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Abstract 

Graph neural networks (GNN) has been considered as an attractive modelling method for molecular property predic-

tion, and numerous studies have shown that GNN could yield more promising results than traditional descriptor-

based methods. In this study, based on 11 public datasets covering various property endpoints, the predictive 

capacity and computational efficiency of the prediction models developed by eight machine learning (ML) algo-

rithms, including four descriptor-based models (SVM, XGBoost, RF and DNN) and four graph-based models (GCN, 

GAT, MPNN and Attentive FP), were extensively tested and compared. The results demonstrate that on average the 

descriptor-based models outperform the graph-based models in terms of prediction accuracy and computational 

efficiency. SVM generally achieves the best predictions for the regression tasks. Both RF and XGBoost can achieve reli-

able predictions for the classification tasks, and some of the graph-based models, such as Attentive FP and GCN, can 

yield outstanding performance for a fraction of larger or multi-task datasets. In terms of computational cost, XGBoost 

and RF are the two most efficient algorithms and only need a few seconds to train a model even for a large dataset. 

The model interpretations by the SHAP method can effectively explore the established domain knowledge for the 

descriptor-based models. Finally, we explored use of these models for virtual screening (VS) towards HIV and dem-

onstrated that different ML algorithms offer diverse VS profiles. All in all, we believe that the off-the-shelf descriptor-

based models still can be directly employed to accurately predict various chemical endpoints with excellent comput-

ability and interpretability.

Keywords: Graph neural networks, Extreme gradient boosting, Ensemble learning, Deep learning, ADME/T 

prediction
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Introduction
Molecular property modelling, which assists in hunt-

ing for chemicals with desired pharmacological and 

ADME/T (absorption, distribution, metabolism, excre-

tion, and toxicity) properties, is one of the most classi-

cal cheminformatics tasks [1, 2]. A variety of machine 

learning (ML) approaches, such as Naive Bayes (NB) 

[3–5], k-Nearest Neighbors (k-NN) [6], logistic 

regression (LR) [7, 8], support vector machine (SVM) 
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[9–13], random forest (RF), [10, 14, 15] artificial neu-

ral network (ANN) [13] and more, have been widely 

employed in property prediction. More recently, the 

emergence of deep learning (DL) methods has revolu-

tionized this traditional cheminformatics task due to 

their extraordinary capacity to learn intricate relation-

ships between structures and properties [16–23]. �e 

models developed by DL can be roughly classified into 

two categories: descriptor-based models and graph-

based models [24]. As to descriptor-based DL models, 

molecular descriptors and/or fingerprints commonly 

used in traditional quantitative structure–activity rela-

tionship (QSAR) models are used as the input, and then 

a specific DL architecture is employed to train a model 

[25]. As to graph-based DL models, the basic chemical 

information encoded by molecular graphs is used as the 

input, and then a graph-based DL algorithm, such as 

graph neural networks (GNN), is used to train a model. 

Similar to the convolutions on the regular data such 

as images and texts, GNN generalizes this operation 

to the irregular molecular graph that is a natural rep-

resentation for chemical structures. More specifically, 

a graph G = (V, E) can be defined as the connectivity 

relations between a set of nodes (V) and a set of edges 

(E). Naturally, a molecule can also be considered as a 

graph consisting of a set of atoms (nodes) and a set of 

bonds (edges).

Essentially, GNN aims to learn the representations of 

each atom by aggregating the information from its neigh-

boring atoms encoded by the atom feature vector and 

the information of the connected bonds encoded by the 

bond feature vector through message passing across the 

molecular graph recursively (Fig. 1), followed by the state 

updating of the central atoms and read-out operation. 

�en, the learned atom representations can be used for 

the prediction of molecular properties through the read-

out phase [19, 26]. �e key feature of GNN is its capacity 

to automatically learn task-specific representations using 

graph convolutions while does not need traditional hand-

crafted descriptors and/or fingerprints. �e state-of-the-

art accuracy of GNN models in property prediction has 

been well represented [17, 24, 27–32]. �e representa-

tive GNN models and their statistical performances on 

the MoleculeNet benchmark datasets [32] are summa-

rized in Table 1. As we can see, their performances on the 

benchmark datasets vary from one to another, which may 

be attributed to the discrepancies on the model archi-

tectures, evaluation methods, training strategies and so 

on. Recently, a GNN method: Attentive FP, has gained 

increasing attention from the scientific community [27]. 

As shown in Table  1, Attentive FP yields the best pre-

dictions to 6 out of 11 benchmark datasets, including 2 

regression tasks (ESOL and FreeSolv) and 4 classification 

tasks (MUV, BBBP, ToxCast and ClinTox), highlighting its 

Fig. 1 The general workflow of GNN in molecular property prediction
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impressive performance in modelling a variety of chemi-

cal properties in comparison with several other graph-

based methods. A majority of those studies claimed that 

graph-based models are typically superior or comparable 

to traditional descriptor-based models [24, 30–35], and 

only a few studies gave the opposite conclusions [36]. 

For example, in 2017, Wu et  al. reported MoleculeNet, 

a large benchmark for molecular machine learning, and 

the evaluation results illustrated that graph-based meth-

ods  outperformed descriptor-based methods on most 

datasets [32]. Similarly, in 2019, Yang et al. introduced a 

novel GNN framework named directed message passing 

neural networks (D-MPNN), and the extensive evalua-

tion on a large dataset collection indicated that D-MPNN 

consistently matched or outperformed descriptor-based 

methods on most datasets [24]. More recently, Korolev 

et al. reported a universal graph convolutional networks 

(GCN) architecture for the predictions of various chemi-

cal endpoints [33], and the application of GCN illustrated 

that its performance was comparable to state-of-the-art 

ML algorithms such as SVM, RF, and gradient boosting 

decision trees (GBDT). 

In most of these reported studies, traditional ML 

models such as LR, RF, SVM (especially ‘gold stand-

ard’ RF) [31, 37] were employed to develop the predic-

tion models based on a set of individual fingerprints 

(especially Extended Connectivity Fingerprints, ECFP) 

[31–33]. However, it is well known that the performance 

of descriptor-based models is highly depending on the 

descriptors used in training and many previous studies 

have highlighted that ML models only based on molec-

ular fingerprints are not such well-performing [4, 5, 38, 

39]. In addition, little attention was paid to several newly 

state-of-the-art ML algorithms, such as XGBoost and 

LightGBM, which have illustrated great potentials for 

modelling various molecular properties [39–42]. Accord-

ingly, the conclusion that graph-based methods  outper-

form traditional descriptor-based methods still remains 

controversial.

�e present study attempts to give a comprehensive 

evaluation of descriptor-based and graph-based models 

on 11 public datasets with different property endpoints. 

Four ML algorithms were used to develop the descriptor-

based models, including SVM, extreme gradient boost-

ing (XGBoost), RF and deep neural networks (DNN). 

In order to better represent the chemical and structure 

features of the molecules for the descriptor-based mod-

els, the combination of one set of molecular descriptors 

(206 MOE 1-D and 2-D descriptors) and two sets of fin-

gerprints (881 PubChem fingerprints and 307 substruc-

ture fingerprints) were considered, and such molecular 

representations are also commonly seen and easily acces-

sible. �ree typical GNN architectures (GCN, GAT 

and MPNN) and a state-of-the-art graph-based model 

(Attentive FP) were used as the graph-based model base-

lines, and the informationized molecular graph using 

atom-level or bond-level features were taken as the input. 

Both of the predictability and computability of these 

models were assessed. �e results illustrate that the com-

putational cost of the descriptor-based models is far less 

than that of the graph-based model baselines, and the 

descriptor-based models generally yield more promising 

predictions than the graph-based methods. More con-

cretely, SVM generally performs best on the regression 

tasks. Both RF and XGBoost are reliable classifiers for the 

classification tasks, but the graph-based models, such as 

GCN and Attentive FP, can also show excellent perfor-

mance on some tasks. In terms of computational cost, 

XGBoost and RF are efficient and they only need a few 

seconds to train a model even for a large dataset. Moreo-

ver, the established descriptor-based models were inter-

preted by the Shapley additive explanations (SHAP), and 

the important descriptors and structural features learned 

by the prediction models were highlighted. Finally, the 

developed ML models were used to conduct a virtual 

screening (VS) study toward human immunodeficiency 

virus (HIV), and the results indicate that different ML 

models offer varied performance in identifying poten-

tial HIV inhibitors. All in all, we believe that the ready-

made and light-weight descriptor-based models can 

reach better or comparable accuracy, computability, and 

interpretability to the highly complicated and specialized 

graph-based DL models.

Materials and methods
Datasets

To well compare the performance of descriptor-based 

and graph-based models, the dataset collection related 

to drug discovery used by Attentive FP was also adopted 

in this study [27]. �is dataset collection contains 11 dif-

ferent datasets originally reported in MoleculeNet for a 

variety of chemical endpoints [32]. In the study reported 

by Xiong et al. [27], the molecules that could not be suc-

cessfully processed by RDKit [43] or the Attentive FP 

model were excluded from the original datasets. �e 

details of those datasets are summarized in Table  2. 

