COUDE SPECTRA OF ETA CARINAE AND THE STRONGEST LINES OF [Fe II] AND [Ni II]

A. D. Thackeray
 (Received 1966 May 18)

 Garstang's transition probabilities for [Fe II] and [Ni II] have been
invaluable in assigning new identifications, the agreement with observed

An interesting new identification in the ultra-violet is [N I] 3466. The
[Ne III] lines disappeared temporarily in 1965 , and the He I emission was
 Displaced absorptions are prominent in the Balmer lines and for other lines
especially Ti II. Such structures vary with time.
 the two-prism Cassegrain spectrograph attached to the Radcliffe reflector as soon as this equipment became available in 1951. Numerous emission lines were identified between 3700 and 8900 A (Thackeray 1953-in future 'paper I'), but the dispersion was low in the red and infrared regions, and beyond $3800 \AA$

The installation of the Radcliffe coude spectrograph with grating-mirror optics opened up both the ultra-violet and infra-red regions. The infra-red region was first studied (Thackeray 1962-in future 'paper II') on account of the
 in the visual and ultraviolet regions were also secured. Measurement and reduction of this latter material has been unfortunately delayed owing to other
commitments. The present paper lists lines measured in the region 3076-4244 \AA (Table Ia) and $\mathrm{H} \beta-6900 \AA$ (Table Ib). The intermediate region, $4244-\mathrm{H} \beta$, seems to have been for the most part adequately covered by the cassegrain spectrograph although some known blends are resolved at coudé dispersion.

In the meantime Garstang (1957, 1958, 1962) has published some extremely valuable transition probabilities for forbidden lines of FeII, NiII etc. These transition probabilities agree very well with published visual estimates by the
 guide to identifying certain lines, not listed in Revised Multiplet Table. A few such transitions in η Carinae had already been suggested by the writer in Paper I.
These are confirmed and extended by Garstang's work.

52	A. D. Thackeray				Vol. 135
2. Observations and measurements. Table I lists six available coudé spectra of which all but one have been measured with results that are reported in this paper.					
Table I					
Plate	Date	Exposure (min)	Grating order	Emulsion filter	Measurer
DZ $3^{\text {I }}$	1960 May 18	8	I	$103 \mathrm{aF}+$ Aero 1	ADT, SRH
DZ 43	1960 June 8	31	I	ro3aF+ Wrat 8	ADT
DZ 5^{2}	1960 June 9	20	II	IIaO	
DY 646	1961 May 18	60	II	103aO	SRH
DZ 658	1961 May 20	50	II	IIaO	SRH
DZ 1310	1965 March 19	80	II	IIaO (baked)	IM

 general form as in papers I, II. The mean measured wavelength was derivec
after correction for the Earth's orbital velocity and for a stellar velocity o
 with laboratory wavelengths, except for displaced absorptions.
In the second column the following notations are used:
A, absorption (otherwise emission is always understood).
$\mathrm{n}, \mathrm{N}, \mathrm{NN}$, indicate increasing degrees of diffuseness.

d, double.
s , sharp.
?, doubt as to reality of feature.
r, v, a weak blend to red or viol

18	（1）	LO．11	¢6	II ${ }^{2} \mathrm{H}$	（ $\varepsilon_{\text {I }}$ ）	IE．E．	9	II ${ }^{2} \mathrm{H}$	z	$\begin{array}{r} \text { N8 } \\ \text { NV9 } \end{array}$	$\begin{gathered} { }^{I S . \varepsilon_{I z E}} \\ 0 . z I \end{gathered}$
					＇（OI）	St．oI	9	II ${ }^{\text {²，}}$	z	N ${ }^{\text {L }}$	＊99．01
					（OI）	St．oI	9	II จ્મું	1	NVooż	0．90zE
					（SL）	21．L6	6	II ${ }^{\text {a }}$	1	\boldsymbol{z}	1z．L6IE
					（or）	Lo．96	L	II ${ }^{\text {ajg }}$	ε	\dagger	80.96
	（8）		49	II ${ }^{\text {¢ }}$	＇（II）	18．E6	9	II ${ }^{\text {a }}$	ε	\mathbf{N}^{\dagger}	£6．E6
					（6）	г6．z6	9	II ${ }^{\text {2 }}$	z	ε	$96 . z 6$
		62.48	OZI	II $\mathrm{PH}^{\text {H }}$	（ I I）	ヤL．98	9	II ${ }^{\text {a }}$	そ	\mathbf{N}^{\downarrow}	80.48
					（S）	zE． 9_{8}	4	II ə．	τ	\dagger	z． 5_{8}
					（8）	そı．ε_{8}	4	II ${ }^{\text {a }}$	z	\mathcal{E}	$8^{1 . \varepsilon_{8}}$
		S0．18	$4^{2} 1$	II จ．ㅕㄹ	＇（SL）	$\varepsilon L .08$	6	II ${ }^{\text {D }}$	z	PiNz	80.18
					（or）	ES．LL	28	II ®H $^{\text {d }}$	\boldsymbol{z}	ε	9S．LL
．						8E．SL	HII^{1}	II ${ }^{\text {a }}$	1	S．0	S．SL
＇s					（9）	\pm ¢．oL	9	II ${ }^{\text {P }}$	1	τ	E．OL
0					（II）	${ }_{58} 8.49$	99	II ${ }^{\text {a }}$	z	S．z	$6 L .49$
5	（8）		OZI	II ${ }^{\text {J }}$	（ ${ }^{\text {（ }}$	49.99	9	II ${ }^{\text {P }}$	z	İ	：95．99
4		08.89			（¢）	60.19	4	II ข $^{\text {d }}$	z	S．z	$90 . \varepsilon_{9}$
					（S）	S6．19	4	II ${ }^{\text {a }}$	τ	S．z	00.29
5					（z）	¢6． Sc	49	II ƏH $^{\text {d }}$	z	UI	6.55
领					（zI）	－z．もS	99	II əЫㅓㅢ	z	\mathcal{E}	$8 \mathrm{I} \cdot \mathrm{tS}$
	（z）	$s L .9{ }^{\text {b }}$	$\angle 9$	II ${ }^{\text {OH }}$	＇（0S）	\＆と．Lt	S	II	1	pfuzd	：9E．Lt
					（ot）	89．9E	5	II	1	NI	6.9ε
					（6）	9E．¢E	z_{8}	II ${ }^{\text {a }}$	1	$\mathrm{N}^{\text {I }}$	†．SE
					（SZI）	90．zE	c	II	z	$\mathrm{N}^{\boldsymbol{z}}$	ヤ．z\＆
					（Szı）	90．zE	5	II	I	$\mathrm{V}^{\text {gid }}$	$0.8 z$
					(oor)	86．⿰七	ς	II	z	$\mathbf{N}^{\mathbf{I}}$	：$\varepsilon .5 \boldsymbol{z}$
					（09）	S9．81	9	II ${ }^{\text {P }}$	z	Nİ	6.81 IE
						1.94		II ！ N	I	I	E．9LoE
						иопеэу！			u	＇puI	${ }^{\prime}$
$\begin{aligned} & \hat{H} \\ & \underset{H}{\alpha} \end{aligned}$					S96i u！рәшәдеәм Кірәялеши sәи！T + 						
－											
7						${ }^{8}$ II					

