∈ E, zi,j is a weight on each
(i, j) source-destination pair and β is a variable bounding the total weight of
any matching. Further the first set of constraints, which impose a minimum
path-weight condition, can be verified quickly using the all-pairs shortest path
algorithm (e.g. Dijkstra’s). The second set of constraints can also be verified
quickly as this involves simply checking the weight of each of the k matchings.
As such there exists an efficient polynomial time separation oracle that, given
a solution (y(e), zi,j , β), is able to either (i) decide that the solution satisfies all
the constraints or (ii) output a constraint that is violated by the solution.5 On
the other hand, the state-of-the-art technique in maximum multicommodity
flow [23,20] involves a primal-dual based algorithm which depends heavily on

4 Note that in addition to the matching edges E, G also contains edges connecting nodes
representing the same server across multiple matching rounds.

5 This also implies the LP can be solved in polynomial time using the Ellipsoidal
method [27].

Title Suppressed Due to Excessive Length 23

Algorithm 5: EclipseX: a template for jointly computing durations and
indirect routing under a fixed input sequence of matchings.

Input : Traffic demand T , reconfiguration delay δ and scheduling window size W ,
sequence of matchings M1, . . . ,Mk, parameters ε, λ

Output: Sequence of durations α1, . . . , αk; sequence of paths and their weights
(p1, β1), . . . , (pm, βm)

Initialize primal: xp ← 0 ∀p ∈ P, αl ← δ ∀l ∈ [k];
Initialize dual: y(e)← δ/W ∀e ∈ E, zi,j ← 1/(T (i, j)) ∀i, j ∈ [n], β ← nδ;
p(i, j)← shortest y-path from node i to node j in G;
(i∗, j∗)← argmini,j∈[n](y(p(i, j)) + zi,j);

l∗ ← argmaxl∈[k](y(Ml));

while y(p(i∗, j∗)) < 1 or y(Ml∗) > β do
if y(p(i∗, j∗)) < 1 then

β(p(i∗, j∗))← β(p(i∗, j∗)) + ε ; // augment flow along p(i∗, j∗)
y(e)← y(e)(1 + λε/α(e)) ∀e ∈ p(i∗, j∗) ∩ E ; // increase edge weights

zi∗,j∗ ← zi∗,j∗ (1 + ε/T (i∗, j∗)) ; // increase zi∗,j∗

else
αl∗ ← αl∗ (1 + λ) ; // augment duration αl∗ of Ml∗

β ← β(1 + λ) ; // increase β

end
compute the new i∗, j∗, l∗ as before;

end

the existence of an efficient separation oracle in the dual program. Hence mo-
tivated by these observations, we propose a primal-dual based heuristic that is
able to approximately solve the LP and is fast. Our proposed solution, which
we call EclipseX, is also a greedy algorithm proceeding in rounds wherein at
each round either (i) the flow is augmented along a path or (ii) the duration
of a matching is increased.Such an approach is in tune with the general princi-
ple of primal-dual methods wherein at each round either the objective value is
increased or the complementary slackness conditions are improved. We conjec-
ture that our proposed heuristic has a constant factor approximation guarantee
to the optimal.

Variable capacity multicommodity flow: The specific instance of the
problem discussed in EclipseX also leads to a more general problem of mul-
ticommodity flow with variable edge capacities. Consider a directed graph
G = (V,E) with k source-destination pairs (si, ti), i ∈ [k]. Let the i-th com-

24 Shaileshh Bojja Venkatakrishnan et al.

Fig. 4 An example showing a matching to reduce the sparsity of the traffic matrix by half
under uniform load.

modity have a total traffic of di for each i. Then the LP

maximize
∑
p∈P

xp

s.t.
∑
p∈Pi

xp ≤ di ∀i ∈ [k]

∑
p:e∈p

xp ≤ ce ∀ e ∈ E

Ac ≤ b

x ≥ 0, c ≥ 0,

(11)

where Pi is the set of all paths from node si to node ti and P = ∪i∈[k]Pi,
represents a maximum multicommodity flow problem with linear cost con-
straints on the edge capacities. Such a problem is of canonical interest both
theoretically from an approximation algorithms point-of-view and practically
for network design and capacity planning (e.g. of core data center networks).
While special cases of this problem, such as flow assignment with capacity
expansion [41,19,9], have been studied the general problem remains largely
open. We defer analysis and experimentations on EclipseX and the general
multicommodity flow problem as important topics for future research.

4.4 Algorithm: Eclipse#

So far we have discussed heuristics (Eclipse++ and EclipseX) that operate
on a fixed input sequence of matchings – such as that computed by Eclipse.
While in many common cases this strategy seems to suffice, in general the
performance can vary dramatically depending on the choice of matchings.
Hence it becomes imperative to have an algorithm that can select matchings
carefully such that the multi-hop throughput is optimized. Unfortunately a
polynomial time solution to this general problem appears to be hard.6 One

6 Despite fast algorithms to compute the schedule under fixed matchings, it is not clear
how to perform the search over the space of matching sequences efficiently.

Title Suppressed Due to Excessive Length 25

could also use the submodularity in the objective, but as mentioned before,
the nonlinearity in the constraints make this approach challenging as well.

