
Newcastle University e-prints  

Date deposited:  6th December 2011 

Version of file:  Author final 

Peer Review Status: Peer reviewed 

Citation for item: 

Andreou M, van Moorsel A. COTraSE: Connection Oriented Traceback in Switched Ethernet. In: 

Proceedings of the Fourth International Symposium on Information Assurance and Security (IAS). 2008, 

Naples, Italy: IEEE Computer Society. 

Further information on publisher website: 

http://www.ieee.org/ 

Publisher’s copyright statement: 

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising 

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

The definitive version of this paper is available at: 

http://dx.doi.org/10.1109/IAS.2008.25 

Always use the definitive version when citing.   

Use Policy: 

The full-text may be used and/or reproduced and given to third parties in any format or medium, 

without prior permission or charge, for personal research or study, educational, or not for profit 

purposes provided that: 

 A full bibliographic reference is made to the original source 

 A link is made to the metadata record in Newcastle E-prints 

 The full text is not changed in any way. 

The full-text must not be sold in any format or medium without the formal permission of the 

copyright holders. 

 

 Robinson Library, University of Newcastle upon Tyne, Newcastle upon Tyne.  

NE1 7RU.  Tel. 0191 222 6000 

javascript:ViewPublication(159867);
http://www.ieee.org/
http://dx.doi.org/10.1109/IAS.2008.25


COTraSE:
Connection Oriented Traceback in Switched Ethernet

Marios Andreou, Aad van Moorsel
Newcastle University, School of Computing Science
{M.S.Andreou}{Aad.vanMoorsel}@ncl.ac.uk

Abstract

Layer 2 traceback is an important component of end-to-
end packet traceback. Whilst IP traceback identifies the ori-
gin network, L2 traceback extends the process to provide a
more fine-grained result. Other known proposals have ex-
posed the difficulties of L2 traceback in switched ethernet.
We build on our earlier work and improve in a number of
dimensions. Memory requirements are decreased by main-
taining ‘connection records’ rather than logging all frames.
Our switchport resolution algorithm provides error detec-
tion by correlating MAC address table values from two ad-
jacent switches. Our solution also takes stock of potential
transformations to packet data as this leaves the local net-
work. We have implemented the core algorithm and used
data from available WAN traces to demonstrate the poten-
tial memory efficiency of our approach.

1. Introduction

In receiving an IP packet, the header source address is
often taken as an indication of the originating machine’s
identity. However, the Internet Protocol does not prevent
creation of packets with forged source address. Explicit
generation of these ‘spoofed’ packets requires a degree of
planning and effort and so they are often associated with
malevolent network activities [6]. The most widely known
of these are Denial of Service attacks; it is obvious for in-
stance that obscuring the origin of an attack may prolong its
effects.

Another form of ‘spoofing’ that is typically transparent
to the user results from commonly employed resource pro-
visioning mechanisms. In a Local Area Network (LAN), a
number of machines may share a smaller number of public
IP addresses through the use of Network Address Transla-
tion (NAT), and repetitive requests for commonly accessed
web pages are minimized with a proxy web cache. This re-
sults in the source address of packets being overwritten with
that of a gateway router.

Systems that aim to identify a given IP packet’s origi-
nating machine, regardless of forged or overwritten source
address are termed ‘IP Traceback’, and a number of propos-
als exist in this area [1, 2, 3, 4, 5]. A common shortcoming,
however, is the trace result’s granularity. IP Traceback re-
veals the origin network, but not the origin host (i.e., at best
one identifies the origin’s first hop router [7]).

A sub-domain of IP Traceback has emerged in recent
years to counter this shortcoming, with proposals for “Layer
2 Traceback”. Generally, these ‘internal’ traceback systems
extend the tracking process beyond the leaf router, and into
the originating network [7, 8, 9]. Known approaches use a
hashed digest to represent each packet. They do not, how-
ever, take into account potential transformations to packet
data as this exits the local network (e.g., due to NAT). Thus,
it is not possible to map the IP data delivered to the intended
recipient, with (the hashed digest of) that data prior to trans-
formation.