Here, three datasets were used for the regression tasks, 

including ESOL, FreeSolv, and Lipop, and the remain-

ing eight datasets were used for the classification tasks, 

which can be further divided into the single-task datasets 

(ESOL, FreeSolv, Lipop, HIV, BACE, and BBBP) and the 

multi-task datasets (CilnTox, SIDER, Tox21, ToxCast, 

and MUV). Notably, we found that, in the ToxCast multi-

task datasets, some subdatasets are extremely imbal-

anced (the ratio of two classes is higher than 50) or quite 

small (the number of compounds is smaller than 500). 
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Apparently, it seems reluctant to include these subdata-

sets for the development and assessment of ML models 

because of biased evaluation metric or insufficient train-

ing data, especially for traditional ML methods. One 

of the strengths for graph-based models is that multi-

task learning can be applied for such highly imbalanced 

subdatasets and the corresponding statistics may be 

improved in comparison with traditional ML methods, 

but the prediction performances for such highly unbal-

anced subdatasets are not so convinced. �erefore, for 

the sake of fairness and simplification, such subdatasets 

were excluded directly, leading to the number of the tasks 

for ToxCast is 182, not the original number of 617. All 

the assessed ML models were evaluated based on the 

same remaining 182 ToxCast tasks, and we believe that 

the results can still make sense.

Molecular representation

Graph-based methods are capable of learning molecu-

lar representations by operating the convolutions on 

the encoded molecular graphs directly. In the graph 

representation for a molecule, the connectivity relation 

between atoms is represented by a graph G = (V, E). Here, 

the nodes V are represented by the node feature vector Xv 

consisting of a series of atomic features and the edges E 

are represented by the edge feature vector Ekm consisting 

of a series of bond features, where the subscript km indi-

cates that atoms k and m are bonded. Followed by pre-

vious studies [27], almost all the easily accessible atom/

bond-level features were exhausted to comprehensively 

squeeze chemical information into molecular graph for 

graph-based models, where include nine kinds of atomic 

features (i.e., atom symbol, atom degree, formal charge, 

radical electrons, hybridization, aromaticity, hydrogens, 

chirality and chirality type) and four kinds of bond fea-

tures (i.e., bond type, conjugation, ring, and stereo). Most 

of them were encoded into a molecular graph in a one-

hot manner and subsequently the encoded molecular 

graph was used as the input. �e more details about the 

molecular representations for graph-based models are 

available in the publication [27].

All the molecules were minimized using the MMFF94 

force field in MOE (Version: 2015.1001) with the default 

parameters. �en, the expert-crafted descriptors and 

fingerprints were computed to develop the descriptor-

based models. To comprehensively represent molecular 

structures, 206 MOE 1-D and 2-D descriptors and two 

sets of fingerprints, including 881 PubChem fingerprints 

(PubchemFP) and 307 substructure fingerprints (SubFP), 

were used. �e MOE descriptors were calculated by MOE 

(Version: 2015.1001), and the two sets of fingerprints 

were calculated by PaDEL-Descriptor (Version: 2.1). [44] 

Prior to the development of the descriptor-based models, 

all the molecular features were pretreated as follows: (1) 

the features with missing values and extremely low vari-

ance (< 0.05) were removed; (2) the feature that has a high 

correlation (r > 0.95) with another feature was removed; 

(3) the retained features were normalized to the mean 

value of 0 and variance of 1.

Machine learning algorithms

As one of the most classic cheminformatics problems, 

molecular property prediction has made considerable 

progress over the last decade due to the application of 

new ML methods represented by deep learning and 

ensemble learning [25, 40, 45, 46]. In this study, four 

Table 2 The detailed information of the datasets used in this study

Datasets Task Type Compounds Tasks Metric Descriptions

ESOL Regression 1127 1 RMSE Water solubility for organic small molecules

FreeSolv Regression 639 1 RMSE Hydration free energy of small molecules in water

Lipop Regression 4200 1 RMSE Octanol/water distribution coefficient (logD at pH = 7.4)

HIV Classification 40748 1 AUC-ROC Inhibition to HIV replication

BACE Classification 1513 1 AUC-ROC Inhibition to human β-secretase 1 (BACE-1)

BBBP Classification 2035 1 AUC-ROC Binary labels of blood–brain barrier penetration

ClinTox Classification 1475 2 AUC-ROC Qualitative data of drugs approved by the FDA and those that have failed clinical trials for 
toxicity reasons

SIDER Classification 1366 27 AUC-ROC Database of marketed drugs and adverse drug reactions (ADR), grouped into 27 system 
organ classes

Tox21 Classification 7811 12 AUC-ROC Qualitative toxicity measurements on 12 biological targets, including nuclear receptors 
and stress response pathways

ToxCast Classification 8539 182 AUC-ROC Toxicology data for a large library of compounds based on in vitro high-throughput 
screening, including experiments on over 600 tasks

MUV Classification 93087 17 AUC-PRC Subset of PubChem BioAssay by applying a refined nearest neighbor analysis, designed for 
the validation of virtual screening techniques
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representative ML algorithms (i.e., DNN, SVM, XGBoost 

and RF) were used to develop the descriptor-based mod-

els, and four representative graph-based methods (i.e., 

MPNN, GCN, GAT and Attentive FP) were employed to 

develop the graph-based models.

Deep neural networks (DNN)

As one of the typical DL algorithms, DNN has an input 

layer, an output layer, and many hidden layers. DNN is 

composed of many individual neurons [16, 25]. Each neu-

ron in DNN aggregates information from its connected 

neurons and then the aggregated information is activated 

by a non-linear activation function. Such manifestations 

mimick the behavior of biological neural networks. All 

the operations in DNN aim to learn intricate and rap-

idly-varying non-linear functions and extract a hierar-

chy of useful features from the input [18]. In this study, 

three hidden layers feed-forward neural networks were 

employed, and the following key hyper-parameters were 

optimized: L2 regularization (0 to 0.01), dropout rate (0.0 

to 0.5) and neurons for each hidden layer (64, 128, 256, 

512). �e other important hyper-parameters were fixed: 

ReLU function that has been recommended by many pre-

vious studies was used as the activation function [25, 47], 

and the optimizer was set to an adaptive learning rate 

algorithm: Adadelta [48].

Support vector machine (SVM)

SVM is one of the most popular ML approaches and it is 

appropriate for both classification and regression [9, 49, 

50]. It is also capable of dealing with both linearly separa-

ble and linearly inseparable problems. For linearly insep-

arable feature space, the kernel trick is needed to map the 

original feature space onto a new higher separable linear 

space. �e basic objective of SVM is to find the optimal 

hyperplane in the feature space that can maximize the 

distance between the data points and hyperplane, and 

the discriminant results generated from this optimal 

hyperplane should be insensitive to small perturbation of 

training samples. Here, the commonly used radial basis 

function (RBF) was used as the kernel and the following 

main hyper-parameters were optimized: C (0.1 to 100) 

and gamma values (0 to 0.2).

Extreme gradient boosting (XGBoost)

XGBoost is one of the most representative ensemble 

learning ML algorithms under the frame of gradient 

boosting [51]. Compared with traditional gradient boost-

ing, several algorithm optimizations were introduced to 

XGBoost, such as minor improvement in the loss func-

tion by penalizing the complexity of the model, introduc-

tion of shrinkage and column subsampling for further 

preventing over-fitting, employment of sparsity-aware 

split finding technique for efficient training on sparse 

data, etc. [51]. XGBoost has gained extensive attention 

in the property prediction due to its significant predic-

tive power and low computational cost [42, 52, 53]. In 

the training of XGBoost, the following hyper-parameters 

were optimized: learning_rate (0.01 to 0.2), gamma (0 to 

0.2), min_child_weight (1 to 6), subsample (0.7 to 1.0), 

colsample_bytree (0.7 to 1.0), max_depth (3 to 10) and 

n_estimators (50, 100, 200, 300, 400, 500, 1000).

Random forest (RF)

Random forest is another representative ensemble learn-

ing ML algorithms. It constructs a strong classifier or 

regressor by an ensemble of individual decision trees 

under the frame of bagging and makes predictions by 

majority vote or averaging of multiple decision trees [10, 

15]. In the implementation of RF algorithm, sample per-

turbation via bootstrap sampling of the training data and 

feature perturbation via random feature subset selection 

are introduced to improve the diversity of base learner 

(decision trees), which corrects for the overfitting habit 

of decision trees and subsequently enhances the gener-

alization ability of RF. In the training of RF, the following 

hyper-parameters were optimized: n_estimators (10, 50, 

100, 200, 300, 400, 500), max_depth (3 to 12), min_sam-

ples_leaf (1, 3, 5, 10, 20, 50), min_impurity_decrease (0 to 

0.01) and max_features (‘sqrt’, ‘log2’, 0.7, 0.8, 0.9).

Message passing neural networks (MPNN)

MPNN is a common framework for GNN that was used 

for chemical prediction in 2017 by Gilmer et al. [54], and 

it has shown versatility in many applications such as nat-

ural language processing, image segmentation, chemical/

molecular graphs, and so on. Many recently proposed 

GNN architectures for molecular property prediction 

can be formulated in this flexible framework [24, 26, 34, 

37]. In theory, MPNN operates the convolutions on undi-

rected molecular graphs G = (V, E) with node features 

Xv and edge features Ekm. �e forward propagation of 

MPNN has two phases: message passing phase and read-

out phase. �e message passing phase transmits infor-

mation across the molecular graph to learn a molecular 

embedding using the message functions Mt and node 

updating functions Ut, and the readout phase computes a 

feature vector for the whole molecular graph using some 

readout functions R to model the properties of inter-

est. More mathematical details are available in the study 

reported by Gilmer et al. [54] In the training of MPNN, 

the following hyper-parameters were optimized: L2 regu-

larization (0, 10e-8, 10e-6, 10e-4), learning rate (10e-2.5, 

10e-3.5, 10e-1.5), dimension of node feature in hidden 

layers (64, 32, 16), dimension of edge feature in hidden 

layers (64, 32, 16), and number of set2set layers (2,3,4). 



Page 7 of 23Jiang et al. J Cheminform           (2021) 13:12  

�e number of message passing steps and set2set steps 

were fixed to 6.