In this section, we propose an alternative heuristic (called Eclipse#) that is
able to outperform both Eclipse and Eclipse++ under certain key regimes (Sec-
tion 5.2). Owing to the difficulty of the problem, we have motivated Eclipse#
by intuition and empirical observations rather than mathematical structures.
The main differentiating factors here are that (i) the number of matchings is
restricted to be small (O(log n)) and (ii) the matchings are chosen randomly to
provide good reachability between source-destination pairs. While the reduced
number of matchings minimize capacity loss due to reconfiguration delay, it is
also well known that random matchings have good expansion properties [47,
30]. These properties are in contrast to the schedule computed by Eclipse
which could contain a large number of matchings. To illustrate this difference,
let us consider the following example.
Example: Let W = log2 n and T be the uniform traffic matrix in which all the
off-diagonal entries are 1/(n − 1) (the diagonal entries are 0). For simplicity,
let us assume than n is an integer power of 2. This example represents an
extreme case in which the load is only a 1/ log n fraction of the capacity (e.g.
10% load for a network with 1000 servers). Since indirect routing inherently
entails multiple transmissions of the same flow across time, we also assume
an enhanced network capacity (or a reduced traffic load) in order to feasibly
schedule traffic demand matrices.7 Now, scheduling this demand matrix T
using direct routing we would be able to send at most

W

(δ + 1
n−1)

n

n− 1
≤ 2W

δ
= O(log n),

a logarithmic amount of traffic. Indirect routing performed using the matchings
returned by Eclipse would also give a similar performance. On the other hand,
by using a different sequence of matchings we can essentially transmit all of the
traffic in log2 n time-units. To see this, consider the first round of matching
of duration 1/2 where the i-th node connects to the ((i + n/2) mod n)-th
node. In this round, let nodes 1, . . . , n/2 transmit all of their traffic destined
to nodes n/2 + 1, . . . , n through their respective outgoing edges. Similarly, let
nodes n/2 + 1, . . . , n transmit all of their traffic destined to nodes 1, . . . , n/2
through their edge. Then at the end of this round, the resultant traffic matrix
has only two blocks (along the diagonal) each with n/2 non-zero entries of
value 2/(n− 1). Thus we have reduced the initial sparsity of n− 1 by a factor
of half (see Figure 4). Now, each of the two blocks has a structure similar to
the initial traffic matrix. Hence by repeating the same process as above we
can reduce the sparsity by another half factor. Thus repeating k times, we
end up with a traffic matrix whose sparsity is roughly n/2k. For k = log n
we essentially have a matrix with constant sparsity. At this point, we can use
direct routing to schedule the traffic as we have done in Eclipse.

7 This requirement can be accommodated in practice since networks are often severely
over-provisioned.

26 Shaileshh Bojja Venkatakrishnan et al.

Algorithm 6: Eclipse# : general case greedy indirect routing algorithm
Input : Traffic demand T , reconfiguration delay δ and scheduling window size W
Output: Sequence of matchings and their durations (M1, α1), . . . , (Mk, αk);

sequence of paths and their weights (p1, β1), . . . , (pm, βm)
d← maximum number of non-zero entries in any row or column of T ;
k ← 2dlog2 de ;
D ← T ;
for i = 1 to k do

Mi ← random matching on support of D;
αi ← (W − kδ)/k;
D(i, j)← 0 ∀(i, j) ∈Mi;

end
Run Eclipse++ on the schedule (M1, α1), . . . , (Mk, αk) and traffic matrix T ;
Return (p1, β1), . . . , (pm, βm) as computed by Eclipse++;

Thus using a right sequence of matchings can offer significant gains un-
der multi-hop routing. In particular, for settings where the reconfiguration
delay is large, the fixed sequence of matchings schedule should contain only a
small number of matchings. We have enforced this by restricting the number
of matchings to 2 log2 d where d is the sparsity of the input (intuitively, we
need roughly log2 d matchings to sparsify the traffic matrix; then on the sparse
matrix we need an additional constant number of matchings to send the traf-
fic). For simplicity, we have also set the durations of each of the matchings
to be the same. This seems to be a reasonable choice for traffic matrices with
a small skew (Section 5.2). Finally, to ensure connectivity between different
pairs of nodes, a matching is chosen randomly on the support of the demand
matrix at each round.

4.5 Discussion

In a schedule with a small number of matchings, the packets inherently have to
take longer paths (more hops) and thus consume more capacity to reach their
destinations. On the other hand, having a large number of matchings intro-
duces capacity wastage in the form of reconfiguration delays. Thus, balancing
this trade-off between the number of matchings and the average number of
hops packets take to reach their destinations is a key challenge to finding a
good matching sequence. The algorithms Eclipse++ and Eclipse# seem to
operate well at regimes where the optimum lies near either extreme of this
spectrum respectively (as we will also see from evaluations in Section 5.2). It
would be interesting to characterize this trade-off and design a general algo-
rithm that is able to discern and make these design choices by itself.

Throughout our discussion so far, we have adopted a model where the
scheduling window is of a fixed duration W and has at least one switching
operation per window. From a throughput perspective, this inherently causes a
rate loss of at least δ/W fraction of capacity. Practical optical circuit switches,

Title Suppressed Due to Excessive Length 27

on the other hand, are often able to retain their previous switching state
across adjacent time windows (i.e., without requiring a new configuration at
the start of each window). This suggests a natural modification of our current
algorithms where in the first round of each window we either (i) retain the last
matching of the previous round or (ii) switch to a new matching. We believe
such a modification will further improve performance; the precise changes and
an evaluation under continuous traffic (such as Bernoulli arrivals) are left for
future work.

5 Evaluation

In this section, we complement our analytical results with numerical simu-
lations to explore the effectiveness of our algorithms and compare them to
state-of-the-art techniques in the literature. We empirically evaluate both the
direct routing algorithm (Eclipse : Algorithm 2) and the indirect routing al-
gorithms (Eclipse++ : Algorithm 4, Eclipse# : Algorithm 6).