\cdots	（1）	IL．zI	I	II ${ }^{2} \mathrm{H}$	＇${ }^{\circ} \mathrm{ot}$ ）	¢̌6．11	IS	II 5	2	\cdots	
\cdots					（oS）	to．Lo	IS	II ${ }^{\text {d }}$	z	S．z	Eo．Lo
$\stackrel{\square}{0}$			（ ${ }^{\text {）}}$	Lt．Eo	${ }^{\prime}(\downarrow)$	98．zo	1	II $\mathrm{OH}^{\text {H }}$	ε	N8	$\mathrm{S}_{\text {I．EoEE }}$
∇					（S）	68.46	16	II P	\boldsymbol{z}	UI	08．L6zE
	（oS）	$\mathcal{E}+56$	IS	II	＇（9）	18．96	1	II ə¢	ε	6	94．S6
									1	${ }^{1} \dot{d}$	08.16
		$9^{+7.68}$	Al^{11}	II ${ }^{\text {a }}$	（ L ）	SE． 68	S9	II ${ }^{\text {g }}$	z	z	－ 0.68
					（E）	zt．S_{8}	1	II ${ }^{\text {a }}$	z	ε	${ }_{9} \mathcal{E} S_{8}$
					（L）	6z． 18	1	II ${ }^{\text {d }}$	\mathcal{E}	OI	9z．18
	（0）	S8．LL	ς_{9}	II ${ }^{\text {¢ }}$	${ }^{\prime}(6)$	9E．LL	1	II O_{4}	ε	$z 1$	re．LL
					（6）	sع．LL	1	II 2 H	I	NYOI	z6．zL
					（¢）	S9．1L	99	II ！${ }^{\text {d }}$	I	1	9L．1L
					（ ${ }^{\text {）}}$	ャ6．99	S9	II $\mathrm{O}_{\mathbf{y}}$	1	1	z6．99
					（d）	9L．t9	1	II P_{4}	z	ε	89．t9
				LL．8S					1	US．I	IS．09
			（01）		（01）	So．6S	18	II ${ }^{\text {a }}$	\boldsymbol{z}	\mathbf{N}^{\dagger}	L6．85
					（8）	88．9S	I	II PH	τ	8	＊68．ss
					（ot）	16．zS	2	II ！${ }^{\text {d }}$	z	N ${ }^{\text {I }}$	zo．ES
					（6）	LI． $4 t$	18	II ${ }^{\text {d }}$	2	S．I	$9 \mathcal{L}$ ．\downarrow
					(8)	zL．Et	6 II	II ${ }^{\text {a }}$	そ	1	$\dagger L . \varepsilon \downarrow$
\bigcirc			（¢）	ot．LE	＇（8）	18．4E	18	II ${ }^{\text {as }}$	1	$\mathbf{N}^{\boldsymbol{z}}$	19．LE
－					（09）	86．1ヶ	z	II ！	1	VE	O．LE
					（0）	マ6．t乏	1	II ${ }^{\text {a }}$	1	z	86．ヤを
					（09）	ャo．6£	z	II ！	1	VoI	Er．カモ
		8 8．zE	$9 \mathcal{E}$	II ！ L d	（ L ）	6L．zE	6II	II əg $^{\text {a }}$	I	Nz	St．zE
					（0L）	LS．9E	z	II ！${ }^{\text {L }}$	I	VE	¢．1E
		41．0E	$H^{z I}$	II əН¢	（I）	－S．oE	96	II ә－${ }^{\text {c }}$	1	NNS	－ヤ．oE
					$(S L)$	zG．tE	z	II ！L	τ	V^{+}	$8^{\text {t．6 }}$ z
	（SE）	ot．6z	$9 \mathcal{E}$	II ！Ld					1	S．I	86．8z
					（Ex）	EL．L 2	9	II ${ }^{\text {a }}$ H	z	N6	＊96．Lz
					（0t）	61.68	z	II ！${ }^{\text {d }}$	1	NV8	$6 . \varepsilon z$
						9r．Ez	19	II ！ N	τ	S．z	81．\＆z
					（EI）	EL．Lz	9	II əgi	1	NVOOI	－．とて
					（OS）	$\dagger \psi^{+1}$	6	II 5	τ	S．I	9ヤ．LIzE
						นоп̣	uəpI		u	－7UI	u
L						u！u00）	gTav				

