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The directed cognition model assumes that agents use partially myopic option-value
calculations to select their next cognitive operation. The current paper tests this
model by studying information acquisition in two experiments. In the first experi-
ment, information acquisition has an explicit financial cost. In the second experi-
ment, information acquisition is costly because time is scarce. The directed
cognition model successfully predicts aggregate information acquisition patterns in
these experiments. When the directed cognition model and the fully rational model
make demonstrably different predictions, the directed cognition model better
matches the laboratory evidence. (JEL D83)

Decision-making requires cognitive opera-
tions, including information acquisition and in-
formation processing. Economists assume that
agents act as if they were choosing these
(costly) operations optimally. But models of
optimal cognition pose significant conceptual
challenges. Such models are generally intracta-
ble. Only very simple settings admit analytic
solutions. Moreover, even computational (i.e.,
numerical) tractability fails as the complexity of
the problem increases. In addition, models of

optimal cognition suffer from the infinite re-
gress problem: if cognition is costly, then opti-
mizing cognition is also costly, leading one to
optimize the optimization, and so on ad infini-
tum (John Conlisk, 1996; Barton L. Lipman,
1991; Herbert Simon, 1955).

Instead of trying to model optimal cognition,
we study a partially myopic and tractable alter-
native. The directed cognition model uses ap-
proximate option-value calculations to direct
cognition to mental activities with high shadow
values (Gabaix and Laibson, 2005). The current
paper applies the directed cognition model to a
problem of information acquisition, or search.
In this context, the model assumes the following
iterative search structure: At each decision point,
agents act as if their next set of search operations
were their last opportunity for search.

Such decision-making, although partially
myopic, nevertheless helps agents focus on in-
formation that is likely to be useful and ignore
information that is likely to be redundant. The
directed cognition model is also tractable. The
model can be computationally solved in highly
complex settings. The model does not suffer
from the curse of dimensionality or the infinite
regress problem.

The current paper experimentally evaluates
the directed cognition model. We find that lab-
oratory behavior matches the predictions of the
directed cognition algorithm. We begin with a
relatively simple choice problem for which it is
possible to compute optimal choices, and show
that the directed cognition model outperforms
rationality. We then turn to a complex (and
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more realistic) choice problem for which it is
not possible to compute optimal choices, and
demonstrate that the directed cognition model
predicts aggregate subject behavior.

Section I describes the setup and the results
for the first (“simple”) experiment. Section II
describes the setup for the second (“complex”)
experiment. Section III describes the implemen-
tation of the directed cognition algorithm in the
complex experiment. Section IV summarizes
the results of the second experiment and com-
pares those results to the predictions of the
model. Section V concludes.

I. First Experiment: Choice among Three
Simple Goods

Consider the following decision problem,
which is a special case of the class of problems
investigated by John C. Gittins (1979) and Martin
Weitzman (1979). An agent chooses among three
uncorrelated projects. The three projects have re-
spective (stochastic) payoffs X1, X2, and X3. If
project i is a “winner” then Xi � Vi; otherwise,
Xi � 0. Project i is a winner with probability pi.

The agent can sequentially investigate
projects that are not known winners, thereby
revealing their state. Such information acquisi-
tion costs ci per project. The agent may stop
acquiring information at any time and choose
one project among the known winners, which
we will refer to as “taking” a project.

For example, in one of our experimental
games we adopt the parameters reported in Ta-
ble 1 (with information acquisition cost ci � 1
for all projects).

Before we derive the optimal strategy, imag-
ine how a typical subject would start to play this
game. Would the subject begin by taking
project 1 (the only known winner at the mo-
ment), by paying a dollar to investigate project
2, or by paying a dollar to investigate project 3?

The optimal sequence of information acqui-
sition can be derived using a Gittins-Weitzman
(GW) index (Gittins, 1979; and Weitzman,
1979). Assuming risk neutrality,1 the GW index

value Zi is project i’s reservation value, such
that:

E��Xi � Zi �
�� � ci .

Intuitively, the GW index is the value of a
fictitious outside option that makes the agent
just willing to pay cost ci to reveal the true value
of Xi instead of immediately taking the outside
option Zi.

2 For an uncertain project in our setting,
the GW index value is pi(Vi � Zi) � ci, i.e.,

Zi �
pi Vi � ci

pi
.

After a project has been investigated, ci � 0 and
pi is either zero or one. The GW value will be
Zi � Vi for a known winner and Zi � 0 for a
known loser.

Gittins (1979) and Weitzman (1979) show
that the optimal sequence of actions tracks the
project with the highest value of Zi. If the
highest value of Zi corresponds to a project
with an unknown payoff, then the agent
should acquire information about that project.

1 We have also implemented the analysis for risk-averse
and loss-averse preferences. Using standard calibrations for
risk aversion, loss aversion, and narrow framing (e.g., Amos
Tversky and Daniel Kahneman, 1992) does not change our
theoretical predictions and our experimental findings. In other
words, in our experiment, the predictions of the rational model

and the DC model do not change once the assumption of risk
neutrality is replaced with calibrated levels of curvature in the
utility function.

2 If the agent does not explore the value of Xi, her payoff
is the fictitious outside option Zi. The expected benefit from
exploration is

E�max�Xi , Zi�� � Zi � E��Xi � Zi�
��.

Equating this expected benefit to the cost of search, ci,
yields the Gittins-Weitzman index.

TABLE 1—INVESTMENT GAME A

Payoff in
winning state

Probability of
winning state

Project 1 V1 � $1 p1 � 1.00
Project 2 V2 � $21 p2 � 0.09
Project 3 V3 � $10 p3 � 0.76

Notes: A subject chooses among three uncorrelated projects. If
project i is a “winner” (which happens with probability pi), its
payoff is Vi; otherwise, its payoff is 0. The subject can sequen-
tially investigate projects that are not known winners, thereby
revealing their state. Such information acquisition costs $1 per
project. The subject may stop acquiring information at any
time and choose one project among the known winners. Would
a subject begin by taking project 1 (the only known winner at
the moment), by paying $1 to investigate project 2, or by
paying $1 to investigate project 3?
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If the highest value of Zi corresponds to a
winning project, then the agent should take
that investment project, thereby ending that
game.

For the game above, the agent should acquire
information about project 2 (the long shot), tak-
ing that project if it turns out to be a winner.
Otherwise, the agent should acquire information
about project 3, taking that project if it turns out
to be a winner and taking project 1 as a last
resort. (See Table 2.)

Studying this class of games enables us to run
an empirical horse race between the optimal
search model (i.e., the GW algorithm) and the
directed cognition model (Gabaix and Laibson,
2005).

A. Applying the Directed Cognition Algorithm

The directed cognition (DC) model,
“solves” problems by searching as if each
search operation were the last search opera-
tion. To apply directed cognition, we calcu-
late the expected benefit and cost of each
available search operation as if this operation
were the last one executed before a final in-
vestment project is taken.

Let St be the value of the best known winning
project at time t. The (myopic) expected benefit
from investigating project i is

E�max�Xi , St�� � St � E��Xi � St�
��.

The cost of this search operation is ci � 1. DC
selects the search operator with the highest
gain—the difference between benefits and cost:

Gi � E��Xi � St �
�� � ci

� pi �Vi � St � � ci .

This formula also describes the myopic gain
from taking a known winner: ci � 0, and pi �

1. The directed cognition algorithm investigates
or takes the investment with the highest G
value. The algorithm iterates if an investment
has not yet been taken.

For the game above, the directed cognition
algorithm predicts that the agent will acquire
information about project 3, taking that proj-
ect if it turns out to be a winner. Otherwise,
the agent will acquire information about
project 2, taking that project if it turns out to
be a winner and taking project 1 as a last
resort. (See Table 2.)

The DC algorithm recognizes the option
value of being able to reject the next investi-
gated project if that project does not turn out
to be profitable. But the algorithm does not
recognize the option value of being able to
investigate sequences of uncertain projects.
An optimal search calculation needs to eval-
uate such sequences: “Project 3 has a higher
expected value than project 2, but project 2
has a small chance of a high payoff. If I
investigate project 2 first, and it is not a
winner, then I can proceed to investigate
project 3.” Because directed cognition is my-
opic it cannot recognize such chains of rea-
soning. Hence, games like those in Table 1
are well suited to distinguish between optimal
search and directed cognition.

For any game, let the low-probability project
have probability pi of being a winner and value
Vi when it is a winner. Let the high-probability
project have probability pj � pi of being a
winner and value Vj when it is a winner. Con-
sider a parameterization in which

(1)
pi Vi � c

pi
�

pj Vj � c

pj
� 1

and

(2) pi �Vi � 1� � pj �Vj � 1�.

TABLE 2—ALGORITHMS FOR INVESTMENT GAME A

Gittins-Weitzman Directed cognition

t Investigate project 2 Investigate project 3
t � 1 Take project 2 if winner Take project 3 if winner
t � 2 Else investigate project 3 Else investigate project 2
t � 3 Take project 3 if winner Take project 2 if winner
t � 4 Else take project 1 Else take project 1

1045VOL. 96 NO. 4 GABAIX ET AL.: EXPERIMENTAL ANALYSIS OF A BOUNDEDLY RATIONAL MODEL



Then the GW algorithm begins with an inves-
tigation of the low-probability project and the
DC algorithm begins with an investigation of
the high-probability project.