As a result, it is not possible to service traceback requests
from non local hosts, and so the utility of such systems in
real world scenarios is somewhat limited. Even if the even-
tual wide-spread adoption of IPv6 renders NAT obsolete,
mechanisms such as web-caching will still be a necessary
part of a typical LAN deployment (especially so for larger
corporate/university networks).

Insights provided by our earlier work [9] enabled the de-
velopment of ‘COTraSE’, a ‘connection-oriented’ logging
based traceback system for Switched Ethernet (swEther-
net). COTraSE decreases storage requirements whilst main-
taining the requirement of accountability for any given
packet. Uniquely, we correlate MAC address table (MAC-
table) entries from two adjacent switches to establish
causality between a MAC-address and the origin switch-
port. This correlation allows us to identify a number of
potentially malevolent conditions (explained later).

Furthermore, COTraSE makes no assumptions about net-
work topology, and provides for any potential transforma-
tions to the IP header data as this leaves the LAN. An
ideal deployment providing trace results with the highest
granularity requires logging between all network switches,



however COTraSE accommodates partial deployment with
reasonable results. We have implemented the core algo-
rithm which takes as input anonymised WAN traces from
[10, 11, 12], to enable discussion of memory requirements
given in Section 4.

COTraSE was in part motivated by EU legislation that
requires the retention of data in communications networks
[14]. Such a system requires local access to network data
if the identity of the originating machine is to be reliably
attached to that data. Layer 2 Traceback (L2 Traceback)
systems typically treat frame MAC addresses as ‘guilty t́ill
proven innocent’ as they are easily spoofed. We feel that
L2 Traceback systems can provide the requisite ‘connec-
tion records’ identified in the aforementioned EU Council
Directive.

The rest of this paper is as follows: Section 2 contains
related work, and the main challenges exposed by those.
In Section 3 we present COTraSE and its key algorithms.
Section 4 addresses our Java implementation and the WAN
traces used as input, to end with a discussion of memory
requirements. Section 5 considers deployment issues and
we conclude in Section 6.

2. Background

Determining the identity of an attacker may require (up
to) three stages [8]. Stage 1, IP traceback, reveals the ori-
gin network and stage 2, Layer 2 Traceback (L2 Traceback)
reveals the origin host. In the case of overwritten addresses,
stage 1 is not necessary, as the network is identified by de-
fault. Finally, if stage 2 reveals a ‘zombie host’ then stage
3, ‘Connection (chain) traceback’ [13] may identify the true
origin. COTraSE is an L2 Traceback system as described in
Section 3.

Generally, L2 traceback systems combine Switch Iden-
tifier (sID) and Switchport Number (pNO) to uniquely
identify each host on the L2 network. They borrow from
IP Traceback in their overall approach, that is, packet
marking, messaging or logging.

Link-Layer Traceback in Ethernet Networks [8]

‘Tagged Frame Traceback’ (TRACK) is unique in using
a hybrid approach, with both packet marking and logging
elements. Tags are applied to ethernet frames by an ‘in
switch’ process. Each tag includes a keyed-Hash Message
Authentication Code over the first 32 bytes of IP data car-
ried by its frame. A separate process in the ‘Analysis and
Collection Host’ removes and logs the tags with links to a
sorted ‘host table’ (each host is sID + pNO).

This very interesting proposal trivialises a core process
of other known solutions: establishing causality between a
given frame and the originating switchport (pNO). TRACK

assumes an ‘in switch’ process, and we agree that this
is the best vantage point for establishing pNO. However,
implementing traceback ‘in switch’ assumes functionality
that is (typically) not available.