Metric: We consider the total fraction of traffic delivered via the circuit switch
(sum-throughput) over the duration of a fixed scheduling window as the per-
formance metric throughout this section. Evaluating our algorithms under
continuous traffic arrival models remains an important future direction.

Schemes compared: Our experiments compare Eclipse against two existing
algorithms for direct routing:
(1) Solstice [40]: This is the state-of-the-art hybrid circuit/packet scheduling
algorithm for data centers. The key idea in Solstice is to choose matchings
with 100% utilization. This is achieved by thresholding the demand matrix and
selecting a perfect matching in each round. The algorithm presented in [40]
tries to minimize the total duration of the window such that the entire traffic
demand is covered. In this paper, we have considered a more general setting
where the scheduling window W is constrained. To compare against Solstice
in this setting, we truncate its output once the total schedule duration exceeds
W .
(2) Truncated Birkhoff-von-Neumann (BvN) decomposition: The second algo-
rithm we compare against is the truncated BvN decomposition algorithm [11].
BvN decomposition refers to expressing a doubly stochastic matrix as a con-
vex combination of permutation matrices and this decomposition procedure
has been extensively used in the context of packet switch scheduling [40,34,
11]. However BvN decomposition is oblivious to reconfiguration delay and can
produce a potentially large (O(n2)) number of matchings. Indeed, in our sim-
ulations BvN performs poorly.

Indirect routing is relatively new and to the best of our knowledge our work
is the first to consider use of indirect routing for centralized scheduling.8 In
our second set of simulations, we show that the benefits of indirect routing are

8 Indirect routing in a distributed setting but without consideration of switch reconfigu-
ration delay was studied in a recent work [10].

28 Shaileshh Bojja Venkatakrishnan et al.

in addition to the ones obtained from switch configurations scheduling. To this
end, we compare Eclipse with Eclipse++ to quantify the additional throughput
obtained by performing indirect routing (Algorithm 4) on a schedule that has
been (pre)computed using Eclipse. We also compare Eclipse# (Algorithm 6)
with Eclipse++ to demonstrate the influence of the choice of matchings on
performance.

Traffic demands: We consider two classes of inputs: (a) single-block inputs
and (b) multi-block inputs (explained in Section 5.1). Intuitively, single-block
inputs are matrices which consist of one n × n ‘block’ that is sparse and
skewed, and are similar to the traffic demands evaluated in the Solstice pa-
per [40]. Multi-block inputs, on the other hand, denote traffic matrices that
are composed of many sub-matrices each with disparate properties such as
sparsity and skew.

Network size: The number of ports is fixed in the range of 50–200. We find
that the relative performances stayed numerically stable over this range as
well as for increased number of ports.

5.1 Direct Routing

While maintaining the sum-throughput as the performance metric, we vary the
various parameters of the system model to gauge the performance in different
situations.

Single-Block Inputs

For a single-block input, our simulation setup consists of a network with 100
ports. The link rate of the circuit switch is normalized to 1, and the schedul-
ing window length is also 1 (W = 1). We consider traffic inputs where the
maximum traffic to or from any port is bounded by W . Further, we let the re-
configuration delay δ = W/100. The traffic matrix is generated similar to [40]
as follows. We assume 4 large flows and 12 small flows to each input or output
port. The large flows are assumed to carry 70% of the link bandwidth, while
the small flows deliver the remaining 30% of the traffic. To do this, we let each
flow be represented by a random weighted permutation matrix, i.e., we have

T =
nL∑
i=1

cL
nL

Pi +
nS∑
i′=1

cS
nS
Pi′ +N, (12)

where nL(nS) denotes the number of large (small) flows and cL(cS) denotes
the total percentage of traffic carried by the large (small) flows. In this case,
we have nL = 4, nS = 12 and cL = 0.7, cS = 0.3. Further, we have added a
small amount of noise N — additive Gaussian noise with standard deviation
equal to 0.3% of the link capacity — to the non-zero entries to introduce some
perturbation. Each experiment below has been repeated 25 times.

Title Suppressed Due to Excessive Length 29

/ / W
10-4 10-3 10-2 10-1

F
ra

ct
io

n
of

 to
ta

l t
ra

ffi
c

se
nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eclipse
Solstice
BvN

(a)

% traffic carried by small flows
0 20 40 60 80

F
ra

ct
io

n
of

 to
ta

l t
ra

ffi
c

se
nt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eclipse
Solstice
BvN

(b)

flows per node
0 10 20 30 40

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eclipse
Solstice
BvN

(c)

Fig. 5 Performance comparison of Eclipse under single-block inputs.

Reconfiguration delay: In Fig. 5(a) we plot sum-throughput while varying
the reconfiguration delay from W/3200 to 4W/100. Eclipse achieves a through-
put of at least 90% for δ ≤W/100. We observe Eclipse to be consistently better
than Solstice although the difference is not pronounced until δ > W/100. The
BvN decomposition algorithm has a large throughput when the reconfiguration
delay is small. As δ increases, its performance gradually worsens.
Skew: We control the skew by varying the ratio of the amount of traffic
carried by small and large flows in the input traffic demand matrix (cL/cS in
Equation (12)). Fig. 5(b) captures the scenario where the percentage traffic
carried by the small flows is varied from 5 to 75. We observe that Eclipse is very
robust to skew variations and is able to consistently maintain a throughput
of about 85%. Solstice has a slightly better performance at low skew (when
small-flows carry ∼ 75% of traffic); but overall, is dominated by Eclipse.
Sparsity: Finally, we tested the algorithms’ dependence on sparsity and plot-
ted the results in Fig. 5(c). The total number of flows is varied from 4 to
32, while fixing the ratio of the number of large to small flows at 1:3. As the
input matrix becomes less sparse, the performance of algorithms degrade as
expected. However, for Eclipse, the reduction in the throughput is never more
than 10% over the range of sparsity parameters considered. Solstice, on the
other hand, is affected much more severely by decreased sparsity.