We study five games (A–E) with such non-
congruent predictions and five other games with
congruent predictions (F–J).3 From a heuristic
perspective, the noncongruent games are ones
in which the low-probability investment has
high variance and a low expected value.

B. Experimental Results

One hundred twenty-nine subjects4 received a
mean total payoff of $26.51, with a standard de-
viation of $13.40. Payoffs ranged from $10 to
$63. Subjects played ten randomly ordered invest-
ment games like the one in Table 1. Each of the
games includes a low-probability project, a high-
probability project, and a sure thing. The experi-
mental protocol and a Web-based simulation of
the actual experiment are available at http://
www.e-aer.org/data/sept06/20030922_data.zip.

Five of the ten investment games (games
A–E) have a GW strategy that differs from the
directed cognition strategy, and this difference
appears in the first move. The first panel in
Table 3 reports the proportions of first moves in
each of these games that match the GW strategy

and the proportions of first moves that match the
directed cognition strategy. For all of the five
games, the GW proportions are below the DC
proportions. We reject the null hypothesis that
the GW and DC proportions are equal for four
of the five games.

Averaging over all five games, 34 percent of
the moves follow the GW strategy, and 63 per-
cent of the moves follow the directed cognition
strategy. We reject the null hypothesis that these
means are equivalent with a p value lower than
10�4. When the predictions of the two models
differ, directed cognition predicts subjects’
choices better than optimal search.

The probabilities do not sum to one because
neither GW nor DC predicts selection of the
sure-thing investments on the first move. A
small number of subjects made this choice.

Five of the ten investment games (games F–J)
have a GW strategy that matches the DC strat-
egy. Table 4 reports the proportion of first
moves in each of these games that matches the
GW and DC strategy. On average, 74 percent of
the moves follow the GW and DC strategy.5

3 The payoffs and probabilities of the risky projects in
games A–J are: game A: ($21, p � 0.09) and ($10, p �
0.76); game B: ($19, p � 0.11) and ($10, p � 0.79); game
C: ($23, p � 0.09) and ($13, p � 0.72); game D: ($18, p �
0.12) and ($10, p � 0.81); game E: ($20, p � 0.12) and
($12, p � 0.85); game F: ($22, p � 0.48) and ($11, p �
0.74); game G: ($24, p � 0.34) and ($9, p � 0.70); game H:
($18, p � 0.52) and ($11, p � 0.74); game I: ($25, p �
0.39) and ($9, p � 0.70); game J: ($10, p � 0.09) and ($8,
p � 0.85). In all games, the sure thing is $1.

4 Subjects are Harvard undergraduates and Harvard sum-
mer school students. Of the total, 61 percent report having
taken at least one statistics course.

5 Our gambles may be special. For instance, suppose that
the risky projects were ($10, p � 0.8) and ($70, p � 0.1),
an example suggested to us by a referee. For this game,
subjects might first explore the low-probability prize,
contradicting directed cognition. Such a result could,
however, be due to probability-reweighting. Prospect theory

TABLE 4—FRACTION OF FIRST MOVES MATCHING

GITTINS-WEITZMAN AND DIRECTED COGNITION

Percentage GW and DC

Game F 73
Game G 67
Game H 73
Game I 74
Game J 83
F–J average 74

TABLE 3—FRACTION OF SUBJECTS WHO PLAY THE FIRST MOVE ACCORDING TO

GITTINS-WEITZMAN OR ACCORDING TO DIRECTED COGNITION

Percentage GW Percentage DC Difference t-test p-value

Game A 33 65 32 3.80 0.0001
Game B 35 63 28 3.30 0.0010
Game C 42 57 16 1.80 0.0726
Game D 28 70 42 5.30 0.0000
Game E 34 62 28 3.32 0.0009
A–E average 34 63 29 4.55 0.0000
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We now turn to an analysis of all moves
(not just the first move). Table 5 reports the
fraction of all moves that are correctly pre-
dicted by the GW and DC strategies for
games A–E. We recalculate strategy predic-
tions after every move, conditional on the
player’s other selections. While the strategies
predict different first moves, they often pre-
dict the same play for subsequent moves.
Because of this overlap, the strategies are not
mutually exclusive, and probabilities do not
sum to one. This analysis does not distinguish
the strategies as cleanly as the first-move
analysis presented above. We present the re-
sults here as a robustness check.

For all five games, the GW proportions are
below the DC proportions. We reject the null
hypothesis that both models’ proportions are
equal for four of the five games. Averaging
over all five games, 67 percent of the moves
follow the GW strategy, and 79 percent of the
moves follow the DC strategy. We reject the
null hypothesis that these means are equiva-
lent with a p value less than 10�4.

Table 6 reports the fraction of moves (82
percent) that follow the GW and DC strategy for
games F–J.

We now calculate the number of games in
which a subject followed all of the moves
prescribed by one of the two algorithms (i.e.,
GW or DC). Specifically, we calculate the
number of games in which each subject fol-
lowed a particular algorithm perfectly from
start to finish, including the final choice.6 We

break our games into two subgroups: the non-
congruent games (A–E), for which the two
algorithms’ predictions diverge, and the con-
gruent games (F–J).

With respect to the noncongruent games (A–
E), 47 percent of subjects did not follow the
GW algorithm in any of the five games, while
only 16 percent of subjects failed to follow the
DC algorithm in any of the five games. More-
over, only 11 percent of subjects follow the GW
algorithm in all five games, while 22 percent of
subjects follow the DC algorithm in all five
games. On average, subjects play 1.6 noncon-
gruent games (A–E) exactly following the GW
algorithm and 2.6 noncongruent games exactly
following the DC algorithm. The entire fre-
quency distribution is reported in Table 7 (for
both the congruent and noncongruent games).
Using these data, the DC algorithm outperforms
GW (p � 0.001).

We have also analyzed the ability of the
models to predict the final outcomes of the
experiment. Using such outcomes as the focus
of the study, the GW and DC models are sta-
tistically indistinguishable. The lack of resolu-
tion is partially due to the noisiness of the

predicts that small probability events are overweighted in
decisions.

6 If a subject follows the search strategy of a particular
algorithm, he would make a bizarre mistake if he didn’t also
follow the final choice predictions. Final choices are made
among “sure-thing” payoffs. Accordingly, mistakes on final

choices are very rare: they happen in 1.9 percent of the
games that are played.

TABLE 5—FRACTION OF ALL MOVES MATCHING GITTINS-WEITZMAN OR DIRECTED COGNITION

Percentage GW Percentage DC Difference t-test p-value

Game A 66 79 13 3.67 0.0002
Game B 68 80 11 3.21 0.0013
Game C 70 76 06 1.76 0.0785
Game D 65 83 17 5.00 0.0000
Game E 66 78 11 3.23 0.0012
A–E average 67 79 12 4.39 0.0000

TABLE 6—FRACTION OF ALL MOVES MATCHING

GITTINS-WEITZMAN AND DIRECTED COGNITION

Match GW/DC

Game F 83%
Game G 78%
Game H 83%
Game I 83%
Game J 86%
F–J average 82%

1047VOL. 96 NO. 4 GABAIX ET AL.: EXPERIMENTAL ANALYSIS OF A BOUNDEDLY RATIONAL MODEL



lotteries. This analysis is reported in the AER
Web Appendix.

II. Second Set of Experiments: Choice among N
Complex Goods

The search experiment above studies a prob-
lem that is simple enough to admit an analytic
optimal solution. Real world problems, how-
ever, tend to be far more complex. Indeed,
many real world problems do not have an
analytic optimal solution or even an optimal
solution that can be practically calculated nu-
merically. We would like to have models that
can successfully predict behavior in such
complex environments.

With these goals in mind, we analyze a sec-
ond experiment that captures some of the com-
plex factors that arise in real world problems. In
this “complex” experiment, subjects choose one
good from a set of N goods, each of which has
numerous attributes.

In this complex experiment, decision time is
a scarce resource, and information acquisition is
measured continuously. We make time scarce in
two different ways. First, we give subjects an
exogenous amount of time to choose one good
from a set of goods—a choice problem with an
exogenous time budget. Here we measure how
subjects allocate time as they acquire informa-
tion about each good’s attributes before making
a final selection.

Then we give the subjects an open-ended
sequence of choice problems like the one above.
In this treatment, the subjects keep facing dif-
ferent choice problems until a total budget of
time runs out. The amount of time a subject
allocates to each choice problem is now an
endogenous variable. Because payoffs are cu-
mulative and each choice problem has a positive
expected value, subjects have an incentive to
move through the choice problems quickly. But
moving too quickly reduces the quality of their
decisions.