Graph convolutional networks (GCN)

To date, various GCN frameworks and variants have 

been proposed, and the most classical GCN model was 

introduced by Kipf et al. in 2017 [55]. Mathematically, it 

follows the propagation rule: H (l+1) = σ

(

D̂
− 1

2 ÂD̂
− 1

2 H (l)W (l)
)

 , 

where H (l) and W (l) denote the lth neural networks layer 

and its corresponding learnable parameters, respectively. 

σ represents a non-linear activation function. Generally, 

D and A are the degree matrix and adjacency matrix, 

respectively, Â = A + I where I is the identity matrix, 

and D̂ is the diagonal node degree matrix of Â . �e 

design of the D̂−
1

2 ÂD̂
−

1

2 term is intended to add a self-

connection to each node and keep the scale of the feature 

vectors. From the message passing point of view, it can 

also be ascribed to the following two step: (1): aggregate 

neighbors’ information hv to produce an intermediate 

representation ĥu ; (2) transform the aggregated represen-

tation ĥu with a linear projection followed by a non-line-

arity activation: hu = σ

(

Wuĥu

)

 . In this study, the vanilla 

GCN model proposed by Kipf et al. was used and the fol-

lowing hyper-parameters were optimized: L2 regulariza-

tion (0, 10e−8, 10e−6, 10e−4), learning rate (10e−2.5, 

10e−3.5, 10e−1.5), dimension of FNN classifier (64, 128, 

256), and dimension of GCN hidden layers ([128, 128], 

[256, 256], [128, 64], [256, 128]).

Graph attention network (GAT)

GAT is an extension of the vanilla GCN model, and the 

biggest distinction between vanilla GCN and GAT is the 

way of neighboring information aggregation. In the 

vanilla GCN model, the graph convolution operation 

aggregates the normalized sum of neighboring informa-

tion. In the GAT, attention mechanisms by specifying dif-

ferent weights to different nodes are introduced and the 

corresponding graph convolution operation aggregates 

the weighed sum of neighboring information in a formu-

lation: H
(l+1)
i = σ

(

∑

j∈N (i) α
(l)
ij W

(l)H
(l)
i

)

 , where α
(l)
ij  is 

the normalized attention score between node i and node 

j in the lth graph convolution layer. W ,N (i) and σ are 

learnable weight matrix, the neighbors of node i , and 

non-linear activation function respectively. �e calcula-

tion of the attention score and other details can be refer-

ence to the corresponding publication [56]. �e 

application of attention mechanisms in the graph convo-

lution can force the model to learn the most meaningful 

parts in neighbors and local environment and it has 

gained preferable performance in comparison with other 

usual GCN architectures [27, 34, 56]. In the training of 

GAT model, the following key hyper-parameters were 

optimized for each task: L2 regularization (0, 10e−8, 

10e−6, 10e−4), learning rate (10e−2.5, 10e−3.5, 

10e−1.5), dimension of GAT hidden layers ([128, 128], 

[256, 256], [128, 64], [256, 128]), dimension of FNN clas-

sifier (64, 128, 256), and the number of attention heads 

([2, 2], [3, 3], [4, 4], [3, 4], [2, 3]).

Attentive FP

Attentive FP, proposed by Xiong et al. [27] is a state-of-

the-art GNN model for molecular property prediction. 

In Attentive FP, the recursive neural networks (RNN) 

was employed to agglomerate the structural informa-

tion encoding in molecular graph  from nearby to dis-

tant and update the state of centered atom. Moreover, a 

graph attention mechanism was introduced to allow the 

model to focus on the most relevant parts of the input. 

�e results reported by Xiong et al. illustrated that Atten-

tive FP can achieve state-of-the-art predictions to a wide 

range of molecular properties (Table  1) [57]. �e main 

hyper-parameters for Attentive FP include num_layers 

(the number of attentive layers for atom embedding), 

num_timesteps (the number of attentive layers for mol-

ecule embedding), graph_feat_size (fingerprint dimen-

sion), L2 regularization, learning rate, and dropout rate. 

Here, all those main hyper-parameters were optimized: 

L2 regularization (0, 10e-8, 10e-6, 10e-4), learning rate 

(10e-2.5, 10e-3.5, 10e-1.5), num_layers (2, 3, 4, 5, 6), 

num_timesteps (1, 2, 3, 4, 5), dropout (0, 0.1, 0.3, 0.5), 

and graph_feat_size (50, 100, 200, 300).

For the development of the four descriptor-based 

models, the DNN algorithm was implemented in the 

PyTorch package (Version: 1.3.1 + cu92) of Python (Ver-

sion: 3.6.5 × 64), and the XGBoost (Version: 0.80), RF 

and SVM algorithms were implemented in the scikit-

learn package (Version: 0.20.1) of Python [58]. All the 

four graph-based models were implemented by the Deep 

Graph Library (DGL) package (Version: 0.4.1) using 

PyTorch as the backend of Python [59].

Model training, optimization and evaluation protocols

In the first stage, the same training, validation and test 

sets at a ratio of 8:1:1 used by Attentive FP were also 

used in our study (Additional file 1 generated from the 

source code provided in the github). For the assessed 

ML algorithms, the prediction on the validation set 

was used to guide the optimization of hyper-param-

eters. �e Tree of Parzen Estimators (TPE) algorithm 

was used to identify the best hyper-parameters for dif-

ferent ML models in 50 evaluations (Here four graph-

based models on the HIV and MUV datasets were in 

30 evaluations due to the high computation overhead). 

�e TPE algorithm is an optimization algorithm under 

the sequential model-based global optimization frame 
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and capable of finding ideal hyper-parameters only 

through a few objective function evaluations. TPE was 

implemented by the hyperopt package (Version: 0.2) 

in Python (Version: 3.6.5 × 64) [60]. �en, in the sec-

ond stage, in order to alleviate the effect of the ran-

domness of data splitting, 50 independent runs with 

different random seeds for data splitting (training/vali-

dation/test = 8:1:1) were performed to evaluate each 

ML model in a more reliable way. Similarly, four graph-

based models on the HIV and MUV datasets were in a 

20 independent runs due to the high computation over-

head, and the optimized hyper-parameters determined 

in the first stage were straightly adopted. For avoiding 

overfitting and tremendous time consumption, all the 

neural network (NN)-based model (i.e. DNN, GCN, 

GAT, MPNN and Attentive FP) were trained in an early 

stopping way for all tasks if no validation performance 

improvement was observed in successive 50 epochs, 

and followed by the previous DNN hyper-parameter 

recommendations [25, 61], the maximum epoch was 

set as an empirical value of 300 for all the task. �e 

additional check of the training logs also proved that 

this empirical value is enough to learn representative 

parameters for NN-based models. �e training batch 

for most tasks was set as 128. However, this number 

was also merely empirical and could change depending 

on the complexity of model and data volume. All the 

model training and evaluation scripts were available in 

Additional file 2.

According to the recommendations of MoleculeNet 

benchmarks [32], the classification models were evalu-

ated by the area under the receiver operating charac-

teristic curve (AUC-ROC) for the classification tasks 

except the maximum unbiased validation (MUV) data-

set, which was evaluated by the area under precision-

recall curve (AUC-PRC) due to its extreme biased data 

distribution. �e regression models were evaluated by 

root mean square error (RMSE). In a more diverse eval-

uation, we also considered mean absolute error (MAE) 

and R-Square (R2) metrics for regression model. As 

shown in Table  2, five datasets contain more than one 

task. �e multi-task learning was applied in the devel-

opment of the five NN-based models including DNN, 

GCN, GAT, MPNN and Attentive FP for each multi-

task dataset, and the average performance across mul-

tiple tasks was reported. However, it is not practical to 

generalize the multi-task learning to traditional descrip-

tor-based models (i.e. SVM, XGBoost, and RF). In this 

case, each multi-task dataset was split into multiple 

single-task datasets and the individual descriptor-based 

model on each single dataset was trained, and then the 

average performance was reported in a similar way.

Model interpretation

ML algorithms usually function as a “black-box”, and 

how to interpret these complicated ML models remains 

a big challenge. Several interpretation methods have 

been proposed to uncover the “black-box” essence of 

ML algorithms and they can be roughly classified into 

two major categories: model-specific and model-agnos-

tic strategies. �e model-specific strategies are relevant 

to the specific structure of a model, such as the fea-

ture weights for the simplistic linear model and feature 

importance determined by Gini index for RF model. 

One of the strengths for the model-agnostic strategies 

is that they do not depend on the specific model archi-

tecture and can mitigate the necessity to balance model 

performance and interpretability [62, 63]. Some model-

agnostic strategies such as sensitivity analysis have 

been applied in model interpretation but it becomes 

inefficient with the increase of model dimensionality 

[64, 65].

Here, a recently-developed model-agnostic inter-

pretation framework called SHapley Additive exPla-

nations (SHAP) was employed to interpret the ML 

models due to its both local and global interpretability 

[66]. SHAP method was inspired from the game theory 

and the corresponding SHAP value was employed to 

quantify the contributions of single players to a col-

laborative game [65]. Some published studies have 

demonstrated that SHAP method has high potential 

in understanding arbitrary complicated ML models 

[39, 65]. In a more specific way, this method defines an 

explanation model that belongs to a linear function of 

binary variables: f (x) ≈ g
(

z′
)

= ∅0 +
∑M

i=1
∅iz

′

i , where 

z′ ∈ {0, 1}M denotes the absence (0) or presence (1) of 

a certain descriptor, and M is the number of molecular 

descriptors. ∅i is the so-called SHAP value, and similar to 

previous descriptions, it measures the impact of the pres-

ence or absence of a descriptor on the model output, and 

the sum of all descriptor attributions g
(

z′
)

 approximates 

the output f (x) of the original model. More details about 

this method can be found in the relevant publications 

[39, 65]. �e SHAP method was implemented in the shap 

package (Version: 0.35.0) of Python software (Version: 

3.6.5 x64).