Multi-Block Inputs

Next, we consider a more complex traffic model for a 200 node network with
block diagonal inputs of the form

T =

B1 0
. . .

0 Bm

 ,
where each of the component blocks B1, B2, . . . , Bm can have its own sparsity
(number of flows) and skew (fraction of traffic carried by large versus small
flows) parameters. The different blocks model the traffic demands of different

30 Shaileshh Bojja Venkatakrishnan et al.

size of block
0 0.1 0.2 0.3 0.4

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eclipse
Solstice
BvN

(a)

/ / W
0 0.01 0.02 0.03 0.04

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eclipse
Solstice
BvN

(b)

variation in number of flows
0 5 10 15 20

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eclipse
Solstice
BvN

(c)

Fig. 6 Performance comparison of Eclipse under multi-block inputs.

tenants in a shared data center network such as a public cloud data center.

To begin with, we consider inputs with two blocks T =
[
B1 0
0 B2

]
where B1 is

a n1 × n1 matrix with 4 large flows (carrying 70% of the traffic) and 12 small
flows (carrying 30% of the traffic) and B2 is a (200− n1)× (200− n1) matrix
with uniform entries (up to sampling noise).
Size of block: Fig. 6(a) plots the throughput as the block size of B2 is
increased from 0 to 70. We observe a very pronounced difference in the perfor-
mance of Eclipse and Solstice: Eclipse has roughly 1.5−2× the performance of
Solstice. These findings are in tune with the intuition discussed in Section 3.1
— the deteriorated performance of Solstice is due its insistence on perfect
matchings in each round.
Reconfiguration delay: Fig. 6(b) plots throughput while varying the recon-
figuration delay, for fixed size of B2 to be 50×50. As expected, the throughput
of Solstice and Eclipse both degrade as the reconfiguration delay δ increases.
However, Eclipse throughput degrades at a much slower rate than Solstice. The
gap between the two is particularly pronounced for δ/W ≥ 0.02, a numerical
value that is well within range of practical system settings.
Varying numbers of flow: In the final experiment we consider block diagonal
inputs with 8 blocks of size 25×25 each. Each block carries 10+bσ∗(U−0.5))c
equi-valued flows where U ∼ unif (0, 1) and σ is a parameter that controls the
variation in the number of flows. When increasing σ from 0 to 20 we see from
Fig.6(c) that Eclipse is more or less able to sustain its throughput at close to
80%; whereas Solstice is significantly affected by the variation.

5.2 Indirect Routing

In this section, we consider a 50 node network with traffic matrices having
varying number of large and small flows as before. We compare the perfor-
mance of the direct routing algorithm and the indirect routing algorithm that
is run on the schedule computed by Eclipse. To understand the benefits of
indirect routing, we focus on the regime where the reconfiguration delay δ/W
is relatively large and the scheduling window W is relatively long compared

Title Suppressed Due to Excessive Length 31

number of small flows
0 10 20 30 40 50

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eclipse
Eclipse++

(a)

% load
0 20 40 60 80 100

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eclipse
Eclipse++

(b)

100//W
0 5 10 15 20 25

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Eclipse
Eclipse++

(c)

Fig. 7 Performance of Eclipse++ and Eclipse. Here Eclipse++ uses the schedule computed
by Eclipse.

to the traffic demand. This regime corresponds to realistic scenarios where the
circuit switch is not fully utilized (Real data center networks often have low to
moderate utilization; e.g, 10–50% [8]), but the reconfiguration delay is large.
In this setting of relatively large δ/W , switch schedules are forced to have only
a small number of matchings, and indirect routing is critical to support (non-
sparse) demand matrices. The following experiments numerically demonstrate
the added gains of indirect routing.

Sparsity: Fig. 7(a) considers a demand with 5 large flows and number of
small flows varying from 7 to 49. The large and the small flows each carry 50%
of the traffic. We let δ = 16W/100 and consider a load of 20% (i.e., W = 5,
and traffic load at each port is 1). We observe that the performance of the
Eclipse++ is roughly 10% better than Eclipse.
Load: As the network load increases (Fig. 7(b)), we see that indirect routing
becomes less effective. This is because at high load, the circuits do not have
much spare capacity to support indirect traffic. However, at low to moderate
levels of load, indirect routing provides a notable throughput gain over direct
routing. For example, we see close to 20% improvement with Eclipse++ over
Eclipse at 15% load.
Reconfiguration delay: Finally, we observe the effect of δ/W on throughput
by varying δ from 3W/100 to 21W/100. At smaller values of reconfiguration
delay δ both Eclipse and Eclipse++ are able to achieve near 100% through-
put. With increasing δ both algorithms degrade with Eclipse++ providing an
additional gain of roughly 20% over Eclipse.

Thus having the capability for indirection can offer a significantly improved
performance over direct routing schemes. However in our present framework
of proposed solutions we have largely left open the choice of the matching
sequence. In our next set of experiments we show that a careful choice of
matchings can further benefit the performance of indirect routing. For this we
compare the three schemes of Eclipse, Eclipse++ and Eclipse# in a large W
regime and where the traffic matrices are dense. We continue to consider a 50
node network as before.

