
Could Network Information Facilitate
Address Clustering in Bitcoin?

Till Neudecker and Hannes Hartenstein

Institute of Telematics, Karlsruhe Institute of Technology, Germany
{till.neudecker,hannes.hartenstein}@kit.edu

Abstract. Address clustering tries to break the privacy of bitcoin users
by linking all addresses created by an individual user, based on informa-
tion available from the blockchain. As an alternative information source,
observations of the underlying peer-to-peer network have also been used
to attack the privacy of users. In this paper, we assess whether com-
bining blockchain and network information may facilitate the clustering
process. For this purpose, we apply all applicable clustering heuristics
that are known to us to current blockchain information and associate
the resulting clusters with IP address information extracted from ob-
serving the message flooding process of the bitcoin network. The results
indicate that only a small share of clusters (less than 8 %) were conspic-
uously associated with a single IP address. Also, only a small number of
IP addresses showed a conspicuous association with a single cluster.

1 Introduction

The electronic currency system bitcoin [13] allows users to transfer money using
pseudonyms represented by public keys (addresses). As all transactions in bitcoin
are stored in a public blockchain, it is common practice to create new addresses
for each transaction. This aims at ensuring the privacy of participants by making
the linkage of several addresses difficult. Previous research (e.g., [16]), however,
proposed heuristics for the clustering of addresses and showed that it is possible
to link several addresses to one user. It was also shown that it can be possible to
establish a link between one of a user’s addresses and information from additional
sources that reveals the user’s identity. In the worst case, this knowledge can be
used to learn about all financial transactions of an identifiable user.

Before becoming part of the blockchain, transactions are broadcasted through
a public peer-to-peer (P2P) network. By joining and observing that network, ad-
ditional information about the issuer of a transaction might be gained. Several
works indicate that such linking is possible (e.g., [6]). However, with users using
dynamically assigned IP addresses, operating from clients behind NAT routers
or using wallet services, it is not clear whether information obtained by partici-
pating in the network and observing the normal message flow could be used in
deanonymization of bitcoin users.

One fundamental challenge is that neither for a blockchain based clustering
nor for the extracted network based information a ground truth validation can
be performed (with a few exceptions). Therefore, we analyze whether clusters
created using known heuristics are correlated to IP addresses associated to trans-
actions based on network observations (cf. Fig. 1). As both approaches operate

User–Addresses Association

(Address Clustering)

TX–IP Address Association

(Network Observation)
TXTX

TXTX

PKPK
PKPK

PKPK

IPIP

IPIP

Correlated?

Fig. 1. High-level overview of the used approach: Addresses are clustered using known
heuristics; transactions are assigned to IP addresses based on network observations
and to clusters based on their content. We then check whether single clusters are
conspicuously often associated to a single IP address, and whether single IP addresses
are conspicuously often associated to a single cluster.

on disjoint data (blockchain vs. network) but aim at indicating the same out-
come (addresses controlled by one user), a correlation would likely mean that
both approaches in fact approximate the desired outcome.

The contributions of this paper are twofold:

– We review all published heuristics known to us and apply them to the current
blockchain state in a comparable and reproducible manner.

– We show that although for the majority of users no correlation between
network information and the clustering performed on blockchain data could
be found, a small number of participants exhibit correlations that might
make them susceptible to network based deanonymization attacks.

2 Related Work

The anonymity of users in bitcoin has been analyzed in several ways in the
past. The fact that all transactions are publicly available facilitated clustering
approaches with the goal to group addresses by the controlling user. We will
review all published heuristics known to us in detail in Section 4 and briefly
sketch related work here. The first analysis was performed by Reid et al. [16]
and already made use of the most commonly used heuristic. Meiklejohn et al. [10]
proposed additional heuristics based on the behavior of standard clients.