Following other economists (Colin F. Cam-
erer et al., 1993; Miguel A. Costa-Gomes et al.,
2001; Eric J. Johnson et al., 2002; and Costa-
Gomes and Vincent P. Crawford, forthcoming),
we use the “Mouselab” programming lan-
guage to measure subjects’ information ac-
quisition.7 Information is hidden “behind”
boxes on a computer screen. Subjects use the
computer mouse to open the boxes. Mouselab
records the order and duration of information
acquisition. Since we allow only one screen
box to be open at any point in time, the
Mouselab software enables us to pinpoint
what information the subject is acquiring on a

7 John W. Payne et al. (1993) developed the Mouselab
language in the 1970s. Mouselab is one of many “process
tracing” methods. For example, Payne et al. (1978) elicit
mental processes by asking subjects to “think aloud.” J.
Edward Russo (1978) records eye movements.

TABLE 7—EMPIRICAL FREQUENCIES OF THE NUMBER OF GAMES IN WHICH A MODEL COMPLETELY PREDICTS THE SUBJECT’S

STRATEGY AND THE SUBJECT’S FINAL CHOICE

Number of games

Games A–E

Number of games

Games F–J

Frequency Frequency

GW strategy DC strategy GW/DC strategy

0 47% 16% 0 5%
1 12% 19% 1 9%
2 9% 16% 2 12%
3 11% 12% 3 19%
4 11% 16% 4 22%
5 11% 22% 5 33%
Mean 1.6 2.59 Mean 3.45
Median 1 3 Median 4
Standard deviation 1.83 1.81 Standard deviation 1.51

Notes: The table displays the number of games in which the full strategy of the player, including search pattern and final
choices, coincided with the predictions of the GW versus DC model. Those predictions are different in games A–E, and the
same in games F–J. DC makes a successful prediction on a greater number of games than GW (p � 0.001).
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second-by-second basis throughout the
experiment.8

A. The Details of an N-Good Choice Task

An N-good game is an N-row by M-column
matrix of boxes (Figure 1). Each box contains a
random payoff (in units of cents) generated with
normal density and zero mean. After analyzing
an N-good game, the subject makes a final se-
lection and “consumes” a single row from that
game. The subject is paid the sum of the boxes
in the consumed row.

Consuming a row represents an abstraction
from a very wide class of choice problems.
We call this problem an N-good game, since

the N rows conceptually represent N goods.
The columns represent M different attributes.

For example, consider a shopper who has
decided to go to Wal-Mart to select and buy a
television. The consumer faces a fixed number
of television sets at Wal-Mart (N different TV’s
from which to choose). The television sets have
M different attributes—size, price, remote con-
trol, warranty, etc. By analogy, the N TV’s are
the rows of Figure 1, and the M attributes (in a
utility metric) appear in the M columns of each
row.

In our experiment, the importance or vari-
ability of the attributes declines as the col-
umns move from left to right. In particular,
the variance decrements across columns equal
one-tenth of the variance in column one. For
example, if the variance used to generate col-
umn one is 1,000 (squared cents), then the vari-
ance for column 2 is 900, and so on, ending
with a variance for column 10 of 100. So
columns on the left represent the attributes
with the most (utility-metric) variance, like
screen size or price in our TV example.

8 Mouselab has the drawback that it uses an artificial
decision environment, but several studies have shown that
the Mouselab environment distorts final choices over goods/
actions only minimally (e.g., Costa-Gomes et al., 2001;
Costa-Gomes and Crawford, forthcoming). Mouselab’s in-
terface does generate “upper-left” and “left-to-right” search
biases, which we discuss in Section IIB below.

FIGURE 1. SAMPLE GAME WITH ALL VALUES UNMASKED

Notes: In the actual experiment, the subjects see the value of only one box at a time (see
Figure 2). Values in each column are drawn independently from a normal distribution with the
same variance, with variances declining linearly from left to right. In this sample, the left-most
column is generated with a standard deviation of 30.6 cents, which is explained to subjects as
a 95-percent confidence interval of �60 to 60 cents.
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Columns on the right represent the attributes
with the least (utility-metric) variance, like
minor clauses in the warranty.9

So far our game sounds simple: “Consume
the best good (i.e., row).” To measure informa-
tion acquisition, we mask the contents of boxes
in columns 2 through M. Subjects are shown
only the box values in column 1.10 A subject
can, however, left-click on a masked box in
columns 2 through M to unmask the value of
that box (Figure 2).

Only one box from columns 2 through M can
be unmasked at a time. This procedure enables
us to record exactly what information the sub-
ject is observing at every point in time.11 Re-

vealing the contents of a box does not imply that
the subject consumes that box. Note, too, that if
a row is picked for consumption, then all boxes
in that row are consumed, whether or not they
have been previously unmasked.

We introduce time pressure, so that subjects
will not be able to unmask— or will not
choose to unmask—all of the boxes in the
game. Mouselab records which of the N(M �
1) masked boxes the subjects unmask. Of
course, we also record which rows the sub-
jects choose/consume.

We study a setting that reflects realistic—i.e.,
high—levels of decision complexity. This com-
plexity forces subjects to confront tradeoffs.
Real consumers in real markets frequently face
decisions that are much more complex.

Masked boxes and time pressure capture im-
portant aspects of our Wal-Mart shopper’s ex-
perience. The Wal-Mart shopper selectively
attends to information about the attributes of the

9 In our experiment, all of the attributes have been de-
meaned.

10 We reveal the value of column 1 because it helps
subjects remember which row is which. In addition, reveal-
ing column 1 initializes the game by breaking the eight-way
tie that would exist if subjects began with the expectation
that all rows had the same value (zero).

11 When we designed the experiment, we considered but
did not adopt a design that permanently keeps boxes open
once they have been selected by the subject. This alternative
approach has the advantage that subjects face a reduced
memory burden. On the other hand, if boxes stay open

permanently, subjects have the option to quickly—and me-
chanically—open many boxes, and only afterward analyze
their content. Hence, leaving boxes open implies that we
lose the ability credibly to infer the subject’s attention at
each point in time.

FIGURE 2. SAMPLE GAME WITH VALUES CONCEALED

Notes: This is how a sample game would appear to subjects, with values concealed by boxes.
Subjects can use the mouse to open one box at a time. In this game the subject faces a set time
limit; the clock in the upper-right corner reveals the fraction of time remaining.

1050 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2006

http://www.atypon-link.com/action/showImage?doi=10.1257/aer.96.4.1043&iName=master.img-001.jpg&w=299&h=212


TVs among which she is picking. The shopper
may also face some time pressure, either be-
cause she has a fixed amount of time to buy a
TV, or because she has other tasks she can do in
the store if she selects her TV quickly. We
explore both types of cases in our experiment.

B. Games with Exogenous and Endogenous
Time Budgets

In our experiment, subjects play two different
types of N-good games: games with exogenous
time budgets and games with endogenous time
budgets. We will refer to these as “exogenous”
and “endogenous” games.

For each exogenous game a game-specific
time budget is generated from the uniform dis-
tribution over the interval [10 seconds, 49 sec-
onds]. A clock shows the subject the amount of
time remaining for each exogenous time game
(see clock in Figure 2). This is the case of a
Wal-Mart shopper with a fixed amount of time
to buy a good.

In endogenous games, subjects have a fixed
budget of time—25 minutes—in which to play
as many different N-good games as they choose.
In this design, adjacent N-good games are sep-
arated by 20-second buffer screens, which count
toward the total budget of 25 minutes. Subjects
are free to spend as little or as much time as they
want on each game, so time spent on each game
becomes an endogenous choice variable. This is
the case of a Wal-Mart shopper who can move
on to other purchases if she selects her TV
quickly.

We study both exogenous time games and
endogenous time games because these two
classes of problems commonly arise in the real
world and any cognition model should be able
to handle both situations robustly. Both types of
problems enable us to study within-problem
attention allocation decisions. In addition, the
endogenous time games provide a natural
framework for studying stopping rules, i.e., the
decision to allocate less analysis to the current
game, freeing time for subsequent games.

C. Experimental Logistics

Subjects receive printed instructions explain-
ing the structure of an N-good game and the
setup for the exogenous and endogenous games.
Subjects are then given a laptop on which they

read instructions that explain the Mouselab in-
terface. Subjects play three test games, which
do not count toward their payoffs.

Then subjects play 12 games with separate
exogenous time budgets. Finally, subjects play
a set of endogenous games with a joint 25-
minute time budget. For half of the subjects we
reverse the order of the exogenous and endog-
enous games. At the end of the experiment,
subjects answer demographic and debriefing
questions.

Subjects are paid the cumulative sum of all
rows that they consume. After every game,
feedback reports the running cumulative value
of the consumed rows.

III. Application of the Directed Cognition
Model

Application of the directed cognition model
can be broken down into three iterative steps,
which we first summarize and then describe in
detail.

Step 1: Using a myopic planning horizon,
calculate the expected economic benefits and costs
of different potential search operations. Specifi-
cally, evaluate each incremental search operation
as if it were the last search operation.12

Step 2: Execute the search operation with the
highest ratio of expected benefit to cost. For
example, if exploration of the “next” two boxes
in the sixth row has the highest expected ratio of
benefit to cost, then unmask those two boxes.

