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Abstract: Competitive sports involve physical and cognitive skills. In traditional sports, there is a
greater dependence on the development and performance of both motor and cognitive skills, unlike
electronic sports (eSports), which depend much more on neurocognitive skills for success. However,
little is known about neurocognitive functions and effective strategies designed to develop and
optimize neurocognitive performance in eSports athletes. One such strategy is transcranial direct
current stimulation (tDCS), characterized as a weak electric current applied on the scalp to induce
prolonged changes in cortical excitability. Therefore, our objective is to propose anodal (a)-tDCS as a
performance-enhancing tool for neurocognitive functions in eSports. In this manuscript, we discussed
the neurocognitive processes that underlie exceptionally skilled performances in eSports and how
tDCS could be used for acute modulation of these processes in eSports. Based on the results from
tDCS studies in healthy people, professional athletes, and video game players, it seems that tDCS is
applied over the left dorsolateral prefrontal cortex (DLPFC) as a potential performance-enhancing
tool for neurocognition in eSports.

Keywords: dorsolateral prefrontal cortex; eAthletes; eSports; transcranial direct current stimulation

1. Introduction

Electronic sports, better known as eSports, is a worldwide phenomenon, particularly
regarding sales and media. The development of professional eSports leagues, the number of
spectators following the tournaments, and financial investments increasing exponentially,
have solidified eSports in competitive sports culture [1].

Competitive sports involve physical and cognitive skills [2]. However, in more tradi-
tional sports, there is a greater dependence on the development and performance of both
motor and cognitive skills, unlike eSports athletes (eAthletes), who seem to depend much
more on neurocognitive skills for success [3].
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In line with that, with the growth interest in eSports, players search for ways to
improve their performance, through training and using tools that generate a performance
advantage [4]. Nowadays, with a growing interest in improving neurocognitive skills,
video games and online games seem to be promising in understanding how neurocognitive
enhancers can impact competition and performance in eSports [2]. However, despite
the competitive nature of eSports, where there are strong mental demands [5], little is
known about the neurocognitive functions and effective strategies designed to develop
and optimize neurocognitive performance in eSports.

Transcranial direct current stimulation (tDCS) is a well-tolerated, noninvasive brain
stimulation technique, characterized by a weak electric current (1–2 mA) applied through
electrodes placed on the scalp to induce prolonged changes in cerebral excitability for a
long time, even after the end of the stimulation [6]. The anodal current increases the cortical
excitability, favoring the depolarization of the neuronal membrane, whereas the cathodal
current has an inhibitory effect, causing hyperpolarization of the neuronal membrane [7–9].
These effects, depending on the intensity and duration of the electric current imposed
through the tDCS, can last for more than an hour [10].

Several studies provide good evidence showing that tDCS, mainly anodal tDCS
(a-tDCS), directly applied to the left dorsolateral prefrontal cortex (DLPFC), may be a
promising performance-enhancing tool for acute modulation of neurocognitive functions
in a healthy population [11–20] and athletes [21,22]. Researchers are starting to examine the
effects of tDCS on modulation of neurocognitive processing by eSports athletes (eAthletes)
and competitive video game players; however, little is still known about the scientific
evidence in this field [4].

Therefore, our aim is to propose a-tDCS as a performance-enhancing tool for neu-
rocognitive functions in eSports, since this modality has been gaining attention [2,3]. We
highlighted the relevant role of tDCS in eSports—in likely facilitating neurocognitive skills
performance. In addition, we also pointed out safety issues and caveats associated with
tDCS use when applied to improve neurocognitive performance for eSports players, as
well as ethical, and regulatory aspects.

2. eSports-Cognitive Performance Requirements

In recent years, eSports has grown exponentially and has gained great popularity
(i.e., socially, and in public media). Playing video games for leisure is not the same as
training to compete or to be a professional athlete [4]. eSports is a profession for eAthletes;
it even involves training routines (like how athletes in traditional sports participate in
training routines), while casual players play for fun [23]. eSports is subdivided into several
categories, including online multiplayer, online multiplayer role-playing, real-time strategy,
and first-person shooter games. In these types of games, performance is usually carried
out as a team, where the player’s avatar plays his role in each virtual environment, to
eliminate his competitors, or reach a goal [24,25]. For a player to meet all these specific
requirements, the player must mobilize various neurocognitive skills, such as decision-
making, anticipation, and attention, among others [26,27].

Even with the growth of eSports, there is still a shortage of research on high-level
performance [2]. For example, there are few studies exploring neurocognition in eS-
ports [26–29], with most papers exploring different aspects of cognition, but in recreational
video game players [26,30].