Blockchain information has not only been used for clustering but also for
large scale analysis of the distribution of wealth, common transaction patterns,
behavior analysis, etc. [17], and for an evaluation of user privacy [1]. More re-
cently, Nick was able to use ground truth data of consumer wallets due to a bug
in a client implementation [15]. This work also proposes a heuristic specific to
the behavior of consumers in bitcoin. Reasons for the effectiveness of clustering
have been given by Harrigan et al. [5], e.g., the incremental growth of clusters.

Network based information has also been used previously. It was shown that
the topology of the bitcoin peer-to-peer network can be inferred by using marker
IP addresses [2], by exploiting flaws in the bitcoin reference client implementa-
tion [12], or by observing the information propagation through the network [14].

Furthermore, the observation of anomalous relaying behavior has been used to
map bitcoin addresses to IP addresses [7]. It was also shown that the creation
time of transactions can be used to infer the user’s time zone [4]. Biryukov et
al. [3] performed a man in the middle attack on clients using Tor by becoming
the only possible Tor exit node by banning all other exit nodes in the bitcoin
network. This also enabled them to link IP addresses to bitcoin addresses.

3 Fundamentals

The two main data objects in bitcoin are transactions and blocks. Transactions
are used to transfer bitcoins between users. Blocks are created in the process of
mining and contain a set of accepted transactions that the bitcoin network has
agreed on to be valid. We will exclude the details of mining here. Transactions
specify inputs and outputs, i.e., sources and destinations of the money flow. With
the exception of coinbase transactions, inputs refer to an output of another,
previous transaction. These inputs are then spending the output. Obviously, one
output must not be spent more than once.

Transactions: All accepted transactions form the transaction graph. The
transaction graph is constructed by using all accepted transactions as vertices
and by adding one edge from every output to the input that is spending the
output. The transaction graph is a directed, acyclic, append-only graph, which
represents the current ownership of bitcoins. Intuitively, ownership of bitcoins is
the right to spend them. Technically, ownership of bitcoins equals the possession
of a private key that corresponds to a public key, which is defined in the output
of a transaction. Hence, in order to create a valid transaction, a user must be able
to sign the transaction spending an input using the private key corresponding
to the public key defined in the spent output. The public keys are also called
addresses, as they specify where the money is sent to.

For the definition of the heuristics used in clustering, we will use the following
notation, which loosely follows the notation used in [10]: Let t ∈ T be a transac-
tion. Let P be the set of all addresses specified in all transactions in T . Let the
set inputs(t) ⊆ P include all addresses referenced by the inputs of a transaction
t and the set outputs(t) ⊆ P include all addresses contained in the outputs of a
transaction t. Let oj(t) ∈ outputs(t) be the j-th output (j ≤ |outputs(t)|), and
let ij(t) ∈ inputs(t) be the j-th input (j ≤ |inputs(t)|).

Each user can create a practically unlimited number of distinct public/private
key pairs and use each of them only for one transaction. Hence, each address
can be seen as a pseudonym of the user. The goal of address clustering is to
partition the set of addresses into subsets (clusters), so that each subset contains
the addresses under the control of one user.

Network Information: After a transaction is created it needs to be broad-
casted through the bitcoin P2P network in order to reach all participants. Espe-
cially miners need to receive the transaction, check its correctness, and include
the transaction in an upcoming block. The bitcoin P2P network currently con-

sists of 4,200 - 5,700 reachable peers1 and an unknown number of unreachable
peers.

In order to publish a transaction on the network, the user has to either run
one of the reachable peers or connect to one of the reachable peers and trans-
mit the transaction. When a new transaction arrives at a peer, the peer checks
the correctness of the transaction and rebroadcasts the transaction to all of its
neighbors. Therefore, the transaction gets flooded through the whole network.
For rebroadcasting, the bitcoin reference client bitcoind, which is used by the
vast majority of network peers, implements a mechanism called trickling : Trans-
actions are not immediately rebroadcasted to all neighbors, but are randomly
delayed according to a Poisson distribution.

4 Clustering based on Blockchain Information

Several heuristics for address clustering in bitcoin have been proposed. We will
first briefly describe the general procedure for clustering, which uses one or more
heuristics, and then describe and discuss the used heuristics.