32 Shaileshh Bojja Venkatakrishnan et al.

number of flows per node
0 5 10 15 20 25 30 35 40 45

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0.5

0.6

0.7

0.8

0.9

1

1.1

Eclipse
Eclipse++
Eclipse#

(a)

% load
0 20 40 60 80 100

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Eclipse
Eclipse++
Eclipse#

(b)

100//W
4 6 8 10 12 14

F
ra

ct
io

n
of

 n
et

 tr
af

fic
 s

en
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Eclipse
Eclipse++
Eclipse#

(c)

Fig. 8 Performance of Eclipse, Eclipse++ and Eclipse#. Eclipse++ uses the schedule com-
puted by Eclipse while Eclipse# uses random matchings.

Sparsity: In Fig. 8(a) we consider a demand with the number of flows increas-
ing from 5 to 40. Within each instance, the flows share the total load (approxi-
mately) evenly. We let δ = W/15 and a total load of 10% (i.e., W = 10 and the
aggregate per-port traffic is 1). As previously, we observe that Eclipse++ is
consistently better than Eclipse. However as the traffic matrix becomes denser,
we observe that Eclipse# is able to achieve 100% throughput (a roughly 8%
increase over Eclipse++).
Load: Next we evaluate the performace under traffic loads varying from 10 to
100%. If the load is smaller than 30%, we see that Eclipse# has a significantly
better performance than Eclipse. However as the load increases Eclipse# de-
grades while Eclipse and Eclipse++ sustain their throughput. This is because,
the (relatively) small number of matchings in Eclipse# minimize capacity loss
due to reconfiguration delay while at the same time the random matchings
provide sufficient connectivity between the source and destination port-pairs.
Reconfiguration delay: In this last experiment, we vary the reconfiguration
delay δ in the range 4W/100 to 10W/100. We observe that when the reconfig-
uration delay is small, all three algorithms have a near-optimal performance.
However as δ increases, Eclipse and Eclipse++ suffer a performance drop –
again owing to an excessive number of matchings – while Eclipse# with its
minimalistic matching sequence is able to sustain its performance.

6 Final Remarks

We have studied scheduling in hybrid switch architectures with reconfigura-
tion delays in the circuit switch, by taking a fundamental and first-principles
approach. The connections to submodular optimization theory allows us to
design simple and fast scheduling algorithms and show that they are near op-
timal — these results hold in the direct routing scenario and indirect routing
provided switch configurations are calculated separately. However, we note
that the proposed algorithms are not throughput optimal. This is because the
matchings selected in Eclipse are chosen by first thresholding the traffic matrix
and then choosing a maximum weight matching. Such a scheme is analogous
to the maximum size matching studied in [35,43] and can be shown to achieve

Title Suppressed Due to Excessive Length 33

strictly less than 100% throughput. Nevertheless from a practical point-of-
view, where traffic loads are often only a fraction of the network capacity, the
algorithm is still interesting and could offer potentially a near-optimal delay
performance. A systematic study comparing the delay properties of Eclipse to
the state-of-the-art is left for future work.

The problem of jointly deciding the switch configurations and indirect rout-
ing policies also remains open. While submodular function optimization with
nonlinear constraints is in general intractable, the specific constraints discussed
in Section 4.1 perhaps have enough structure that they can be handled in a
principled way.

In between the scheduling windows of W time units, traffic builds up at the
ToR ports. This dynamic traffic buildup is known locally to each of the ToR
ports and perhaps this local knowledge can be used to pick appropriate indirect
routing policies in a distributed, dynamic fashion. Such a study of indirect
routing policies is initiated in a recent work [10], but this work omitted the
switching reconfiguration delays. A joint study of distributed dynamic traffic
scheduling in conjunction with a static schedule of switch configurations that
account for reconfiguration delays is also an interesting direction of future
research.

Acknowledgements The authors would like to thank Prof. Chandra Chekuri, Prof. George
Porter and Prof. R. Srikant for the many helpful discussions. This work was partially sup-
ported by NSF grants CCF-1409106, NeTS-1718270 and Army grant W911NF-14-1-0220.

References

1. Ahuja, R., Magnanti, T., Orlin, J.: Network flows: theory, algorithms, and applications.
Prentice Hall (1993). URL https://books.google.com/books?id=WnZRAAAAMAAJ

2. Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., Vahdat, A.: Hedera: Dy-
namic flow scheduling for data center networks. In: NSDI, vol. 10, pp. 19–19 (2010)

3. Alizadeh, M., Greenberg, A., Maltz, D.A., Padhye, J., Patel, P., Prabhakar, B., Sen-
gupta, S., Sridharan, M.: Data center tcp (dctcp). SIGCOMM (2011)

4. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing 8(1), 121–164 (2012)

5. Azar, Y., Gamzu, I.: Efficient submodular function maximization under linear packing
constraints. In: Automata, Languages, and Programming, pp. 38–50. Springer (2012)

6. Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an ap-
proximate version of caratheodory’s theorem. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pp. 361–369. ACM (2015)

7. Barnhart, C., Sheffi, Y.: A network-based primal-dual heuristic for the solution of mul-
ticommodity network flow problems. Transportation Science 27(2), 102–117 (1993)

8. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in
the wild. In: SIGCOMM (2010)

9. Bienstock, D., Chopra, S., Günlük, O., Tsai, C.Y.: Minimum cost capacity installation
for multicommodity network flows. Mathematical programming 81(2), 177–199 (1998)

10. Cao, Z., Kodialam, M., Lakshman, T.: Joint static and dynamic traffic scheduling in
data center networks. In: INFOCOM (2014)

11. Chang, C.S., Chen, W.J., Huang, H.Y.: Birkhoff-von neumann input buffered crossbar
switches. In: INFOCOM (2000)

34 Shaileshh Bojja Venkatakrishnan et al.

12. Chang, C.S., Lee, D.S., Jou, Y.S.: Load balanced birkhoff-von neumann switches. In:
High Performance Switching and Routing, 2001 IEEE Workshop on, pp. 276–280. IEEE
(2001)

