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Abstract

We propose a model in which investors cannot costlessly process information from asset

prices. At the trading stage, investors are boundedly rational and their interpretation

of prices injects noise into the price, generating a source of endogenous noise trading.

Our setup predicts price momentum and yields excessive return volatility and excessive

trading volume. In an overall equilibrium, investors optimally choose sophistication levels

by balancing the benefit of beating the market against the cost of acquiring sophistication.

There can exist strategic complementarity in sophistication acquisition, leading to multiple

equilibria.
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1 Introduction

Data can be viewed as information only after it has been analyzed. Interpreting data is often

costly in terms of effort and other resources, which is particular true for market data given the

complexity of modern financial markets. In the existing frameworks– such as the noisy rational

expectations equilibrium (REE) model (e.g., Grossman and Stiglitz, 1980; Hellwig, 1980; Vives,

2008) and the recent REE-disagreement hybrid models (e.g., Banerjee, 2011)– investors perfectly

comprehend the price function and thus can costlessly read into the asset price to uncover value-

relevant information. Apparently, such an argument requires a high degree of sophistication on

the part of market participants.1 What if interpreting price information is costly and investors

commit errors in the inference process? How to determine the sophistication levels of investors

in interpreting asset prices? How does investor sophistication affect market prices and trading

volume? In this paper, we propose a behavioral model to address these questions.

In our model, a continuum of investors interact with each other in two periods (t = 0 and 1).

At date 1, investors trade on private information in a financial market. As in the standard REE,

the asset price aggregates information and investors make inference from the price. However,

at the trading stage, investors are boundedly rational and do not fully understand how to read

information from prices. A fully sophisticated investor would extract the best signal possible

from the price (which is endogenously determined in equilibrium), while a less sophisticated

investor introduces noise in interpreting the price. After investors form their beliefs based on

the personalized price signals, they behave as Bayesian given their own beliefs and optimize

accordingly. Through market clearing, investors’optimal asset demands in turn endogenously

determine the equilibrium price function and hence the best price signal (i.e., the “truth” in

investors’personalized price signals).

At date 0, investors optimally choose their sophistication levels to maximize ex ante expected

1As discussed by Guesnerie (1992), this comprehension is broadly justified in two ways: the “eductive”justifi-
cation that relies on the understanding of the logic of the situation faced by economic agents and that is associated
with mental activity of agents aiming at “forecasting the forecasts of others;” and the “evolutive” justification
that emphasizes the learning possibilities offered by the repetition of the situation and that is associated with the
convergence of several versions of learning processes. See Section 7.1 in Vives (2008).
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utilities understanding that at date 1 they will be boundedly rational in reading information

from prices. On the one hand, increasing sophistication reduces the bounded rationality at

the later trading stage, which therefore benefits investors ex ante. On the other hand, acquiring

sophistication is costly. For instance, if we think of investors as individual investors, then in order

to become more sophisticated, investors may need better education/training (which will cost

wealth) or simply need to think harder (which will be involved with mental costs). The optimal

sophistication level is determined by balancing the benefit from reduced bounded rationality

against the cost of sophistication acquisition.

We first analyze the equilibrium in the date-1 financial market, which can be viewed as an

REE extended with bounded rationality. We find that costly price interpretation can inject noise

into the price system. Specifically, in our setting, the equilibrium price is a linear function of the

asset fundamental and a noise term. The fundamental term comes from aggregating investors’

private value-relevant information, which is the root reason why investors care to learn from the

price. The noise term in the price arises from a common error in investors’personalized price

signals, which is meant to capture the idea that in processing price data, investors may suffer

a common cognitive error (such as “sentiment”/“misperception”). Compared to the standard

REE, costly interpretation of prices leads to price momentum (future returns depend positively

on the current price), excessive return volatility, and excessive trading volume, which is consistent

with the existing empirical evidence (e.g., Jegadeesh and Titman (1993) and Moskowitz, Ooi and

Pedersen (2012) on momentum; Shiller (1981) and LeRoy and Porter (1981) on excess volatility;

and Odean (1999) and Barber and Odean (2000) on excessive trading).

After analyzing the date-1 financial market equilibrium, we return to date 0 and examine

how sophistication levels are determined in an overall equilibrium. The incentive to acquire

sophistication comes primarily from beating the average sophistication level across the market,

which allows the investor to interpret the price better and trade better (i.e., more likely to buy low

and sell high). We analyze two types of sophistication choices by investors: (1) sophistication

levels to tame the exposure to the common sentiment and (2) sophistication levels to curb

idiosyncratic errors of processing prices. We find that sentiment sophistication choice can exhibit
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strategic complementarity, leading to the possibility of multiple equilibria.

We then extend our setting to allow exogenous noise trading. In this extension, returns

can exhibit either momentum or reversal, depending on the size of the exogenous noise trading.

This is due to the interaction between two forces. First, exogenous noise trading tends to cause

returns to exhibit reversal: large noise demand pushes price too high and thus, a high price

predicts a future price decline (see Banerjee et al., 2009 and Ch. 4 in Vives, 2008). Second,

costly interpretation of prices leads to underreaction of prices to information, giving rise to

price momentum. The second effect dominates if and only if the size of noise trading is small.

Nonetheless, independent of the size of noise trading, acquiring sophistication about taming

sentiment can always lead to strategic complementarity and multiple equilibria.

We finally compare our model to four alternative existing theories that are conceptually

related to our story: supply information (Ganguli and Yang, 2009), dismissive traders (Banerjee,

2011), cursed traders (Eyster, Rabin and Vayanos, 2019), and operation risk (Basak and Buffa,

2019). We show that supply information and operation risk deliver reversal, while dismissiveness

and cursedness can deliver price momentum. Relative to dismissiveness and cursedness, our

theory predicts different patterns on other variables such as trading volume (see next section for

details).

2 Related Literature

A recent literature explores environment complexity that makes agents fail to account for the

informational content of other players’actions in game settings. Eyster and Rabin (2005) de-

velop the concept of “cursed equilibrium,”which assumes that each player correctly predicts the

distribution of other players’actions, but underestimates the degree to which these actions are

correlated with other players’information. Esponda and Pouzo (2016) propose the concept of

“Berk-Nash equilibrium”to capture that people can have a possibly misspecified view of their

environment. Although these models are cast in a game theoretical framework, the spirit of our

financial market model is similar. In our model, investors’interactions are mediated by an asset
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price, which can be viewed a summary statistic for all the other players’actions.

Eyster, Rabin and Vayanos (2019) have applied the cursed equilibrium concept to a financial

market setting. In their setting, an investor is a combination of a fully rational REE investor (who

correctly reads information from the price) and a naive Walrasian investor (who totally neglects

the information in the asset price). Thus, the notion of “cursedness”in Eyster et al. (2019) is

conceptually related to the notion of “sophistication/attention”in our setting, since both notions

aim to capture the fact that investors sometimes partially ignore information contained in asset

prices.2 Our paper complements Eyster et al. (2019) in three important ways. First, their central

results refer to explaining trading volume. For example, they show that as the number of traders

diverges to infinity, the total trading volume goes to infinity in their framework. Instead, at the

trading stage, we conduct a comparative static analysis with respect to investors’sophistication

level, rather than with respect to the number of traders. This exercise allows us to compare our

setting to a fully REE benchmark. Moreover, this exercise helps to differentiate our framework

from Eyster et al. (2019) in terms of testable volume predictions. Eyster et al. (2019) predict

that trading volume always increases with cursedness (i.e., decreases with sophistication). By

contrast, volume is either increasing or hump-shaped in sophistication in our setting. Second

and more importantly, our setting has an extra stage to determine the equilibrium level of

investor sophistication, which generates novel theory results such as strategic complementarity

in sophistication acquisition.3 In contrast, Eyster et al. (2019) do not explore these issues.

Third, our analysis incorporates a common error in interpreting prices, which generates a form

of endogenous noise trading. This result leads to the complementarity result in the sophistication

acquisition stage, and again, these features are absent in Eyster et al. (2019).

Banerjee, Kaniel and Kremer (2009) and Banerjee (2011) have combined REE and disagree-

ment frameworks to allow investors to underestimate the precision of other investors’private in-

2See Section 5 of Eyster et al. (2019) for extensive evidence that people do not suffi ciently heed the information
content of others’behavior and of financial markets. Addoum and Murfin (2017) recently document that equity
market participants fail to account for information reflected in publicly posted loan prices.

3Recently, Angeletos and Sastry (2019) find a related result of strategic complementarity and multiplicity with
rational inattention: When other agents pay less attention, prices are more confusing, and one agent finds it
harder to pay attention in a setting of complexity.
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formation (and hence labeled as “dismissiveness”models). A dismissive investor can be roughly

viewed as a combination of a fully sophisticated and a naive agent, and thus conceptually re-

lated to our investors at the trading stage. As we show in Section 7, in a dismissiveness model,

returns exhibit momentum only when investors’risk aversion is suffi ciently small. In addition,

dismissiveness and our model deliver different volume predictions: dismissive volume decreases

with sophistication, while in our setting, volume is either increasing or hump-shaped in sophis-

tication. Basak and Buffa (2019) have considered models of operation risk, where investors add

idiosyncratic noise into their optimal demand. In Section 7, we explore a setting of operation

risk extended with common noise and show that this type of models deliver return reversal.