4.1 Clustering Procedure & Heuristics
The clustering procedure computes a partition Π = {C1, C2, ..., Cn} of the set
of all addresses P with C1, ..., Cn denoting the resulting clusters. For this, it
processes all transactions in their temporal sequence. For each transaction t,
all selected heuristics compute a partition Πt = {Π1

t , ...,Π
m
t } of all input and

output addresses of t (outputs(t)∪ inputs(t)). This transaction specific partition
Πt encodes which addresses used in the transaction are controlled by one user
(i.e., those addresses being in one Πi

t).
The heuristics are applied in a predefined order, each heuristic further altering

Πt. Πt is then used to update Π: First, all clusters Πi
t are added to P. Then

each added cluster Πi
t is merged with all existing clusters in Π that contain any

of the addresses in Πi
t . This transitively connects all addresses controlled by one

user (according to the applied heuristics).

Heuristic 1 (H1): Multi-Input If a transaction spends more than one input,
the transaction needs to be signed using the private keys corresponding to the
public keys from all inputs. Assuming that the transaction was created by a
single user, that user controls all addresses that are input to the transaction.
This heuristic was first used in [16] and [10].

For a transaction t the partition determined by this heuristic is

Πt = {inputs(t), {o1(t)}, ..., {o|outputs(t)|(t)}}.

This heuristic is always applied first and is used for all our clusterings. This
heuristic only produces false positives (i.e., clustering addresses that are not

1 According to our measurements (http://dsn.tm.kit.edu/bitcoin), there are ≈4,200
peers reachable via IPv4 and an additional ≈1,500 peers reachable via IPv6. As we
do not know how many peers are dual-stacked (reachable via IPv4 and IPv6), we
cannot directly determine the exact number of reachable peers.

controlled by the same user into the same cluster), if the assumptions are not
correct. This can be either the case if users give services access to their pri-
vate key (e.g., Mt.Gox) or if transactions are assembled by multiple users in a
decentralized fashion (e.g., CoinJoin [9]).

Heuristic 2 (H2): Change Address One output of a transaction can only
be spent in its entirety. Hence, if Alice controls an unspent output worth 2 BTC
and wants to pay Bob 1 BTC, Alice creates a transaction claiming the 2 BTC
as an input with two outputs: One output of 1 BTC to Bob’s address and one
output of 1 BTC to a change address [10] under the control of Alice (assuming
no transaction fees). Since the change address as well as the addresses of the
inputs (cf. H1) are all controlled by Alice, they should be clustered together.
The challenge is to identify which output is the change address and which output
is the address of the payee, which should be in a different cluster. Meiklejohn
et al. [10] proposed the following heuristic to identify the change address: An
output oj(t) is the change address if these four conditions are met:

1. This is the first appearance of the address oj(t).
2. The transaction t is not a coin generation.
3. There is no address within the outputs, which also appears on the input side

(self-change address).
4. Condition 1 is only met for oj(t) and not also for some ok(t) with j 6= k.

For a transaction t the partition determined by this heuristic (based on Πt

from H1) is

Πt = {inputs(t) ∪ {oj(t)}, {o1(t)}, ..., {oj−1(t)}, {oj+1(t)}, ..., {o|outputs(t)|(t)}}.
The rationale behind this heuristic is that the standard bitcoin client creates

a new key pair for change addresses and only uses these addresses once when the
received change is spent again. Ancient version of the client used to send change
to an address that was also used as input (self-change address).

Obviously, this heuristic can lead to false positives and false negatives. In a
transaction with two outputs, which have not appeared before, it is not possible
to determine the change address (cond. 4), although there might be one. Also,
a transaction could spend money to two payees without any change and the
heuristic could mistake one of the payees addresses for the change address.

Heuristic 2 exceptions In order to capture changing wallet behavior, two
exceptions to Heuristic 2 have been proposed in [10]. There is no change address
in a transaction t if there is an output that...