Few studies have investigated the neurocognitive aspects involved in eSports [27–29];
thus, the processes underlying performance are still unclear. The characteristics of the
environment, in which eSports take place, can offer enhanced ecological validity in research
based on traditional sports when exploring specific neurocognitive processes [30,31]. Yet,
it is of utmost importance to determine if there is already empirical work testing neurocog-
nitive processes in laboratory settings that could shed light on eSports neurocognitive
performance.
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Previous research revealed that eSports performance showed high dependency of neu-
rocognitive components [2,32,33]. For example, Bonnar [34] discovered that two of the most
important neurocognitive processes involved in eSports are attention and working memory.
This is due to the duration of the matches, which can be over 40 min, meaning eAthletes
need to mobilize concentration for very long periods to keep the focus on important aspects
of the game. For example, the use of selective attention seems to reduce the impact of
environmental distractions, such as noise outside the game. Another important factor for
eSport performance is executive functioning—that is, cognitive flexibility, problem solving,
and decision-making. These functions are fundamental for a better implementation of
strategies and tactics to achieve the respective objectives in the game [29].

The study by Li et al. [29] demonstrated that elite League of Legends players were
superior to intermediate players in Stroop switching and continuous performance tests,
showing better cognitive flexibility and more accurate control of interference in the context
of task-switching, in addition to better impulsive control compared to intermediate players.
This evidence shows that gaming skills, rather than gaming experience, are more related
to neurocognitive functioning. Thus, concerning practical implications, we can propose
two possible explanations. First, only players who have better neurocognitive functioning,
such as cognitive flexibility, working memory, inhibitory control and decision making, can
achieve better rankings or become an elite player. Otherwise, video game training and
experience seem not to be the main points; because the best players can simply be the
ones with the best neurocognitive functioning. Within this context, Boot et al. [34] argued
that playing video games may not improve neurocognitive functioning; and individuals
with better neurocognitive functioning may be more likely to play video games because
they can perform better than others in the game, reflecting a self-selected process in the
video game. The second potential explanation may be related to neurocognitive functions
expertise, they can be better trained and enhanced by experience with video game training
on players who have a strong motivation to constantly improve their gaming skills and
win awards. Mobilization from a variety of neurocognitive resources would be required
for an athlete to participate and compete at the highest-level.

3. a-tDCS as a Potential Performance-Enhancing Tool for Acute Modulation of
Neurocognitive Functions in eSports

Considering the scientific and technological development that have been seen in
sports, especially over the past two decades, there is a growing interest by researchers to
investigate the potential effects of different resources for improving neurocognitive perfor-
mance of athletes [2]. Therefore, concerning the effects of tDCS as performance-enhancing
tool for acute modulation of neurocognitive functioning in healthy individuals [11–20], ath-
letes [21,22], and video game players [4], tDCS seems a promising tool for neurocognitive
performance in eSports.

tDCS is a non-invasive brain stimulation technique that is considered cheap, safe,
painless, and portable. tDCS is composed of a battery-powered stimulator that provides
weak electrical currents (0.5–2 mA), using sponges soaked in saline fluid [10]. Generally,
brain modulation is dependent on the polarity of the applied current. tDCS allows two
types of stimulation: (i) anodal tDCS (a-tDCS), used to stimulate an area of interest, where
the anodal electrode is positioned on the target area, while the cathodal electrode acts as
the reference electrode to close the electrical circuit, being positioned, in general, over the
contralateral supraorbital region or in the deltoid muscle; and (ii) cathodal tDCS (c-tDCS),
used to inhibit an area of interest, but with reverse positioning of the electrodes, with the
cathodal electrode over the target area and the anodal electrode over the supraorbital region
or in the deltoid muscle [10,35,36]. In most studies, the reference electrode was usually
placed on the supraorbital region; however, in others, it was positioned over extracephalic
regions (e.g., the shoulder).

The conditioning effects of tDCS on the rate of neuronal firings have been attributed
to changes in the neuronal membrane potential in the stimulated region. a-tDCS is gener-
ally known to depolarize neurons, facilitating neuronal firing, whereas c-tDCS generally
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hyperpolarizes neurons, inhibiting neuronal firing below the stimulation site [10,37] (see
Figure 1). Changes caused by tDCS may last beyond the stimulation, if applied for at least
three minutes [10], and remain stable for at least one hour if tDCS is applied for a time ≥
of 10 min using current with intensities between 1 and 2 mA [6].
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electrode (anodal) delivering a weak electrical current towards the blue electrode (cathodal); (B) left
side (cathodal electrode) shows the hyperpolarization of the neurons, provoking an inhibition in
neuronal activity. Right side (anodal electrode) shows the inverse behavior, the depolarization of the
neurons, generating an increase in neuronal activity. (C) Computational model showing in the left
side a brain with reduced activity and, on the right side, a brain with increased activity.