Banerjee, Davis and Gondhi (2019) have recently proposed a framework to allow investors to

choose their beliefs and study when some empirically relevant behavioral biases such as overconfi-

dence and dismissiveness naturally arise in equilibrium. To the extent that behavioral biases are

negatively related to sophistication, this model is conceptually related to ours. Nonetheless, the

trade-offs and so mechanisms in the two models are different and complementary. In our setting,

investors would like to be fully sophisticated but infeasible because of the exogenous cost. In

contrast, in Banerjee et al. (2019), investors often optimally choose not to be fully sophisticated,

because wrong beliefs benefit investors by offering anticipated utility.

3 A Model of Costly Interpretation of Asset Prices

3.1 Setup

We consider an economy with three dates, t = 0, 1 and 2. At t = 1, two assets are traded in a

competitive market: a risk-free asset and a risky asset. The risk-free asset has a constant value

of 1 and is in unlimited supply. The risky asset is traded at an endogenous price p̃ and is in zero

supply. It pays an uncertain cash flow ṽ at date 2, where ṽ ∼ N (0, τ−1v ) with τ v > 0.

There is a continuum [0, 1] of investors who derive expected utility from their date-2 wealth.

They have constant-absolute-risk-aversion (CARA) utility with a risk aversion coeffi cient of γ.
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Investors have fundamental information and trade on it. Specifically, prior to trading, investor i

is endowed with the following private signal about the risky asset payoff ṽ:

s̃i = ṽ + ε̃i, with ε̃i ∼ N
(
0, τ−1ε

)
, (1)

where τ ε > 0. We will refer to ṽ as “fundamentals.”

Each investor has two selves, self 0 and self 1, who make decisions at dates 0 and 1 respectively.

Self 0 does not observe any of the realizations in the later date-1 financial market, but at date 0

builds an understanding of how the market works. Self 0 instructs self 1 to extract fundamental

information from the price using the best signal s̃p = c0 + c1p̃, where c0 and c1 are endogenous

constants (that are implied by the equilibrium price price function). Self 1, however, is boundedly

rational and adds receiver noise to the intercept c0 of the price signal s̃p.4 Specifically, self 1 adds

noise to s̃p and observes

s̃p,i =

(
c0 +

1
√
τu,i

ũ+
1
√
τ e,i

ẽi

)
+ c1p̃, (2)

where ũ ∼ N (0, 1) is a sentiment error common for all investors,5 ẽi ∼ N (0, 1) is an individual

processing error and (ṽ, {ε̃i}, ũ, {ẽi}) are mutually independent. Self 0 at date 0 chooses the

loadings 1√
τu,i

and 1√
τe,i

to sentiment ũ and to individual processing error ẽi taking into account

a cost function C(τu,i, τ e,i). When these loadings are small, self 1 adds little noise in the price

interpretation and investors are sophisticated. Therefore, these loadings (inversely) measure

investors’sophistication levels in handling sentiment error and handling individual processing

error. Self 1 at date 1 chooses the investment Di in the risky asset to maximize her subjective

4Noise is only added to the intercept c0 because it is the simplest possible additive noise. Hence, we assume
that self 1 observes the correct slope c1.

5For instance, in describing the speculative trading activities in Chinese stock market, a recent Financial Times
article states: “Speculative decisions to buy or sell, on the other hand, are driven by market technicals, investment
fads. . . speculative investing tends to be driven by expected changes in the market consensus, rather than by
expected shifts in economic growth prospects.”(“Fundamentals simply do not matter in China’s stock markets,”
Financial Times, January 14, 2020, https://www.ft.com/content/2362a9a0-3479-11ea-a6d3-9a26f8c3cba4) These
“investment fads”or “market consensus”can be broadly interpreted as the sentiment term ũ in our setting.
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expected utility of ex post wealth

W̃i = (ṽ − p̃)Di − C(τu,i, τ e,i), (3)

where we normalize her initial wealth level to 0 and take τu,i and τ e,i as given. Self 1 is a price

taker who infers information from the price p̃, although adding noise in the inference process.6

We assume that self 0 cannot force self 1 to use a specific demand function. This intends to

capture the idea that self 1 is responsible for trading and adds processing errors to the instructions

on how to extract information from the price passed by self 0. If self 0 is able to instruct self 1 to

implement demand schedules, this treatment shares the spirit similar to “operation risk”studied

by Basak and Buffa (2019). In Section 7.4, we compare our model with operation risk and show

that these two models deliver different predictions (e.g., our model predicts price momentum,

while operation risk predicts return reversal).

3.2 Timeline and Equilibrium Concept

The timeline of our economy is as follows:

t = 0 : Self 0 of each investor chooses τu,i and τ e,i to maximize ex ante utility.

t = 1 : Self 1 is boundedly rational in reading information from the price. Self 1 of each

investor receives the private fundamental signal s̃i and the price signal s̃p,i, and submits demand

schedules. This implies that the demand schedule is D (p̃; s̃i, s̃p,i). Market clears at price p̃.

t = 2 : Asset payoff ṽ is realized, and investors get paid and consume.

The overall equilibrium in our model is composed of a date-1 trading equilibrium in the fi-

nancial market and a date-0 sophistication determination equilibrium. In the date-1 financial

market equilibrium, self 1 of each investor maximizes her conditional subjective expected utility

6Although throughout the entire paper we take a behavioral interpretation based on individual investors, we
can alternatively interpret the two selves of our investors as the research department (self 0) and trading desk (self
1) of an investment institution. The trading desk is responsible for trading assets and it relies on the institution’s
research department to have an understanding on how to generate information from prices. Research departments
describe the procedure on how to extract the best signal from prices in the form of research reports, but trading
desks add noise in comprehending the procedures in the reports.
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and the asset market clears for given sophistication levels τu,i and τ e,i. This equilibrium deter-

mines the price function and hence the best price signal s̃p. In the sophistication determination

stage, self 0 of each investor optimally chooses the sophistication levels τu,i and τ e,i to maximize

her ex-ante expected utility taking into account future equilibrium demands. In Section 4, we

will first consider a financial market equilibrium taking investors’sophistication levels {τu,i}i∈[0,1]

and {τ e,i}i∈[0,1] as given. In Section 5, we will then deal with the overall equilibrium and the

determination of sophistication levels.

4 Financial Market Equilibrium

At date 1, taking as given the sophistication levels τu,i and τ e,i, self 1 of each investor i chooses

investment Di, that is, a demand function D (p̃; s̃i, s̃p,i) to maximize

E
[
−e−γ(ṽ−p̃)Di |s̃i, s̃p,i

]
. (4)

The CARA-normal setting implies that investor i’s demand for the risky asset is

D (p̃; s̃i, s̃p,i) =
E (v|s̃i, s̃p,i)− p̃
γV ar (ṽ|s̃i, s̃p,i)

, (5)

where E(ṽ|s̃i, s̃p,i) and V ar(ṽ|s̃i, s̃p,i) are the conditional expectation and variance of ṽ given

information {s̃i, s̃p,i}. In (5), we have explicitly incorporated s̃p,i in the demand function to

reflect the informational role of the price (i.e., the price helps to predict ṽ) and used p̃ to capture

the substitution role of the price (i.e., a higher price directly leads to a lower demand). Here,

the dependence of D (p̃; s̃i, s̃p,i) on the price p̃ in (5) reflects the fact that the investor knows that

purchasing one unit of the asset costs p̃, while her learning on fundamentals operates through

the private signal s̃p,i or “price interpretation.”

The financial market clears as follows:

∫ 1

0

D (p̃; s̃i, s̃p,i) di = 0 almost surely. (6)
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This market-clearing condition, together with demand function (5), will determine an equi-

librium price function:

p̃ = p(ṽ, ũ), (7)

where ṽ and ũ come from the aggregation of signals s̃i and s̃p,i. In equilibrium, price function

(7) will endogenously determine the informational content in the best signal s̃p.

A financial market equilibrium for given sophistication levels {τu,i}i∈[0,1] and {τ e,i}i∈[0,1] is

characterized by a price function p(ṽ, ũ) and demand function D (p̃; s̃i, s̃p,i), such that:

1. D (p̃; s̃i, s̃p,i) is given by (5), which maximizes investors’conditional subjective expected

utilities given their date-1 beliefs;

2. The market clears almost surely, i.e., equation (6) holds;

3. Investors’date-1 beliefs are given by (1) and (2), where s̃p in (2) is implied by the equilib-

rium price function p(ṽ, ũ).

4.1 Equilibrium Construction

We consider a linear price function as follows:

p̃ = avṽ + auũ, (8)

where the coeffi cients av and au are endogenous. By equation (8), provided that av 6= 0 (which

is true in equilibrium), the best price signal that a fully sophisticated investor can achieve is

s̃p =
p̃

av
= ṽ + αũ with α ≡ au

av
. (9)

Note that the first equation in (9) indicates that the best price signal s̃p is linear in p̃; that is,

s̃p = c0 + c1p̃, with coeffi cients c0 = 0 and c1 = 1/av. Conceptually, self 0 knows how to compute

the equilibrium and knows (c0, c1, α) but cannot impose a demand function on self 1. Self 1
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is boundedly rational and adds receiver noise to the best price signal. Thus, investor i cannot

costlessly process the price information, and she can only read a coarser signal as follows:

s̃p,i =

(
c0 +

1
√
τu,i

ũ+
1
√
τ e,i

ẽi

)
+ c1p̃ = ṽ + αũ+

1
√
τu,i

ũ+
1
√
τ e,i

ẽi. (10)

Using Bayes’rule, we can compute

E(ṽ|s̃i, s̃p,i) =

(
τ εs̃i +

τ e,iτu,i
τu,i + τ e,i(α

√
τu,i + 1)2

s̃p,i

)
V ar(ṽ|s̃i, s̃p,i), (11)

V ar(ṽ|s̃i, s̃p,i) =
τu,i + τ e,i(α

√
τu,i + 1)2

τ e,iτu,i + [τu,i + τ e,i(α
√
τu,i + 1)2](τ v + τ ε)

. (12)

Inserting these two expressions into (5), we can compute the expression of D (p̃; s̃i, s̃p,i), which

is in turn inserted into (6) to compute the equilibrium price as a function of ṽ and ũ. Compar-

ing coeffi cients with the conjectured price function (8), we can form a system of equations to

determine the two unknown price coeffi cients av and au.