$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline 1 \end{aligned}$	（t）	zg． 56	${ }_{\boldsymbol{S}} \mathrm{I}$	II ${ }^{\text {P }}$	＇（ot）	\mathcal{E}_{8} ．56	と	$11 . u^{\prime \prime}$	－		
	（ $)$	zs．t6		II 3	（ (s)	L9．66	91	II ${ }^{\text {a }}$	z	\dagger	＊ 4 S． 76
					（01）	Lt． .6	tir	II ${ }^{\text {¢ }}$	z	z	什．E6
						86.68	49z	II ${ }^{\text {a }}$	z	S． 1	E0．06
					（ot）	89.88	ε	II UIN	z	z	18.88
					（£）	66.48	t	II ¢ $^{\text {¢ }}$	z	1	OL． 48
		10．t8	$a^{\prime 2}$	II ə．	＇（oz）	SI．t8	z	II ${ }^{\text {d }}$	z	S． 1	tr．t8
					（oゅ）	16.88	ε	II UNT	z	\mathcal{E}	ャ6．z8
					（z）	16.64	เ	II ${ }^{\text {a }}$	ε	S．I	98.64
					（d）	tL．SL	\dagger	II ә $_{\text {¢ }}$	z	ut	＊ 0 L．SL
	（ot）	z1．tん			（ oS ）	to．tく	ε	II un	\mathcal{E}	ε	LI．tL
					（z）	¢E．1L	\pm	II ！ N	z	Uz	91.14
					（8）	89.89	tir	II ${ }^{\text {a }}$	z	ε	19.89
	（6）	＋ع．99	z_{1}	II une		＇88．99	s^{2}	I N	ε	ε	£ع． 99
					（1）	$\mathrm{zg}^{\text {S }} \mathrm{S}_{9}$	t	II ！ N	z	${ }^{2}$	$8{ }^{\text {t．}}$ S 9
EIEẼ					（1）	${ }_{\text {L6．}} \mathrm{E}_{9}$	\pm	II ${ }^{\text {a }}$	z	¢． 1	${ }^{\text {¢6．}}$ ¢ 9
					（9）	£L．z9	${ }^{2}$	II 3	z	¢．O	LL．z9
	（ $¢$ z）	6z．69	${ }_{9} \varepsilon_{\text {I }}$	II	＇（SL）	18．09	\mathcal{E}	II UNT	ε	¢．${ }_{\text {S }}$	L． 09
						E6．9S	94	II ${ }_{\text {PH }}$	$\mathcal{\varepsilon}$	z	＋68．99
$\stackrel{0}{0}$	（¢£）	$86 . t s$	$9^{\text {E }}$	II 5		＇ti．ss	H9z	II ${ }^{\text {a }}$	ε	ε	Eo．ss
$\dot{8}$					（s）	9r．ts	1	II ！${ }^{\text {N }}$	z	S．z	zo．ts
						－E．zS	492	II ${ }^{\text {P }}$ ¢	ε	ε	8z．zS
									1	uI	98．6＋
					（d）	E8．Et	91	II ${ }^{\text {¢ }}$ H	z	S． 1	－8．Et
					（001）	86.1 b	\mathcal{E}	II पN	ε	s	$60.2+$
						$66.0 \pm$	${ }^{49 z}$	II ə $^{\text {d }}$	z	ε	$94.0{ }^{\text {c }}$
						z6．8E	$A^{\text {c }}$	II ！${ }^{\text {N }}$	τ	9	$98.8{ }^{\text {E }}$
					（5）	11.9 E	16	II ${ }^{\text {¢ }}$	ε	τ	z0．9E
					（SL）	－¢．EE	ε	II ${ }^{\text {¢ }}$	ε	u£	＊＊＊．\＆์
					（ع）	8 8．Sz	s	II ə $^{\text {¢ }}$	1	${ }^{\text {x }}$	${ }_{\text {I S．Sz }}$
					（ŠI）	ゅL．zz	ε	II	ε	uS	Eo．Ez
					（ $¢$ L）	oz．1z	ε	II	ε	S．e	$\downarrow \mathcal{E}$ ．r
					（S）	20．91	91	II ${ }^{\text {a }}$	ε	9	£6．$\varsigma_{\text {I }} \downarrow \mathcal{E}$
						บo！̣e	иәр		u	7uI	u_{χ}