Layer-2 Extension to Hash-Based IP Traceback [7]

Hazeyama et al are the first to adapt the Source Path Iso-
lation Engine (SPIE) for swEthernet. SPIE is a logging IP
traceback system where a ‘Data Generation Agent’ (DGA)
logs a hashed digest of each packet forwarded by a router
[1, 15] using bloom filters to achieve significant memory
efficiency.

In [7] the authors deploy their extended DGA, xDGA,
within gateway routers. For each received frame, sID is in-
ferred from the frame destination MAC address (i.e., that of
the recipient router interface). By maintaining a local copy
of each switch MAC address table (MAC-table) and given
sID, the appropriate MAC-table is used to obtain the port
number (pNO) based on the frame source MAC address.
The sID and pNO are included in the digest input.

Using a single bloom filter for all packets makes trace-
back request processing expensive. More significantly, a
specific topology is required where all hosts are separated
from the network ‘edge’ by only a single switch, as other-
wise sID cant be inferred from destination MAC addresses.

Logging Based IP Traceback in Switched Ethernets [9]

Our earlier work [9] is a second adaptation of SPIE for
swEthernet, where we addressed difficulties encountered by
the proposal above. We log at each switch with a tap-box
running our switch-DGA, which receives traffic from ‘port
mirroring’. Switch-DGA uses a bloom filter array, with an
element for each switch port. The hash output is stored
in the bloom filter representing the origin port, established
from the local switch MAC-table. When querying archived
bloom filters the given array index reveals the source pNO.

A major problem encountered was that though the
switch could reliably mirror traffic with little affect to the
‘primary’ switching functions, the port and host receiving
mirrored traffic were quickly overwhelmed. More signifi-
cantly, we also realised that none of the known approaches
to L2 traceback (including our own) considered the ef-
fects of NAT and other such processes, as mentioned earlier.

3. COTraSE

In COTraSE, rather than switchport mirroring we instead
log between switches with a passive tap. Memory require-
ments are decreased by attributing frames to ‘connections’
and logging representative ‘connection records’ (conRecs)



for each interval. We note that a similar approach is used in
router-deployed NetFlow [16], which is tailored to perfor-
mance management, not traceback.

Packets exchanged between peer network processes at a
given time will have the same source and destination MAC,
IP and TCP/UDP addresses, and this data is used as the con-
nection identifier (conId). One can group packets in ‘con-
nections’ even in the absence of TCP/UDP at the transport
layer, as we will see. A separate process at the network
edge maintains ‘translation records’ (transRecs), address-
ing the issue of overwritten data (as in NAT). Figure 1 gives
an overview of the COTraSE system.

Connection Records
<<conId, time, sID, pNO, flags>>

hash{srcMAC,dstMAC,srcIP,dstIP,srcPort,dstPort}

Leaf 
routerswitchswitch

<<conId_orig, conId_mod, time>>
Translation Records

transRec Log

conRec Log1conRec LogN

Figure 1. COTraSE - conRec and transRec Logs

3.1. The conRec Logs

Each connection record (conRec) consists of connection
identifier (conId), timing and origin information, which is
switch identifier sID and port number pNO.

We use a cryptographic hash function over the data-link,
network and transport layer addresses (MAC, IP, TCP/UDP
data) to derive the connection identifier (conId) for each re-
ceived frame. These addresses can uniquely identify a spe-
cific connection between two peer processes only if they are
taken together.

Thus, for non TCP/UDP traffic and in the absence of
ports, deriving conId requires us to find a different means
of grouping frames. Source and destination MAC addresses
are used in conjunction with other available data. This is
protocol dependent and we give two characteristic exam-
ples: for ARP one can use the Sender and Target Protocol
Address together with the Opcode, whilst for ICMP the IP
source and destination addresses are available, and used in
conjunction with ICMP Type and Code.

For each frame received at a conRec log, conId is com-
puted and used to make a new working record (wRec). After
switchport resolution (explained subsequently), each wRec

becomes ‘active’ only if there is no existing active wRec
with the same conId. Thus at a given time only one active
wRec will exist for each connection.