13. Dasylva, A., Srikant, R.: Optimal wdm schedules for optical star networks. IEEE/ACM
Transactions on Networking (TON) 7(3), 446–456 (1999)

14. Duan, R., Pettie, S.: Linear-time approximation for maximum weight match-
ing. J. ACM 61(1), 1:1–1:23 (2014). DOI 10.1145/2529989. URL
http://doi.acm.org/10.1145/2529989

15. Duan, R., Su, H.H.: A scaling algorithm for maximum weight matching in bipartite
graphs. In: SODA (2012)

16. Farrington, N.: Optics in data center network architecture. Ph.D. thesis, Citeseer (2012)
17. Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H.H., Subramanya, V., Fainman,

Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for
modular data centers. SIGCOMM (2011)

18. Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer
vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33(4), 721–740
(2011)

19. Ferreira, R.P.M., Luna, H.P.L., Mahey, P., Souza, M.C.d.: Global optimization of capac-
ity expansion and flow assignment in multicommodity networks. Pesquisa Operacional
33(2), 217–234 (2013)

20. Fleischer, L.K.: Approximating fractional multicommodity flow independent of the num-
ber of commodities. SIAM Journal on Discrete Mathematics 13(4), 505–520 (2000)

21. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM) 34(3), 596–615 (1987)

22. Fu, S., Wu, B., Jiang, X., Pattavina, A., Zhang, L., Xu, S.: Cost and delay tradeoff in
three-stage switch architecture for data center networks. In: HPSR (2013)

23. Garg, N., Koenemann, J.: Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM Journal on Computing 37(2), 630–652 (2007)

24. Giaccone, P., Prabhakar, B., Shah, D.: Randomized scheduling algorithms for high-
aggregate bandwidth switches. Selected Areas in Communications, IEEE Journal on
21(4), 546–559 (2003)

25. Gopal, I.S., Wong, C.K.: Minimizing the number of switchings in an ss/tdma system.
Communications, IEEE Transactions on 33(6), 497–501 (1985)

26. Greenberg, A., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Towards a next gen-
eration data center architecture: scalability and commoditization. In: Proceedings of
the ACM workshop on Programmable routers for extensible services of tomorrow, pp.
57–62. ACM (2008)

27. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

28. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinato-
rial optimization. Algorithms and combinatorics. Springer-Verlag (1993). URL
https://books.google.com/books?id=agLvAAAAMAAJ

29. Hamedazimi, N., Qazi, Z., Gupta, H., Sekar, V., Das, S.R., Longtin, J.P., Shah, H.,
Tanwer, A.: Firefly: a reconfigurable wireless data center fabric using free-space optics.
In: SIGCOMM (2014)

30. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin
of the American Mathematical Society 43(4), 439–561 (2006)

31. Inukai, T.: An efficient ss/tdma time slot assignment algorithm. Communications, IEEE
Transactions on 27(10), 1449–1455 (1979)

32. Kandula, S., Padhye, J., Bahl, P.: Flyways to de-congest data center networks (2009)
33. Keslassy, I., Chang, C.S., McKeown, N., Lee, D.S.: Optimal load-balancing. In: INFO-

COM (2005)
34. Keslassy, I., Kodialam, M., Lakshman, T., Stiliadis, D.: On guaranteed smooth schedul-

ing for input-queued switches. In: INFOCOM (2003)
35. Keslassy, I., Zhang-Shen, R., McKeown, N.: Maximum size matching is unstable for any

packet switch. IEEE Communications Letters 7(10), 496–498 (2003)

36. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, É., Tragoudas, S.: Fast ap-
proximation algorithms for multicommodity flow problems. Journal of Computer and
System Sciences 50(2), 228–243 (1995)

Title Suppressed Due to Excessive Length 35

37. Li, X., Hamdi, M.: On scheduling optical packet switches with reconfiguration delay.
Selected Areas in Communications, IEEE Journal on 21(7), 1156–1164 (2003)

38. Li, Y., Panwar, S., Chao, H.J.: Frame-based matching algorithms for optical switches.
In: High Performance Switching and Routing, 2003, HPSR. Workshop on, pp. 97–102.
IEEE (2003)

39. Liu, H., Lu, F., Forencich, A., Kapoor, R., Tewari, M., Voelker, G.M., Papen, G.,
Snoeren, A.C., Porter, G.: Circuit switching under the radar with reactor. In: NSDI
(2014)

40. Liu, H., Mukerjee, M.K., Li, C., Feltman, N., Papen, G., Savage, S., Seshan, S., Voelker,
G.M., Andersen, D.G., Kaminsky, M., Porter, G., Snoeren, A.C.: Scheduling techniques
for hybrid circuit/packet networks. In: ACM CoNEXT (2015)

41. Mahey, P., Benchakroun, A., Boyer, F.: Capacity and flow assignment of data networks
by generalized benders decomposition. Journal of Global Optimization 20(2), 169–189
(2001)

42. McKeown, N.: The islip scheduling algorithm for input-queued switches. Networking,
IEEE/ACM Transactions on 7(2), 188–201 (1999)

43. McKeown, N., Mekkittikul, A., Anantharam, V., Walrand, J.: Achieving 100% through-
put in an input-queued switch. Communications, IEEE Transactions on 47(8), 1260–
1267 (1999)

44. Mekkittikul, A., McKeown, N.: A practical scheduling algorithm to achieve 100%
throughput in input-queued switches. In: INFOCOM (1998)