Step 3: Return to step 1 unless time has run
out (in exogenous time games) or until the ratio
of expected benefit to cost falls below some
threshold value (in endogenous time games).

A. Notation

Since our games all have eight rows (goods),
we label the rows A, B, ... , H. We use lower-case

12 We imagine that this step recruits both conscious and
unconscious mental processing and do not take a position on
their relative contributions. Daniel M. Wegner (2002) and
Thomas Gilovich et al. (2002) argue that unconscious/au-
tomated mental processes play a central role in many be-
havioral choices. Much of the activity of the limbic system
appears to be unavailable to consciousness, but nevertheless
is critical for reward valuation, approach/avoidance, and
attention allocation.
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letters—a, b, ... , h—to track a subject’s expecta-
tions of the values of the respective rows.

The subject knows the values of all boxes in
column 1 when the game begins. Thus, at the
beginning of the game, the row expectations
will equal the value of the payoff in the left-
most cell of each row. For example, if row C
has a 23 in its first cell, then at time zero c � 23.
If the subject unmasks the second and third cells
in row C, revealing cell values of 17 and �11,
then c would be updated to 29 � 23 � 17 �
�11. We now describe the three steps in detail.

B. Step 1

In step 1 the agent calculates the expected
economic benefits and costs of different search
operations. For our application, a search opera-
tion is a partial or complete unmasking/analysis
of boxes in a particular row of the matrix. Such
an operation enables the decision maker to im-
prove her forecast of the expected value of that
row. In our notation, OA

	 represents the opera-
tion “open 	 additional boxes in row A.” Be-
cause tractability concerns lead us to limit
agents’ planning horizons to only a single
search operation at a time, we assume that in-
dividual search operations themselves can in-
clude one or more box openings, though
multiple box openings must be sequential and in
the same row. Multiple box openings increase
the amount of information revealed by a single
search operator, increase the option value of
information revealed by that search operator,
and make the (partially myopic) model more
forward-looking.13

The operator OA
	 selects the boxes to be

opened using a maximal-information rule. In
other words, the OA

	 operator would select the 	
unopened boxes (in row A) that have the highest
variances (i.e., with the most information). In
our game, this corresponds with left to right box

openings (skipping any boxes that may have
been opened already).

We assume that an operator who opens 	
boxes has cost 	 � �, where � is the cost of
unmasking a single box. We take this cost to
include many components, including the time
involved in opening the box with the mouse,
reading the contents of the box, and updating
expectations.

The expected benefit (i.e., option value) of a
search operation is given by

(3) w�x, �� � ��� x

�� � �x�
��
�x�
��,

where � represents the standard normal density
function, 
 represents the associated cumula-
tive distribution function, x is the estimated
value gap between the row that is under consid-
eration and its next best alternative, and � is the
standard deviation of the payoff information
that would be revealed by the search operator.
Figure 3 plots this benefit function. We moti-
vate equation (3) below, but first present an
example calculation.

In the game shown in Figure 2, consider a
search operator OH

3 that explores three boxes in
row H. The initial expected value of H is h �
�28. The best current alternative is row C,
which has a current payoff of c � 23. So the

13 To gain intuition for this effect, consider two goods A
and B, with a � 3⁄2 and b � 0. Suppose that each of two
remaining boxes in row A can take the value 1 or �1. After
the information in a single box has been revealed, a� will
equal 5⁄2 or 1⁄2 . Hence, a partially myopic agent will not see
the benefit of opening one box, since no matter what hap-
pens, a� � b. If, however, the agent considers opening both
remaining boxes, there is a chance that a� will fall below 0,
implying that gathering the information from the two boxes
would be useful to the agent.

FIGURE 3. W(X, �) FOR � � 1

Notes: This figure plots the expected benefit from continued
search on an alternative if the difference between the value
of the searched alternative and the best of the other alter-
natives is x, and the standard deviation of the information
gained is � � 1 as defined in equation (3). This w function
is homogeneous of degree one.
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estimated value gap between H and the best
alternative is

xO � �h � c� � 51.

A box in column n will reveal a payoff �Hn with
variance (40.8)2(1 � n/10), and the updated
value of H after the three boxes have been
opened will be

h� � �28 	 �H2 	 �H3 	 �H4 .

Hence the variance of the information revealed
by the search operator is

�O
2 � var��H2 	 �H3 	 �H4 �

� �40.8�2� 9

10
	

8

10
	

7

10� ,

i.e., �O � 63.2. So the benefit of the search
operator is w(xO, �O) � 7.5, and its cost is 	O �
� � 3�.

We now motivate equation (3). To fix ideas,
consider a new game. Suppose that the decision
maker is analyzing row A and will then imme-
diately use that information to choose a row.
Assume that row B would be the leading row if
row A were eliminated, so row B is the next best
alternative to row A.

The agent is considering learning more about
row A by executing a search operator OA

	. Exe-
cuting the search operator will enable the agent
to update the expected payoff of row A from a
to a� � a � 
, where 
 is the sum of the values
in the 	 newly unmasked boxes in row A.

If the agent does not execute the search op-
erator, her expected payoff will be

max�a, b�.

If the agent plans to execute the search operator,
her expected payoff will be

E�max�a�, b��.

This expectation captures the option value gen-
erated by being able to pick either row A or row

B, contingent on the information revealed by
search operator OA

	. The value of executing the
search operator is the difference between the
previous two expressions:

(4) E�max�a�, b�� � max�a, b�.

This value can be represented with a simple
expression. Let � represent the standard devia-
tion of the change in the estimate resulting from
applying the search operator

�2 � E�a� � a�2.

The value of the search operator is14

(5) E�max�a�, b�� � max�a, b� � w�a � b, ��.

To develop intuition for the w function, Fig-
ure 3 plots w(x, 1). In the general case, w(x,
�) � �w(x/�, 1).

The option value framework captures two
fundamental comparative statics. First, the
value of a row exploration decreases the larger
the gap between the active row and the next best
row: w(x, �) is decreasing in �x�. Second, the
value of a row exploration increases with the
variability of the information that will be ob-
tained: w(x, �) is increasing in �. In other
words, the more information that is likely to be

14 This result assumes Gaussian innovations, which is
the density used to generate the games in our experiment.
To derive equation (5), begin by assuming that b � a. In this
case, � :� max(a�, b) � max(a, b) � max(a � 
 � b, 0).
Because 
 is drawn from a Normal(0, �2) distribution, we
get the right-hand side of equation (5):

� � E�max�a�, b� � max�a, b�� ��
b�a




�a 	 
 � b���


�� d


�

� �
�a � b�




�
 � �a � b���� 


�� d


�

� �
�a � b�





�� 


��d


�
� �a � b��1 � 
� �a � b�

� ��
� ����a � b�

� �� �a � b�
�� �a � b�
� �as x��x� � ����x�

so � � w(�a � b�, �). The calculation is similar when
b � a.
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revealed by a row exploration, the more valu-
able such an exploration becomes.

C. Step 2

Step 2 executes the search operation with the
highest ratio of expected benefit to cost. Recall
that the expected benefit of an operator is given
by the w(x, �) function and that the implemen-
tation cost of an operator is proportional to the
number of boxes that it unmasks. The subject
executes the search operator with the greatest
benefit/cost ratio,15

(6) G � max
O

w�xO , �O�

	O
,

where � is the cost of unmasking a single box.16

Since � is constant, the subject executes the
search operator

O* � arg max
O

w�xO , �O�

	O
.

The Web appendix to this article contains an
example of such a calculation.

D. Step 3

Step 3 is a stopping rule. In games with an
exogenous time budget, the subject keeps re-
turning to step 1 until time runs out. In games
with an endogenous time budget, the subject
keeps returning until G falls below the marginal
value of time, which must be calibrated.

E. Calibration of the Model

We use two different methods to calibrate the
marginal value of time during the endogenous
time games. First, we estimate the marginal
value of time as perceived by our subjects.
Advertisements for the experiment implied that
subjects would be paid about $20 for their par-
ticipation, which would take about an hour. In
addition, subjects were told that the experiment
would be divided into two halves, and that they
were guaranteed a $5 show-up fee.

Using this information, we calculate the sub-
jects’ anticipated marginal payoff per unit time
during games with endogenous time budgets. This
marginal payoff per unit time is the relevant op-
portunity cost of time during the endogenous time
games. Since subjects were promised $5 of guar-
anteed payoffs, their expected marginal payoff for
their choices during the experiment was about
$15. Dividing this in half implies an expectation
of about $7.50 of marginal payoffs for the endog-
enous time games. Since the endogenous time
games were budgeted to take 25 minutes, which
was known to the subjects, the perceived marginal
payoff per second of time in the experiment was

750 cents

25 minutes � 60 seconds/minute

� 0.50 cents/second.

Since subjects took on average 0.98 seconds to
open each box, we end up with an implied
marginal shadow cost per box opening of

�0.50 cents/second��0.98 seconds/box�

� 0.49 cents/box.