The active wRecs are cleared as per the ‘active connec-
tions purge interval’ and moved to permanent storage as
conRecs. The next frame for each connection will then be-
come the new active wRec. A conceptual overview of this
process is given in Figure 2(a), showing 12 frames from
the same connection. During each purge interval only one
wRec becomes active, whilst the rest are discarded.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

X X X X X X X
1 3 6 108

0t

conRec B conRec C conRec D conRec E

0t 1t 2t 3t 4t 5t 6t
(time)(time)

(time)(time)
1t 2t 3t 4t 5t 6t

conRec A

ethernet
frames 

st
at

e
st

at
e

wRecs

active
wRecs

conRecs

purge interval t

(a) conRecs from 12 frames of the same connection

Receive 
frame

existing 
wRec?

compute
conId

do nothing
(drop wRec)

new wRec

wait next
 MAC-table 

update
switchport
resolution

flag
1X?

flag
11?

ALERT!
2 conRec 
+flags 10

ALERT!
conRec 

+flags 11

[no]

[yes]

[yes]

active wRec
+flags 00
('normal')[yes]

same 
sID-pNO?

[no]

[no]

[yes]

flag
01?

[no]

[yes] ALERT!
conRec 

+flags 01

[no]

(b) conRec log algorithm

Figure 2. The conRec Log

Figure 2(b) gives the conRec Log algorithm. As can
be seen, once conId is computed and a new wRec created,
switchport resolution is deferred until the next MAC-table
update. This is when the conRec log’s local MAC-tables
are updated from the adjacent switch MAC-tables. It is pos-
sible that local MAC-tables do not yet contain an address,



such as when a new host joins the network. Its likelihood
is reduced by deferring switchport resolution until after the
local MAC-tables are updated.

3.2. Switchport Resolution

As mentioned earlier the source MAC (srcMAC) ad-
dress cannot be taken ‘at face value’ as it is easily spoofed.
Switches ‘learn’ the srcMAC ↔ pNO mapping from
each forwarded frame and update their MAC-table accord-
ingly. As in other proposals, we maintain local copies of the
switch MAC-table to determine the Switch Identifier (sID)
and Switchport Number (pNO) based on srcMAC. In CO-
TraSE this process is termed ‘switchport resolution’.

Our approach is to correlate the MAC-table values from
both adjacent switches to determine sID and pNO. Each
switchport is either an access port to end hosts or a external
link port to another switch. The ports connecting the switch
to the conRec Log are termed internal link ports.

This classification is configured at each conRec log, al-
lowing the return of MAC-table lookups to be classed as
one of: null, external link (ext link), internal link (int link),
access port (axs port). It is likely that the MAC-tables from
both switches will contain an address mapping for a given
address. Based on our classification, some combinations are
not acceptable, and generally indicative of an error as will
be explained below. One legitimate combination is for the
(local) MAC-table of switch ‘A’ to report an int link whilst
the MAC-table for switch ‘B’ gives an axs port.

In such cases, switchport resolution must ‘decide’ which
of the two should be returned as the sID + pNO identifier.
An axs port gives a specific network access point and so is
always chosen if available. If both tables return links, then
an ext link is preferred over an int link, as in the former
case neither adjacent switch was the origin.

Figure 3 shows the switchport resolution algorithm. As
can be seen, the algorithm makes use of a 2 bit flag to sig-
nal the outcome of MAC-table lookups. Code 00 indicates
‘normal’ switchport resolution, that is, a single axs port or
ext link is returned. This is shown as cases 2, 8 and 4, 6 re-
spectively, in Figure 3). Code 01 means a port mapping was
not available for an address, corresponding to case 1. This
does not necessarily imply an error; if MAC addresses are
consistently not learnt by switch MAC-tables, then this may
indicate an oversubscribed switch [17].