Proposition 1 (Financial market equilibrium) Suppose that investors have the same sophisti-

cation level (i.e., τu,i = τu and τ e,i = τ e, for i ∈ [0, 1]). There exists a unique linear equilibrium

price function,

p̃ = avṽ + auũ,

where

av =
τ eτu + τ ε[τu + τ e(α

√
τu + 1)2]

τ eτu + [τu + τ e(α
√
τu + 1)2](τ v + τ ε)

,

au =
τ e
√
τu(α
√
τu + 1)

τ eτu + [τu + τ e(α
√
τu + 1)2](τ v + τ ε)

,

where α ≡ au
av
∈
(

0,
τe
√
τu

τeτε+τuτε

)
is uniquely determined by the positive real root of the following

cubic equation:

τ eτuτ εα
3 + 2τ e

√
τuτ εα

2 + (τ eτ ε + τuτ ε)α− τ e
√
τu = 0. (13)

Costly interpretation of asset prices brings an endogenous noise ũ into the price system. Even
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if investors were to get rid of the noise ũ in the price system by setting τu →∞, investors would

not still be fully sophisticated and thus they would not be able to extract the best signal from

the price if τ e <∞. In the limiting case in which both τu →∞ and τ e →∞, we have s̃p,i = s̃p,

and the noise ũ vanishes in the price function, making the economy degenerate into the full REE

setting.

Corollary 1 Suppose τu,i = τu and τ e,i = τ e, for i ∈ [0, 1]. Given (τ v, τ ε) ∈ R2++:

1. Fix τ e ∈ (0,∞), as τu →∞, then av = τe+τε
τe+τv+τε

and au = 0;

2. Fix τu ∈ (0,∞), as τ e →∞, then av =
τu+τε(α

√
τu+1)2

τu+(α
√
τu+1)2(τv+τε)

and au =
√
τu(α

√
τu+1)

τu+(α
√
τu+1)2(τv+τε)

;

3. As both τu →∞ and τ e →∞, the price function converges almost surely to p̃REE = ṽ and

s̃p,i = s̃p.

4.2 Price Momentum

We now present one main result of our model– price momentum– which says that the current

price p̃ positively predicts asset returns ṽ − p̃. Empirically, one can run a linear regression from

ṽ − p̃ on p̃, i.e., ṽ − p̃ = intercept + m× p̃ + error. The regression coeffi cient is m = Cov(ṽ−p̃,p̃)
V ar(p̃)

.

In the traditional noisy-REE setting with exogenous noise trading (e.g., Hellwig, 1980), returns

exhibit reversals; that is, m < 0 (see Banerjee et al., 2009). This is because exogenous noise

demand pushes the price too high and exogenous noisy supply depresses the price too low. In

contrast, in our setting with endogenous noise trading due to costly interpretation of prices,

returns exhibit momentum: m > 0. This result provides an explanation for the price momentum

documented in the data (e.g., Jegadeesh and Titman, 1993; Moskowitz et al., 2012).

The price momentum in our model is an underreaction story. When investors are fully

sophisticated (s̃p,i = s̃p), the price fully aggregates their private information and there is no return

predictability. Formally, by Part 3 of Corollary 1, the price is a martingale (p̃REE = E(ṽ|p̃REE))

and hence the price change is not predictable (Cov(ṽ − p̃REE, p̃REE) = 0). When investors have

limited sophistication, their forecasts do not fully use the information in the price, which in turn
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causes their trading not to fully incorporate information, thereby making the price underreact to

information. Our mechanism shares similarity to Hong and Stein (1999) and Eyster et al. (2019)

who generate momentum via traders that make forecasts based on private information, but do

not fully infer the information from prices. Since these investors fail to extract information from

prices, the slow diffusion generates momentum.

Proposition 2 (Return Predictiveness) Returns exhibit price momentum:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
> 0.

4.3 Implications of Investor Sophistication

In this subsection, we examine how investor sophistication affects asset prices and trading volume.

We assume that all investors have a common sophistication level τu,i = τu and τ e,i = τ e and

conduct comparative static analysis with respect to τu and τ e. In a full equilibrium setting, τu,i

and τ e,i will be determined endogenously, which will be explored later in Section 5.

4.3.1 Sophistication Level τu of Taming Sentiment

The parameter values in Figure 1 follow from the calibration exercise conducted by Kovalenkov

and Vives (2014). Specifically, we interpret one period as one year and let the total asset payoff

volatility match its historical value 20% of the aggregate stock market (i.e.,
√
V ar(ṽ) = 20%).

Regarding private information quality, Kovalenkov and Vives (2014) consider a range of signal-

to-noise ratio τε
τv
, from as low as one basis point to as high as 16. We assume τε

τv
= 1. We

also follow Kovalenkov and Vives (2014) and set the risk aversion coeffi cient γ at 2. Finally,

we assume that the sophistication level of curbing the individual processing error is constant at

τ e = 500, which implies that investors make very small errors in forming their date-1 beliefs

(i.e., V ar
(

1√
τe
ẽi

)
= 1

τe
= 0.2%). We do so deliberately to illustrate that even small errors in

interpreting price information can aggregate into a significant effect on equilibrium outcomes.
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Figure 1: Implications of τu for Asset Prices and Trading Volume
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This figure plots price informativeness ( 1
V ar(ṽ|p̃) ), return volatility (σ(ṽ − p̃)), price momentum (m), and trading

volume against the investor sophistication τu of taming the sentiment error. The parameters are set as follows:

τv = τε = 25, τe = 500 and γ = 2.

Price informativeness As standard in the literature (e.g., Vives, 2008; Peress, 2010), we use

the precision 1
V ar(ṽ|p̃) of stock payoffconditional on its price to measure “price informativeness”(or

“market effi ciency,”“informational effi ciency,”and “price effi ciency”). By equation (8), applying

Bayes’rule delivers 1
V ar(ṽ|p̃) = τ v + 1

α2
. Since τ v is an exogenous constant, price informativeness

is negatively related to α.

In the top left panel of Figure 1, we plot price informativeness 1
V ar(ṽ|p̃) against the investor
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sophistication τu of taming the sentiment error. When τu = 0 or τ e = 0, we have α = 0 and

1
V ar(ṽ|p̃) =∞. When either of these two cases occurs, traders do not observe a price signal. Hence,

common noise u does not get incorporated into the price so that au = 0 and av = τε
τv+τε

, which

implies that α = 0 and 1
V ar(ṽ|p̃) = ∞. Also, as a comparison, the α value in the standard REE

economy with both τu → ∞ and τ e → ∞ is zero. We observe (a) that costly interpretation of

prices injects noise into the price as long as investors are not fully sophisticated (i.e., α > 0 and

1
V ar(ṽ|p̃) < ∞ for τu ∈ (0,∞)); and (b) that price informativeness 1

V ar(ṽ|p̃) is non-monotonic in

sophistication τu. Intuitively, if τu increases from 0 to some positive value, trading injects noise

u into the price, lowering informativeness. However, if τu continues to increase further to infinity,

then the price becomes a more precise signal. This price-informativeness result has important

implications for determining the sophistication level in Section 5.

Return volatility Return volatility is measured by the standard deviation of asset returns,

σ(ṽ − p̃). In the bottom left panel of Figure 1, we plot return volatility σ(ṽ − p̃) against the

investor sophistication τu of taming the sentiment error. Return volatility in the standard REE

economy with both τu →∞ and τ e →∞ is zero. Costly interpretation of prices generates higher

return volatility than the full REE benchmark. This may help to address the volatility puzzle

(Shiller, 1981; LeRoy and Porter, 1981), which states that it is diffi cult to explain the historical

volatility of stock returns with any model in which investors are rational and discount rates are

constant. Also note that the excess return volatility is non-negligible even though investors only

make very small mistakes.

Return predictability In Proposition 2, we have shown that our model generates price mo-

mentum m > 0. In the top right panel of Figure 1, we plot m against the investor sophistication

τu of taming the sentiment error. Return predictability in the standard REE economy with both

τu →∞ and τ e →∞ is zero. We observe that, consistent with Proposition 2, m is indeed posi-

tive, indicating that there exists price momentum in our economy. In addition, m is decreasing

in τu as the information obtained from the price signal is becoming more precise.
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Trading volume In the bottom right panel of Figure 1, we plot trading volume
∫ 1
0
|D (p; si, sp,i)| di

against τu. Trading volume in the standard REE economy with both τu → ∞ and τ e → ∞ is

zero. We see that costly price interpretation generates excess trading volume. Trading volume in

the model is positive since traders have private information and do not fully learn all the infor-

mation about fundamentals from prices. In our numerical exercise, trading volume is increasing

in τu. Intuitively, a high τu decreases the weight of the common sentiment component ũ in the

price signal, which indirectly makes the individual processing error ẽi relatively more important

in the price signal. Hence, there is an increase in disagreement and an increase in volume as a

result of an increase in τu.

Proposition 3 (Implications of τu)

(a) Price informativeness

(1) For suffi ciently small τu, as investors become more sophisticated by increasing τu, price

p̃ conveys less precise information about fundamental ṽ.