We also explore a one-parameter version of
the directed cognition model, in which the cost
of cognition—�—is chosen to make the model
partially fit the data. Calibrating the model so it
matches the average number of boxes explored
in the endogenous games implies � � 0.18
cents/box. Here � is chosen only to match the
average amount of search per endogenous time
game, not to match the order of search or the
distribution of search across games.

15 We postulate that the agent picks the operator O that
maximizes the ratio w(xO, �O)/	O rather than the difference
w(xO, �O) � �	O, where � is a marginal cost of time. The
ratio criterion does not require the subject to calculate �.
Hence, the ratio formulation is more frugal than the differ-
ence formulation. In the simple experiment of Section I,
using a ratio or difference formulation leads to identical
predictions, as both risky projects require the same search
cost. In general, however, the ratio and difference ap-
proaches yield different predictions. When the cost of time
is known, the difference formulation is preferable.

16 Our model thus gives a crude but compact way to
address the “accuracy versus simplicity” trade-off in cog-
nitive processing. See Enriqueta Aragones et al. (2005).
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F. Conceptual Issues

This model is easy to analyze and is compu-
tationally tractable, implying that it can be em-
pirically tested. The simplicity of the model
follows from three special assumptions. First,
the model assumes that the agent calculates only
a partially myopic expected gain from execut-
ing each search operator. This assumption
adopts the approach taken by Philippe Jehiel
(1995), who assumes a constrained planning
horizon in a game-theory context. Second, the
DC model assumes that the agent uses a fixed
positive shadow value of time. This shadow
value of time enables the agent to trade off
current opportunities with future opportunities.
Third, the DC model avoids the infinite regress
problem (i.e., the costs of thinking about think-
ing about thinking, etc.) by using a myopic
option value calculation assumed to be costless
to the agent. In some evolutionary relevant do-
mains, the brain may have evolved specialized
algorithms to solve the infinite regress problem
(e.g., intuition). But given the “evolutionary
irrelevance” of the experimental task, it is un-
likely that sophisticated evolved solutions
would be applicable to the current problem.
Hence, a crude myopic solution—like the one
we adopt—may be reasonable. Our assumption
that the myopic option-value calculation is cost-
less is not realistic, however, and is made only
with modeling convenience in mind.

Without some version of these three simpli-
fying assumptions, the model would not be use-
ful in practice. Without some partial myopia
(i.e., a limited evaluation horizon for option
value calculations), the problem could not be
solved either analytically or computationally.17

Without the positive shadow value of time, the
agent would not be able to trade off her current
activity with unspecified future activities and
would never finish an endogenous time game
without first (counterfactually) opening up all of
the boxes. Finally, without eliminating cogni-
tion costs at some primitive stage of reasoning,
maximization models are not well defined.18

We return now to the first of the three points
listed in the previous paragraph: the perfectly
rational search model is not solvable in our
context. An exact solution of the perfect ratio-
nality model requires the calculation of a value
function with 17 state variables: one expected
value for each of the eight rows, one standard
deviation of unexplored information in each of
the eight rows, and finally the time remaining in
the game. This dynamic programming problem
in �17 suffers from the curse of dimensionality
and would overwhelm modern supercomput-
ers.19 By contrast, the directed cognition model
is equivalent to eight completely separable
problems, each of which has only two state
variables: x, the difference between the current
expected value of the row and the current ex-
pected value of the next best alternative row;
and �, the standard deviation of unexplored
information in the row. So the “dimensionality”
of the DC model is only 2 (compared to 17 for
the model of perfect rationality).

We can compare the performance of the par-
tially myopic DC model and the performance of
the perfectly rational model. Like the DC
model, the perfectly rational model assumes
that examining a new box is costly and that
calculating the optimal search strategy is cost-
less (analogous to our assumption that solving
for O* is costless). The Web Appendix gives
lower bounds on the payoffs of the DC model
relative to the payoffs of the perfectly rational
model. DC does at least 91 percent as well as
perfect rationality for exogenous time games

17 Gabaix and Laibson (2006) propose that consumer
myopia explains a series of market phenomena.

18 See Conlisk (1996) for a description of the infinite
regress problem and an explanation of why it plagues all
decision cost models. We follow Conlisk in advocating
exogenous truncation of the infinite regress of thinking.

19 Approximating algorithms could be developed, but
after consulting with experts in operations research, we
concluded that existing approximation algorithms cannot be
used without a prohibitive computational burden. Our prob-
lem is discrete (eight rows, ten boxes), and so the state-
space is large (seven continuous variables for the relative
current payoffs, plus eight discrete variables for the depth of
operations), and there is no clear way to simplify the state-
space. The standard simplifying tools (Dimitri P. Bertsekas
and John N. Tsitsiklis, 1996) do not apply here. The Gittins
index (Gittins, 1979; Weitzman, 1979) does not apply here
either, for much the same reason it does not apply to most
dynamic problems. In Gittins’s framework, it is crucial that
one can do only one thing to a row (i.e., an “arm”) at a
particular point in time. In contrast, in our game, a subject
can do more than one thing with a row. She can explore it
further, or take it and end the game. Hence, our game does
not fit into Gittins’s framework. We explored several mod-
ifications of the Gittins index, but they proved unfruitful at
breaking the curse of dimensionality.
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and at least 71 percent as well as perfect ration-
ality for endogenous time games. In other
words, using the DC algorithm instead of per-
fect rationality would reduce payoffs by no
more than 8 percent and 29 percent, respec-
tively, in the exogenous and endogenous time
games.20

G. Other Decision Algorithms

In this subsection, we describe several naive
benchmarks which we compare to the directed
cognition model. These benchmarks are moti-
vated by economists’ interest in determining
whether other simple models can organize our
experimental data.21 The benchmarks are also
related to prototypical models in the psychology
literature.

Column Model.—The column model un-
masks all the boxes in column 2 (top to bottom),
then in column 3, ... , etc. In exogenous games,
this column-by-column unmasking continues
until the simulation has explored the same num-
ber of boxes as a “yoked” subject.22 In endog-
enous time games, the unmasking continues
until a row has been revealed with an estimated
value greater than or equal to AColumn model, an
aspiration or satisficing level. This aspiration
level (and those discussed below) are all chosen
so that the simulations generate an average
number of simulated box openings that matches
the average number of empirical box openings
(26 boxes per game).

Row Model.—The row model unmasks boxes
row by row, sequencing the unmasking according
to the values in column 1. In exogenous games,
this row-by-row unmasking continues until the
simulation has explored the same number of
boxes as a yoked subject (see previous footnote).
In endogenous games, the unmasking continues

until a row has been revealed with an estimated
value greater than or equal to ARow model.

Directed Cognition with Satisficing.—In en-
dogenous games, we also analyze a DC model
with a satisficing stopping rule. In this model,
the DC model is iterated until a row has been
revealed with an estimated value greater than or
equal to ADC model.

Elimination by Aspects.—A choice algorithm
called Elimination by Aspects (EBA) has been
widely studied in the psychology literature (e.g.,
Tversky, 1972; and Payne et al., 1993). We use
EBA to analyze games with endogenous time
budgets. Each row is a good with ten different
attributes or “aspects” represented by the ten
different boxes of the row. The EBA algorithm
proceeds aspect by aspect (i.e., column by col-
umn) from left to right, eliminating goods (i.e.,
rows) with an aspect that falls below some
aspiration value AEBA. This elimination contin-
ues, stopping at the point where the next elim-
ination would eliminate all remaining rows. At
this stopping point, EBA picks the remaining
row with the highest estimated value.

IV. Results

Our 388 subjects23 received a mean total pay-
off of $29.23, with a standard deviation of
$5.49. Payoffs ranged from $13.07 to $46.69.24

All subjects played 12 games with exogenous
times. On average, subjects chose to play 28.7
games under the endogenous time limit, with a
standard deviation of 7.9. The number of games
played (endogenous and exogenous games
combined) ranged from 21 to 65. Our AER Web
Appendix provides details about (negative) tests
for subject learning effects, reports evidence
that subjects have imperfect memory, and de-
scribes our (standard) bootstrap methodology
for calculating standard errors. The Appendix
also contains the experimental protocol and a
Web-based simulation of the actual experiment.

20 Of course, these bounds do not apply to different
classes of games. It is possible to construct specific games
in which the losses approach 100 percent. Partially rational
algorithms will always fail in special circumstances that are
designed to exploit the algorithm.

21 See Camerer and Teck-Hua Ho (1999), Ido Erev and
Alvin E. Roth (1998); and Gerd Gigerenzer et al. (1999).

22 In such a yoking, the simulation is tied to a particular
subject. If the empirical subject opens N boxes in game g,
the yoked simulation opens N boxes in game g.

23 Subjects are Harvard University undergraduates. Of
them, 55 percent report having taken at least one statistics
course.