– had already received exactly one input (H2a)
– had been used in a self-change transaction before (H2b)

These exceptions captured common behavior in 2013, however, it is not clear
whether the exceptions are useful anymore.

We now define an additional exception to heuristic H2 that makes use of
blockchain information that is newer than the current processed transaction t.

The behavior for change addresses is that they are only used once. In H2 we
demand that, in order to qualify as a change address, an address must not occur
before t. However, with H2c we demand that the address also does not occur in
later transactions (except for one occurrence as an input).

Value based (HV): Optimal Change If a transaction has only one output,
whose value is smaller than any of its inputs, this output address is likely the
change address. This heuristic is based on the behavior of bitcoin clients to
minimize the transaction size, i.e., the number of inputs and outputs. If the
change was larger than any input, the input could be omitted and the change
could be reduced by this input. This heuristic was used in [15].

Consumer based: Redeeming Transaction Nick [15] proposed a heuristic
that uses properties of the redeeming transaction of a possible change output
(i.e., the transaction with the change output as an input). For a change address
it requires that the redeeming transaction has at most two outputs. The heuristic
was used specifically for clustering consumer wallets that show this characteristic.
As we cannot distinguish between consumer wallets and other wallets, we omit
this heuristic from further analysis.

Cluster Growth (HG) In [5] it has been shown that clusters normally grow
in steady, but small steps. Especially the merger of two already large clusters by
a new transaction is unlikely and might hint at a false positive from one of the
applied heuristics. This observation can be formulated as a heuristic that can
be applied after other heuristics have already established a transaction specific
partition.

HGk: If updating Π with Πt would cause the largest affected partition in Π
to grow by more than a constant number of k addresses, then set

Πt = {{i1(t)}, ..., {i|inputs(t)|}, {o1(t)}, ..., {o|outputs(t)|(t)}}.

Discussion To our knowledge, we list all heuristics that were published. How-
ever, there is a whole class of heuristics that we barely cover. Most described
heuristics only consider single transactions. However, heuristics could use the
whole transactions graph and base their decisions on any property derived from
the graph. The consumer based heuristic and the Cluster Growth heuristic use
simple transaction graph information, but much more sophisticated methods,
e.g., facilitating metrics such as connectivity or centrality are possible.

Furthermore, we acknowledge that a lot of manual effort can be put into a
better clustering by carefully inspecting special cases, modeling specific behavior
and manually merging or splitting clusters. For the sake of comparability, we
chose not to do any manual intervention in our clustering process.

4.2 Results

We will now compare the results of the clustering process with different com-
binations of heuristics. The clustering was performed at block 440,349. Using

Table 1. Comparison of all heuristics. Total number of addresses: 196,963,722, total
number of transactions: 172,868,721.

Heuristics # Cluster ∅Size max size #clusters w/ size 1

H1 88 m 2.24 12 m 65 m

H1+H2 46 m 4.25 92 m 29 m
H1+H2a 51 m 3.89 87 m 32 m
H1+H2b 63 m 3.10 66 m 40 m
H1+H2c 48 m 4.13 85 m 30 m

H1+HV 72 m 2.71 76 m 62 m

H1+HG10 146 m 1.34 0.1 m 123 m
H1+HG100 121 m 1.62 0.25 m 97 m
H1+HG1000 108 m 1.83 1 m 84 m
H1+HG10000 104 m 1.88 8 m 81 m

machines equipped with a Xeon E7-8837 and 512 GB memory, one run of our
implementation2 of the clustering process took about 30 minutes to complete.
Prior to clustering we generated the transaction graph as a pointer-based data
structure. This data structure is then read to memory by the clustering process,
which is run completely in-memory and requires no further hard disk accesses.

Table 1 lists a comparison of key properties of the resulting clusterings for
the heuristics H1, all discussed variants of H2, HV, and several variants of HG.
Details on the distribution of cluster sizes are given in the Appendix. Applying
only heuristic H1 results in a clustering with 88 m clusters. Additionally applying
H2 causes more clusters to be merged, hence resulting in fewer, but bigger,
clusters. Additionally applying variants of HG, however, causes fewer clusters to
be merged, hence resulting in more, but smaller, clusters.