The wRecs with codes other than 00 are never made ‘ac-
tive’, as can be seen in Figure 2(b). Depending on available
information one or more conRecs are created, with the er-
ror codes indicating their status. Codes 10 and 11 signal
‘erroneous’ switchport resolution. In Figure 3 cases 5, 7, 9
and 10 produce error 10 and case 3 produces error code 11.
The former indicates that we cant ‘choose’ between con-
flicting or equivalent values. For instance, two ext links

lookup 
srcMAC in 
local tables

> 1 entry? both links
[yes] 1 ext_link  

 1 int_link?
[yes]

axs_port? both 
axs_port?

return 
(both)

sID1,pNO1 
sID2, pNO2
CODE: 10

[no] [no]

[no]

return 
(int_link)
sID, pNO
CODE: 11

return null
CODE: 01

[yes]

return 
(ext_link) 
sID, pNO
CODE: 00

return 
(axs_port) 
sID, pNO
CODE: 00

ext_link?

[no]

one is 
int_link

[no]

[yes]
[no]

[yes]

[no]

[yes]

[yes]

(One MAC-table entry) (Two MAC-table entries)

1

3

2 4

5

6

7
9

10

8

null?
[no]

[yes]

Figure 3. The switchport resolution algorithm

or two int links would mean that the same MAC address
was ‘seen’ as a source address from two opposing direc-
tions. This is impossible as switched Ethernet does not per-
mit cycles[17].

Code 11 means there is insufficient information as only
an int link is returned. In this case, switch ‘A’ points to
switch ‘B’ as the origin, through an int link. Given that we
perform switchport resolution after local MAC-tables are
updated we expect switch ‘B’ to provide an axs port or an
ext link.

3.3. Timing Parameters

The MAC-table update time must be such that a re-
ceived frame is not ‘aged out’ from the switch MAC-table
before local MAC-tables are updated. The IEEE suggest
an aging time of between 10 and 1, 000, 000 seconds [18]
. Since unprocessed wRecs are buffered until the next up-
date, memory utilisation is a practical concern. We choose
a MAC-table update time of 5 seconds to stay within the
suggested minimum. This creates a worst case requirement
of ≈ 300Mbytes of RAM on a full duplex 1Gbit/s link to
buffer unprocessed wRecs, as we will see.

The active connections purge interval (purgeInt) is gov-
erned by an inherent time/space tradeoff. A lower purgeInt
means more frames become conRecs overall with each rep-
resenting a smaller time interval. A higher purgeInt de-
creases conRec storage requirements, but also decreases
time precision in traceback replies.

Traceback requests provide the time δ when a tracked



frame was observed. Based on this we must decide which
conRec ‘represents’ the requested frame. The purgeInt must
be greater than the time we expect a frame to take in reach-
ing its destination. With purgeInt t and round trip time x,
the conRec for δ or the previous one ‘represent’ the tracked
frame if t > x

2 . This is because a frame received at the con-
Rec log at t + α reaches its destination at (t + α) + x

2 . If
t > x

2 then the frame will be delivered during the current or
next purgeInt.

We choose 10 seconds as the lowest bound on purgeInt.
By sampling data from Skitter [19] for 3 arbitrarily chosen
days we determine that (at the 99th percentile) the mean
round trip time is ≈ 3.5 seconds and we require t > x

2 .
We evaluate the impact of a 10 second purgeInt on memory
requirements later.

3.4. The transRec Logs

At the transRec logs, we do not perform switchport res-
olution to determine sID or pNO. This is done at all conRec
logs en route to the leaf router and doing it again provides
no new information. An ‘active transRec’ set in maintained
in a similar manner to the ‘active wRecs’ with the same fac-
tors governing its purge interval.

For each frame observed, conId orig is computed as be-
fore. If there is no ‘active’ transRec for that connection
based on conId orig, then the connection’s state is retrieved
from the NAT or proxy web cache. This information is used
as input to conId mod and the transRec becomes ‘active’.
Note that conId Mod does not include the source and desti-
nation MAC addresses.