(ponu!uนos) ${ }^{\text {BII }}$ TIGVL,

(ропициио) BII ATGVL

$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \dot{i} \\ & i \end{aligned}$						$\begin{aligned} & 18 . t t \\ & 86 . \varepsilon t \end{aligned}$	$\begin{aligned} & \mathrm{H}^{I Z} \\ & \mathrm{H}^{I Z} \end{aligned}$	II ${ }^{2} \mathrm{H}$ II ${ }^{\circ} \mathrm{H}$	ε	：\dagger	zL．カカで
									z	－ \mathcal{E}	E6．Et
									1	†	96．0t
									1	ε	9¢．SE
					（II）	Lr．EE	Lz	II ${ }^{\text {a }}$	z	$8{ }^{1}$	＊91．E\＆
						9S．18	H^{12}	II ${ }^{\text {d }}$	1	\dagger	OE．IE
					（II）	LI．EE	$4 z$	II $\mathrm{OH}^{\text {I }}$	1	NV ${ }^{\text {¢ }}$	zo．Lz
									I	${ }_{1}{ }_{\text {d }}$	LE．tr
						OI．II	¢ $\underbrace{\text { ¢ }}$	II $\mathrm{O}_{\text {¢ }}$	z	\mathcal{E}	16.01
						61.10	${ }^{\boldsymbol{H}}$	II ${ }^{\text {N }}$	ε	8	11．10ヶt
									1	1	Lr．66rt
									\boldsymbol{z}	${ }^{1}$	：z9．48
	（d）	$\begin{aligned} & S 6.8 L \\ & 0 L . \angle L \end{aligned}$	$\begin{gathered} \mathrm{H}_{\mathrm{I}} \mathrm{I} 乞 \end{gathered}$	II ${ }^{2} \mathrm{H}$ II ${ }^{2} \mathrm{H}$		＇98．84	82	II ${ }^{\text {g }}$	\boldsymbol{z}	21	＊E8．8 ${ }^{4}$
$\begin{aligned} & \text { E } \\ & \text { N } \\ & \text { N } \\ & \text { S } \\ & \text { En } \end{aligned}$						${ }^{\text {＇re．} 14}$	s^{12}	II ${ }^{\text {¢ }}$	ε	21	tE．LL
					（8）	St．EL	4%	II $\mathrm{o}^{\text {d }}$	1	11	＊6L．EL
					（o£）	68．1L	SoI	II！L	2	z	8L．1L
					（ot）	t9．E9	Sor	II！${ }^{\text {！}}$	を	\mathcal{E}	$97 . \varepsilon_{9}$
							$\underline{4}$	人I ${ }^{\text {a }}$ d	\mathcal{E}	\dagger	OS．zS
									z	UI	S9．st
$\stackrel{\square}{\circ}$										I	
$\underset{\sim}{*}$					（z）	$94 . \varepsilon \downarrow$	\mathcal{E}	I ${ }^{\text {OH}}$	ε	S	t86．Et
					（z）	9L．E \dagger	£S	I ¢ $^{\text {H}}$	1	UVE	I 9.68
	（ $\varepsilon)$	$\varepsilon L \cdot 8 \varepsilon$	4τ	II $\boldsymbol{\partial}_{\text {g }}$	＇（L）	EE．8 ${ }^{\text {z }}$	48	II ！	ε	NS	$80.8^{\text {e }}$
					（1）	6L．tを	ข	II ${ }^{\text {a }}$	を	S． 1	$8^{\text {S．t\％}}$
					（ \downarrow ）	t9．zz	8	II ${ }^{\text {a }}$	\mathcal{E}	S	ES．zz
					（E）	18.02	$9{ }^{\text {I }}$	I ${ }^{\text {H }}$	I	UI	tr9．0r
						$8^{\text {b．tI }}$	${ }^{\text {d }} \mathfrak{\varepsilon} \boldsymbol{z}$	II ${ }^{\text {a }} \mathrm{H}$	ε	9	＊9¢．tr
		10.11	8 I	II 10					1	\boldsymbol{z}	$9 \mathrm{S.OI}$
		LE．EO	1	III \mathbf{N}		けく．10		9 H	\boldsymbol{z}	NO9	＊9と．zort
						IE．L6	I	III N	\boldsymbol{z}	z	ot．L6ot
						ヤL． 10		9 H	1	NV8	IS．96
						SE．94	$\mathrm{H}^{\boldsymbol{z}}$	II S	τ	\dagger	tE．9Lot
						บo！			u	－7uI	u
No						рппичио	I 478				