The different variants of heuristic H2 lead to 46 m to 63 m clusters. The three
exceptions to H2 cause fewer clusters to be merged than by applying H1 and
H2 only. The strongest effect on the resulting clusters has H2b, which reduces
the average cluster size from 4.25 for H2 to 3.1 addresses per cluster for H2b.

The value based heuristic HV has only a small effect on the average cluster
size (grows to 2.71 addresses per cluster) but a large effect on the size of the
largest cluster (from 12 m to 76 m). A possible explanation for the result is that
a disproportionately large share of transactions that originated from that super-
cluster have a combination of input and output values that makes HV applicable
to them, thus merging more addresses into the super-cluster.

A small choice of the parameter k for the heuristic HG causes fewer clusters
to be merged as the threshold is easily exceeded. This causes the average cluster
size to decrease down to 1.34 addresses per cluster for HG10. Notably, there
are only minor changes in the number of clusters with a size of 10 to 100,000
addresses (cf. Appendix). Most likely, transactions that cause a false positive in
H1 are less likely to occur in these medium sized clusters.

In all variants the largest identified cluster contains between 100,000 and
92 m addresses. This cluster contains among others the addresses of the former

2 https://github.com/tillneu/bitcoin-clusterer

exchange Mt.Gox. The existence of this super-cluster was also discussed in [5].
The size of that cluster is substantially increased by application of variants of
H2 and HV, whereas the application of HG can limit the growth of that cluster.

5 Network Information
We will now explain how network based information was acquired and how that
information is compared to the blockchain information based clustering results.
The main idea is to associate IP addresses to transactions based on observations
on the bitcoin P2P network and then use the previously established linking
between clusters and transactions in order to determine the correlation between
clusters and IP addresses.

5.1 Association of Transactions and IP Addresses

In order to observe transactions being flooded through the network, we deployed
two monitor peers that maintain connections to all reachable peers in the net-
work and log for each transaction, when it is received from each peer in the
network. For each transaction there is one peer (originator) which first sent the
transaction to our monitor peer. We want to associate one IP address to each
transaction. However, we cannot conclude that the first peer we received a trans-
action from has really first brought the transaction to the network, nor can we
conclude that the peer generated the transaction. First, the user could connect
to any reachable peer in the network, send the transaction to that peer and leave
the network afterwards. Secondly, due to trickling, the transaction can be sent to
other network peers, which might forward the transaction to our monitor peers
before we receive the transaction from the creating peer. Therefore, we apply
several heuristics that aim at reducing the number of obviously false mappings:

– If both monitor peers first received a transaction from different peers, we
discard both possible originators.

– If the time difference at which the transaction is received from the originator
by both monitor peers differs by ≥100 ms, the originator is discarded.

– The subsequent receptions of the transaction from other peers must not be
faster than what the speed of light in fiber allows. By using GeoIP services3,
we can approximate the location of the other network peers and establish a
lower bound on the time it takes for a transaction to be transmitted from
the originator to our monitor peer via any other network peer. If we receive
a transaction faster than that lower bound, we discard the originator.

During the monitored period between block 366,000 (2015-07-19) and block
440,349 (2016-11-24), 96,520,958 transactions were added to the blockchain. For
9,934,056 of these transactions (≈ 10 %), we identified an originator IP address
using the heuristics described above. In total, 79,079 unique IP addresses ap-
peared as originators. This leads to an average of about 125 transactions per IP
address. However, the number of transactions associated per IP address follows
a heavy tailed distribution. Fig. 2 shows the distribution of how many transac-
tions were associated with each IP address. Most IP addresses were an originator

3 http://dev.maxmind.com/geoip/

0

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1e+06

IP
A

d
d
re

ss
C

o
u
n
t

#TX associated with single IP address

Fig. 2. Histogram of the number of unique transactions associated per IP address. Read
as: There are 10,000 IP addresses, each of which are associated to 4 to 8 transactions.

address only for a small number of transactions. However, two IP addresses were
originators for more than 65,000 transactions. Interestingly, both of these IP ad-
dresses (one of which IPv4 and one IPv6) are in IP ranges assigned to the same
hosting provider.