45. Mirrokni, V., Leme, R.P., Vladu, A., Wong, S.C.w.: Tight bounds for approximate
carathéodory and beyond. arXiv preprint arXiv:1512.08602 (2015)

46. Pettie, S., Sanders, P.: A simpler linear time 2/3- ε approximation for maximum weight
matching. Information Processing Letters 91(6), 271–276 (2004)

47. Pinsker, M.S.: On the complexity of a concentrator. In: 7th International Telegraffic
Conference, vol. 4, pp. 1–318. Citeseer (1973)

48. Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T., Fainman,
Y., Papen, G., Vahdat, A.: Integrating microsecond circuit switching into the data
center. SIGCOMM (2013)

49. Prabhakar, B., McKeown, N.: On the speedup required for combined input-and output-
queued switching. Automatica 35(12), 1909–1920 (1999)

50. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM (JACM) 36(2), 335–348 (1989)

51. Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s
(datacenter) network. In: SIGCOMM (2015)

52. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer (2003)
53. Shieh, A., Kandula, S., Greenberg, A.G., Kim, C.: Seawall: Performance isolation for

cloud datacenter networks. In: HotCloud (2010)
54. Singla, A., Singh, A., Chen, Y.: Osa: An optical switching architecture for data center

networks with unprecedented flexibility. In: NSDI (2012)
55. Srikant, R., Ying, L.: Communication Networks: An Optimization, Control and Stochas-

tic Networks Perspective. Cambridge University Press, New York, NY, USA (2014)
56. Towles, B., Dally, W.J.: Guaranteed scheduling for switches with configuration overhead.

Networking, IEEE/ACM Transactions on 11(5), 835–847 (2003)
57. Valiant, L.G.: A bridging model for parallel computation. Communications of the ACM

33(8), 103–111 (1990)
58. Wang, C.H., Javidi, T.: Adaptive policies for scheduling with reconfiguration delay: An

end-to-end solution for all-optical data centers. arXiv preprint arXiv:1511.03417 (2015)
59. Wang, C.H., Javidi, T., Porter, G.: End-to-end scheduling for all-optical data centers.

In: Computer Communications (INFOCOM), 2015 IEEE Conference on, pp. 406–414.
IEEE (2015)

60. Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T., Kozuch, M., Ryan,
M.: c-through: Part-time optics in data centers. SIGCOMM (2011)

61. Wu, B., Yeung, K.L.: Nxg05-6: Minimum delay scheduling in scalable hybrid elec-
tronic/optical packet switches. In: GLOBECOM (2006)

62. Wu, B., Yeung, K.L., Wang, X.: Nxg06-4: Improving scheduling efficiency for high-speed
routers with optical switch fabrics. In: GLOBECOM (2006)

63. Zhou, X., Zhang, Z., Zhu, Y., Li, Y., Kumar, S., Vahdat, A., Zhao, B.Y., Zheng, H.:
Mirror mirror on the ceiling: Flexible wireless links for data centers. SIGCOMM (2012)

36 Shaileshh Bojja Venkatakrishnan et al.

A Direct Routing - Proofs

A.1 Proof of Theorem 1

Proof We first note that for the throughput of an empty schedule is zero, i.e. f({}) = 0.

Also for any S ⊆ S′ ∈ 2Z×M we have min
{∑

(α,M)∈S αM,T
}
≤ min

{∑
(α,M)∈S′ αM,T

}
implying f(S) ≤ f(S′). Hence f is normalized and monotone. Next, using the identify

min(a+ b, c) = min(a, c) + min(b, c−min(a, c))

for non-negative reals a, b, c, we have for S ∈ 2Z×M and (α0,M0) /∈ S,

f(S ∪ {(α0,M0)}) =
∥∥min

(∑
(α,M)∈S

αM + α0M0, T
)∥∥

1

=
∥∥min

(∑
(α,M)∈S

αM,T
)

+ min
(
α0M0, T −min

(∑
(α,M)∈S

αM,T
))∥∥

1

⇒ fS((α0,M0)) =
∥∥min

(
α0M0, T −min

(∑
(α,M)∈S

αM,T
))∥∥

1
, (13)

where fS((α0,M0)) denotes the incremental marginal value of adding (α0,M0) to the set S
(see Section 3.2). Finally, for S ⊆ S′ ∈ 2Z×M and (α0,M0) /∈ S′ we have

T −min
(∑
i∈S′

αiMi, T
)
≤ T −min

(∑
i∈S

αiMi, T
)
.

Combining the above equation with equation (13) we get

fS′ ({(α0,M0)}) ≤ fS({(α0,M0)}),

or in other words f is submodular.

A.2 Proof of Theorem 2

Proof Recall the submodular sum-throughput function f defined in Equation (2). Let {(α1,M1),
. . . , (αk,Mk)} be the schedule returned by Algorithm 2. Let Si = {(α1,M1), . . . , (αi,Mi)}
denote the schedule computed at the end of i iterations of the while loop and let S∗ de-
note the optimal schedule. Now, since in the i + 1-th iteration (αi+1,Mi+1) maximizes
min(αM,Trem(i+1))‖1

(α+δ)
=

fSi
({(α,M)})
(α+δ)

we have for any (α,M) /∈ Si,

fSi
({(α,M)})
(α+ δ)

≤
fSi

({(αi+1,Mi+1)})
(αi+1 + δi+1)

⇒ fSi
({(α,M)}) ≤

(α+ δ)

(αi+1 + δi+1)
fSi

({(αi+1,Mi+1)}). (14)

Now consider OPT− f(Si) for some i < k. Since f is monotone we have

OPT− f(Si) = f(S∗)− f(Si) ≤ f(Si ∪ S∗)− f(Si)

≤
∑

(α,M)∈J∗
fSi

({(α,M)})