24 Payoffs do not vary with subject demographics (e.g.,
statistical coursework). We adopt the simplifying approxi-
mation that all subjects have identical strategies.
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A. Games with Exogenous Time Budgets

We compare the empirical patterns of box
openings to the patterns of box openings pre-
dicted by the directed cognition model. We be-
gin with a trivial prediction of our theory:
subjects should always open boxes from left to
right, following a declining variance rule. In our
experimental data, subjects follow the declining
variance rule 91.0 percent of the time (s.e. 0.8
percent).25 Specifically, when subjects open a
previously unopened box in a given row, 91.0
percent of the time that box has the highest
variance of the as-yet-unopened boxes in that
row.26 For reasons that we explain below, such
left-to-right box openings may arise because of
spatial biases instead of the information pro-
cessing reasons implied by our theory.

Now we consider the pattern of search across
columns and rows. Figure 4 reports the average
number of boxes opened in columns 2–10. We
report the average number of boxes unmasked,
column by column, for both the subject data and
the model predictions.

The empirical profile is calculated by averag-
ing together subject responses on all the exog-
enous games that were played. Specifically,
each of our 388 subjects played 12 exogenous
games, yielding a total of 388 � 12 � 4,656
exogenous games played. Each subject was as-
signed a subset of 12 games from a set of 160
unique games. Hence, each of the 160 games
was played about 4,656/160 � 30 times in the
exogenous time portion of the experiment.

Figure 4 also plots the theoretical predictions
generated by yoked simulations of our model.
Specifically, these predictions are calculated by
simulating the DC model on the exact set of
4,656 games played by the subjects. We simu-
late the model on each game from this set of
4,656 games and instruct the computer to un-

25 The units throughout refer to percentage points, not to
a percentage of the point estimate.

26 In our endogenous games, subjects follow the declin-
ing variance rule 92.6 percent of the time (s.e. 0.7 percent).

FIGURE 4. COLUMN PROFILES FOR GAMES WITH EXOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each column by subjects and by
the DC model, for games in which time budgets are imposed exogenously. Dotted lines show
the bootstrapped 95-percent confidence intervals for the data.
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mask the same number of boxes that was un-
masked by the subject who played each
respective game.

The analysis compares the particular boxes
opened by the subject to the particular boxes
opened by the yoked simulation of the model.
Figure 4 reports an R�2 measure, which captures
the extent to which the empirical data match the
theoretical predictions. This measure is simply
the R2 statistic27 from the following constrained
regression:28

Boxes�col� � constant � Boxeŝ �col� 	 
�col�.

Here Boxes(col ) represents the empirical aver-
age number of boxes unmasked in column col

and Boxeŝ�col � represents the simulated aver-
age number of boxes opened in column col.
Note that col varies from 2 to 10, since the
boxes in column 1 are always unmasked. This
R�2 statistic is bounded below by �
 (since the

coefficient on Boxeŝ�col � is constrained equal to
unity) and bounded above by one (a perfect fit).
Intuitively, the R�2 statistic represents the
fraction of squared deviations around the
mean explained by the model. For the column
predictions, the R�2 statistic is 86.6 percent
(s.e. 1.7 percent), implying a very close match
between the data and the predictions of the
model.

Figure 5 reports analogous calculations by
row and reports the number of boxes opened on
average by row, with the rows ranked by their
value in column one. We report the number of
boxes opened on average by row for both the
subject data and the model predictions. As
above, the model predictions are calculated us-
ing yoked simulations.

Figure 5 also reports an R�2 measure analo-
gous to the one described above. The only dif-
ference is that now the variable of interest is
Boxes(row), the empirical average number of
boxes opened in row row. For our row predic-
tions our R�2 measure is �16.1 percent (s.e. 9.2
percent), implying a poor match between the
data and the predictions of the model. The data

27 In other words,

R�2 � 1

�
¥col �Boxes�col� � �Boxes� � Boxeŝ�col� 	 �Boxeŝ��2

¥col �Boxeŝ�col� � �Boxeŝ��2
,

where ��� represents empirical means.
28 In this section of the paper, the constant is redundant,

since the dependent variable has the same mean as the
independent variable. In the next subsection, however, we
will consider cases in which this equivalence does not hold,
necessitating the presence of the constant.

FIGURE 5. ROW PROFILES FOR GAMES WITH EXOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each row by subjects and by the
DC model for games in which time budgets are imposed exogenously. Dotted lines show the
bootstrapped 95-percent confidence intervals for the data. The rows are ordered according to
the values in the first column.
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show that subjects unmask at least two to three
boxes on average in each row. The model pre-
dicts an average, however, of between zero and
one unmaskings in the rows that have the two
lowest values in the first column (rows 7 and 8
in the figure). The subjects are less selective
than the model. The R�2 is negative because we
constrain the coefficient on simulated boxes to
be unity. This figure captures the most problem-
atic predictions that the model makes.

Figure 6 reports similar calculations using an
alternative way of ordering rows. It reports the
number of boxes opened on average by row,
with the rows ranked by their revealed values at
the end of search in each game. In other words,
we rank the rows based on the boxes that have
been revealed during the course of information
acquisition in each game. This ranking rule pro-
duces very different patterns than the ranking
rule based on the column 1 values (i.e., in
Figure 5).29 For this alternative ranking, the
model predictions have an R�2 statistic of 86.7
percent (s.e. 1.4 percent).

We also report a performance measure that is
based on individual-level data. We ask whether
the model can predict the next box opening at
the time of a row change. By conditioning on a
row change, we eliminate left-to-right biases.30

At the time of a row change, the DC algorithm
correctly predicts the next box opening 37 per-
cent of the time.

We also calculate the DC ranking of rows to

which subjects switch. The rankings are nor-
malized so that an index score of zero represents
the worst DC ranking and an index score of one
represents the best DC ranking.31 We find that
rows to which subjects switch have a mean DC
rank index of 0.69 and a median rank index of
0.80, implying that the DC model places a rel-
atively high search value on the rows to which
subjects actually do switch.

Finally, we determine whether the DC algo-
rithm successfully predicts final consumption
choices using only ex ante information about
each game (i.e., conditioning only on the infor-
mation in the 80 boxes of each game and not
using any of the subject choices). We simulate
the DC algorithm on each game. We find that
the final rows consumed by our subjects match
the rows chosen by the DC algorithm 54 percent
of the time in exogenous time games (a random
algorithm would have a 13-percent success
rate). Likewise, the rows picked by subjects
match one of the top two rows chosen by the
DC algorithm 73 percent of the time (25 percent
for a random algorithm). Finally, the rows
picked by subjects match one of the top three
rows chosen by the DC algorithm 82 percent of
the time (38 percent for a random algorithm).

B. Games with Endogenous Time Budgets

We repeat the analysis above for the endog-
enous games. As discussed in Section III, we
consider two variants of the directed cognition
model when analyzing the endogenous games.
We calibrate one variant by exogenously setting
� to match the subjects’ anticipated earnings per
unit time in the endogenous games: � � 0.49
cents/box opened (see calibration discussion in
Section III). With this calibration, subjects are
predicted to open 15.57 boxes per game (s.e.
0.01). In the data, however, subjects open 26.06
boxes per game (s.e. 0.57). To match this fre-
quency of box opening, we consider a second
calibration with � � 0.18. With this lower level
of �, the model opens the empirically “right”
number of boxes.

Figure 7 reports the average number of boxes

29 Consider an illustrative example in which all subjects
randomly pick one (and only one) row, and then explore the
nine covered boxes in that row. Then the profile of box
openings in Figure 5 would be flat and equal to 9⁄8 for every
row (each row has a 1⁄8 chance of being chosen for 9
openings). By contrast, the profile in Figure 6 would be
U-shaped with peaks slightly below 9⁄2 for both the best row
and the worst row. Intuitively, the row that was randomly
chosen for exploration is likely to end up being either the
best or worst row when the ranking is made including the
nine boxes that are opened in the course of search; opening
up nine boxes increases variance! So in any particular game,
the extreme rows have about a 1⁄2 chance of having nine box
openings and about a 1⁄2 chance of having zero box open-
ings, implying about 9⁄2 box openings on average for the row
with the best ranking and the row with the worst ranking.

30 When we do not condition on row changes, the model
predicts the next box opening 14 percent of the time. This
percentage is biased down by the left-to-right bias in be-
havioral data. Models based on cost-benefit analysis will not
reproduce the left-to-right search pattern, unless the model
assumes that left-to-right movements are less costly than
other search operations.

31 The formula for the rank index is (rank � 1)/(N � 1),
where N is the number of rows to which the subject could
switch without implementing a repeat box opening and rank
is the DC rank (1 to N) of the row to which the subject
switches (higher ranks being better).
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unmasked in columns 2 to 10 in the endogenous
games. We report the average number of boxes
unmasked by column for the subject data and
for the model predictions with � � 0.49 and
� � 0.18. To generate the theoretical predic-
tions, we use the directed cognition model to
simulate play of the 11,124 endogenous games
that the subjects actually played. The model
generates its own stopping rule (so we no longer
yoke the specific number of box openings). For
these endogenous games, the column R�2 statistic
is 96.3 percent (s.e. 1.4 percent) for � � 0.49
and 73.1 percent (s.e. 4.2 percent) for � � 0.18.

Figure 8 reports the number of boxes opened
on average by row, with the rows ranked by
their values in column one. The row R�2 statis-
tics are 85.3 percent (s.e. 1.3 percent) for � �
0.49 and 64.6 percent (s.e. 2.4 percent) for � �
0.18. Figure 9 reports similar calculations using
the alternative way of ordering rows, with the
rows ranked by their values at the end of each
game. The alternative row R�2 statistics are 91.8
percent (s.e. 0.5 percent) for � � 0.49 and 84.5
percent (s.e. 0.8 percent) for � � 0.18.

These figures show that the model explains a
large fraction of the variation in attention across
rows and columns. Some of these results are
confounded, however, by a subject bias that
Costa-Gomes et al. (2001) have identified. In

particular, subjects who use the Mouselab inter-
face tend to have a bias toward selecting cells in
the upper-left corner of the screen and transi-
tioning from left to right as they explore the
screen. The left-right bias affects our column
results (Figures 4 and 7), since information with
greater economic relevance is located toward
the left-hand side of the screen in our
experiments.32

We also report the model’s ability to predict
the next box opening at the time of a row
change. By conditioning on a row change, we
eliminate left-to-right biases. At the time of a
row change, the DC algorithm correctly predicts
the next box opening 38 percent of the time.

We also calculate the DC ranking of rows to
which subjects switch. The rankings are nor-
malized between zero (low) and one (high) as
explained above. We find that rows to which
subjects switch have a mean DC rank index of
0.70 and a median rank index of 0.83.

Finally, we determine whether the DC algo-
rithm successfully predicts final consumption

32 The up-down bias does not affect our results, since our
rows are randomly ordered with respect to their respective
payoffs. Neither the up-down nor the left-right biases influ-
ence our analyses of either row openings (above) or endog-
enous stopping decisions (below).

FIGURE 6. ROW PROFILES (ALTERNATIVE ORDERING) FOR GAMES

WITH EXOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each row by subjects and by the
DC model, for games in which time budgets are imposed exogenously. Dotted lines show the
bootstrapped 95-percent confidence intervals for the data. The rows are ordered according to
all the information available to subjects after they have concluded their search, just prior to
making a choice.
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choices using only ex ante information. We
simulate the DC algorithm with � � 0.18. The
final rows consumed by our subjects match the
rows chosen by the DC algorithm 57 percent of

the time. Likewise, the rows picked by subjects
match one of the top two (three) rows chosen by
the DC algorithm 76 percent (85 percent) of the
time.

FIGURE 7. COLUMN PROFILES FOR GAMES WITH ENDOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each column by subjects and by
both calibrations of the DC model, for games in which agents choose how much time to
allocate from a fixed time budget. Dotted lines show the bootstrapped 95-percent confidence
intervals for the data.

FIGURE 8. ROW PROFILES FOR GAMES WITH ENDOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each row by subjects and by both
calibrations of the DC model, for games in which agents choose how much time to allocate
from a fixed time budget. Dotted lines show the bootstrapped 95-percent confidence intervals
for the data. The rows are ordered according to the values in the initial column.
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C. Stopping Decisions in Endogenous Games

Almost all of the analysis above reports within-
game variation in information acquisition. The
analysis above shows that subjects allocate most
of their attention to economically relevant col-
umns and rows within a game, matching the pat-
terns predicted by the directed cognition model.
Our experimental design also enables us to eval-
uate how subjects allocate search time between
games. In this subsection we focus on several
measures of such between-game variation.

Most importantly, we ask whether the model
can correctly predict which games received the
most attention from our subjects. Our experi-
ment utilized 160 unique games, though no sin-
gle subject played all 160 games. Let Boxes(g)
represent the average number of boxes opened

by subjects who played game g. Let Boxeŝ�g�
represent the average number of boxes opened
by the model when playing game g. In this

subsection we analyze the first and second mo-
ments of the empirical sample {Boxes(g)}g�1

160

and the simulated sample �Boxeŝ�g��g � 1
160 . Note

that these respective vectors each have 160 el-
ements, since we are analyzing game-specific
averages.

We begin by comparing first moments. The
empirical (equally weighted) mean of Boxes(g)
is 26.06 (s.e. 0.57). By contrast, the 0-parameter
version of our model (with � � 0.49) generates
a predicted mean of 15.57 (s.e. 0.01). Hence,
unless we pick � to match the empirical mean
(i.e., � � 0.18), our model only crudely approx-
imates the average number of boxes opened per
game.

We turn now to second moments. The empir-
ical standard deviation of Boxes(g) is 6.32 (s.e.
0.14), while the 0-parameter version of our
model (with � � 0.49) generates a predicted
standard deviation of 12.05 (s.e. 0.03). More-
over, when we set � � 0.18 to match the aver-

FIGURE 9. ROW PROFILES (ALTERNATIVE ORDERING) FOR GAMES

WITH ENDOGENOUS TIME BUDGETS

Notes: This figure plots the mean number of boxes opened in each row by subjects and by both
calibrations of the DC model, for games in which agents choose how much time to allocate
from a fixed time budget. Dotted lines show the bootstrapped 95-percent confidence intervals
for the data. The rows are ordered according to all the information available to subjects after
they have concluded their search, just prior to making a choice.
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age boxes per game, the standard deviation rises
to 15.85 (s.e. 0.03). The relatively high standard
deviations from the simulations reflect the mod-
el’s sophisticated search strategy. The model
continuously adjusts its search strategies in re-
sponse to instantaneous variation in the eco-
nomic incentives that the subjects face. By
contrast, the subjects are less sensitive to high
frequency variation in economic incentives.

Despite these shortcomings, the model suc-
cessfully predicts the pattern of empirical vari-
ation in the number of boxes opened in each
game. The correlation between Boxes(g) and

Boxeŝ�g� is 0.66 (s.e. 0.02) when we set � �
0.49. Similarly, the correlation is 0.61 (s.e.
0.02) when we set � � 0.18. See Figure 10 for
a plot of the 160 data points for the � � 0.18
case. These high correlations imply that the
model does a good job predicting which games
the subjects will analyze most thoroughly.

The model also predicts the statistical rela-
tionship between economic incentives and
depth of analysis. Figure 11 reports the relation-
ship between G—the myopic estimate of the

marginal benefit of incremental search33—and
the average amount of time the subject (or al-
gorithm) continues to play the game. The rela-
tionship is calculated (using a nonparametric
kernel estimator) for both simulated data and
the experimental data. To construct the simu-
lated relationship, we use the model to “play”
each of our games and then use the simulated
move-by-move data to estimate the relationship
between G and the amount of simulated time
remaining. To construct the experimental rela-
tionship, we use the experimental move-by-
move data to estimate the relationship between
G and the empirical amount of time remaining.

The dashed line represents the relationship
estimated with the simulated data (with � �
0.18). The solid line represents the relationship
estimated with the experimental data. The figure
also shows bootstrap estimates of the 95-percent
confidence intervals. For most levels of G (the
benefit-cost ratio), the model’s predictions are
close to the pattern in the subject data. Subjects
do more analysis (i.e., open up more boxes)
when the economic incentives to do so are high.
Moreover, the functional form of this relation-
ship roughly matches the form predicted by the
theory.

We also evaluate the DC model by asking
whether G predicts when subjects decide to
stop working on the current game and move
on to the next game. We run a stopping logit
(1 � stop, 0 � continue) with explanatory
variables that include the measure of the eco-
nomic value of continued search (or G), the
number of different boxes opened to date in
the current game (boxes), the expected value
in cents of the leading row in the current
N-good game (leader), and subject fixed ef-
fects. Note that satisficing models predict that
G and boxes should not have predictive power
in this logit regression, but that a higher value
of the leader variable will increase the stop-
ping probability.

Each observation for this logit is a decision-
node (i.e., a choice over mouse clicks) in our

33 See equation (6): G � maxOw(xO, �O)/(�	O). Recall
that xO is the gap between the expected value of the current
row and the expected value of the next best row, �O is the
standard deviation of the information revealed by mental
operator O, and 	O is the number of boxes opened by
mental operator O.

FIGURE 10. BOXES OPENED BY GAME

Notes: This figure takes each of the 160 game-types played
by subjects and compares the number of boxes opened by
subjects to the number of box openings predicted by the
model, for the games in which agents choose their cross-
game time allocations. The correlation between the model
and the data is 0.61.
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endogenous games, generating 330,873 obser-
vations.34 The coefficient on G is �0.3660
(standard error 0.0081 and t-stat of 45); the
coefficient on boxes is 0.0404 (standard error
0.0008 and t-stat of 50); the coefficient on
leader is 0.0064 (standard error 0.0002 and
t-stat of 32). At the mean values of the ex-
planatory variables, a one-standard-deviation
reduction in the value of G more than doubles
the probability of stopping. A one-standard-
deviation increase in the value of boxes has an
effect roughly 1⁄2 as large and a one-standard-
deviation increase in the value of leader has
an effect less than 1⁄4 as large. Although boxes
has the greatest t-stat, G is the most important
predictor of the decision to stop searching
(variation in G has a bigger impact than vari-
ation in boxes). Incremental logit regressions

also confirm that G has more predictive
power than boxes.35

The logistic analysis shows that the economic
value of information—G—is the most impor-
tant predictor of the decision to stop searching.
Our subjects are also using other information,
however, as shown most importantly by the
strong predictive power of the boxes variable. If
subjects place partial weight on the “boxes heu-
ristic”—i.e., increasing the propensity to stop an-
alyzing the current N-good game as more and
more boxes are opened—they will be less likely to
spend a long time on any one game. For an un-
sophisticated player who can only imperfectly cal-
culate G, the boxes heuristic is a useful additional
decision input. We view our subjects’ partial reli-

34 In other terms, we estimate: probability of continua-
tion � exp(
�x)/[1 � exp(
�x)], where x is a vector of
decision-node attributes, and 
 is the vector of estimated
coefficients.

35 When a stopping logit is estimated with only a con-
stant, ln L � �48,026, where L is the likelihood function.
When a stopping logit is estimated with a constant and
boxes, ln L � �47,403. When a stopping logit is estimated
with a constant and G, ln L � �45,353. When a stopping
logit is estimated with a constant, boxes and G, ln L �
�45,264. Hence, including G in the model increases ln L
four times more than including boxes.

FIGURE 11. EXPECTED MEASURE OF ECONOMIC GAIN “G” VERSUS EXPECTED REMAINING TIME

Notes: This figure plots nonparametric (kernel) estimates of the expected number of additional
box openings in a game, conditional on the current “G” value. “G” is the benefit-to-cost ratio
of marginal analysis in the DC model, as defined in equation (6).
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ance on boxes as an example of sensible—perhaps
constrained optimal—decision-making.

The predictive power of the boxes variables
supports experimental research on “system ne-
glect” by Camerer and Dan Lovallo (1999) and
Cade Massey and George Wu (2005). These
authors find that subjects use sensible rules, but
fail to adjust those rules adequately to the par-
ticular problem at hand. The boxes heuristic is a
good general rule, but it is not the first-best rule
since it neglects the idiosyncratic incentives
generated by each specific N-good game. The
boxes heuristic is a type of imperfectly sophis-
ticated search. The boxes heuristic is also con-
sistent with findings in the sequential search
literature that subjects are often overly sensitive
to the total search costs paid (Carl Kogut, 1990;
Philip Moon and Andrew Martin, 1990; Joep
Sonnemans, 1998).

Finally, our experiment reveals another bias
that we have not emphasized because we are
uncertain about its generalizability to other
classes of games. Specifically, our subjects al-
located too much time per game in the endog-
enous games. Subject payoffs would have been
higher if they had generally collected less infor-
mation in each game, thereby enabling them to

play more games. This result is contrary to the
sequential search literature, in which subjects
often search less than predicted (Kogut, 1990;
Sonnemans, 1998). Exploring the robustness of
this finding is a goal for future research.

D. Comparisons with Other Models

Table 8 reports R�2 measures for the alterna-
tive models summarized in Section IIIG. For the
exogenous games, the DC model has an average
R�2 value of 52.4 percent (with a standard de-
viation of 3.4 percentage points). The column
and row models have respective averages of
�18.8 percent (s.e. 6.4 percent) and �137.4
percent (s.e. 13.9 percent). For the endogenous
games, the zero-parameter version of the DC
model has an average R�2 of 91.2 percent (s.e.
0.7 percent). The column model with a satisfic-
ing stopping rule has an average R�2 of 42.9
percent (s.e. 0.7 percent). The row model with a
satisficing stopping rule has an average R�2 of
55.4 percent (s.e. 0.4 percent). The elimination
by aspects model has an average R�2 of �6.3
percent (s.e. 6.2 percent).

We also evaluate the different models’ ability
to forecast game-by-game variation in average

TABLE 8—EVALUATION OF ALTERNATIVE MODELS

Games with exogenous time budgets Games with endogenous time budgets

Directed
cognition

Column
model

Row
model

Directed
cognition

Directed
cognition

Column
model

satisficing
Row model
satisficing

Directed
cognition
satisficing

Elimination
by aspects

Fitted parameter None None None None � � 0.18 AColumn � 42 ARow � 43 ADC � 45 AEBA � �6
R�2 for column

profile
86.6% �107.7% 39.3% 96.3% 73.1% 79.7% 34.5% 75.3% �70.4%
(1.7%) (18.7%) (0.93%) (1.4%) (4.2%) (1.8%) (1.0%) (1.5%) (18.4%)

R�2 for row
profile

�16.1% 26.2% �540.6% 85.3% 64.6% 25.1% 88.6% 65.6% �31.1%
(9.2%) (0.55%) (0.40%) (1.3%) (2.4%) (0.44%) (0.69%) (1.0%) (0.66%)

R�2 for alt. row
profile

86.7% 25.0% 89.1% 91.8% 84.5% 23.8% 43.0% 53.3% 82.5%
(1.4%) (0.42%) (1.5%) (0.55%) (0.83%) (0.39%) (0.59%) (0.77%) (0.79%)

Average R�2 52.4% �18.8% �137.4% 91.2% 74.1% 42.9% 55.4% 64.7% �6.3%
(3.4%) (6.4%) (13.9%) (0.67%) (1.7%) (0.73%) (0.41%) (0.62%) (6.2%)

Correlation with
empirical
number of
boxes

— — — 0.66 0.61 �0.005 0.020 0.026 �0.39
— — — (0.19) (0.018) (0.024) (0.023) (0.024) (0.021)

Agreement with
final choices

53.8% 51.2% 52.9% 55.7% 57.4% 50.7% 47.1% 49.0% 47.1%
(0.73%) (0.73%) (0.73%) (0.47%) (0.47%) (0.47%) (0.47%) (0.47%) (0.47%)

Notes: Standard errors in parentheses. R�2 refers to the R2 statistic from a regression of the empirical number of boxes opened
by subjects in each row or column on a constant, plus the number of boxes predicted by the models, where the coefficient
on the predictions is fixed to equal 1. “Correlation with empirical number of boxes” refers to the correlation between the
number of boxes opened by subjects in each of the 160 games and the number of openings predicted by the models.
“Agreement with final choices” records the percentage of the games played by subjects in which their final choices match the
predictions of each model, when the model is simulated with no knowledge of subject box openings.
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time allocation.36 Table 8 shows that all of the
satisficing models yield effectively no correla-
tion between the game-by-game average num-
ber of box openings predicted by these models
and the game-by-game average number of box
openings in the data.37 By contrast, the zero-
parameter directed cognition model generates
predictions that are highly correlated (0.66)
with the empirical average boxes opened per
game.

V. Conclusion

Economists assume that agents act as if they
were choosing cognitive operations optimally.
We have experimentally analyzed a parsimoni-
ous cognition model based on partially myopic
cost-benefit calculations: the DC model. The
partial myopia makes the model computation-
ally tractable, and our experimental results dem-
onstrate that the partial myopia improves the
model’s empirical fit.

Our first experiment studies a class of sim-
ple decision problems. These problems admit
a rational search solution, do not pose spatial
biases, and do not require subject memoriza-
tion. In these simple problems, we also as-
sume an exogenous financial search cost. We
find that the DC model successfully explains
the patterns of information acquisition. In-
deed, when the DC model and the fully ra-
tional model make different predictions, the
DC model does a better job of matching the
laboratory evidence.

Our second set of experiments studies a
highly complex choice problem. The DC model
can be used to study such complex settings
because the model simplifies analysis (for the
subject and the researcher). In contrast, the ra-
tional actor model does not admit a computa-

tionally tractable solution in such problems. In
these experiments, subjects analyzed eight
goods, each of which had nine hidden attributes
that could be revealed with some effort, though
without financial cost. Subjects decided which
attributes to reveal before choosing to consume
one of the eight goods. Subjects faced endoge-
nous cognition costs because they were under
time pressure. We created this time pressure in
two ways: first, by giving subjects a fixed
amount of time for each game, and, second, by
giving subjects a fixed amount of time for a set
of games. The DC model successfully predicts
the aggregate empirical regularities of informa-
tion acquisition in this experiment, including
the pattern of information acquisition within
each game and the pattern of information ac-
quisition across games. This second set of ex-
periments illustrated the applicability of the DC
problem to highly complex settings in which the
classical rational actor model is analytically and
computationally intractable.

Understanding how decision makers think
about problems is a relatively new frontier in
economic science. Stripping back decision-
making to the level of cognitive processes poses
fundamental research challenges. In this paper
we have studied the information acquisition
process. This is one example of a wider set of
attention allocation processes. Actors allocate
attention to acquire new information and to
analyze already available information (e.g.,
Christopher A. Sims, 2003).

The study of cognitive processes in economic
decision-making is still in its infancy. But we
are optimistic that such process-based research
may pave the way for a science of decision-
making with much greater predictive power
than the classical “as if” modeling that treats
cognition as a closed black box. This paper
joins a growing body of work that pries open
that box (e.g., Camerer et al., 1993; Costa-
Gomes et al., 2001). We look forward to future
process-based research that will open the box
more completely.
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