6	18.8^{S} ot．tS	$\underset{\Phi \mathcal{E}}{6 I}$	$\begin{aligned} & \text { II } \partial_{\mathrm{H}} \\ & \text { II }{ }_{\mathrm{H}} \end{aligned}$		${ }^{6} 00.89$	58^{1}	II ${ }^{\text {S }}$	$\begin{aligned} & \text { ot } \\ & \mathbf{u \mathcal { E }} \end{aligned}$	$\begin{aligned} & 8^{\dagger .8 S_{I} S} \\ & \circ \tau . \dagger S \end{aligned}$
					z1．97	\mathcal{G}	II $\mathrm{OH}^{\text {H }}$	I	91．9t
					Lg．zE	SE	II ${ }^{\text {可 }}$	I	O9．zE
					E9．11	A^{61}	II ${ }_{\text {¢ }}$	9	zS．II
					96．LO	H^{1}	II ${ }^{\text {H }}$	\dagger	8L．LO
	\＄6．00		II ${ }^{\text {EH }}$		99.00	SE	II OH $^{\text {H }}$	S．0d	89．001 9
					ot．zL	$\mathbf{H}^{6 I}$	II $\mathrm{O}_{\underline{4}}$	I	IE．zLoS
	$\mathcal{E} .09$	$\mathrm{HI}^{\text {I }}$	III Ə．ㅘ̇	${ }^{\prime}\left(0_{8} q-D_{z}{ }^{\text {e }}\right.$ ）	80.09	：	II ${ }^{\text {H }}$	乙	00.09
					0.95	S	II ISd		18．95
				$\left(ه_{5} \mathrm{P}-\mathrm{de}^{2} \mathrm{e}\right)$	$8^{1 .} \cdot 8^{\square}$	H－		S．I	E0．8 ${ }^{\square}$
					£S．Et	$\mathrm{HOZ}^{\text {O }}$	II $\boldsymbol{\partial H}^{\text {I }}$	z	$9 t . \varepsilon \downarrow$
．	tre\％	Joz	II ${ }^{\text {TH }}$		＇$£$ ¢．8I	とt	II ${ }_{\text {¢ }}$	mot	$\{2 t .81$
\％					L．9．SI	t	I $\mathrm{H}^{\text {H }}$	U\＆	$\{$ ： 0.61
0					E．II	［ ${ }^{1}$	III ${ }^{\text {H }}$	S．0	IZ．II
F					L9．SI	t	$1{ }^{\circ} \mathrm{H}$	Vol	92.60
4					99.90	I^{\dagger}	II ${ }^{\text {I }}$	z	$\{25.90$
δ					zS．So	HOZ	II ®H $^{\text {H }}$	\mathcal{E}	\｛tt．So
$\frac{1}{6}$	EL．OO	$9 \mathcal{E}$	II Ə．					I	\downarrow ¢．IOOS
\％					$9 \mathcal{E}$ ¢6	$9 \mathcal{1}$	II O．fe	9.08	SL．E66t
क					6E．EL	joz	II ${ }_{\text {g }}$	5	†て．EL
\％					tL．OS	H°	II ${ }_{\text {OH }}$	\downarrow	8S．OS
0^{8}					8E．Lt	Goz	II ${ }^{\text {g }}$	\mathcal{E}	92．Lt
\bigcirc	E6．Iz	8^{7}	I ${ }^{\text {OH}}$		＇z6．Ez	ても	II OH	$8{ }^{\text {I }}$	$08 \cdot \varepsilon z$
					SE．So	aoz	II ∂_{S}	4	82．S06t
				$\left(C_{8} q-D_{z}{ }^{\text {e }}\right.$ ）	19.86	a－	II ${ }_{\text {H }} \mathrm{H}$	2	zS．868t
					ع9．68	$\underbrace{\square}$		zI	8S．68
								1	SE．S8
					6t．tん	Hoz	II ${ }^{\text {g }}$	\dagger	8E．ヤL
					EE． 19		dH	OSI	z9．z98
N				uot	！！			${ }^{\bullet 7} \mathrm{UI}$	γ
－					69～－8H				
$\stackrel{\circ}{7}$					gT8V」				

6					$\begin{aligned} & \left(D_{z} \mathrm{P}-Ю_{8} \mathrm{E}\right) \\ & \left(\mathrm{G}_{z} q-\mathrm{d}_{8} \mathrm{E}\right) \end{aligned}$	$\begin{array}{r} t t . S \varepsilon \\ 0.66 \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { II } \partial_{\mathrm{H}} \\ & \text { II } \begin{array}{l} \text { I } \end{array} \end{aligned}$	$\stackrel{t}{\text { S.Od }}$	$\begin{aligned} & 9^{+. S \varepsilon_{8}^{S}} \\ & : 1.66 \angle S \end{aligned}$		易
						8．tS	${ }^{\mathcal{E}}$	II Ne	c	S6．LS		\cdots
						8．ts	$\mathcal{H}^{\varepsilon}$	II \mathbf{N}	$t z$	$\boldsymbol{z S . t S}$	10	$\stackrel{5}{6}$
						8.75	${ }_{H}$	II Ne	u\＆	$\left\{\begin{array}{l}\text { ：} 8.8 .8^{\text {b }}\end{array}\right.$		O－
						96．9 ${ }^{\text { }}$	$\underbrace{\dagger} \downarrow$	II ${ }^{\text {ad }}$	u8	$\left\{\begin{array}{l}\text { or．Lt }\end{array}\right.$		\％
						2．81	${ }^{66 \varepsilon}$	II $\mathrm{OH}^{\text {d }}$	¢．Od	oz．8iLS		－
						zz．$\varepsilon<$	H	II 2 H	\dagger	$8 \mathrm{I} . \varepsilon \angle 95$		$\frac{1}{2}$
						L8． 45	$6 z$	II ${ }^{\text {S }}$	1	： 28.45		－
						$\mathrm{S}_{8} . \boldsymbol{\text { ¢ }}$	H^{4}	II ${ }^{\text {as }}$	z	zL．tS		\％
		49.64	$3^{6 E}$	II ${ }^{\text {Prim }}$		t6．0S	${ }^{66}$	II ${ }^{\text {a }}$	US．I	：$\dagger 1.0 S$		2
		4.6	，	11	$\left(C_{8} q-d_{8}{ }^{\text {e }}\right.$ ）	＇Sz．Lz	H	II O_{S}	I	：$\varepsilon . L \tau$		免
						Lz．Es	$\mathbf{H}^{6 \varepsilon}$	II ${ }^{\text {aju }}$	S．I	†て．EI9S		K
．N	$\left(\mathrm{C}_{5} \mathrm{q}-\mathrm{dz}_{5}{ }^{\text {e }}\right.$ ）	St． 48	H	II ${ }^{2} \mathrm{H}$		${ }^{\text {¢ }}$ I． 88	${ }^{68}$	II ${ }^{\text {a }}$	S．I	$89.48{ }^{\text {SS }}$		$\underset{\sim}{7}$
\％						28.08	${ }^{66 E}$	II ${ }^{\text {OH }}$	S．	¢L．08		\pm
\％						LE．t9	¢z	1 N く	S． 0	¢E．t9		\％
4						LE． 09	St	I Nd	S．0i	79．6S		$\stackrel{0}{0}$
\bigcirc						I E．9S	481	II ${ }^{\text {2 }}$	S．I	± 2.95		\％
$\frac{5}{5}$						IE．1S	${ }_{\text {d }}^{68}$	II ${ }^{\text {I }}$	\underline{z}	$9 \varepsilon .15$ $6 L . \dagger \mathcal{L}$		宫
\％		19.42	$\mathbb{H}^{\dagger ¢}$	II Р¢		$\begin{gathered} 98 . \dagger \mathcal{E} \\ { }_{\mathcal{E} \mathcal{E} \cdot L \Sigma} \end{gathered}$	SS 4 4	II ${ }^{2} \mathrm{H}$	${ }_{21}$	82．LZSS		者
－				11		z．96	HLI	II ${ }^{\text {ar }}$	\dagger	9L．S6tS		－
\％		L9．4L	67	II əH		＇Sと．LL	$H^{\dagger E}$	II ${ }^{\text {as }}$	ε	oz． 42		交
0		86．zE	ss	II ${ }^{\text {a }}$		${ }^{\mathfrak{S}} \mathrm{s}$ ． \mathcal{E}	981	II ${ }^{\text {¢ }}$	$M L$	EO．EE		－000
						$\varepsilon_{8} / L \tau$		II ${ }^{\text {g }}$	${ }^{\text {I }}$	ャ6．Lと		－
						Lz．sz	$6 t$	II $\mathrm{PH}^{\text {d }}$	\mathcal{E}	$8{ }^{1.9 z}$		\％
						60．tr	$8^{\text {t }}$	II OH_{H}	UI	てE．bI		－
						＋9．zI	$\mathrm{F}^{\text {LI }}$	II ${ }^{\text {OH }}$	9	\dagger ¢．zI		晋
						9.20	εz	II Xod	Uİ	oE．8otS		O
						4.9 .9	${ }^{61}$	II $\mathrm{P}^{\text {d }}$	S_{1}	SE．9LES		怱
		90.29	$\mathrm{G}^{\text {LI }}$	$1{ }^{2} \mathrm{~J}$		「98．z9	8^{\square}	II ${ }^{\text {P }}$	9	$\left\{{ }^{18} 8 . z 9\right.$		\％
$\hat{6}$			4	11						\｛19．09ES		\cdots
\cdots					ио！ұвуч！				${ }^{7} 71$	γ		－80
$\stackrel{\circ}{8}$					（ponuıuos）9II GTEv L							（）