Although we are able to associate IP addresses to transactions, we do not
know whether the mapped IP addresses in fact identify the user that issued the
transaction and simply regard the IP address as a piece of information that might
be linked to the user. In order to analyze that linking, we will now compare the
results from the clustering based on the transaction graph to the collected IP
address information.

5.2 Methodology

We will now introduce the notation used for the association of clusters with IP
address information. For the association between transactions and clusters we
use the following notation: Let c(t) describe the cluster that issued a transaction
t according to H1. Let the set of transactions issued by a cluster C be TC :=
{t ∈ T : c(t) = C}. For the association between transactions and IP addresses
as described in Section 5.1 we use the following notation: Let A be the set of all
observed IP addresses. Let a(t) ∈ A describe the IP address of the originator (if
any) of a transaction t. Finally, we define the tuple of all IP addresses associated
with a cluster C as AC = (a(t) : t ∈ TC). AC is defined as a tuple because single
IP addresses can occur multiple times in AC and we are interested in that count.

The main question now is whether there is a correlation between clusters and
IP addresses or whether for each transaction the originator is simply a random
IP address. Both, IP addresses and clusters, are nominal variables that cannot
be ranked in any way. Standard statistical methods (e.g., [11]) would suggest to
fill a contingency table with all observed IP addresses as one dimension and all
clusters as the other dimension. Then, for each tuple (IP address, Cluster) the
expected frequency and the observed frequency could be compared. However, a
problem with the data is that the contingency table is very sparsely populated.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0 5 10 15 20 25 30 35 40 45

P
ro

b
a
b
il
it

y

|ÂC |

|AC | = 500
|AC | = 1000

Fig. 3. Probability distribution Pi(X = |ÂC |) for |AC | = 500 and 1,000 transac-
tions, respectively, assuming independence and given the empirical IP address counts
(cf. Fig. 2). Values numerically approximated.

In order to perform the chi squared test, no more than 20% of the expected
frequencies should be less than 5 and all individual expected frequencies should
be 1 or greater [18], which is not the case for our data. Even if the frequencies
were sufficient, the large sample size would cause biased results [8].

Therefore, we analyze each cluster C separately in order to see whether the
associated IP addresses AC are independent. The tuple of associated IP addresses
AC can be seen as the result of a random experiment, where for each cluster C
|AC | addresses are chosen according to a probability distribution. If clusters and
IP addresses are independent, the probability to choose an IP address A would
be P (A) = |A|/

∑
A′∈A |A′| (with |A| being the total observation count of A,

i.e., the share of an IP address in all observations, cf. Fig. 2).

Again, most statistical tests to check whether the sample AC was chosen
according to P (A) cannot be used due to the low sample sizes and low expected
frequencies. Hence, we limit our analysis to the IP address Â that occurs most
frequently in AC , and its frequency |ÂC |. Under the hypothesis of independence,
we can calculate the probability of observing any value for |ÂC |. Fig. 3 shows the
probability distribution Pi(X = |ÂC |) that describes the probability of observing
a specific value for |ÂC |, assuming independence of IP addresses and clusters.
For large values of |AC |, the distribution can be approximated with the binomial
distribution with p being the probability of the most likely IP address (p ≈ 0.02
for our data). For a cluster C, we reject the independence hypothesis if the
probability of observing the most frequent IP address ÂC at least |ÂC | times is
less than 1 %, according to Pi. We then add this cluster to the set of conspicuous
clusters C+ = {C : Pi(X ≥ |ÂC |) < 1 %}. The chosen significance level implies
that about 1 % of the clusters in C+ actually are not conspicuous.