≤
∑

(α,M)∈J∗

(α+ δ)

(αi+1 + δi+1)
fSi

({(αi+1,Mi+1)}) (15)

≤
W

(αi+1 + δi+1)
fSi

({(αi+1,Mi+1)}), (16)

Title Suppressed Due to Excessive Length 37

where J∗ := S∗\Si denotes the set of matchings that are present in the optimal solution
but not in Si, Equation (15) follows from Equation (14), and Equation (16) follows because∑

(α,M)∈J∗ (α+ δ) ≤
∑

(α,M)∈S∗ (α+ δ) ≤W . Next, observe that

f(Si+1) = f(Si) + fSi
({(αi+1,Mi+1)})

⇒ OPT− f(Si+1) = OPT− f(Si)− fSi
({(αi+1,Mi+1)})

≤ (OPT− f(Si))

(
1−

(αi+1 + δ)

W

)
(17)

≤ (OPT− f(S0))

i+1∏
i′=1

(
1−

(αi′ + δ)

W

)
≤ OPT× e−

∑i+1
i′=1

(αi′+δ)/W , (18)

where Equation (17) follows from Equation (16) and Equation (18) follows because of the
identity 1 − x ≤ e−x. Now, since after the k-th iteration the while loop terminates, this
implies

∑k
i′=1(αi′+δ) > W . However, if the entries of the input traffic matrix T are bounded

by εW + δ, then no matching has a duration longer than εW . In particular αk + δ ≤ εW ⇒∑k−1
i′=1

(αi′ + δ) ≥W (1− ε). Thus, setting i = k − 2 in Equation (18) we have

OPT− f(Sk−1) ≤ OPT× e−
∑k−1

i′=1
(αi′+δ)/W ≤ OPT× e−(1−ε)

⇒ OPT− ALG2 ≤ OPT× e−(1−ε).

Hence we conclude ALG2 ≥ OPT(1− e−(1−ε)).

A.3 Correctness

Consider any traffic matrix T ∈ Zn×n. Let T = {T (i, j) : i, j ≤ [n]} denote the distinct
entries in the matrix T . Then, in the following, we show that the maximizer in

max
α∈Z,M∈M

‖min(T, αM)‖1
α+ δ

(19)

occurs for α ∈ T . To do this, for any matchingM ∈M let us define fM (α) , ‖min(αM,T)‖1
and let f(α) , maxM∈M

fM (α)
α+δ

. We then have the following proposition.

Proposition 1 fM (α) is (i) non-decreasing, (ii) piece-wise linear where the corner points
are from T and (iii) concave.

Proof It is easy to see (i) because if α1 ≤ α2 then min(α1M,T) ≤ min(α2M,T) entrywise
and hence fM (α1) ≤ fM (α2). To see (ii) consider any t1 < t2 ∈ T such that no other
element of T is between t1 and t2. Then for t1 ≤ α ≤ t2 we have

fM (α) = ‖min(αM,T)‖1

=
∑

(i,j)∈M
T (i,j)≤t1

min(α, T (i, j)) +
∑

(i,j)∈M
T (i,j)≥t1

min(α, T (i, j))

=
∑

(i,j)∈M
T (i,j)≤t1

T (i, j) +
∑

(i,j)∈M
T (i,j)≥t1

α

=
∑

(i,j)∈M
T (i,j)≤t1

T (i, j) + |{(i, j) ∈M : T (i, j) ≥ t1}|α. (20)

38 Shaileshh Bojja Venkatakrishnan et al.

Thus fM (·) is linear for t1 ≤ α ≤ t2 and (ii) follows. (iii) also follows from Equation (20)
by observing that

|{(i, j) ∈M : T (i, j) ≥ t1}| ≥ |{(i, j) ∈M : T (i, j) ≥ t2}|

for any t1 < t2 ∈ T . Hence the slope of the piece-wise linear function fM (α) is non-increasing
as α increases. In other words, fM (α) is concave.

Next, we consider a case where the matching is fixed.

Proposition 2 For a fixed matching M , we have

arg maxα
fM (α)
α+δ

∈ T .

Proof This follows from Proposition 1-(ii). Let fM (α) be linear for α ∈ [t1, t2]. Then it
can be written as fM (α) = fM (t1) + m(α − t1) for some slope m ≥ 0. Now, consider the
derivation of the function fM (α)/(α+ δ) in the interval [t1, t2]:

d

dα

(
fM (α)

α+ δ

)
=

d

dα

(
fM (t1) +m(α− t1)

α+ δ

)
=

(α+ δ)(m)− (fM (t1) +m(α− t1))

(α+ δ)2

=
δm− fM (t1) +mt1

(α+ δ)2
. (21)

Note that the numerator of Equation (21) is independent of α and the denominator is strictly
positive. Hence the sign (i.e., > 0, < 0 or = 0) of the slope of fM (α)/(α + δ) is the same
in the interval [t1, t2]. This proves that the maximum must occur at either of the extreme
points t1 or t2. By Proposition 1-(ii) we know that the fM (α) is piece-wise linear with the
corner points from the set T . Thus we can conclude that the maximum must occur at one
of the points in T .

We are now ready to show that the maximizer of Equation (19) occurs for α ∈ T .

Theorem 4 arg maxα f(α) ∈ T .

Proof This follows directly from Proposition 2. Notice that

max
α

f(α) = max
α

max
M

fM (α)

α+ δ
= max

M

(
max
α

fM (α)

α+ δ

)
.

But the maximizer of fM (α)/(α+ δ) belongs to T for any M . Hence we conclude that the
maximizer of f(α) also belongs to T and the Theorem follows.