\qquad A.D. Thackeray	Vol. 135
Following the wavelength:	

a double line measured on DY 646 but not on the plates of lower dispersion. This structure which is found in many strong lines (including some forbidden
lines) calls for special investigation and lies outside the scope of the present paper.
\dagger a marked change of intensity between 1961 and 1965 (usually a decrease with time). When two intensities are recorded the first refers to 1961

uncertain measure.

The third column (Table IIa) records the number of plates on which the line
The identifications are recorded as usual in the order: ion, R.M.T. number, laboratory wavelength in \AA (omitting first two digits) followed (in Table IIa) by the laboratory intensity. Identifications to the right-hand side are regarded as minor contributors to blends.

4. Representation of elements. The general conclusions of papers I and II

The head of the Balmer series was not covered in paper I. On these coude spectra $\mathrm{H}_{1} 8$ is the last strong diffuse emission seen (as compared with H_{16} in
paper I) but $\mathrm{H}_{22}, 27$ and 3 I are also suspected. Displaced absorption (which

 absorption up to $\mathrm{H}_{3} 0$. Gaviola (1953) found emission up to H_{24} and possibly H 28 and absorption to H 18 or 19 on plates taken from 1944 to 1951 and commented on stronger absorption in 1948 .
He I emission is much weakened in 1965 (see Plate I).
N I was found in the infrared in paper II (see Plate $1 c$,

 Radcliffe spectra, Fe I must be rejected, and Mn $3466 \cdot 3$ with upper E.P. I 3.4 V
 spectra.
[N II] 5755 is very strong; it appears to be flanked by shortward and longward
[N II] is
 the very strong wings of $\mathrm{H} \alpha$ on the coude plates.
[OI] 6300 may be present, displaced $0.3 \AA$ from its predicted wavelength.
f the identification is correct this represents the first evidence for oxygen ir
 the companion line [O I] 6364 is masked by a line of [Ni II]. Evidence for thi absence of [O II] and [O III] is strengthened by the coude material.
[NeIII] 3868, 3967 provide the most striking example of change between
 to have reappeared in moderate strength on cassegrain spectra of i966.

 the line probably is a displaced component of H_{9}; the other members of the triplet

 -!!
[ClII]. No lines are found, the negative evidence being far stronger than in paper I, bui predicted wavelengths are still uncertain.
[ArIII]. 2 F and 3 F are not found, and the sole evidence continues to rest
Mn II. A few lines appear in the ultraviolet. No such lines were recorded
in paper I . Ni . See FeI lines in ultraviolet fail to appear.
[CuII]. The line 3805 is confirmed.
Zr II. The strongest lines in ultra-violet fail to appear.