(b) Return volatility

(1) As τu →∞, return volatility approaches
√

τv
(τe+τv+τε)2

.

(2) As τu → 0, return volatility approaches
√

τ2eτv
(τeτv+τeτε)2

.

(c) Trading Volume

(1) As τu →∞, the total trading volume does not vanish (i.e., limτu→∞ V olume > 0).

(2) As τu → 0, the total trading volume does not vanish (i.e., limτu→∞ V olume > 0).

4.3.2 Sophistication Level τ e of Curbing Individual Processing Error

In Figure 2, we analyze the effects of changes in τ e on asset prices and trading volume. The

parameter values in Figure 2 are the same as Figure 1 with the exception that the sophistication

level of taming sentiment is now fixed at τu = 500, which implies small sentiment-driven errors

in self-1 beliefs (i.e., V ar
(

1√
τu
ũi

)
= 1

τu
= 0.2%).

15



Figure 2: Implications of τ e for Asset Prices and Trading Volume
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This figure plots price informativeness ( 1
V ar(ṽ|p̃) ), return volatility (σ(ṽ − p̃)), price momentum (m), and trading

volume against the investor sophistication τe of curbing individual processing error. The parameters are set as

follows: τv = τε = 25, τu = 500 and γ = 2.

Price informativeness In the top left panel of Figure 2, we plot price informativeness 1
V ar(ṽ|p̃)

against the investor sophistication τ e of curbing individual processing errors. As a comparison,

the α value in the standard REE economy with both τu → ∞ and τ e → ∞ is zero, and hence

1
V ar(ṽ|p̃) = τ v + 1

α2
= ∞. Price informativeness is monotonically decreasing in τ e. Intuitively, at

τ e = 0, the price is extremely noisy and investors completely disregard the price signal. Hence,

the price is fully revealing. As τ e increases, investors start using the price signal and the sentiment
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noise ũ is added to the price. At the same time, as τ e increases, the weight of sentiment ũ in the

individual price signal increases relative to the weight of the individual processing error, making

the signal more dependent on sentiment and hence the price more noisy.

Return volatility In the bottom left panel of Figure 2, we plot return volatility σ(ṽ − p̃)

against the investor sophistication τ e of curbing individual processing errors. Return volatility

in the standard REE economy is zero. Return volatility is non-monotonic in τ e. As τ e increases,

(a) traders have a more precise individual price signal, bringing the price closer to fundamentals

and reducing volatility, and (b) the weight of sentiment ũ in the individual price signal increases

relative to the weight of the individual processing error, making the signal more dependent on

sentiment and hence the price more noisy and further away from fundamentals.

Return predictability In Proposition 2, we have shown that our model generates momentum,

i.e., m > 0. In the top right panel of Figure 2, we plot m against τ e. Return predictability in

the standard REE economy is zero. We observe that m is indeed positive, indicating that there

exists price momentum in the economy. In addition, m is decreasing in τ e as the information

obtained from the price signal is becoming more precise.

Trading volume In the bottom right panel of Figure 2, we plot trading volume against τ e.

Trading volume in the standard REE economy is zero. We see that costly price interpretation

generates trading volume since prices are not fully revealing. In our numerical exercise, trading

volume is non-monotonic in τ e. Intuitively, an increase in τ e from τ e = 0 provides traders with

a price signal, which is an additional source of disagreement between investors, leading to an

increase in trading volume. However, as τ e increases even further the disagreement diminishes

and trading volume decreases as well.

Proposition 4 (Implications of τ e)

(a) Price informativeness

17



(1) As investors become more sophisticated by increasing τ e, price p̃ conveys less precise

information about fundamental ṽ.

(b) Return volatility

(1) As τ e →∞, return volatility approaches

σ(ṽ − p̃) =

√
(α
√
τu + 1)2(τ vα2τu + 2τ vα

√
τu + τu + τ v)

(τ v + τ ε + τu + α2τuτ v + α2τuτ ε + 2α
√
τuτ v + 2α

√
τuτ ε)2

.

(2) As τ e → 0, return volatility approaches
√

τ2uτv
(τuτv+τuτε)2

.

(c) Trading Volume

(1) As τ e →∞, the total trading volume does not vanish (i.e., limτe→∞ V olume > 0).

(2) As τ e → 0, the total trading volume does not vanish (i.e., limτe→0 V olume > 0).

5 Sophistication Level Equilibrium

5.1 Sophistication Determination

As we discussed in Section 3.1, the sophistication levels are determined by the rational self 0 of

each investor at date 0. Inserting the date-1 demand function D (p̃; s̃i, s̃p,i) in (5) into the CARA

utility function and taking expectations yield investor i’s date-0 payoff, E
[
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i)−C(τu,i,τe,i)]

]
.

Note that this expectation is computed under the correct distribution, because self 0 is fully ra-

tional in contemplating the sophistication levels τu,i and τ e,i of her future self, which in turn

determine how much information the boundedly rational self 1 will read from the asset price p̃.

Formally, trader i chooses τu,i and τ e,i to maximize

max
(τu,i,τe,i)

E
[
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i)−C(τu,i,τe,i)]

]
. (14)

Definition 1 An overall equilibrium of the two-stage game is defined as follows:
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(a) Financial market equilibrium at date 1, which is characterized by a price function p(ṽ, ũ)

and demand functions D (p̃; s̃i, s̃p,i), such that:

(1) D (p̃; s̃i, s̃p,i) is given by (5), which maximizes investors’conditional subjective expected

utilities given their date-1 beliefs;

(2) the market clears almost surely, i.e., equation (6) holds;

(3) investors’date-1 beliefs are given by (11) and (12), where s̃p is implied by the equilib-

rium price function p(ṽ, ũ) and where the sophistication levels (τu,i)i∈[0,1] and (τ e,i)i∈[0,1]

are determined at date 0.

(b) Sophistication level equilibrium at date 0, which is characterized by sophistication levels

(τu,i)i∈[0,1] and (τ e,i)i∈[0,1], such that (τu,i, τ e,i) solves (14), where investors’date-1 beliefs

are given by (11) and (12).

5.2 Equilibrium Characterization

Given that investors are ex ante identical, we consider a symmetric equilibrium in which all in-

vestors choose the same sophistication level. Let W (τu,i, τ e,i; τu, τ e) denote the certainty equiv-

alent of investor i’s date-0 payoff when she decides to acquire sophistication levels τu,i and τ e,i

and all the other investors acquire sophistication levels τu and τ e. That is,

W (τu,i, τ e,i; τu, τ e) ≡ −
1

γ
ln
(
−E

[
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i)−C(τu,i,τe,i)]

])

=
1

2γ
ln


[1 + γCov(ṽ − p̃, Di)︸ ︷︷ ︸]2

more informed trading

−γ2V ar(ṽ − p̃)× V ar (Di)︸ ︷︷ ︸
excessive trading

− C(τu,i, τ e,i)︸ ︷︷ ︸
cost

, (15)

where the second equality follows from the properties of normal distributions.

In equation (15), improving the sophistication of future self 1 affects the current self 0’s

payoff in three ways. The first effect is a direct effect: acquiring sophistication incurs a cost,
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C(τu,i, τ e,i), which directly harms the investor from self 0’s perspective. The other two effects

are indirect, which work through affecting the trading in the future financial market. These two

indirect effects work in opposite directions.

First, being more sophisticated allows the future self 1 to better read information from the

asset price, which therefore makes her trading more aligned with price changes– i.e., buying low

and selling high– and therefore benefits the investor at date 0. This positive indirect effect is

captured by the term Cov(ṽ − p̃, Di). Intuitively, when τu,i > τu and τ e,i > τ e, investor i’s

forecast beats the market and thus, her trading improves her ex-ante welfare.

Second, investors engage in speculative trading in the date-1 financial market, because there

are no risk-sharing benefits in our setting. In this sense, trading is excessive, and the more an

investor’s future self trades, the more harmful it is from self 0’s perspective. Improving the

sophistication levels τu,i > τu and τ e,i > τ e allows self 1 to lower her perceived risk and thus she

will trade more aggressively, which in turn harms self 0 via the excessive trading channel. This

negative effect is captured by the term V ar (Di) in equation (15), which measures the size of self

1’s trading in the financial market.

The optimal sophistication levels τ ∗u,i and τ
∗
e,i are determined by the first-order conditions

(FOCs) of maximizingW (τu,i, τ e,i; τu, τ e). Formally, (τ ∗u,i, τ
∗
e,i) = arg maxτu,i,τe,iW (τu,i, τ e,i; τ

∗
u, τ

∗
e).

The FOCs of the sophistication determination problem are given by


∂W (τu,i,τe,i;τu,τe)

∂τu,i

∣∣∣
τu,i=0

≤ 0, if τu,i = 0,

∂W (τu,i,τe,i;τu,τe)

∂τu,i
= 0, if τu,i > 0,

(16)

and 
∂W (τu,i,τe,i;τu,τe)

∂τe,i

∣∣∣
τe,i=0

≤ 0, if τ e,i = 0,

∂W (τu,i,τe,i;τu,τe)

∂τe,i
= 0, if τ e,i > 0.

(17)

In a symmetric equilibrium, we impose τ ∗u,i = τ ∗u and τ
∗
e,i = τ ∗e in the FOCs. The overall

equilibrium is characterized by three variables, (τ ∗u, τ
∗
e, α

∗). These three variables are jointly

determined by a system of three conditions: (a) the cubic equation (13) characterizing the
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financial market equilibrium; (b) the FOC (16) characterizing the optimal sophistication level τ ∗u

of taming the sentiment error; and (c) the FOC (17) characterizing the optimal sophistication

level τ ∗e of curbing individual processing errors.