For traceback requests from beyond the local network,
transRecs are searched for conId mod. If a match is found,
a local traceback request is dispatched, and conRec logs
queried based on conId orig. Thus we ‘traceback’ packets
regardless of address translation at the leaf router, but also
frames that are (wholly) local.

4. Memory Requirements

Storage requirements are an important concern for log-
ging traceback systems as they govern the ‘traceback win-
dow’. This is the time during which we can traceback a
packet after it has been logged (i.e., before older logs are
overwritten). Below we give the COTraSE record formats
(brackets denote size in bits):

wRecs (230): conId (128), source MAC (48), sID (10),
pNO (10), timestamp (32), flags (2)
conRecs (182): conId (128), sID (10), pNO (10),
timestamp (32), flags (2)
transRecs (288): conId orig (128), conId mod (128),
time (32)

With regards to ‘operational’ memory, taking a duplex
link at 1Gbit/s, and with average frame size 1000 bits, at
most one gets ≈ 1, 000, 000 frames per second in either di-
rection. Assuming a hypothetical worst case scenario where
all frames belong to different connections, we require RAM
of ≈ 300MBytes to store wRecs for 5 seconds, until the
MAC-table update.

The number of connections C gives the lowest bound for
the number of conRecs cR we need to store for each purge
interval p. How many conRecs we store overall depends on
the ‘traceback window’, in terms of number of purge inter-
vals. Though C is not within out control, we can tune p, as
explained earlier. A larger p will mean less purgeInts occur
within a given traceback window and so less conRecs over-
all. The lowest bound for p, producing the greatest value
for cR is 10 seconds, and this is used in our simulations.

We empirically deduce memory requirements against
‘real’ network traffic, a brief summary of which is given
in Table 1.

Table 1. Trace data summary
Source Traces Total Avg.

Frames Frames/min

OC12[10] 12 ∗ 60mins 136, 803, 068 189, 588

OC48[11] 6 ∗ 5mins 114, 181, 288 3, 806, 043

WIDE[12] 6 ∗ 15mins 89, 357, 967 992, 866

Source ‘OC12’[10] provides data from an OC12 link at
the AMPATH Internet Exchange. We ran the conRec log
with data from 09 Jan 2007, at 3-hourly intervals from 0900
until 0000 of 10 Jan. Source ‘OC48’ [11] is an OC48 peer-
ing link for a large ISP at AMES Internet Exchange. The
data we use is from 14 Aug 2002 (0900), 15 Jan 2003
(0959) and 24 Apr 2003 (0000). Source ‘WIDE’[12] is a
150Mbit/s (we assume OC3) transPacific link providing 15
minute traces for the same day (and times) as OC12.

We cannot draw general conclusions from these simu-
lations especially as WAN traces are not representative of
LAN traffic, which is the focus for COTraSE. However,
‘real’ LAN traffic is generally not widely available and,
though frustrating, one can appreciate the associated pri-
vacy and security concerns.

Each trace was processed with ‘tcpdump’ to produce a
hex dump of packet data complete with capture times. Our
code then processed all TCP, UDP and ICMP data encoun-
tered which on average was more than 98% of the traffic.
The wRecs created from ‘received’ frames were admitted
to the active wRecs as explained earlier. An MD5 hash was
computed for each packet’s conId and the purge interval
was set to 10 seconds.

At the end of each purgeInt, the ‘active’ wRecs were
cleared and resulting set of conRecs written to file. In Fig-



ure 4 we demonstrate the reduction in memory requirements
from logging conRecs rather than all frames, by plotting the
number of conRecs as percentage of total frames in each
minute. We see a similarity in the plots and especially so

(a) CAIDA OC12 [10]

(b) CAIDA OC48 [11]

(c) WIDE [12]

Figure 4. conRecs as a percentage of frames
for each minute of the given trace

between Figures 4(b) and (c). A lower conRecs
frames ratio sig-

nals a greater reduction in memory requirements compared
to logging all frames.