Washing of the benchmark datasets

Data quality is one of the fundamental questions in 

cheminformatics and the incorrect or inappropri-

ate structures contained in datasets would hinder 

the effort of developing reliable prediction models. 

Here we found that some salts, inorganics, counte-

rions, solvents, mixtures and even duplicates with 

inconsistent labels existing in the datasets provided 
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by Xiong et  al. [27], but we do not remove them 

first for the sake of fairness. The original data was 

reported by Wu et  al. and it is apparently unreason-

able to use such datasets for model building. In this 

regard, we developed a python script based on MOE 

(Version: 2015.1001) and RDKit (Version: 2019.09.1) 

to automatically eliminate the incorrect or inappro-

priate structures from the original datasets with the 

following steps: (1) For the mixtures and compounds 

containing salts, counterions, and solvents, we used 

a compromised method of keeping the major com-

ponent with the largest number of heavy atoms and 

the retained component was neutralized if possible. 

This step was accomplished by the sdwash module 

in MOE and the compounds that cannot be recog-

nized by MOE were eliminated; (2) A molecule was 

identified as an inorganics if it does not contain any 

carbon atom and then eliminated from the datasets. 

Similarly, the compounds that cannot be recognized 

by RDKit were also eliminated in this step; (3) Dupli-

cates were identified by the canonical SMILES gener-

ated from RDKit. After that, the duplicated records 

with inconsistent labels were removed.

Results and discussion
Performance of descriptor-based and graph-based models

At the outset, the same training, validation, and test sets 

for the development of the Attentive FP models were 

adopted, and the corresponding statistical results for the 

six single-task datasets including three regression tasks 

and three classification tasks given by the four descrip-

tor-based and four graph-based models are summarized 

in Table  3 (regression tasks) and Table  4 (classification 

tasks).

For the regression tasks, one of the graph-based mod-

els, Attentive FP, achieves the best statistical perfor-

mance on ESOL with the RMSE of 0.471 for the test 

set, and the performances of SVM (RMSE = 0.516) and 

DNN (RMSE = 0.553) are slightly worse than it. As we 

can see, the performances of three classical graph-based 

models (i.e., GCN, GAT and MPNN) and RF are obvi-

ously unpleasant on this dataset. For FreeSolv, both SVM 

and XGBoost offer considerable and comparable per-

formances with RMSE = 0.674 and 0.707 for the test set 

respectively, which are slightly better than that of DNN 

(RMSE = 0.724). With regard to Lipop, three methods 

including one graph-based method (Attentive FP) and 

Table 3 The performance comparison (RMSE) of  the  four descriptor-based and  four graph-based models on  the  three 

regression datasets (data folds were generated from Attentive FP and the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ESOL 1127 1 RMSE SVM 0.158 0.624 0.516

XGBoost 0.188 0.511 0.571

RF 0.391 0.635 0.631

DNN 0.448 0.568 0.553

GCN 0.429 0.622 0.598

GAT 0.402 0.518 0.604

MPNN 0.467 0.546 0.665

Attentive FP 0.407 0.479 0.471

FreeSolv 639 1 RMSE SVM 0.347 0.423 0.674

XGBoost 0.106 0.685 0.707

RF 0.536 0.932 0.888

DNN 0.483 0.527 0.724

GCN 0.187 0.526 0.795

GAT 0.496 0.634 0.851

MPNN 0.316 0.772 1.050

Attentive FP 0.529 0.517 0.813

Lipop 4200 1 RMSE SVM 0.185 0.552 0.567

XGBoost 0.145 0.524 0.556

RF 0.481 0.625 0.649

DNN 0.210 0.553 0.591

GCN 0.315 0.573 0.612

GAT 0.409 0.602 0.676

MPNN 0.474 0.606 0.662

Attentive FP 0.282 0.521 0.559
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two descriptor-based methods (SVM and XGBoost) 

achieve similar performances with RMSE ≈ 0.560 for the 

test set and this predictive capability is superior to other 

methods, especially RF, GAT  and   MPNN. Clearly, the 

RF and three graph-based models (i.e., GCN, GAT and 

MPNN) show disappointing predictive capability to the 

three regression tasks. On average, SVM achieves the 

best predictions on the test sets of the regression tasks. 

XGBoost and Attentive FP perform similarly but slightly 

worse than SVM.

As for the three classification tasks including HIV, 

BACE and BBBP, it gets puzzled to tell which type of 

model, i.e. descriptor-based and graph-based, is supe-

rior in the light of statistical results only from one ran-

dom partition. However, it can be observed that three 

descriptor-based models (i.e. XGBoost, RF, and DNN) 

and two graph-based models (i.e. GCN and Attentive 

FP) are more powerful than the other models in general. 

Concretely, GCN and DNN offer almost the same pre-

dictions to HIV with AUC-ROC ≈ 0.857 for the test set, 

and three models including XGBoost, Attentive FP and 

RF are slightly worse than them with AUC-ROC ≈ 0.847. 

Besides, XGBoost and Attentive FP give the same 

performances on BACE with AUC-ROC = 0.889 for the 

test set, and DNN is slightly inferior to them with AUC-

ROC = 0.883 for the test set. For BBBP, both Attentive FP 

and RF offer the same predictive ability for the test set 

with AUC_ROC = 0.907, and SVM gives slightly worse 

results with AUC_ROC = 0.899 for the test set.

Next, the performances of the descriptor-based and 

graph-based models were further compared on the five 

multi-task datasets including ClinTox, SIDER, Tox21, 

ToxCast, and MUV. As shown in Table  5, it seems also 

struggling to distinguish which type of model is more 

promising. Here from the overall level, the models that 

perform well in the aforementioned three classification 

tasks (i.e. GCN, Attentive FP, XGBoost, RF and DNN) 

can still give satisfactory predictions to the five multi-task 

datasets. More specifically, for ClinTox, two descriptor-

based models (SVM and RF) and one-graph based model 

(GAT) give more promising predictions than the other 

models. For both SIDER and Tox21, two descriptor-

based models (XGBoost and RF) and one graph-based 

model (Attentive FP) share similar and more powerful 

predictions on the corresponding test sets. For MUV, 

one descriptor-based model (SVM) and two graph-based 

Table 4 The performance comparison (AUC_ROC) of the four descriptor-based and four graph-based models on the three 

classi�cation datasets (data folds were generated from Attentive FP and the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

HIV 40748 1 AUC_ROC SVM 1.000 0.821 0.840

XGBoost 0.999 0.842 0.848

RF 0.962 0.805 0.846

DNN 0.978 0.835 0.858

GCN 0.994 0.862 0.857

GAT 0.997 0.853 0.825

MPNN 0.968 0.865 0.828

Attentive FP 0.905 0.852 0.847

BACE 1513 1 AUC_ROC SVM 0.976 0.883 0.861

XGBoost 1.000 0.898 0.889

RF 0.989 0.876 0.861

DNN 0.973 0.921 0.883

GCN 1.000 0.945 0.876

GAT 0.996 0.937 0.848

MPNN 0.972 0.921 0.848

Attentive FP 1.000 0.923 0.889

BBBP 2035 1 AUC_ROC SVM 0.988 0.922 0.899

XGBoost 0.977 0.946 0.886

RF 0.991 0.929 0.907

DNN 0.981 0.933 0.856

GCN 0.997 0.947 0.881

GAT 0.999 0.947 0.872

MPNN 0.944 0.961 0.889

Attentive FP 0.971 0.952 0.907
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models (GAT and Attentive FP) offer more promising 

results on the test set compared with the others.

To our surprising, five NN-based models including 

DNN, GCN, GAT, MPNN and Attentive FP yields much 

better prediction than three descriptor-based models to 

the ToxCast dataset (average AUC-ROC = 0.897 for five 

NN-based models and 0.760 for three descriptor-based 

models). �e careful analysis of the Attentive FP source 

code suggests that the unreasonable data splitting for 

ToxCast may attribute to the over-optimistic predic-

tions of five NN-based models where multi-task learn-

ing was applied. More concretely, it is quite possible that 

Table 5 The performance comparison (AUC_ROC, MUV: AUC_PRC) of  the  four descriptor-based and  four graph-based 

models on  the  �ve multi-task classi�cation datasets (data folds were generated from  Attentive FP and  the  top three 

model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ClinTox 1475 2 AUC_ROC SVM 0.991 0.879 0.966

XGBoost 0.997 0.954 0.919

RF 0.972 0.939 0.964

DNN 0.993 0.943 0.956

GCN 0.987 0.967 0.901

GAT 0.992 0.965 0.968

MPNN 0.943 0.950 0.955

Attentive FP 0.951 0.961 0.944

SIDER 1366 27 AUC_ROC SVM 0.975 0.683 0.620

XGBoost 0.930 0.732 0.665

RF 0.934 0.678 0.659

DNN 0.939 0.658 0.639

GCN 0.940 0.697 0.647

GAT 0.924 0.681 0.602

MPNN 0.880 0.666 0.606

Attentive FP 0.985 0.651 0.670

Tox21 7811 12 AUC_ROC SVM 0.971 0.946 0.826

XGBoost 0.990 0.885 0.847

RF 0.981 0.861 0.858

DNN 0.941 0.849 0.854

GCN 0.992 0.857 0.837

GAT 0.985 0.844 0.830

MPNN 0.889 0.833 0.802

Attentive FP 0.984 0.870 0.847

ToxCast 8539 182 AUC_ROC SVM 0.987 0.731 0.724

XGBoost 0.973 0.836 0.773

RF 0.950 0.811 0.782

DNN 0.950 0.910 0.909

GCN 0.969 0.904 0.902

GAT 0.975 0.905 0.904

MPNN 0.860 0.858 0.849

Attentive FP 0.990 0.921 0.919

MUV 93087 17 AUC_PRC SVM 0.852 0.080 0.144

XGBoost 0.730 0.158 0.087

RF 0.707 0.061 0.091

DNN 0.030 0.031 0.024

GCN 0.115 0.063 0.052

GAT 0.187 0.113 0.134

MPNN 0.020 0.017 0.025

Attentive FP 0.090 0.030 0.141
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all positive samples or negative samples may occur for 

some columns of the data folds generated from a strongly 

biased subdataset in ToxCast based on the random data 

splitting and the average AUC-ROC cannot be calculated 

for such data folds accordingly (AUC-ROC metric cal-

culation error). In this case, Xiong et al. adopted a com-

promised splitting strategy where a stratified sampling 

at a ratio of 8:1:1 was individually applied to each single 

task of ToxCast to generate 182 independent training 

sets, validation sets and test sets for 182 different tasks 

[27]. After that, those independent training/validation/

test sets were merged one task by one task in an outer 

join manner to produce the final training/validation/

test set. It is the fact that the aforementioned situation 

(AUC-ROC metric calculation error) was well avoided, 

but the issue raised by such splitting strategy is the over-

estimated statistical results when multi-task learning was 

applied because many samples in the final test or valida-

tion sets will be included in the final training set. How-

ever, such situation (over-estimated statistical results) 

was well evaded by descriptor-based model where each 

single task was detached to train the model individually 

and no duplicated samples could occur in the data folds. 

More details about the data splitting used by Xiong et al. 

could be found in their webpage [67]. Besides, it is the 

same manner for the splitting of the biased MUV data-

set in Attentive FP. To our knowledge, a reasonable way 

to solve this problem is to change the random seed for 

data splitting if the randomly generated data folds suf-

fer from such situation. Hence, the obvious inferiority 

of three descriptor-based models on ToxCast compared 

with five NN-based models may be reasonably explained 

by the over-optimistic predictions of our NN-based mod-

els (what we will discuss later).

Actually, it seems arbitrary to judge which of models 

is better only based on the statistical results from one-

time run because of the randomness in data splitting. To 

evaluate the ML models in a more reliable way, 50 times 

independent runs based on different random seeds to 

split data into 50 different folds of training, validation, 

and test sets at the ratio of 8:1:1 were conducted for each 

dataset, and the average performance over the 50 folds 

with the corresponding standard deviation was used to 

evaluate the ML models. And the splitting strategy for 

the ToxCast and MUV datasets was revised. �e cor-

responding statistical results for the 11 studied datasets 

given by eight assessed models are listed in Table 6 (three 

regression datasets), Table  7 (three single-task classifi-

cation datasets) and Table  8 (five multi-task classifica-

tion datasets). From the Table 8, it can be observed that 

the predictions to the randomly split ToxCast datasets 

(Table 5) are much worse than those to the data gener-

ated by the original splitting strategy used by Attentive 

FP (average AUC_ROC of five NN-based models: 0.897 

to 0.770), demonstrating the over-optimistic predictions 

given by five NN-based models based on the original 

splitting strategy. Here, it can be found that the average 

performance of the 50 times independent runs is worse 

than that of the one-time run for the 11 studied data-

sets. To our knowledge, many previous studies evaluated 

the ML models by only averaging the performance from 

three independent runs and their results may be sensitive 

to the randomness of data splitting [27, 32]. To well illus-

trate this point, we counted the average performances for 

the top three runs and the worst three runs among the 50 

times independent runs for XGBoost (Additional file  3: 

Table  S1). It can be recognized that the average perfor-

mances for the top three runs and the worst three runs 

have big discrepancies for XGBoost. �erefore, with the 

aim of alleviating the randomness of data splitting, it is 

recommended to conduct sufficient independent runs to 

evaluate ML models more reliably.

As shown in the Table 6, it can be recognized that two 

descriptor-based models (SVM and XGBoost) and one 

graph-based model (Attentive FP) generally give better 

performances than the other models, which is consist-

ent, to some extent, with the findings from the previous 

one random split. Among them, SVM gives the best pre-

dictions to the ESOL and FreeSolv datasets with average 

RMSE of 0.569 and 0.852 to the test sets, respectively. 

Attentive FP gives the best predictions to the Lipop 

dataset with average RMSE of 0.553 to the test set, and 

SVM and XGBoost are slightly worse than Attentive FP 

with RMSE ≈ 0.574. Here, XGBoost offers satisfactory 

but slightly worse predictions to all the three regres-

sion datasets (average RMSE = 0.582, 1.025, and 0.574 to 

ESOL, Freesolv, and Lipop respectively) compared with 

SVM and Attentive FP. In addition, the MAE and R2 

metrics given by the eight models on the three regres-

sion tasks were also calculated (Additional file 3: Tables 

S2 and S3). As shown in Additional file 3: Table S2 and 

S3, similar conclusions could be drawn where SVM, 

XGBoost and Attentive FP are well-performing regres-

sors and on average SVM is the best one. Here what we 

found from Table 6 is that the descriptor-based models, 

especially SVM, generally show much better training 

set performances in comparison with the graph-based 

models (especially for two smallest datasets FreeSolv 

and ESOL). However, some graph-based models, espe-

cially Attentive FP, are able to reach comparable predic-

tion results to the descriptor-based models for the test 

sets, implying that the descriptor-based models are more 

likely to be over-fitted and less generalized compared 

with the graph-based models learnt from small and 

chemically narrow datasets. As for the three single-task 

classification datasets shown in Table  7, what we can 
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find is that the four descriptor-based models are obvi-

ously superior to the four graph-based models on the 

BBBP dataset, where the average AUC_ROC of the four 

descriptor-based models is 0.924 compared with  that 

of 0.891 for the four graph-based models. Similarly, on 

average the four descriptor-based models can give more 

reliable predictions to the BACE dataset where the aver-

age AUC_ROC of the four descriptor-based models is 

0.891 compared with  that of 0.875 for the four graph-

based models. However, for the larger HIV, it seems 

that the graph-based models are slightly better than 

the descriptor-based models, implying that inclusion 

of more samples may be helpful to train a better graph-

based model. In some cases, one may need to re-train 

their ML models with the gradual accumulation of avail-

able experimental datasets. Such operations can benefit 

more to graph-based models due to their data-hungry 

essence, but the rapid accumulation of qualitied experi-

mental datasets is not an easy task. On the contrary, reg-

ular re-training of ML models by adding a small number 

of new compounds one time could be some of routine. 

Generally speaking, the optimization of hyper-parame-

ters is necessary when re-training ML models, especially 

for NN-based models where their performances are sen-

sitive to the hyper-parameters such as the initial param-

eters and learning rate. Compared with graph-based 

models, descriptor-based models such as RF or SVM 

may be more stable for a long time. With regard to the 

five multi-task datasets shown in Table 8, it can be found 

that the descriptor-based models, especially XGBoost 

and RF, achieve better predictions than the graph-based 

models on the ClinTox, SIDER and MUV datasets. How-

ever, one graph-based model, Attentive FP, achieves the 

best predictions to the two relatively large toxicity-rele-

vant datasets including Tox21 and ToxCast with average 

AUC_ROC of 0.852 and 0.794 to the test sets, respec-

tively, which may benefit from the multi-task learning 

and larger data volume. Numerous studies demonstrated 

that multi-task models have advantages over single-task 

models due to their ability to excavate the inconspicuous 

hidden relations between different subtasks and trans-

parently share the learned features among all the tasks 

[57, 68, 69]. Nevertheless, the performance of multi-task 

models is highly related to the favorable correlations of 

individual tasks but such ready-to-use tasks are not so 

commonly seen in practical drug discovery campaigns. 

Table 6 The performance comparison (average RMSE) of the 50 times independent runs on the three regression datasets 

for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ESOL 1127 1 RMSE SVM 0.149 ± 0.005 0.565 ± 0.038 0.569 ± 0.052

XGBoost 0.224 ± 0.057 0.573 ± 0.048 0.582 ± 0.056

RF 0.391 ± 0.008 0.664 ± 0.053 0.663 ± 0.074

DNN 0.492 ± 0.061 0.617 ± 0.060 0.670 ± 0.092

GCN 0.272 ± 0.049 0.650 ± 0.064 0.708 ± 0.068

GAT 0.300 ± 0.093 0.608 ± 0.083 0.658 ± 0.109

MPNN 0.463 ± 0.074 0.652 ± 0.051 0.700 ± 0.073

Attentive FP 0.390 ± 0.076 0.535 ± 0.045 0.587 ± 0.065

FreeSolv 639 1 RMSE SVM 0.307 ± 0.023 0.804 ± 0.192 0.852 ± 0.171

XGBoost 0.228 ± 0.168 0.988 ± 0.197 1.025 ± 0.185

RF 0.518 ± 0.011 1.129 ± 0.248 1.143 ± 0.230

DNN 0.574 ± 0.115 0.840 ± 0.158 1.013 ± 0.197

GCN 0.703 ± 0.127 0.872 ± 0.191 1.149 ± 0.262

GAT 0.937 ± 0.375 1.079 ± 0.204 1.304 ± 0.272

MPNN 0.824 ± 0.220 1.130 ± 0.245 1.327 ± 0.279

Attentive FP 0.720 ± 0.131 0.881 ± 0.207 1.091 ± 0.191

Lipop 4200 1 RMSE SVM 0.191 ± 0.005 0.566 ± 0.037 0.577 ± 0.039

XGBoost 0.191 ± 0.040 0.569 ± 0.033 0.574 ± 0.034

RF 0.478 ± 0.003 0.660 ± 0.031 0.659 ± 0.031

DNN 0.271 ± 0.068 0.583 ± 0.031 0.608 ± 0.034

GCN 0.360 ± 0.081 0.616 ± 0.038 0.664 ± 0.086

GAT 0.372 ± 0.084 0.658 ± 0.037 0.683 ± 0.060

MPNN 0.476 ± 0.065 0.640 ± 0.037 0.673 ± 0.038

Attentive FP 0.309 ± 0.045 0.533 ± 0.033 0.553 ± 0.035
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For the purpose of simplicity, we counted the top three 

models and the corresponding performances based on 

the results from 50 times independent runs for each 

dataset. As can be seen from Table  9, the descriptor-

based model achieves the best predictions to six out of 

11 datasets including ESOL, FreeSolv, BBBP, ClinTox, 

SIDER and MUV. Moreover, it can be observed that 

the top three models of all the datasets were mainly 

occupied by the descriptor-based models (the ratio is 

24/33 = 73%), substantiating the more powerful predic-

tive abilities of the descriptor-based models compared 

with the graph-based models. It is possible that the supe-

riority of the descriptor-based models for some datasets 

(ESOL, FreeSolv, and Lipop) may be partially contrib-

uted from the descriptors that are highly correlated to 

the target values (such as the ‘LogS’ descriptor for the 

ESOL dataset). To systematically check this problem, we 

removed the top three descriptors that are highly corre-

lated to the target values according to the Pearson’s cor-

relation coefficients (ESOL: ‘logS’, ‘h_logS’, and ‘SlogP’; 

FreeSolv: ‘vsa_pol’, ‘h_emd’ and ‘a_donacc’; Lipop: 

‘SlogP’, ‘h_logD’, and ‘logS’) and then used the remaining 

descriptors to reconstruct the four descriptor-based 

models based on the optimal hyper-parameter con-

figurations determined in the first evaluation stage. �e 

evaluation metrics were also averaged from the 50 times 

independent runs (Additional file  3: Table  S4). It can 

be observed that the performance of the models devel-

oped based on the remaining descriptors do not show 

large difference compared with those developed based 

on the original descriptors. Moreover, we found that 

the descriptor-based models without thse high-related 

descriptors are still superior to the graph-based models 

(Additional file 3: Table S4). Here what we found is that 

the graph-based models can outperform the descriptor-

based models on some lager or multi-task datasets such 

as the HIV, Tox21 and ToxCast datasets, which is in well 

accordance with the previous conclusions where DNN 

excel at larger amounts of data and multi-task learn-

ing [68, 69]. However, to build such generalizable and 

robust deep models requires large-scale high-quality 

datasets and the datasets in the practical drug discovery 

campaigns routinely suffer from narrow chemical diver-

sity and insignificant sample sizes [70]. On the ground, 

Table 7 The performance comparison (Average AUC_ROC) of the 50 times  independent runs on the three classi�cation 

datasets for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

HIV 40748 1 AUC_ROC SVM 1.000 ± 0.000 0.825 ± 0.023 0.822 ± 0.020

XGBoost 0.990 ± 0.012 0.831 ± 0.022 0.816 ± 0.020

RF 0.963 ± 0.002 0.819 ± 0.021 0.820 ± 0.016

DNN 0.935 ± 0.040 0.825 ± 0.020 0.797 ± 0.018

GCN 0.984 ± 0.024 0.852 ± 0.023 0.834 ± 0.025

GAT 0.957 ± 0.036 0.841 ± 0.019 0.826 ± 0.030

MPNN 0.934 ± 0.040 0.828 ± 0.022 0.811 ± 0.031

Attentive FP 0.928 ± 0.052 0.839 ± 0.022 0.822 ± 0.026

BACE 1513 1 AUC_ROC SVM 0.979 ± 0.002 0.891 ± 0.026 0.893 ± 0.020

XGBoost 0.994 ± 0.010 0.903 ± 0.029 0.889 ± 0.021

RF 0.988 ± 0.001 0.896 ± 0.031 0.890 ± 0.022

DNN 0.976 ± 0.015 0.916 ± 0.024 0.890 ± 0.024

GCN 0.990 ± 0.018 0.921 ± 0.025 0.898 ± 0.019

GAT 0.981 ± 0.021 0.916 ± 0.024 0.886 ± 0.023

MPNN 0.926 ± 0.028 0.876 ± 0.030 0.838 ± 0.027

Attentive FP 0.970 ± 0.029 0.906 ± 0.033 0.876 ± 0.023

BBBP 2035 1 AUC_ROC SVM 0.988 ± 0.002 0.919 ± 0.029 0.919 ± 0.028

XGBoost 0.995 ± 0.005 0.938 ± 0.022 0.926 ± 0.026

RF 0.990 ± 0.001 0.929 ± 0.026 0.927 ± 0.025

DNN 0.990 ± 0.010 0.938 ± 0.022 0.922 ± 0.029

GCN 0.981 ± 0.018 0.931 ± 0.024 0.903 ± 0.027

GAT 0.987 ± 0.016 0.927 ± 0.022 0.898 ± 0.033

MPNN 0.961 ± 0.024 0.916 ± 0.030 0.879 ± 0.037

Attentive FP 0.972 ± 0.021 0.922 ± 0.027 0.887 ± 0.032
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we believe that the descriptor-based models can be still 

widely used and give reliable predictions in the drug dis-

covery campaigns.

In conclusion, regardless of the statistical results on 

the same data folds used by Attentive FP or a more reli-

able 50 times independent runs, what we found is that 

the traditional descriptor-based models generally out-

perform the state-of-the-art graph-based models. Among 

them, SVM is the best algorithm in modelling regression 

tasks. Both RF and XGBoost can be well-performing in 

modelling classification tasks, and some graph-based 

models, such as Attentive FP and GCN, can outperform 

Table 8 The performance comparison (Average AUC_ROC, MUV: Average AUC_PRC) of  the  50 times  independent runs 

on the �ve multi-task classi�cation datasets for the eight models. (the top three model were italic for each dataset)

Dataset No. Tasks Metric Model Training Validation Test

ClinTox 1475 2 AUC_ROC SVM 0.922 ± 0.001 0.896 ± 0.048 0.888 ± 0.044

XGBoost 0.985 ± 0.009 0.938 ± 0.035 0.911 ± 0.036

RF 0.975 ± 0.003 0.918 ± 0.041 0.911 ± 0.042

DNN 0.984 ± 0.014 0.929 ± 0.041 0.884 ± 0.051

GCN 0.977 ± 0.020 0.945 ± 0.039 0.895 ± 0.046

GAT 0.989 ± 0.010 0.941 ± 0.033 0.888 ± 0.042

MPNN 0.895 ± 0.056 0.884 ± 0.069 0.847 ± 0.062

Attentive FP 0.965 ± 0.018 0.943 ± 0.033 0.904 ± 0.043

SIDER 1366 27 AUC_ROC SVM 0.953 ± 0.021 0.630 ± 0.025 0.630 ± 0.021

XGBoost 0.954 ± 0.010 0.694 ± 0.023 0.642 ± 0.020

RF 0.932 ± 0.001 0.655 ± 0.024 0.646 ± 0.022

DNN 0.814 ± 0.064 0.657 ± 0.029 0.631 ± 0.028

GCN 0.902 ± 0.047 0.656 ± 0.021 0.634 ± 0.026

GAT 0.865 ± 0.068 0.663 ± 0.024 0.627 ± 0.024

MPNN 0.741 ± 0.010 0.637 ± 0.030 0.598 ± 0.031

Attentive FP 0.834 ± 0.103 0.657 ± 0.024 0.623 ± 0.026

Tox21 7811 12 AUC_ROC SVM 0.972 ± 0.001 0.821 ± 0.013 0.817 ± 0.009

XGBoost 0.989 ± 0.005 0.857 ± 0.009 0.836 ± 0.010

RF 0.981 ± 0.001 0.840 ± 0.010 0.838 ± 0.011

DNN 0.920 ± 0.022 0.849 ± 0.012 0.840 ± 0.014

GCN 0.961 ± 0.019 0.846 ± 0.013 0.836 ± 0.016

GAT 0.946 ± 0.025 0.842 ± 0.013 0.835 ± 0.014

MPNN 0.896 ± 0.023 0.826 ± 0.014 0.809 ± 0.017

Attentive FP 0.939 ± 0.021 0.859 ± 0.012 0.852 ± 0.012

ToxCast 8539 182 AUC_ROC SVM 0.982 ± 0.007 0.723 ± 0.005 0.722 ± 0.006

XGBoost 0.976 ± 0.002 0.800 ± 0.004 0.774 ± 0.004

RF 0.949 ± 0.000 0.783 ± 0.005 0.782 ± 0.005

DNN 0.900 ± 0.021 0.797 ± 0.017 0.786 ± 0.019

GCN 0.891 ± 0.020 0.784 ± 0.019 0.770 ± 0.016

GAT 0.881 ± 0.021 0.782 ± 0.018 0.768 ± 0.018

MPNN 0.802 ± 0.033 0.746 ± 0.022 0.731 ± 0.021

Attentive FP 0.921 ± 0.037 0.804 ± 0.020 0.794 ± 0.017

MUV 93087 17 AUC_PRC SVM 0.834 ± 0.046 0.107 ± 0.036 0.112 ± 0.045

XGBoost 0.646 ± 0.064 0.095 ± 0.039 0.068 ± 0.028

RF 0.704 ± 0.019 0.053 ± 0.024 0.061 ± 0.032

DNN 0.027 ± 0.028 0.030 ± 0.031 0.021 ± 0.030

GCN 0.182 ± 0.012 0.067 ± 0.030 0.061 ± 0.034

GAT 0.151 ± 0.078 0.062 ± 0.028 0.057 ± 0.030

MPNN 0.011 ± 0.005 0.024 ± 0.022 0.016 ± 0.010

Attentive FP 0.066 ± 0.052 0.040 ± 0.034 0.038 ± 0.024
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the descriptor-based model on some larger or multi-task 

datasets.

Computational consumption of di�erent ML algorithms

It is worthwhile mentioning that an optimal predictive 

model should have a good balance between prediction 

accuracy and computational efficiency. As we all know, the 

run time complexity of SVM is quadratic to the number of 

training data [36]. As can be seen from Table 10, it takes 

a few seconds (average wall-clock time) to fit a model for 

the tasks whose data size is less than 4000. However, the 

average wall-clock time is centupled when fitting the larg-

est HIV dataset (data size of 40,748). �at is to say, SVM is 

a good choice in dealing with small to medium datasets, 

but it will be frustrated when dealing with large datasets. 

To some extent, the same problem exists for the NN-based 

methods, which highly depend on the acceleration of 

graphics processing units (GPU) cards. However, XGBoost 

and RF provide a parallel tree training with high efficiency, 

and one of their strengths is the speed [40].

Here, we summarized the training speed of the four 

descriptor-based and four graph-based models on the six 

single-task datasets (Table 10), and the training speed was 

evaluated by the mean wall-clock time (seconds) from 

five independent runs where each run is to fit one corre-

sponding model using the corresponding optimal hyper-

parameters. It is worthwhile that the training speed of 

ML models can partly depend on the used hyper-param-

eters, such as the hidden layers of DNN, the trees of RF 

model and the graph convolution layers of GNN model. 

In this study, the training speed of all the ML models 

were evaluated under the corresponding optimal hyper-

parameters determined in the first stage of performance 

comparison. In addition, we shall emphasize that we are 

not analyzing the time and space complexity of different 

algorithms theoretically but intend to provide intuitive 

and touchable elapsed time of different algorithms under 

the affordable computational resources. All the compared 

algorithms were implemented by the recognized python 

packages (i.e., scikit-learn, PyTorch and PyTorch-based 

Table 9 The top three model and  corresponding performances based on  the  results from  50 times  independent 

runs for  each dataset. (the descriptor-based models were colored as  italic and  the  graph-based model were colored 

as undeline)

Dataset No. Tasks Metric Top 1 Top 2 Top 3

ESOL 1127 1 RMSE SVM (0.569 ± 0.052) XGBoost (0.582 ± 0.056) Attentive FP (0.587 ± 0.065)

FreeSolv 639 1 RMSE SVM (0.852 ± 0.171) DNN (1.013 ± 0.197) XGBoost (1.025 ± 0.185)

Lipop 4200 1 RMSE Attentive FP (0.553 ± 0.035) XGBoost (0.574 ± 0.034) SVM (0.577 ± 0.039)

HIV 40748 1 AUC_ROC GCN (0.834 ± 0.025) GAT (0.826 ± 0.030) SVM (0.822 ± 0.020)

BACE 1513 1 AUC_ROC GCN (0.898 ± 0.019) SVM (0.893 ± 0.020) RF (0.890 ± 0.022)

BBBP 2035 1 AUC_ROC RF (0.927 ± 0.025) XGBoost (0.926 ± 0.026) DNN (0.922 ± 0.029)

ClinTox 1475 2 AUC_ROC XGBoost (0.911 ± 0.036) RF (0.911 ± 0.042) Attentive FP (0.904 ± 0.043)

SIDER 1366 27 AUC_ROC RF (0.646 ± 0.022) XGBoost (0.642 ± 0.020) GCN (0.634 ± 0.026)

Tox21 7811 12 AUC_ROC Attentive FP (0.852 ± 0.012) DNN (0.840 ± 0.014) RF (0.838 ± 0.011)

ToxCast 8539 182 AUC_ROC Attentive FP (0.794 ± 0.017) DNN (0.786 ± 0.019) RF (0.782 ± 0.005)

MUV 93087 17 AUC_PRC SVM (0.112 ± 0.045) XGBoost (0.068 ± 0.028) RF (0.061 ± 0.032)

Table 10 The mean wall-clock time (seconds) for the six single-task datasets given by the four descriptor-based and four 

graph-based models

a SVM was implemented with the scikit-learn package and run in a single thread (CPU: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz); bXGBoost and RF were 

implemented with the scikit-learn package and run in six parallel threads (CPU: Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz); cDNN was implemented with PyTorch 

package and run in a single GPU card (NVIDIA GEFORCE RTX 2080 Ti with video memory of 11G); dGCN, GAT, MPNN and Attentive FP were implemented with DGL 

package using PyTorch as the backend and run in a single GPU card (NVIDIA GEFORCE RTX 2080 Ti with video memory of 11G); All tested NN-based models were 

trained with a batch-size 128 in early-stopping way as described in ‘Materials and methods’ (HIV with a batch-size 128*5 due to the large data volume)

Dataset SVMa XGBoostb RFb DNNc GCNd GAT d MPNNd Attentive  FPd

FreeSolv (639) 0.17 0.209 1.429 6.27 18.458 29.37 77.85 20.927

ESOL (1127) 0.51 0.329 0.342 9.032 68.197 80.597 181.114 59.199

Lipop (4200) 6.431 7.379 5.722 28.686 159.879 151.191 611.048 652.777

BACE (1513) 2.105 0.327 1.327 8.911 108.967 156.074 630.748 137.291

BBBP (2035) 8.033 0.242 0.873 6.74 83.062 129.817 316.224 98.743

HIV (40748) 852.312 23.653 14.118 215.965 867.148 1122.126 1867.602 677.536
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DGL), and more details can be accessed from the foot-

note of Table 10. �e choice of one-core, multi-cores or 

GPU largely depends on the inherent nature and com-

mon usage scenarios of algorithms, and what we try to 

present here is more likely a kind of rough users’ experi-

ence under the common usage scenarios, not the exactly 

CPU or GPU-time.

As shown in Table  10, the training speed for the 

descriptor-based models is overwhelmingly faster than 

that of the graph-based models. For the three tradi-

tional descriptor-based models, only a few seconds were 

needed to finish the training of a model to most datasets. 

Among them, XGBoost and RF are the two most efficient 

algorithm and they are also able to manage big data with 

high proficiency. As expected, SVM performs efficiently 

on the relatively small datasets but its practicability will 

become much worse for large datasets. �e descriptor-

based DNN models show higher computability than 

GCN, GAT, MPNN and Attentive FP, but all the NN-

based models are highly dependent on GPU acceleration 

as mentioned above. Here, the top-performing graph-

based algorithm, Attentive FP, demonstrates affordable 

computational efficiency compared with its counterparts. 

Among the four graph-based models, the vanilla GCN 

model is the most efficient algorithm and MPNN model 

is the worst one, which is in line with the common sense 

where the frameworks of vanilla GCN model are much 

simpler than that of MPNN model. Actually, the total 

wall-clock time including the hyper-parameter selection 

for each model was also analyzed but the conclusions are 

basically similar to the results discussed above (data are 

not shown).

Briefly, in terms of computational cost, the descrip-

tor-based models are basically more efficient than the 

graph-based models. Among them, XGBoost and RF 

give the best computational efficiency and it only needs 

a few seconds to train a model even for a large dataset. 

�e descriptor-based DNN method is the most efficient 

one in its counterparts including GCN, GAT, MPNN and 

Attentive FP, but the training of them largely depends on 

GPU acceleration.

The interpretation of XGBoost Model

To check whether the learned knowledge from XGBoost 

is interpretable and reasonable, the SHAP method 

was used to analyze and interpret the developed mod-

els. Here, the XGBoost models for a regression dataset 

(ESOL) and a classification dataset (BBBP) were used 

as the examples. �e top 20 representative molecular 

descriptors and the corresponding SHAP values are pre-

sented in Fig. 2.

ESOL: ESOL is a small regression dataset for aqueous 

solubility. As can be seen from Fig. 2a, the most impor-

tant descriptor given by the XGBoost model is h_logS, 

which represents the logarithm of aqueous solubility 

(mol/L). �e feature value and SHAP value in Fig.  2a 

Fig. 2 Importance of the representative molecular descriptors (the top 20) and the corresponding SHAP values given by XGBoost for the a ESOL 

and b BBBP datasets. One molecule gets one dot on each descriptor’s line and dots stack up to show density
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illustrate a clear positive correlation between the values 

of h_logS and the values of aqueous solubility, that means 

a higher h_logS will increase the aqueous solubility of a 

compound and vice versa, which is well in line with the 

expert knowledge. In Fig. 2a, h_logD (the octanol/water 

distribution coefficient at pH = 7), which is related to the 

hydrophobicity of molecules, is the second most impor-

tant descriptor, and it presents a clear negative correla-

tion with the value of aqueous solubility. �is finding also 

well accords with the general phenomenon that higher 

hydrophobicity means lower solubility. In addition, the 

most significant parameter in the linear regression model 

for estimating the aqueous solubility of a compound 

developed by Delaney et  al. is also a descriptor highly 

related to hydrophobicity  (logPoctanol) [71]. Other two 

significant descriptors, including vsurf_D1 and vsurf_D7 

that measure the hydrophobic volume of a molecule, are 

highly related to hydrophobicity. Similar to h_logD, both 

of them have negative correlations with aqueous solubil-

ity, which is also well explainable where a higher hydro-

phobic volume will decrease the solubility of molecules.

BBBP

BBBP is a classification dataset for the blood–brain bar-

rier (BBB) penetration of compounds. As we can see 

from Fig. 2b, a number of the representative descriptors 

show clearly inverse correlations with BBB permeability, 

especially the descriptors a_don, SlopP_VSA2, h_ema 

and PubchemFP659 (2-(methylamino)ethan-1-ol sub-

sturcture), implying higher values of such descriptors 

will block molecules to cross the BBB. Here, compared 

with the SHAP value distributions of other descriptors, 

that of opr_leadlike (Oprea’s lead-like test) shows a huge 

difference due to the clear and successive blue dots on 

the left part of Fig.  2b, indicating that opr_leadlike has 

positive correlations with BBB permeability. �at’s to 

say, compounds with more lead-likeness would be more 

likely to cross the BBB. Here, most of those descrip-

tors with inverse correlations with BBB permeability 

are polar-related descriptors, such as a_don (number of 

hydrogen bond donor atoms), h_ema (sum of hydrogen 

bond acceptor strengths) and PubchemFP659 (2-(meth-

ylamino)ethan-1-ol substurcture). �is is consistent with 

the well-known fact that highly polar compounds have 

very low BBB permeation.

Virtual screening pro�le analysis of di�erent ML methods

Many efforts have been dedicated to improving the pre-

diction accuracy of different ML algorithms for molecu-

lar property prediction. In reality, these models can be 

served as VS tools to search for potential candidates from 

large chemical libraries and promote the discovery pro-

cess. In our opinion, the efforts to improve the predictive 

accuracy and explore the VS profiles of different ML 

methods have the same priority because different ML 

models may offer quite different predictions in practical 

VS campaigns even they have similar predictive accuracy, 

which may directly determine what kinds of candidates 

are experimentally tested. To this end, a case study was 

conducted by identifying potential inhibitors towards 

HIV replication through the four descriptor-based and 

four graph-based models, and the small molecule drugs 

deposited in DrugBank (Version: 5.1.5) were virtually 

screened by these models. All the explored models were 

developed based on the training set of the HIV dataset, 

optimized by the corresponding validation set and vali-

dated by the corresponding test set (the data folds were 

kept the same as those used in the first evaluation stage). 

�e choice of this dataset was considered because of its 

relatively large data size and a more realistic propor-

tion between inhibitors and noninhibitors. Prior to the 

screening, the polymers, inorganics, mixtures, salts were 

removed from the DrugBank small molecule drug data-

base. �e duplicated compounds between the DrugBank 

database and the training set were also eliminated from 

the database. Finally, the remaining 1960 small molecule 

drugs were used for screening. �e output probabil-

ity given by the optimal model was used as the score to 

measure the HIV replication inhibition ability (Fig.  3). 

�e higher the prediction score is, the greater the likeli-

hood of being a HIV inhibitor is, and vice versa.

It can be observed that the distributions of the pre-

diction scores for the 1960 molecules given by the eight 

models vary from one to another although these models 

have similar prediction accuracy (Table 4). If an arbitrary 

threshold of 0.5 was used to classify inhibitors and non-

inhibitors, the number of potential inhibitors given by the 

eight models are 7, 7, 45, 329, 86, 90, 158 and 284 respec-

tively, highlighting the large difference of the predictions 

among different models. It seems that the conventional 

descriptor-based models (SVM, XGBoost and RF) are 

inclined to give more conservative predictions and the 

NN-based models are opposite. Among the eight mod-

els, SVM and XGBoost are the most two conservative 

models where only seven inhibitors were predicted by 

them. Inversely, the descriptor-based DNN model is the 

most radical one and about 17% compounds (329/1960) 

in the DrugBank database were predicted as inhibitors. 

Furthermore, the Euclidean distance of the prediction 

score distributions for the 1960 drugs given by any two 

models was used to investigate the VS profile similarity 

of model pairs, and the lower this distance is, the more 

similar between the VS profiles of two models is, and vice 

versa (the minimum and maximum of this distance here 

are 0 and 44.27, respectively). As shown in Fig.  4, with 

the exception of the SVM and XGBoost model pair, it is 



Page 19 of 23Jiang et al. J Cheminform           (2021) 13:12  

apparent that the Euclidean distances of the prediction 

scores between any two of the eight models are relatively 

high, demonstrating that different ML models could per-

form very differently in practical VS campaigns.

In order to uncover the structural features of the poten-

tial HIV inhibitors predicted by different ML models. 

�e top 20 compounds with the highest scores given 

by each model were decomposed into different struc-

tural fragments and analyzed using Pipeline Pilot 2017. 

�ree types of structural fragments were used, includ-

ing Murcko Assemblies (contiguous ring systems plus 

chains that link two or more rings), Ring Assemblies 

(contiguous ring systems), and Bridge Assemblies (con-

tiguous ring systems that share two or more bonds). �e 

generated fragments were counted and the representa-

tive fragments whose counts are higher than or equal to 

four (not consider the common benzene component) for 

each model are shown in Fig. 5 (descriptor-based models) 

and Fig. 6 (graph-based models). As expected, the struc-

tural features of the potential inhibitors given by different 

models are highly diverse, demonstrating that different 

ML models are inclined to identify different sets of candi-

dates and their diverse performances may be contributed 

from the different features used in training and the dif-

ferent principles of the algorithms. In addition, in the top 

160 compounds given by the eight ML models (20 com-

pounds for each model), 116 compounds are unique, and 

only a small fraction of compounds (10) were ranked in 

the top 20 in any three models, which also supported the 

aforementioned argument. Among the 10 compounds, 

it is pleasurable to observe that one compound used 

to combat HIV/AIDS, zidovudine, was predicted as a 

promising HIV inhibitor by all the eight models (Fig. 6e). 

Here we found that the inhibitors predicted by the eight 

models share some nitrogen or oxygen heterocyclic 

components, four models including SVM, XGBoost, RF 

and GAT have the tetrahydrofuran component in their 

Fig. 3 The distributions of the prediction scores for the 1960 screened molecules predicted by the four descriptor-based models including a SVM, 

b XGBoost, c RF, d DNN and the four graph-based models including e GCN, f GAT, g MPNN and h Attentive FP

Fig. 4 The heat map of the Euclidean distances of the prediction 

scores for different model pairs
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predicted inhibitors and two models including GCN 

and MPNN have the tetrahydro-2H-pyran component 

in their predicted inhibitors. �e structural features 

given by the SVM and GAT models are highly overlap-

ping. However, for all the eight ML models, no common 

structural component was found and the representative 

structural features given by the Attentive FP model show 

a high diversity. All in all, the structural features of the 

identified candidates by different ML models are diverse 

from each other. 

Washing results of the benchmark datasets

As described above, three washing steps were developed 

to automatically eliminate the incorrect or inappropri-

ate structures from the original datasets. �e washed 

datasets containing the original columns coupled with 

the canonical SMILES column were output as the final 

datasets. All of them are available in Additional file 1 and 

the detailed information of them are listed in Additional 

file 3: Table S5. As shown in Additional file 3: Table S5, 

several datasets, including BBBP, ClinTox, SIDER, Tox21, 

and ToxCast, contain relatively large numbers of incor-

rect or inappropriate structures (the ratio of the number 

of the removed compounds to its original number is large 

than 4%). In order to check the effect of the eliminated 

structures on model performance, two representative 

algorithms (i.e., XGBoost and Attentive FP) were used 

to build the prediction models for the washed datasets 

of BBBP, Tox21, ToxCast, and SIDER. �e same hyper-

parameters described above were used in model build-

ing. Similarly, the models were validated by 50 times 

independent runs and the statistical results are listed in 

Additional file  3: Table  S6. It can be observed that the 

predictions of the models to the washed datasets do not 

show large difference compared with those to the original 

datasets. �e predictions to the washed datasets of BBBP 

become slightly better for both models, while those to the 

washed datasets of ToxCast and SIDER become slightly 

worse for both models. And the predictions to the 

washed datasets of Tox21 get slightly better for XGBoost 

and slightly worse for Attentive FP. However, it should be 

noted that our purpose is not highlighting the impact of 

incorrect or inappropriate structures on the predictive 

accuracy of models but merely points out that the quality 

of the public datasets should be carefully checked.

Conclusion
GNN has gained great interest in molecular property 

prediction due to its ability to learn molecular repre-

sentations automatically. It appears that most studies 

reported so far have drawn the conclusion that GNN 

is more promising than traditional descriptor-based 

Fig. 5 The structural features of the potential inhibitors given by the four descriptor-based models including a SVM, b XGBoost, c RF and d DNN
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models. In this study, we demonstrated that on average 

the descriptor-based models outperform the graph-based 

models in the predictions of a variety of molecular prop-

erties in terms of predictive accuracy and computational 

efficiency. SVM generally gives the best predictions to 

regression tasks. Both XGBoost and RF can give reli-

able predictions to classification tasks, and graph-based 

methods, such as GCN and Attentive FP, can offer out-

standing performance on a fraction of larger or multi-

task datasets. In terms of computational efficiency, 

XGBoost and RF have fast computability and only need 

a few seconds to train a model even for a large dataset. 

Moreover, descriptor-based model can be well inter-

preted by the SHAP method. Finally, the ML models 

were used to conduct a VS study towards HIV, and the 

results demonstrate that different ML algorithms offer 

diverse VS profiles. In conclusion, our study illustrates 

that the descriptor-based models are able to achieve bet-

ter or comparable predictions to the highly-intricate and 

specialized graph-based models in terms of prediction 

accuracy, computability and interpretability.
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