The complexity of the problem precludes a full analytical characterization of the equilibrium.

We therefore rely on numerical analysis. We consider a linear cost function, C(τu,i, τ e,i) =

κuτu,i + κeτ e,i, where κu and κe are positive constants.7 Our model admits multiple equilibria.

We use Figure 3 to plot the first equilibrium and Figure 4 to plot the second equilibrium. In

Panels a1—a3 of both figures, we plot the equilibrium values of (τ ∗u, τ
∗
e, α

∗) as functions of κu,

when κe is fixed at 0.0002. In Panels b1—b3 of both figures, we vary κe and fix the value of κu at

0.0015. The other parameters take the same values as in previous figures, that is, τ v = 25 and

γ = 2, except for τ ε = 1. We set a smaller τ ε because under coarse private information, there are

multiple equilibria at the sophistication determination stage. Numerically, we have only been

able to find two equilibria.

The qualitative patterns of (τ ∗u, τ
∗
e, α

∗) are similar across both figures and thus we focus on

Figure 3. Intuitively, an increase in the cost κu of taming the sentiment error leads to a decrease

in both sophistication levels τ ∗u and τ
∗
e in Panels a1—a2, and an increase in the cost κe of curbing

individual processing errors leads to a decrease in both τ ∗u and τ
∗
e in Panels b1—b2. However,

Panels a3 and b3 exhibit different patterns of of α∗. Specifically, in Panel a3, α∗ is non-monotonic

in κu, while in Panel b3, α∗ is monotonically decreasing in κe. This difference is caused by the

different behavior of τ ∗u: In Panel a1, changes in κu have a big impact on the choice of τ
∗
u, and

as we have seen in Figure 1, price informativeness is non-monotonic; by contrast, changes in κe

only causes modest variations in τ ∗u in Panel b1, and hence price informativeness is monotonic.

5.3 What Drives Equilibrium Multiplicity?

In this subsection, we dig deeper the driving forces of multiple equilibria by distinguishing the

choice of sophistication τu,i of taming the sentiment error from the choice of sophistication τ e,i
7We use a linear and separable cost function because it serves as a simple benchmark to understand the

numerical results.
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Figure 3: The First Overall Equilibrium
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This figure plots values of (τ∗u, τ
∗
e, α
∗) for the first equilibrium as functions of κu in the top panels and κe in the

bottom panels. The cost function is C(τu,i, τe,i) = κuτu,i + κeτe,i, where κu and κe are positive constants. The

parameters are set as follows: τv = 25, τε = 1 and γ = 2.

of curbing individual processing errors.

The Choice of τu We now take τ e,i = τ e as given and focus on the choice of τu,i. Since the

cost function C(τu,i, τ e,i) is exogenous, we focus on analyzing the marginal benefit and simply

set C(τu,i, τ e,i) = 0. Let us denote the marginal benefit of choosing τu,i = τu as φ (τu). The

shape of φ (τu) =
∂W (τu,i,τu)

∂τu,i

∣∣∣
τu,i=τu

will determine whether there is a unique equilibrium or there

are multiple equilibria. Formally, if φ (τu) is downward sloping, then the equilibrium is unique.

In contrast, when φ (τu) has an upward sloping segment, multiplicity can arise. Hence, the key

to have multiple equilibria is to check the sign of dφ(τu)
dτu

.
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Figure 4: The Second Overall Equilibrium
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This figure plots values of (τ∗u, τ
∗
e, α
∗) for the second equilibrium as functions of κu in the top panels and κe in

the bottom panels. The cost function is C(τu,i, τe,i) = κuτu,i + κeτe,i, where κu and κe are positive constants.

The parameters are set as follows: τv = 25, τε = 1 and γ = 2.

We can see this non-monotonicity in Panel a of Figure 5, where we use the same parameters

as in Figure 1. Intuitively, when τu = 0 (low τu), there is no noise ũ in the price. As τu increases,

the noise ũ gets incorporated into the price and the incentives to tame sentiment increase (φ (τu)

is increasing). In contrast, for high values of τu, the price signal is already very informative and

a higher τu will not provide much additional information (φ (τu) is decreasing). Consequently,

the marginal benefit φ (τu) has a hump-shape and there are multiple equilibria.

In the following proposition, we formally analyze the potential presence of multiple equilibria

for a general cost function. Since we fix τ e,i and only consider the choice of τu,i, we denote the
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5.4 Uncorrelated Receiver Noise

This section solves the model with no common sentiment errors ũ. To this end, we assume

that τu,i = τu → ∞. Corollary 1 shows that in a symmetric equilibrium with τ e,i = τ e, price

coeffi cients are given by av = τe+τε
τe+τv+τε

and au = 0, implying that α = 0. In this case, returns

still exhibit momentum:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

τ v
τ ε + τ e

> 0.

Thus, the results on return predictiveness of the model are robust to turning off the common

sentiment error term ũ. Trading volume is given by

Volume =
1

γ

√
2

π
(τ ε + τ e).

and it is increasing in sophistication τ e. The following proposition formally analyzes the existence

of a unique equilibrium in sophistication levels when the cost function is C(τ e,i) = κeτ e,i.

Proposition 6 Suppose that τu → ∞ and C(τ e,i) = κeτ e,i. If κe is suffi ciently small, then

there is a unique symmetric equilibrium with τ ∗e > 0. Otherwise, there is a unique symmetric

equilibrium with τ ∗e = 0.

This proposition suggests that complementarity and multiplicity are driven by the choice of

τu. When we get rid of the common error term ũ in the receiver noise, the complementarity

result disappears.

6 Extension with Noisy Supply

In this section, we extend the setup in Section 3.1 with exogenous noisy trading. Specifically,

the risky asset has a noisy supply q̃ ∼ N
(
0, τ−1q

)
, which is independent of all the other random

variables. All the other features of the setup in Section 3.1 remain unchanged. The market-
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clearing condition in the financial market now becomes

∫ 1

0

D (p̃; s̃i, s̃p,i) di = q̃ almost surely. (18)

With noisy supply, the price of the risky asset is given by

p̃ = avṽ + auũ+ aq q̃, (19)

where a’s are endogenous coeffi cients. Hence, the price signal can be written as

s̃p,i = ṽ + αũ+ θq̃ +
1
√
τu,i

ũ+
1
√
τ e,i

ẽi,

where α ≡ au
av
and θ ≡ aq

av
. The investor’s beliefs in this case are given by

E(ṽ|s̃i, s̃p,i) =

(
τ εs̃i +

τ e,iτu,iτ q

τu,iτ q + τ e,iτ q(α
√
τu,i + 1)2 + τ e,iτu,iθ

2 sp,i

)
V (ṽ|s̃i, s̃p,i), (20)

V (ṽ|s̃i, s̃p,i) =
τu,iτ q + τ e,iτ q(α

√
τu,i + 1)2 + τ e,iτu,iθ

2

τ e,iτu,iτ q + (τu,iτ q + τ e,iτ q(α
√
τu,i + 1)2 + τ e,iτu,iθ

2)(τ v + τ ε)
. (21)

The following proposition shows the financial market equilibrium and return predictiveness in

this setup with noisy supply.

Proposition 7 Suppose that investors have the same sophistication level (i.e., τu,i = τu and

τ e,i = τ e, i ∈ [0, 1]) in the economy with noisy supply. Then:

(a) There exists a unique linear equilibrium price function with coeffi cients:

av =
τ eτuτ q + τ ε(τuτ q + τ eτ q(α

√
τu + 1)2 + τ eτuθ

2)

τ eτuτ q + (τuτ q + τ eτ q(α
√
τu + 1)2 + τ eτuθ

2)(τ v + τ ε)
,

au =
τ e
√
τuτ q(α

√
τu + 1)

τ eτuτ q + (τuτ q + τ eτ q(α
√
τu + 1)2 + τ eτuθ

2)(τ v + τ ε)
,

aq = − γ(τuτ q + τ eτ q(α
√
τu + 1)2 + τ eτuθ

2)− τ eτuτ qθ
τ eτuτ q + (τuτ q + τ eτ q(α

√
τu + 1)2 + τ eτuθ

2)(τ v + τ ε)
,
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where

θ = − γ

τ ε
,

and α is determined by the unique real root of the following cubic equation:

α3 +
2
√
τu
α2 +

(
γ2

τ qτ 2ε
+

1

τ e
+

1

τu

)
α− 1
√
τuτ ε

= 0. (22)

(b) There exists a threshold τ̂ q such that returns exhibit momentum m > 0 for any τ q > τ̂ q.

Figures 6 report the results for the two main results of the paper, i.e., return predictiveness

m and complementarity in the sentiment loading τu,i. We use the same parameter values as in

Figure 1 and set τ q = 0.1 in the top panels and τ q = 5 in the bottom panels. We see that the

complementarity result in the sophistication choice prevails in both panels.

However, whether the momentum result arises depends on the size of noise trading. We can

see that the sign of m is negative when τ q is low, but it is positive when τ q is high. Intuitively,

the sign of return predictiveness is determined by two counteracting forces. First, as in the

traditional noisy-REE setting, exogenous noise trading delivers return reversals (see Banerjee et

al., 2009; Vives, 2008): exogenous noise demand pushes the current price too high and exogenous

noisy supply depresses the current price too low. Second, in our setting, investors interpret price

costly, which causes the price to underreact to information, leading to return momentum. When

the size of noise trading is high (low τ q), the first effect dominates. In contrast, when the size of

noise trading is low (high τ q), the second effect dominates.