Considering the brain networks involved in neurocognitive processing, one of the
most studied areas is the dorsolateral prefrontal cortex (DLPFC), which is responsible for
executive control, the ability to orchestrate thoughts and actions in accordance with internal
goals [38,39]. Several studies have shown that a-tDCS over the left DLPFC improved
acutely the core neurocognitive functions (i.e., working memory, decision making, attention,
and multitasking) in healthy people [11–20], athletes [21,22], and video game players [4].
Therefore, in practical terms, based on the findings from those studies [4,11–22], and from
safety guidelines [40,41], it seems that a possible strategy of tDCS application in eSports is to
use a-tDCS over the left or right DLPFC for 20–30 min, administered at 0.5–2 mA, with the
smallest squared electrodes possible (e.g., between 9 and 25 cm2), or high-definition tDCS
(HD-tDCS), always approximately 20–30 min before training sessions and competitions in
order for priming the DLPFC.

The priming effect occurs when an individual is exposure to a certain stimulus (i.e.,
tDCS) subconsciously, and this stimulus influences the response to a subsequent stimulus
(i.e., executive processing) [42]. The idea is to use tDCS as a neuropriming, inducing a
temporary state of hyperplasticity in the brain, which would reinforce the ability of the
brain to learn, building stronger, and more optimized neural connections for neurocognitive
processing [43]. Thus, the hyperplasticity state could allow eAthletes to improve their
neurocognitive processing faster.

Following these recommendations, the study of Borduchi et al. [22] was the first until
now to apply tDCS as a performance-enhancing tool for neurocognitive processing in
professional athletes of judo, swimming, and rhythmic gymnastics. They received a-tDCS
administered at 2 mA, with 25 cm2 electrodes, for 20 min over left DLPFC, for 10 consecutive
weekdays. Athletes improved in alternated, sustained, and divided attention, and in
memory performance after receiving a-tDCS compared to sham-tDCS. In another study,
Friehs et al. [22] applied a-tDCS and c-tDCS at 0.5 mA, with 9 cm2 electrodes, for 19 min
over the left DLPFC of basketball players on the head-fake task. When compared to c-tDCS,
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a-tDCS led to enhanced performance by reducing the interference effect produced by head-
fake effect (i.e., interference processing). Moreover, more recently, Friehs et al. [4] delivered
a-tDCS at 0.5 mA, with 9 cm2 electrodes, for 19 min over the right DLPFC of video game
players to investigate effects of a-tDCS on response inhibition in Stop-Signal Reaction
Time task, with a significant decrease in SSRT after a-tDCS compared to sham-tDCS.
These findings provide preliminary evidence that a-tDCS can be used as an advantageous
performance-enhancing tool for acute modulation of neurocognitive functions [4,22], with
relevant implications for the real-life application of tDCS as a performance-enhancing tool
in professional athletes [21,22] and video game players [4].

Despite the significant effects found on acute modulation of neurocognitive functions
in healthy people [11–20], athletes [21,22] and video game players [4], especially in healthy
young adults, tDCS seems a promising performance-enhancing tool for eSports. At this
moment, there is no standard protocol or linear dose-response concerning the use of tDCS
for modulation of neurocognitive functions. Therefore, the effects depend on many factors
that can be optimized.

Several factors can influence the effects of tDCS, such as whether the stimuli are
administered alternately or consecutively [44,45], the use of different tDCS devices, elec-
trode materials, target brain area, [46,47], the distance between the stimulation electrodes
(for example, large distances between the electrodes can decrease the magnitude of the
effects depending on the assembly used) [48,49], shape (round versus rectangular), and
size of the electrodes (25–35 cm2), as well as their arrangement in the head [50,51]. In
addition, the individual characteristics of the study sample, such as variations in anatomy
and physiology can induce very different electrical fields and generate different effects
on brain functioning [52,53]. To circumvent these methodological differences, studies
have been promoting technological advances that promise, for example, to improve the
estimation of electric fields induced by tDCS, to personalize assemblies for brain anatomy
individually and to investigate the effects of tDCS on brain physiology. In addition, we
believe that researchers should consider the administration of tDCS through a series of
smaller electrodes, a technique known as HD-tDCS and, in appropriate circumstances,
using assemblies created to use optimization techniques based on standardized brain mod-
eling [54], to create more focal and “personalized” targets of tDCS [47,55–57]. The effects
of tDCS can also be influenced by the stimulation time—that is, before, during, or after a
task [58], whether it is applied in combination with pharmacological manipulations [59],
or with a task depending on the type of task used [60], the sensitivity of the measurements
before and after the stimulation (especially for healthy people), and the best time for the
interval between new stimulation sessions to sustain the results achieved [61].

Other factors that should be highlighted are the basal brain state and its existing
connectivity in those who are receiving tDCS. In addition, differences in head size and skull
thickness, as well as neuroanatomical differences below the stimulated areas, can affect the
distribution of current flow through the cortex [62], raising the question about the need to
use neuronavigation. The influence of age has also been reported by studies [63], as well as
individual differences, such as basic skills in certain tasks [64], educational background [65],
and even personality [66]. Due to all these data regarding the observed relationship be-
tween the brain and behavior, new studies could use multimodal neuroimaging techniques
to better understand the underlying biochemistry of such interactions. Therefore, we be-
lieve that a standardization of these factors, as well as new techniques, will lead to greater
and more consistent effects for tDCS intervention.

One of the main sources of this inconsistency is the individual differences between
participants, but those differences are rarely examined in the context of combined train-
ing/stimulation studies. Studies show that there is a great variability in cortical excitability
between individuals, as well as in the response to tDCS, suggesting that stimulation may
influence individuals differently, due to age, sex, brain state, hormonal levels, and pre-
existing cortical excitability. These findings are extremely important since certain factors
can lead to the reversal of polarity-dependent effects [67]. In addition, it is unclear how
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long the effects of stimulation will finally take, even in successful interventions. Some
studies made use of follow-up assessments, but very few have measured performance
more than a few months after an intervention.

Although tDCS is not yet approved by the Food and Drug Administration (FDA) for
clinical use, and there are no well-established safety guidelines regarding tDCS use [42,43],
we believe that tDCS represents a non-significant risk for participants when the recom-
mended procedures are correctly followed [37,68,69]. In line with this, there are risk and
safety factors that researchers, professionals, and athletes should be aware of, including
the potential long-term adverse effects, effects of prolonged stimulation or repetitive ap-
plication, and individual response differences (e.g., gender) [70,71]. These questions are
important because most players, whether amateurs or professionals, are children and
adolescents [72,73], which puts them at greater risk.

At last, according to the World Anti-Doping Association (WADA), for a substance or
method to be considered a “doping”, two of three scientific criteria must be answered posi-
tively: first, it has potential beneficial effects on athletic performance; second, it presents
potential risks to the health of athletes; and third, it violates the spirit of the sport [74–76].
We believe that tDCS use has great potential to improve the acute cognitive performance of
eAthletes, based on the results of studies already cited with healthy individuals [11–20],
athletes [21,22], and video game players [4]. We also believe that tDCS represents a
non-significant risk for participants when the recommended procedures are correctly fol-
lowed [68,69]. Thus, tDCS is a potential performance-enhancing tool for neurocognitive
performance without posing significant risks to the health of eAthletes. Therefore, de-
termining whether tDCS use is a neuro-doping strategy will ultimately boil down to the
challenging ethical question of whether it negatively impacts the spirit of sport and fair
competition.

4. Conclusions

The use of tDCS as an ergogenic resource has received great attention in recent
years (in sports sciences and physical exercise), with results showing more evidence of
its performance benefits. These results are important because they serve as an impetus to
explore the potential of tDCS as a performance-enhancing tool for neurocognition in eSports.
Within this context, based on some studies about the effects of tDCS on modulation of
acute neurocognitive processing in healthy people, professional athletes, and eAthletes, we
suggest that a-tDCS applied over the DLPFC could be considered a potential performance-
enhancing tool for acute neurocognitive modulation for eSports performance.

The advantages of tDCS use have been discussed in the literature, such as being easy-
to-use, its low price, no severe adverse effects, and its ethical and legal issues—concerning
its transition from academic studies to general-public use—with no prohibition (at the
moment) from the World Anti-Doping Association (WADA). The disadvantages are the
necessity of daily use by users and its limited lasting effect. Therefore, we highlight the
relevance of tDCS for eSports, emphasizing that there are still (several) technical, ethical,
and regulatory aspects that must be considered in relation to eSports.
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