Obviously, in addition to checking for each cluster whether the associated IP
addresses were randomly chosen, we can also check for each IP address whether
the associated clusters are randomly chosen. This analysis has been also per-
formed using the same method as described above for the opposite direction
with TA denoting the set of transactions associated with an IP address A and
A+ the set of conspicuous IP addresses according to the hypothesis testing.

Table 2. Comparison of the number of clusters with at least two associated IP ad-
dresses (|{C : |AC | ≥ 2}|) and the number and share of conspicuous clusters (C+), and
the share of conspicuous IP addresses (A+) for various heuristics.

Heuristics |{C : |AC | ≥ 2}| |C+| |C+|
|{C:|AC |≥2}|

|A+|
|{A:|TA|≥2}|

H1 282,950 14,879 5.26 % 18.7 %

H1+H2 398,802 32,623 8.18 % 6.2 %
H1+H2a 387,696 32,026 8.26 % 6.2 %
H1+H2b 456,063 35,138 7.70 % 6.5 %
H1+H2c 452,189 35,602 7.87 % 6.7 %

H1+HV 296,132 14,736 4.97 % 6.9 %

H1+HG10 299,140 15,537 5.19 % 16.7 %
H1+HG100 300,927 15,755 5.23 % 19.6 %
H1+HG1000 301,775 16,434 5.45 % 20.2 %
H1+HG10000 308,900 18,788 6.08 % 19.7 %

5.3 Results & Discussion

From our data we selected all clusters with at least two IP addresses associ-
ated (|AC | ≥ 2), determined |ÂC | for these clusters, and calculated the set of
conspicuous clusters C+. Table 2 shows the number of clusters with at least
two associated IP addresses (|{C : |AC | ≥ 2}|) and the number of conspicu-
ous clusters |C+| for various heuristics. The number of clusters with at least
two associated IP addresses varies between 283k and 456k clusters. Comparing
these numbers to the total number of clusters (cf. Table 1) shows, that only a
small percentage of all clusters has two IP addresses associated, with the highest
percentage for the H1+H2c combination.

The number of clusters |C+| with a too-large |ÂC | varies between 15k and
35k, which corresponds to 5 % to 8.3 % of the considered clusters. For compar-
ison, when randomly selecting IP addresses based on their a-priori probability
P (a), the share of conspicuous clusters is around 1 %. The results indicate that
the highest correlation between clusters and their associated IP addresses exists,
when clustering using variants of H2. For the value based heuristic, the growth
based heuristic, and the base heuristic H1, fewer conspicuous clusters were found.

Table 2 also shows the share of conspicuous IP addresses A+ among those
IP addresses with at least two associated transactions. The share varies between
6.2 % and 20.2 % with the smallest percentages for clusterings with variants of
H2. This is caused by the extremely large super cluster that is created by these
heuristics (cf. Table 1): The probability to randomly select that cluster very
often (assuming independence) rises with the number of transactions associated
with that cluster. Therefore, the independence hypothesis gets accepted for more
IP addresses.

Only for a small share of clusters and IP addresses, a correlation between
clusters and network information could be shown. At least for these clusters,
information obtained by observing the network could also be used in a construc-
tive way during the clustering process. For example, the set of candidate clusters
for a transaction could be reduced based on networking information. Also, the

information could be used for tie breaking when having multiple change address
candidates.

For the majority of clusters and IP addresses, we did not observe any corre-
lation to network information. This could mean that there is no correlation, or
that the used method did not reveal a correlation. For example, a more powerful
observer with more monitoring nodes could be able to associate IP addresses to
transactions more precisely. Furthermore, the statistical analysis used here only
reveals certain correlations between a cluster and a single IP address.

6 Conclusion

In this paper we performed address clustering in bitcoin according to published
heuristics, compared the resulting clusters to IP address information obtained
from observations in the bitcoin P2P network, and showed that only a small
share of clusters was conspicuously associated with a single IP address, and that
only a small number of IP addresses showed a conspicuous association with a
single cluster.