We use conRecs
frames to approximate the number of connec-

tions. From Figure 4 we take the upper bound for conRecs
frames

at 15%. We assume the given link is at full utility and that on
average each packet is≈ 1000 bits. The average packet size
in the OC48 and WIDE traces is actually≈ 700bytes/packet

and so our estimate is very conservative. In table 2 we
give the predicted memory requirements of a COTraSE de-
ployment, expressed in megabytes, for providing the given
‘traceback window’. For example, in the OC48 case, taking
15% of 2 million packets per second, and multiplying by
182 bits per conRec gives 390Mbytes for a 1 minute ‘trace-
back window’. The OC48 case is of particular interest as
the ≈ 2, 000, 000 packets/s throughput is similar to full utility
of a duplex 1Gb/s ethernet link (1000 bit frames).

Table 2. Predicted COTraSE memory use,
with each link at full utility

packets/s Megabytes (traceback window)
Source (≈) 1 min. 1 hour

OC12 700, 000 137 8, 201

OC48 2, 000, 000 390 23, 430

WIDE 165, 000 0.5 1, 933

5. Deployment Issues

Performance: Maintaining conId as a hashed digest pre-
serves user privacy, even when logs are compromised.
However it is also computationally expensive, and its ne-
cessity depends on the intended use of COTraSE. As an L2
traceback system the privacy preserving hashed conId is
preferred. However, the EU ‘data retention’ council direc-
tive [14] mentioned earlier requires that ‘data be transmitted
upon request’. With a hashed conId, we cannot for example
extract connection data for any given source or destination
IP address.

The second ‘bottleneck’ operation is the MAC-table
lookup performed during switchport resolution. In worst
case conditions a dedicated CAM might be a necessity in
order to keep up with the packet load. This is a general
problem for all logging based L2 traceback systems. Given
that a switch already performs a MAC-table lookup for all
frames, traceback functions would ideally be performed
‘in switch’ but as mentioned earlier, such functionality is
currently not available.

Vulnerabilities: Buffering frames until the MAC-table up-
date assumes that address mappings do not change between
receipt of a frame and the update operation. An attacker
may exploit this to spoof a tertiary host’s address. The
switch MAC-table would overwrite the mapping for the
given address to identify the attacker’s pNO as the origin.
However, if the tertiary host transmits frames after the at-
tacker but before the MAC-table update, then switchport
resolution will mistakenly identify the tertiary host as the
originator of the attack frame.



The attacker first must discover the tertiary host’s MAC
address which requires effort due to the low visibility of
switched Ethernet. The attacker needs to predict when the
tertiary host is transmitting, but also when the MAC-table
update occurs. Furthermore, the MAC-table update time
can be randomized (e.g., between 3 and 5 seconds) to make
conditions even more adverse for the attacker.

Finally, an obvious attack on the COTraSE system is for
an attacker to send a large number of frames designed to
produce different conIds, to exhaust conRec log resources.
We note that under these ‘worst case’ conditions our
connection oriented approach will degenerate to no worse
than an explicit frame log.

Partial Deployment: It may be prohibitively expensive
to provide ‘full’ deployment with a conRec log between
all network switches. However, we can adapt conRec log
placement to the deployment network, though a partial de-
ployment ultimately sacrifices ‘local traffic visibility’.

A frame is processed by all conRecs encountered en
route to the gateway router. However, only the conRec log
adjacent to the frame’s origin switch will be able to pro-
vide the ‘axs port’ pNO which identifies the frame’s origin
switchport. All other conRec logs will ‘point’ to the origin
within the network (i.e., by providing an ext link pNO).