 with his values of $(2 J+1) A, J$ being the inner quantum number of the upper
The observational data regarding [Fe II] in η Carinae is now more extensive

Table III therefore lists all [Fe II] multiplets and transitions in the relevant range with significant values of $(2 J+1) A$. We write R_{m} or R_{q} for this quantity

 the order is of decreasing R.
The wavelengths corresponding to the transitions were not given by Garstang.

 writer from Kayser's Tables.
The η Carinae intensities are all visual estimates by the writer. Intensities

옹

12

$$
\begin{aligned}
& \text { ひUUUUUUUU }
\end{aligned}
$$

ロロロロロロロロロロッロ
U UUUUUUU

ひUひひ ベベペ ص゙ صの円のヘ円

	ひひUひUUひひひ 		U ひUUUひUU 	טひט ベベベベ が	
．		${\underset{o}{i}}_{\infty}^{\infty} \text { た }$		$\text { G } \underset{\sim}{E} E$	
$\begin{aligned} & \text { 蔦 } \\ & \text { H } \end{aligned}$		$\text { N } \quad \dot{\operatorname{con}} \dot{n} \text { min }$		$0^{n} \infty^{a} \stackrel{-}{6}$	긍ㅇㅇ웅

$\stackrel{\pi}{2}$

N ．
$\oplus \quad 4 \quad 山$ なひひひひひひひひひひ ひ
 Ξ

	2	No		¢		$\infty \times$＋ơ 		＋${ }_{\text {＋}}^{\sim}$	¢ ${ }_{\circ}^{\circ}$
	\％		$\stackrel{+}{+}$		¢0¢		＋		$\stackrel{+}{\text {＋}}$

[^0]

80	$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	$\stackrel{\sim \sim}{\sim}$	\% \%	-	\bigcirc	$\stackrel{\text { ¢ }}{ }$	

A. D. Thackeray
Table III (continued)

-incore

Vol． 135

 $\stackrel{\dot{\circ}}{\stackrel{0}{n}}$

The wavelength is unfavourable for recording this line with any of the emulsions used．

 observed at $3905 \AA$ may be only partly due to $[\mathrm{Fe}$ II］．
 3979.51 （with more accordant wavelength）must be small because
the upper state is 8.75 V ，and the stronger line Cr II 3865.6 does not appear．

［Fe II］44r4．Identification with 22 F in paper I should be with－
drawn．
 425 I appears clearly on DZ 658 ．

This line may be represented by a feature（？ 2 N ）at about $3386 \cdot 9$ ， missed in the original measures
fo suoŋpey！
$\lambda \lambda 4248,4347$ in this multiplet in paper I should be withdrawn in
the light of Garstang＇s calculations．
$4211 \cdot 1$
4251.4
H
$\underset{\sim}{\infty}$
N

$\stackrel{M}{N}$

 excellently with predictions．
 with predictions．

 not be detected at cassegrain dispersion．Garstang＇s intensity
 with Fe II $6044^{\circ} 53$ a minor blend．
sem［II ！L］fnq II roded u！possosisins sem uo！̣eoy！ regarded as possibly the major contributor．The latter suggestion should perhaps now be withdrawn．

The coude wavelengths and intensities strongly support the identifications of these lines suggested in paper I．

[^1] \circ
$\dot{\circ}$
$\dot{\circ}$
∞
$\mathrm{I}_{8} \mathrm{~B}-\mathrm{DB}_{8} \mathrm{E}$
$\stackrel{\text { M }}{\text { N }}$
$\stackrel{\mathfrak{r}}{\underset{\sim}{c}}$
品
烨
等
曻

7975 •3

No. I, I		Coudé spectra of η Carinae 77
$a^{4} D-b^{2} D$	$3664 \cdot 7$	This line, expected to be very weak, is in any case masked by a Balmer line. Struve \& Swings (r940) claimed to have observed this line and $\lambda_{3} 625 \cdot 8$ of this multiplet in WY Gem. The latter line was later identified by Swings (1943) with Ni II 5 F. The marginal observation of $3532 \cdot 8$ in η Carinae probably represents the first true observation of this multiplet.
$a^{2} G-b^{2} D$	$4898 \cdot 6$ $5060 \cdot 1$	These are two hitherto well-known unidentified lines. The coudé data are in excellent accord with predictions. The identifications were noticed by the writer soon after he received Garstang's paper; they have been independently noticed by Swings (private communication).
$a^{2} P-b^{2} D$	$5627 \cdot 2$	This identification suggested in paper I is confirmed and another line (5799) appears on coudé spectra.
$a^{2} D-b^{2} D$	$\begin{aligned} & 6353 \cdot 1 \\ & 6689 \cdot 4 \end{aligned}$	These two strongest lines, according to Garstang, are both apparently present on coudé spectra. 6353 was recorded in paper I, unidentified.
$b^{4} P-a^{2} S$	$6485 \cdot 3$	The identification could hardly have been suggested without Garstang's transition probability.
$a^{2} \mathrm{G}$	4479* 1	This line clearly appears on DZ 658. $\lambda_{4576.4}$ is masked.
$\mathrm{a}^{2} \mathrm{P}-\mathrm{c}^{2} \mathrm{D}$	5048•2	The identification suggested in paper I is well confirmed by the coudé data and by Garstang's prediction.
$b^{4} \mathrm{~F}-\mathrm{c}^{2} \mathrm{D}$	$6511 \cdot 2$	The strongest line of this multiplet (6545) is masked by $\mathrm{H} \alpha$. Although $65^{1 I}$ is hardly likely to appear according to predicted intensity, the wing of $\mathrm{H} \alpha$ may have served to bring it up marginally.