Our results indicate that for the vast majority of users network information
cannot facilitate address clustering easily. However, a small number of partici-
pants exhibit correlations that might make them susceptible to network based
deanonymization attacks. A more precise network observation or better cluster-
ing heuristics might reveal further correlations that could not be observed with
our approach. A next step could be to identify the anomalous behavior that
caused the revealed correlations. Since this would require an in-depth analysis
of single entities on the network, we decided not to carry out such an analy-
sis without ensuring the user’s privacy. We emphasize that for ethical reasons
no further attempt at linking the conspicuous IP addresses or clusters to other
available information was performed.

In future work, a privacy preserving method for identifying the causes of the
correlation should be developed. Such an analysis could point to possible im-
provements in the P2P protocol or specific client implementations. Furthermore,
the used heuristic for extracting the originator from the network observation
could be improved to consider IP address changes over time or the aggregation
of IP addresses by provider or location. Finally, the statistical analysis might
benefit from more advanced methods to establish sharper bounds on possible
correlations.

Acknowledgement

This work was supported by the German Federal Ministry of Education and Research
(BMBF) within the project KASTEL IoE in the Competence Center for Applied Secu-
rity Technology (KASTEL). The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

References

1. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 34–51. Springer (2013)

2. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bit-
coin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

3. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. arXiv preprint
arXiv:1410.6079 (2014)

4. DuPont, J., Squicciarini, A.C.: Toward de-anonymizing bitcoin by mapping users
location. In: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. pp. 139–141. ACM (2015)

5. Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering.
arXiv preprint arXiv:1605.06369 (2016)

6. Kaminsky, D.: black ops of tcp/ip. Black Hat USA (2011)
7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using

p2p network traffic. In: Financial Cryptography and Data Security. Lecture Notes
in Computer Science, vol. 8437, pp. 469–485. Springer Berlin Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-662-45472-5_30

8. Lin, M., Lucas Jr, H.C., Shmueli, G.: Research commentary-too big to fail: large
samples and the p-value problem. Information Systems Research 24(4), 906–917
(2013)

9. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world. https://bitcointalk.
org/index.php?topic=279249 (2013), accessed: 27.09.2016

10. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on Internet measurement conference.
pp. 127–140. ACM (2013)

11. Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to probability and statis-
tics. Cengage Learning (2012)

12. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering bitcoin’s public topology and influential nodes (2015)

13. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System 1(2012), 28 (2008)
14. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis for inferring the

topology of the bitcoin peer-to-peer network. In: 2016 Intl IEEE Conference on
Advanced and Trusted Computing (ATC). pp. 358–367 (July 2016)

15. Nick, J.D.: Data-Driven De-Anonymization in Bitcoin. Master’s thesis, ETH-
Zürich (2015)

16. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

17. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In:
International Conference on Financial Cryptography and Data Security. pp. 6–24.
Springer (2013)

18. Yates, D., Moore, D., McCabe, G.: The Practice of Statistics. WH Freeman and
Company, New York, NY (1996)

Appendix

0

1

10

100

1,000

10,000

100,000

106

107

108

[1-10)

[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6
)

[10 6
-10 7

)

[10 7
-10 8

)

C
lu

st
er

C
o
u
n
t

#Addresses per Cluster

H1
H1+H2
H1+H2a
H1+H2b
H1+H2c

Fig. 4. Histogram of the number of clusters for various sizes (i.e., number of addresses
per cluster).

0
1

10
100

1,000
10,000

100,000
106
107
108

[1-10)

[10-100)

[100-1,000)

[1,000-10,000)

[10,000-100,000)

[100,000-10 6
)

[10 6
-10 7

)

[10 7
-10 8

)

C
lu

st
er

C
o
u
n
t

#Addresses per Cluster

H1
H1+HG10000

H1+HG1000

H1+HG100

H1+HG10

Fig. 5. Histogram of the number of clusters for various sizes (i.e., number of addresses
per cluster).

Fig. 4 and Fig. 5 show a comparison of the resulting cluster sizes for all discussed
clustering heuristics and various parameterizations of the growth based heuristic HG.
For all heuristics, the cluster sizes roughly follow a power-law distribution.