7 Comparison to Other Related Models

In this section, we examine other models that are conceptually related to our story. We consider

four alternative theories: (a) information acquisition about noisy supply, (b) dismissive traders,

(c) cursed traders, and (d) operation risk. We will show that supply information and operation

risk deliver return reversal and that dismissiveness and cursedness can deliver price momentum.
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7.1 Information Acquisition about Noisy Supply

Information acquisition about noisy supply has been analyzed by Ganguli and Yang (2009),

Manzano and Vives (2011), and Marmora and Rytchkov (2018), among others. We base our

analysis on Ganguli and Yang (2009) and modify our setup in Section 3.1 in two aspects. First,

we shut down the sophistication level choice in our model by setting both τu →∞ and τ e →∞,

which implies that investors are able to observe the best price signal s̃p. Second, we assume

that at date 1, investor i is endowed with qi units of the risky asset, where q̃i = q̃ + η̃i with

q̃ ∼ N
(
0, τ−1q

)
and η̃i ∼ N

(
0, τ−1η

)
, which implies that the aggregate supply is

∫ 1

0

q̃idi = q̃.

With these two modifications, the price of the risky asset is given by

p̃ = avṽ − aq q̃.

In this supply-information model, there can exist multiple linear equilibria at the trading stage.

In each of these equilibria, returns exhibit reversal (i.e., m < 0), which contrasts to our setting

of costly interpretation of prices.

Proposition 8 In the economy with supply information, if γ2 > 4τ ετ η, then there exist two

equilibria with price coeffi cients given by

av = (τ v + τ ε + τ p)
−1(τ ε + τ p),

aq = (τ v + τ ε + τ p)
−1(τ q + γ),

with τ p = β2(τ q + τ η) and β = av/aq takes two values

βSUB = (2τ η)
−1
(
γ −

√
γ2 − 4τ ετ η

)
,

βCOM = (2τ η)
−1
(
γ +

√
γ2 − 4τ ετ η

)
.
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Under SUB-equilibrium, information acquisition is a strategic substitute. Under COM-equilibrium,

information acquisition is a complement. Returns exhibit reversal under both equilibria:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
< 0.

7.2 Dismissiveness

We incorporate dismissiveness into our model based on Banerjee (2011). We make two modi-

fications to our setup with noise trading in Section 6. First, we shut down the sophistication

level choice in our model by setting both τu →∞ and τ e →∞, which implies that investors are

able to observe the best price signal s̃p. Second, investor i’s beliefs about the private signal of

investor j are given by

s̃i,j = ρṽ +
√

(1− ρ2)φ̃+ ε̃j, where ε̃j ∼ N
(
0, τ−1ε

)
, φ̃ ∼ N

(
0, τ−1v

)
,

ρ ∈ [0, 1] and φ̃ is independent of ṽ. The parameter ρ measures the degree of dismissiveness

by investors. When ρ < 1, each investor believes that the private signal of all other investors

includes an additional random variable φ̃. When ρ = 1, then we have a standard REE model.

With these modifications, under the beliefs of the investors, the price of the risky asset is given

by

p̃ = avρṽ + av
√

(1− ρ2)φ̃+ aq q̃. (23)

Dismissiveness can predict either momentum or reversal, depending on the value of investors’

risk aversion: When the risk aversion is suffi ciently small, returns exhibit momentum, and when

the risk aversion is suffi ciently large, returns exhibit reversal. This is intuitive because the risk

aversion scales how much noise there is in prices, and so how much noise-driven reversal there is.

Nonetheless, dismissiveness delivers different volume predictions from our model. Specifically,

trading volume increases with dismissiveness and hence decreases with sophistication (to the

extent that dismissiveness is inversely related to sophistication). By contrast, in our setting,
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trading volume either increases with sophistication or is hump-shaped in sophistication.

Proposition 9 In a setting with dismissive investors, there is a unique linear equilibrium price

function with coeffi cients:

av =
(τ vτ εα

2 − τ qτ ερ2 + τ qτ vρ+ τ qτ ε)

(α2τ 2v + τ εα2τ v − τ qτ ερ2 + τ qτ v + τ qτ ε)
,

aq = − (γτ vα
2 − τ qτ vαρ− γτ qρ2 + γτ q)

(α2τ 2v + τ εα2τ v − τ qτ ερ2 + τ qτ v + τ qτ ε)
,

where α ≡ aq
av

= −γ/τ ε. For suffi ciently small γ, returns exhibit momentum, and for suffi ciently

large γ, returns exhibit reversal. Trading volume is increasing in dismissiveness.

7.3 Cursed Traders

We analyze cursed traders based on Eyster et al. (2019). We modify our setup in Section 3.1 in

four aspects. First, we shut down the sophistication level choice in our model by setting both

τu → ∞ and τ e → ∞, which implies that investors are able to observe the best price signal s̃p.

Second, we assume there is a finite number of traders N . Third, the risky asset pays date-2 value

ṽ + ς̃, where ς̃ ∼ N
(
0, τ−1ς

)
is an unlearnable risk, so the private signal is only about the payoff

component ṽ. Fourth, investors’behavior lies between rationality and full cursedness. Traders

maximize the following utility

EU = E
[
−e−γDi(ṽ+ς̃−p̃) | s̃i, p̃

]1−χ
E
[
−e−γDi(ṽ+ς̃−p̃) | s̃i

]χ
,

where parameter χ captures the extent of cursedness. With these modifications, the price of the

risky asset is given by

p̃ = av

N∑
i=1

s̃i.

This model is able to generate positive momentum as in our model. Intuitively, cursed traders

(χ > 0) disregard information from the price, which leads to price underreaction. The mechanism

is similar to our model. As explained in Section 2, our framework complements Eyster et al.
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(2019) in three important ways. First, Eyster et al. (2019) predict that trading volume always

increases with cursedness and hence decreases with sophistication. By contrast, in our setting,

volume is either increasing or hump-shaped in sophistication. Intuitively, since cursed volume

arises from investors neglecting price information, the more cursed and less sophisticated are

investors, the higher is volume. In our setting, if investors are less exposed to the sentiment error,

their posterior beliefs put relative higher weights on individual processing errors, generating more

disagreement and higher volume. This difference in sophistication-volume patterns can be taken

to the data to differentiate our model from cursedness (for instance, one can use the fraction of

institutional trading to proxy for the sophistication degree of a market).

Second and more importantly, our setting has an extra stage to determine the equilibrium level

of investor sophistication, which generates novel theory results such as strategic complementarity

in sophistication acquisition. Third, our analysis incorporates a common error in interpreting

prices, which generates a form of endogenous noise trading.8

Proposition 10 In the economy with cursed traders, the price coeffi cient is given by

av =
τ ε([N − χ(N − 1)]τ v +Nτ ε)

N(τ v + τ ε)(τ v +Nτ ε)
.

This model with cursed traders generates momentum:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
= av

χ(N − 1)(τ v +Nτ ε)

(τ v + τ ε)(τ v +Nτ ε)
> 0.

Trading volume is increasing in cursedness χ.

7.4 Operation Risk

We incorporate operation risk into our model based on Basak and Buffa (2019). We modify our

setup with noise trading in Section 6 in two aspects. First, we shut down the sophistication level

8We have also solved our Setup in Section 3.1 with a finite number of investors N to make it more comparable
to Eyster et al. (2019). The main implications of the model are robust to a finite number of traders.
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choice in our model by setting τu → ∞ and τ e → ∞, which implies that investors are able to

observe the best price signal s̃p. Second, the asset demand contains operational errors, hence the

asset demand is given by

Dor,i = Di + x̃+ η̃i, , where x̃ ∼ N
(
0, τ−1x

)
and η̃i ∼ N

(
0, τ−1η

)
. (24)

Di is the optimal investment strategy and x̃ + η̃i is the operational error. The operational

error x̃ is common to all investors, while operational errors η̃i are identically and independently

distributed.

With these modifications, the price of the risky asset is given by

p̃ = avṽ + axx̃+ aq q̃. (25)

Hence, the price signal can be written as

s̃p,i = ṽ + αx̃+ θq̃,

where α ≡ ax
av
and θ ≡ aq

av
. Solving for the optimal asset demand is not straightforward because

final wealth is no longer normally distributed and we cannot use mean-variance results. Final

wealth is given by

Wi = Di(ṽ − p̃) + x̃(ṽ − p̃) + η̃i(ṽ − p̃),

and we need to take expectations:

EU = E [− exp(−γWi)|s̃i, s̃p,i] .

When there is no common operational risk x̃, the optimal asset demand Di turns out to be the

exact same as the standard CARA-Normal framework:

D (p̃; s̃i, s̃p,i) =
E(ṽ|s̃i, s̃p,i)− p̃
γV ar (ṽ|s̃i, s̃p,i)

.
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With common operational risk x̃, the optimal demand is given by

D (p̃; s̃i, s̃p,i) =
E(ṽ|s̃i, s̃p,i)− p̃
γV ar (ṽ|s̃i, s̃p,i)

− E (x̃|s̃i, s̃p,i) .

Hence, the total demand is

Dor,i =
E(ṽ|s̃i, s̃p,i)− p̃
γV ar (ṽ|s̃i, s̃p,i)

+ [x̃− E (x̃|s̃i, s̃p,i)] + η̃i.

Intuitively, since investors know that they will get a common shock x̃ to their ideal demand, then

they correct demand by their best forecast of x̃. They are able to estimate x̃ with both signals

s̃i and s̃p,i.

Proposition 11 The coeffi cients in the linear equilibrium price function are given by:

av =
[τ qτx + τ ε(α

2τ q + θ2τx)][τ qτx + (τ v + τ ε)(α
2τ q + θ2τx)]− αγτ qτ v(α2τ q + θ2τ)

[τ qτx + (τ v + τ ε)(α2τ q + θ2τx)]2
,

ax =
[ατ qτx + γ(α2τ q + θ2τx)][τ qτx + (τ v + τ ε)(α

2τ q + θ2τx)]− α2γτ q(τ v + τ ε)(α
2τ q + θ2τx)

[τ qτx + (τ v + τ ε)(α2τ q + θ2τx)]2
,

au = −aq,

where θ = aq
av
, α = ax

av
, θ = −α, and α is a real root to the following cubic equation:

(τ qτ
2
ε + τxτ

2
ε + τ qτ vτ ε + τxτ vτ ε)α

3 + (γτ qτ v + γτxτ v + γτxτ ε)α
2 + τ qτxτ εα + γτ qτx = 0.

The common error x̃ behaves in a very similar way as noisy supply, with the only difference

that agents can learn about x̃ and as a consequence, investors try to correct for the demand shock

x̃ in their ideal demand Di. Figure 7 uses the same parameter values as Figure 6 with high τ q,

where investors are not able to observe the ideal price signal and there is noisy supply. We assume

that the precision τx of the common error x̃ is the same as the one assumed for the sentiment

term ũ. Figure 7 shows that the model with operation risk fails to generate momentum for

those values. As mentioned above, common operation risks behave in a similar way as a noisy
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supply, and thus are not able to generate momentum. We have tried a variety of parameter

values and find that the results are robust even for very large values of τ q. Panel b shows that

momentum under operation risk does not depend on the precision τ η of idiosyncratic operational

errors. Intuitively, these idiosyncratic errors disappear when aggregating demand and they have

no effect on asset prices.

Figure 7: Return Predictiveness in Settings of Operation Risk

0 20 40 60 80 100

x

-3.5

-3

-2.5

-2

-1.5

-1

M
om

en
tu

m
, m

10-3

0 20 40 60 80 100
-3.5

-3

-2.5

-2

-1.5

-1

M
om

en
tu

m
, m

10-3

This figure shows price momentum (m) against the precision of the common operational risk x̃ and the precision

of the idiosyncratic operational risk η̃i. The parameters are set as follows: τv = τε = 25, τ q = 5 and γ = 2. Panel

a sets τη = 5 and Panel b sets τx = 5.

Corollary 2 In the setting with operation risk, if τx → ∞, then there is a unique linear equi-

librium price function with coeffi cients:

av =
τ εθ

2 + τ q

τ q + θ2τ v + θ2τ ε
,

aq =
−γθ2 + τ qθ

τ q + θ2τ v + θ2τ ε
,

where θ = aq
av

= −γ/τ ε. The asset price is isomorphic to a standard REE equilibrium and returns

exhibit reversal (i.e., m < 0).

In the limiting case without common error, since all operational errors are identically and
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independently distributed, then we end up with a standard REE equilibrium because all opera-

tional errors cancel with each other when aggregated. Return volatility and momentum will be

the same as in a standard REE equilibrium, but volume will be higher because of the operational

errors. In particular, this model of operation risk is not able to generate price momentum.

8 Conclusion

We develop a model to capture the notion that investors cannot costlessly process price data

in financial markets. Although investors actively infer information from the price, their infor-

mation processing is noisy. The more sophisticated are investors, the smaller is this processing

noise. After reading price data and form their beliefs, investors hold optimal trading positions

according to their own beliefs (and so they are only boundedly rational in extracting informa-

tion from the price). We find that imperfect price interpretation can inject noise into the price

system, which serves as a form of endogenous noise trading in our setting. Our model predicts

price momentum because investors fail to make full use of the information in asset prices. Com-

pared to the standard REE, our model generate excessive return volatility and excessive trading

volume. There can exist strategic complementarity in acquiring sophistication of taming senti-

ment, leading to the possibility of multiple equilibria. Our theory qualitatively differs from many

other conceptually related models such as supply information, dismissiveness, cursedness, and

operation risk.
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Appendices (For Online Publication)

A Proof of Proposition 1

Using Bayes’rule, we can compute investors’beliefs given by equations (11) and (12). In a sym-

metric equilibrium with τu,i = τu and τ e,i = τ e, all investors have the same conditional variance

V ar(ṽ|s̃i, s̃p,i). Thus, inserting these two expressions into the demand (5), we can compute the
expression of D (p̃; s̃i, s̃p,i), which is in turn inserted into (6) to compute the equilibrium price

as a function of ṽ and ũ. Comparing coeffi cients with the conjectured price function (8), we

can form a system of equations to determine the two unknown price coeffi cients av and au in

Proposition 1. Inserting the expressions of a’s into α ≡ au
av
and simplifying yields the cubic (13)

that determines the value of α. Denote the left-hand side of (13) by f (α). That is,

f (α) ≡ τ eτuτ εα
3 + 2τ e

√
τuτ εα

2 + (τ eτ ε + τuτ ε)α− τ e
√
τu.

We can compute f (0) = −τ e
√
τu < 0 and f

(
τe
√
τu

τeτε+τuτε

)
> 0, and thus by the Intermediate Value

Theorem, there exists a solution α ∈
(

0,
τe
√
τu

τeτε+τuτε

)
such that f (α) = 0. This result establishes

the existence of a financial market equilibrium. The discriminant of the cubic (13) is negative.

Thus, there exists a unique real root, which establishes the uniqueness of a financial market

equilibrium. QED.

B Proof of Corollary 1

Given (τ v, τ ε) ∈ R2++, if we take the following limits of the price coeffi cients av and au in

Proposition 1, we get:

1. Fix τ e ∈ (0,∞), as τu →∞, then av = τe+τε
τe+τv+τε

and au = 0. Hence, α = 0.

2. Fix τu ∈ (0,∞), as τ e → ∞, then av =
τu+τε(α

√
τu+1)2

τu+(α
√
τu+1)2(τv+τε)

and au =
√
τu(α

√
τu+1)

τu+(α
√
τu+1)2(τv+τε)

.

Inserting the expressions of a’s into α ≡ au
av
and simplifying yields the following cubic

equation that determines the value of α: τuτ εα3 + 2
√
τuτ εα

2 + τ εα−
√
τu = 0.

3. As both τu →∞ and τ e →∞, then av = 1 and au = 0. Hence, the price function converges

almost surely to p̃REE = ṽ and s̃p,i = s̃p. QED.
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C Proof of Proposition 2

Return predictiveness m is given by

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

av(1−av)
τv

− a2u
τu

a2v
τv

+ a2u
τu

=
τ v(τ ετ

2
e(α
√
τu + 1)4 + 2τ eτuτ ε(α

√
τu + 1)2 + τ 2u(τ ε + τ e))

(τ eτu + τ ε(τu + τ e(α
√
τu + 1)2))2 + τ 2eτuτ v(α

√
τu + 1)2

> 0,

where av and au are the price coeffi cients in Proposition 1. QED.

D Proof of Proposition 3

(a) Price informativeness

(1) Using equation (13), we can derive

dα

dτu
=
−
(
τ eτ εα

3 + 2τ e(
√
τu)
−1τ εα

2 + τ εα− τ e(
√
τu)
−1)

3τ eτuτ εα2 + 4τ e
√
τuτ εα + τ eτ ε + τuτ ε

. (26)

The sign of equation (26) is determined by its numerator, and we can conclude that

limτu→0
dα
dτu

> 0.

(b) Return volatility

(1) Return volatility is given by

σ(ṽ − p̃) =
√
V ar(ṽ − p̃),

where

V ar(ṽ − p̃) =
(1− av)2

τ v
+
a2u
τu
. (27)

Using equation (27), we can calculate the limτu→∞ V ar(ṽ − p̃) = τv
(τe+τv+τε)2

.

(2) Using equation (27), we can calculate the limτu→0 V ar(ṽ − p̃) = τ2eτv
(τeτv+τeτε)2

.

(c) Trading Volume

(1) Trading volume is given by

Volume =
1

γ

√
2

π
V ar[γD (p̃; s̃i, s̃p,i)], (28)
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where σ2y = V ar[γD (p̃; s̃i, s̃p,i)] is given by (29). Taking the limit of this expression,

we get

lim
τu→∞

Volume =
1

γ

√
2

π
(τ e + τ ε).

(2) Taking the limit of (28), we get

lim
τu→0

Volume =
1

γ

√
2

π
τ ε.

E Proof of Proposition 4

(a) Price informativeness

(1) Using equation (13), we can derive

dα

dτ e
=
−
(
τuτ εα

3 + 2
√
τuτ εα

2 + τ εα−
√
τu
)

3τ eτuτ εα2 + 4τ e
√
τuτ εα + τ eτ ε + τuτ ε

=
− τuτεα

τe

3τ eτuτ εα2 + 4τ e
√
τuτ εα + τ eτ ε + τuτ ε

< 0,

where the second equality arises from using (13).

(b) Return volatility

(1) Using equation (27), we can calculate

lim
τe→∞

V ar(ṽ − p̃) =
(α
√
τu + 1)2(τ vα

2τu + 2τ vα
√
τu + τu + τ v)

(τ v + τ ε + τu + α2τuτ v + α2τuτ ε + 2α
√
τuτ v + 2α

√
τuτ ε)2

.

(2) Using equation (27), we can calculate the limτe→0 V ar(ṽ − p̃) = τ2uτv
(τuτv+τuτε)2

.

(c) Trading Volume

(1) Taking the limit of (28), we get

lim
τe→∞

Volume =
1

γ

√
2

π
τ ε.

(2) Taking the limit of (28), we get

lim
τe→0

Volume =
1

γ

√
2

π
τ ε.
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F Certainty Equivalent W (τu,i, τ e,i; τu, τ e) in Section 5.2

At date-0, trader i chooses τu,i and τ e,i to maximize E
[
−e−γD(p̃;s̃i,s̃p,i)(ṽ−p̃)+γC(τu,i,τe,i)

]
. We will

use the formula:

E
[
e−xy

]
=

1√
(1 + σxy)

2 − σ2xσ2y
,

where x ∼ N (0, σ2x) , y ∼ N
(
0, σ2y

)
and Cov (x, y) = σxy.

Define

x = ṽ − p̃, y = γD (p̃; s̃i, s̃p,i) .

The certainty equivalent is:

W (τu,i, τ e,i; τu, τ e) = −1

γ
ln (−Ui) ,

=
1

2γ
ln
[
(1 + σv−p,γDi)

2 − σ2v−pσ2γDi
]
− C(τu,i, τ e,i).

Very intuitive: The first covariance term (1 + σv−p,γDi)
2 is the benefit of beating the market,

and the second term σ2v−pσ
2
γDi

of variance products is the cost of excess trading. The relevant

terms are given by:

σ2x =
(1− av)2

τ v
+ a2u,

σ2y =
(
(βs,i+βp,i−av)2

τv
+ (βp,iα +

βp,i√
τu,i
− au)2 +

β2s,i
τε

+
β2p,i
τe,i

)

V (v|si, sp.i)2
, (29)

σxy =

(1−av)(βs,i+βp,i−av)
τv

− au(βp,iα +
βp,i√
τu,i
− au)

V (v|si, sp.i)
,

where av and au are the price coeffi cients in Proposition 1 and βs,i and βp,i are the coeffi cients

of the conditional expectation

E(ṽ|s̃i, s̃p,i) = βs,is̃i + βp,is̃p,i,

which are given by equation (11).

G Proof of Proposition 5

Let us define

Φ (τu) ≡ φ (τu) + C ′ (τu) .
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The limits of the function φ (τu) are given by:

lim
τu→0

φ (τu) =
τ v − τ ε

γ(τ 2v + τ vτ ε + τ 2ε)
,

lim
τu→∞

φ (τu) = 0,

and the limits of its total derivative dφ(τu)
dτu

are given by

lim
τu→0

dφ (τu)

dτu
=∞,

lim
τu→∞

dφ (τu)

dτu
= 0.

If τ v > τ ε, then limτu→0 φ (τu) > limτu→∞ φ (τu). In addition, if C ′′ (0) is suffi ciently small, then

φ′ (0) = Φ′ (0)− C ′′ (0) > 0, and thus φ′ (τu) > 0 for suffi ciently small values of τu.

H Proof of Proposition 6

Taking the first order condition with respect to τ e,i from the certainty equivalent derived above

in section F when τu →∞ and setting τ e,i = τ e, we get:

∂W (τ e; τ e)

∂τ e,i
= −2γκeτ

2
v + 2γκeτ vτ ε + 2γκeτ vτ e − τ v + 2γκeτ

2
ε + 4γκeτ ετ e + 2γκeτ

2
e

2γ(τ 2v + τ vτ ε + τ vτ e + τ 2ε + 2τ ετ e + τ 2e)
= 0.

Since ∂2W (τe,i;τe)

∂τ2e,i
< 0, for small enough κe, there is a unique symmetric equilibrium with τ e > 0

given by

τ ∗e,i = τ ∗e = −γ
(1/2)κ

(1/2)
e τ v − (−τ v(3γκeτ v − 2))(1/2) + 2γ(1/2)κ

(1/2)
e τ ε

2γ(1/2)κ
(1/2)
e

.

Otherwise, there is a unique symmetric equilibrium with τ ∗e,i = τ ∗e = 0.

I Proof of Proposition 7

Using Bayes’ rule, we can compute investors’beliefs given by equations (20) and (21). In a

symmetric equilibrium with τu,i = τu and τ e,i = τ e, all investors have the same conditional

variance V ar(ṽ|s̃i, s̃p,i). Thus, inserting these two expressions into the demand (5), we can

compute the expression of D (p̃; s̃i, s̃p,i), which is in turn inserted into (18) to compute the

equilibrium price as a function of ṽ, ũ and q̃. Comparing coeffi cients with the conjectured price

function (19), we can form a system of equations to determine the three unknown price coeffi cients
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av, au and aq in Proposition 7. Inserting the expressions of a’s into α ≡ au
av
and simplifying yields

the cubic (22) that determines the value of α. The discriminant of the cubic (22) is negative.

Thus, there exists a unique real root, which establishes the uniqueness of a financial market

equilibrium.

Return predictiveness m is given by

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

av(1−av)
τv

− a2u
τu
− a2q

τq

a2v
τv

+ a2u
τu

+
a2q
τq

.

The sign of m is determined by a cubic equation Q(τ q) = q3τ
3
q + q2τ

2
q + q1τ q + q0. Since the

discriminant of this cubic equation is positive, there are three real solutions to Q(τ q) = 0. Also,

the limτq→∞m > 0. Hence, denoting τ̂ q as the maximum real root to Q(τ q) = 0, we can conclude

that m > 0 for any τ q > τ̂ q. QED.

J Proof of Proposition 8

See proof of Proposition 1 in Ganguli and Yang (2009) for price coeffi cients av and aq and the

properties of information acquisition. For the SUB equilibrium:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

av(1−av)
τv

− a2q
τq

a2v
τv

+
a2q
τq

= − γτ v(2γτ η + γτ q − τ q(γ2 − 4τ ητ ε)
1/2)

(2τ η)(β
4τ 3q + 2β4τ 2qτ η + β4τ qτ 2η + 2β2τ 2qτ ε + τ vβ

2τ 2q + 2β2τ qτ ητ ε + 2τ vβγτ q + τ vγ2 + τ qτ 2ε)
< 0.

For the COM equilibrium:

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

av(1−av)
τv

− a2q
τq

a2v
τv

+
a2q
τq

= − γτ v(2γτ η + γτ q + τ q(γ
2 − 4τ ητ ε)

1/2)

(2τ η)(β
4τ 3q + 2β4τ 2qτ η + β4τ qτ 2η + 2β2τ 2qτ ε + τ vβ

2τ 2q + 2β2τ qτ ητ ε + 2τ vβγτ q + τ vγ2 + τ qτ 2ε)
< 0.

K Proof of Proposition 9

Using Bayes’rule, we can compute investors’beliefs. Inserting the expressions for E(ṽ|s̃i, s̃p,i)
and V ar(ṽ|s̃i, s̃p,i) into the demand D (p̃; s̃i, s̃p), which has the same expression as equation (5).

This demand is in turn inserted into the market clearing condition to compute the equilibrium

price as a function of ṽ and q̃. Comparing coeffi cients with the conjectured price function (23),
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we can form a system of equations to determine the two unknown price coeffi cients av and aq
in Proposition 9. Inserting the expressions of a’s into α ≡ aq

av
and simplifying yields a cubic

equation of α. The discriminant of the cubic is negative. Thus, there exists a unique real root

given by α = −γ/τ ε, which establishes the uniqueness of a financial market equilibrium. The true
(econometrician’s) distribution of prices is given by p̃ = avṽ+aq q̃, not p̃ = avρṽ+av

√
(1− ρ2)φ̃+

aq q̃. The latter is only under the beliefs of the investors, but not under the true distribution.

Hence, return predictiveness m is given by

m =
Cov (ṽ − p̃, p̃)

V ar (p̃)
=

(1−av)av
τv

− a2q
τq

(av)2

τv
+

a2q
τq

= −
τ v(τ vγ

4 + (1− ρ2)γ2τ qτ 2ε − (1− ρ)τ vγ
2τ qτ ε − (1− ρ)τ 2qτ

3
ε)

(τ qτ 2ε + τ vγ2)(τ vγ2 + (1− ρ2)τ qτ 2ε + τ qτ vρτ ε)
.

The limits of m are given by

lim
γ→0

m > 0 and lim
γ→∞

m < 0

Hence, if γ is suffi ciently small, then m > 0, but if if γ is suffi ciently large, then m < 0. Trading

volume in this model is
∫ 1
0
|D (p; si, sp,i)| di and is given by

Volume =
1

γ

√
2

π

(γ2τ v + 2τ qτ 2ε − 2ρτ qτ 2ε + τ qτ vτ ε)

τ qτ v
.

From this equation, it immediately follows that volume is decreasing in ρ. QED

L Proof of Proposition 10

See Proof of Proposition 2 in Eyster, Rabin and Vayanos (2019).

M Proof of Proposition 11

Using Bayes’rule, we can compute investors’beliefs. Inserting the expressions for E(ṽ|s̃i, s̃p,i)
and V ar(ṽ|s̃i, s̃p,i) into the demand (24), we can compute the expression of D (p̃; s̃i, s̃p), which

is in turn inserted into the market clearing condition to compute the equilibrium price as a

function of ṽ, x̃ and q̃. Comparing coeffi cients with the conjectured price function (25), we can

form a system of equations to determine the three unknown price coeffi cients av, ax and aq in

Proposition 11. Inserting the expressions of a’s into α ≡ aq
av
, θ ≡ ax

av
and simplifying yields the

cubic equation for α and θ = −α.
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N Proof of Corollary 2

We can obtain the unknown price coeffi cients by taking the limit of the price coeffi cients derived

in Proposition 11. The asset price is isomorphic to the standard REE equilibrium and therefore,

there is no momentum m < 0. The expression for momentum is the same as in the proof of

Proposition 9 with ρ = 1. QED.
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