6. Conclusions

We introduced COTraSE a ‘connection oriented’ logging
based layer 2 traceback system for Switched Ethernet. This
allows traceback of ethernet frames that are wholly local
but also for IP packets addressed to external recipients, re-
gardless of any address translation mechanisms (e.g., NAT).
Rather than explicitly logging all traffic we instead attribute
frames to ongoing connections and log representative con-
nection records in discrete intervals. Our switchport reso-
lution algorithm establishes the origin switch and port for
frames by correlating MAC address entries from both adja-
cent switches. This algorithm classifies the return of each
table lookup to detect potential errors such as MAC address
‘spoofing’.

We empirically demonstrated the potential memory ef-
ficiency of a ‘connection oriented’ traceback approach by
simulating the conRec log algorithm using data from avail-
able WAN traces. Our simulations show a consistently
low conRec

totalframes ratio which is favourable in decreasing CO-
TraSE memory requirements.

References

[1] Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E., Tchakountio,
F., Schwartz, B., Kent, S.T., Strayer, W.T.: Single Packet IP Traceback,
IEEE/ACM Transactions on Networking, Vol. 10(6), (2002), 721-734

[2] Burch, H., Cheswick, B.: Tracing Anonymous Packets to Their Approximate
Source, 14th System Administrator Conference (LISA), (2000), 319-327

[3] Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network Support for IP
Traceback, IEEE/ACM Transactions on Networking, Vol. 9(3), (2001), 226-
237

[4] Stone, R.: Centertrack: An IP Overlay Network for Tracking DoS Floods, 9th
USENIX Security Symposium, (2000)

[5] Bellovin, S., Leech, M., Taylor, T.: ICMP Traceback Messages, Internet Draft,
IETF, (2003)

[6] Mirkovic, J., Dietrich, S., Dittrich, D., Reiher, P.: Internet Denial of Service
(Attack and Defense Mechanisms), Prentice Hall, (2005)

[7] Hazeyama, H., Oe, M., Kadobayashi, Y.: A Layer-2 Extension to Hash Based
IP Traceback, IEICE Transactions on Information and Systems, Vol. E86(11),
(2003), 2325

[8] Snow, M., Park, J.: Link-Layer Traceback in Ethernet Networks, Workshop
Proceedings, IEEE LANMAN, (2007), 182-187

[9] Andreou, M., van Moorsel, A.: Logging Based IP Traceback in Switched Eth-
ernets, Proceedings 2008 ACM SIGOPS European Workshop on System Secu-
rity, (2008)

[10] Shannon, C., Aben, E., Claffy, K.C., Anderson, D.: The CAIDA
Anonymized 2007 Internet Traces, http://www.caida.org/data/
passive/passive 2007 dataset.xml, CAIDA, (2007)

[11] CAIDA OC48 Trace Project: CAIDA OC48 Traces 2002-08-14, 2003-01-15,
2003-04-24 (collection), http://www.caida.org/data/passive/
index.xml#oc48, CAIDA, (2008)

[12] WIDE Project: Packet traces from WIDE backbone, MAWI Working Group
Traffic Archive, http://mawi.wide.ad.jp/mawi/, WIDE, (2008)

[13] Almulhem, A., Traore, I.: A Survey of Connection-Chains Detection Tech-
niques, 2007 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, (2007)

[14] European Parliament: Council Directive 2006/24/EC of 15 March 2006 on the
retention of data, OJ L105, (March 2006), 54-63

[15] BBN Technologies: Source Path Isolation Engine, http://www.ir.bbn.
com/projects/SPIE/spiehome.html, (2004)

[16] Claise, B. Ed.: Cisco Systems NetFlow Services Export Version 9, Network
Working Group Request for Comments 3954 (Informational), http://www.
ietf.org/rfc.html, (2004)

[17] Seifert, R.: The Switch Book: The Complete Guide to LAN Switching Technol-
ogy, Wiley, (2000)

[18] IEEE Std. 802.1D-2004, Media Access Control (MAC) Bridges, IEEE, (2004)

[19] CAIDA: skitter, http://www.caida.org/tools/measurement/
skitter/, CAIDA, (2006)