It is immediately apparent that within any multiplet the general run of
 The table should be of general utility in identification of [Fe II] lines in any
object throughout the spectral range $3100-9000 \AA$. If a richer source than

 omitted from Table III.
 in η Carinae: $4 \mathrm{~F}, 6 \mathrm{~F}, 7 \mathrm{~F}, 1 \mathrm{FF}, 13 \mathrm{~F}, 14 \mathrm{~F},{ }_{15} \mathrm{~F}, \mathrm{I}_{7} \mathrm{~F}, 18 \mathrm{~F}, 19 \mathrm{~F}, 20 \mathrm{~F}, 21 \mathrm{~F}, 23 \mathrm{~F}$, $a^{2} G-b^{2} D, a^{2} P-b^{2} D, a^{2} D-b^{2} D, b^{4} P-a^{2} S, a^{2} G-c^{2} D, a^{2} P-c^{2} D$. Six of these have not been reported before.
Doubtfully present are: $8 \mathrm{~F}, 9 \mathrm{~F}, 36 \mathrm{~F}, \mathrm{a}^{4} \mathrm{H}-\mathrm{c}^{2} \mathrm{G}, \mathrm{a}^{4} \mathrm{D}-\mathrm{b}^{2} \mathrm{D}, \mathrm{b}^{4} \mathrm{~F}-\mathrm{c}^{2} \mathrm{D}$. Probably absent are: $2 \mathrm{~F}, 10 \mathrm{~F}, 22 \mathrm{~F}, 25 \mathrm{~F}, 27 \mathrm{~F}, 33 \mathrm{~F}, 37 \mathrm{~F}$, etc.
 abandonment of a number of idenifications previously suggested in η Carinae
 9 F possibly represented by the weak line $3979 \cdot 8$. below the lowest odd state. This result is confirmed and another such multiplet has now been found.
Vol. 135

意:

$$
\text { o g } \overparen{G}
$$

Q

贸
The failure to observe this line must be due to the superposition of

This line appears to be partly masked by displaced absorption due to Ti II 4300 ．
6365.5 Both lines appear on coude spectra，only the former having
6813.7
appeared on cassegrain．Despite rather large discrepancies in appeared on cassegrain．Despite rather large discrepancies in
wavelength（perhaps due to errors in Ni II energy levels），Garstang＇s intensities make the identifications practically certain．

All coudé wavelengths of these lines（not available on cassegrain spectra）confirm the predictions based on Shenstone＇s revision of
low Ni II levels．
$3076 \cdot$ I The last coudé line visible towards the ultraviolet．Its true intensity predictions．

It is noteworthy that the only transition in this multiplet listed in
R．M．T．is still weaker according to Garstang and does not appear．
i；

5．［Fe III］in η Carinae．［Fe III］is definitely represented in η Carinae by
fairly strong lines 4658 ， $470 \mathrm{I}, 4733$ of multiplet 3 F ．According to Garstang
（r957）the strongest lines of iF should be 5270,501 ，and 4930 ．The first line
appeared resolved in Table IIb，in 1952 the second was probably masked by
displaced He I absorption but is recorded weakly on the later coudé plates，while
the third seems to be present in paper I（where it was left unidentified）；it was
not detected on coudé spectra whose general limiting intensity in this region lies
above that of the cassegrain spectra．
6．［NiII］in η Carinae．Table IV presents observed and predicted intensities in 7 multiplets of［ Ni II］in the same form as Table III； 8 F and 6 F seem to be new． Again the agreement with Garstang is very good，with the one exception of 4201 in 3 F ；perhaps this line is affected by an unidentified blend．
 әлоиถ̊ variations in ionization in the optical column and assume the distribution of ions

 in volts．

Plots of $\log I$ against $\log R$ for each multiplet show roughly linear correlation．
For a group of multiplets lying in the same general range of wavelengths and with roughly the same values of E we find R_{0} corresponding to a given value of I ，one value of R_{0} for each group．

With constant I（or I_{t} ）we have

$\frac{L}{\text { gotos }}={ }^{0} y$ ภoI

- constant
$\log R_{0}$ is plotted against E in Fig．I．Different ranges of wavelengths are
distinguished by different symbols．The constant in the above equation varies

$$
{ }^{4}\left(I+x_{\partial} C_{C_{d}}\right)
$$

Emission lines appearing double with separation of order $2 \AA$ have been known since the early Lick observations. This phenomenon may be associated with the duplicity of the nucleus noted by double star observers or with complex conditions of the halo. It is not the purpose of the present paper to discuss this aspect of the problem of η Carinae.

9. Acknowledgments. The writer is deeply indebted to Mrs S. Hill and Mrs I. Malin for their careful measurements of these rich spectra, without which this project could not have been completed. He is also grateful to the Astronomer Royal for making this assistance possible, mainly through the D.S.I.R. grant to the Radcliffe Trustees.
 P.O. Box 373, Pretoria.
 1966 May

 Garstang, R. H., 1958. Mon. Not. R. astr. Soc., 118, 234.Not. R. astr.
No. 1, 1967

e.g. S Dor (Thackeray 1964)Emission lines appearing double with separation of order $2 \AA$ have be
known since the early Lick observations. This phenomenon may be associatwith the duplicity of the nucleus noted by double star observers or with complexaspect of the problem of η Carinae.

 s, шеч

[^0]: －ity

[^1]:

