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Could Thermal Imaging Supplement Surface
Electromyography Measurements for

Skeletal Muscles?
Bartłomiej Zagrodny , Wiktoria Wojnicz , Michał Ludwicki , and Jan Awrejcewicz

Abstract— 1) Background: The aim of this study is to present
the results of experiments in which surface electromyography
(sEMG) and thermal imaging were used to assess the muscle
activation during gait and to verify the hypothesis that there
is a relationship in the case of low fatigue level between
sEMG-measured muscle activation, assessed in the frequency
domain, and thermal factors calculated as minimum, maximum,
kurtosis, mean, median, and mode from the area of interest.
2) Methods: Comparison of activity calculated from the recorded
sEMG data for rectus femoris (RF), biceps femoris, tibialis anterior,
and gastrocnemius medialis (GM) with thermal data obtained from
the infrared vision. 3) Results: Data of 14 healthy volunteers
obtained during 10 min of treadmill gait are presented and
analyzed. The analysis revealed statistically significant linear
correlations for RF (five moderate relationships) and GM (one
good relationship) and moderate nonlinear correlations for all
examined muscles. Also, a detailed protocol for precise, repeat-
able thermal examination is presented. 4) Conclusions: Estimated
moderate linear and nonlinear correlations between thermal and
electromyographic parameters are found for low level of muscle
fatigue, which suggests that the presented method is useful in the
analysis of muscle activation with the use of a thermal imaging
as a complement to sEMG.

Index Terms— Electromyography, muscle activity, muscle
fatigue, thermal imaging.

I. INTRODUCTION

SURFACE electromyography (sEMG) is used to assess
the muscle activity [1] during movement, also in the

case of gait analysis [2]–[5] and different daily activities [6].
However, the sEMG results used in the individual biomechan-
ical study depend on the method of signal processing, exam-
iner’s experience [7], electrodes’ placement, sEMG device,
skin preparation, and other factors [8]. Thus, a standardization
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of the examination procedure is a crucial factor of sEMG
data collecting. [9], [10] and processing [7], [11]. Quantita-
tive information based on sEMG analysis of the activation
of skeletal muscles can give an insight into their fatigue
level [12]. For this purpose, the muscle fatigue criterion can
be defined by changes observed in EMG frequency range
20–450 Hz, e.g., the median frequency (MF), mean power
frequency (MPF) [13], or MPF obtained using a wavelet
transform (where wavelet function of the Daubechies family
(CMPFdb5) is used in [14]) or functions in the time domain,
such as the rms or integrated EMG. It is worth noting
that some contemporary researches reveal time dependence
in the case of sEMG for the same exercises in unchanged
conditions [15] which may be an additional reason for the
variability of the results over time. Barry and Cole [16]
suggest that signal generated by the muscles at the resonant
frequency during contraction can be used to determine changes
of muscle stiffness changes in case of isometric contractions,
what implies that this method could also be useful to monitor
the muscle fatigue.

Wearable sensor systems are also used in remote monitoring
of biomedical signals (e.g., EMG). To analyze these signals,
a series of contaminants (measurement, instrumentation, and
interference artifacts) should be removed. This could be done
by applying sophisticated methods of classification and regres-
sion, e.g., one-class support vector machine [17] and adaptive
neuro-fuzzy inference system (ANFIS) that uses an artifi-
cial neural network (ANN) and a chosen fuzzy interference
system [18].

The beginning of modern thermography starts in the 30s of
the 20th century [19]. The predecessors of modern forward-
looking Infrared (FLIR) systems were born in the late 50s.
From the early 60s, the first use of the infrared technique
to perform the nondestructive testing in civil application took
place [20]. Nowadays this technique is widely used in many
fields, like medicine, biomechanics, architecture, detection of
gases, and humid areas, testing of electrical circuits, and
military purposes. One of the utilitarian uses is the application
of infrared technique to identify symptoms of diseases like
SARS, MERS, or COVID [21], [22]. With respect to the
human beings, the infrared emissions of the human skin at
27 ◦C is located in the range of 2–20 µm of the wave-
length, with peaks around 10 µm [20]. The emissivity of
the Caucasian race is assumed as 0.97–0.98, depending on
the publications [20] and [23]. Examining a musculoskeletal
system with the use of thermal imaging equipment is based
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on the phenomena that any muscle contraction affects the
change in its temperature. It is assumed that human skeletal
muscles have mechanical efficiency in the 30%–65% range
and its change in exercise time is also noted (from higher
to lower) [24] due to increased energy dissipation in the
form of heat. Increased skin temperature in the region of
active muscles and change in the overall body temperature can
be identified using thermal imaging camera [23], [25]–[28].
On this basis, muscle activity during the whole experiment and
symmetry of muscle work can be observed. It is worth noting
that one of the problems with the assessment of muscle activity
based on thermal imaging is a decrease in skin temperature
caused by vasoconstriction during the initial exercise time [29],
thermoregulation, and sweating of the human body [23] even
in the case of low workload exercise like walking at comfort
speed without additional load [26], [30]–[33].

Unlike sEMG, thermal imaging is a noncontact technique
which can be considered as its greatest advantage. More accu-
rate and cheaper infrared cameras make this method popular in
medicine [34] in clinical use and biomechanics [23], [35]–[37].
However, some restrictions in preparation and examination are
mandatory [26], [33], [37]. To assess the muscle activation
level, the following parameters are calculated: the mean tem-
perature values from selected areas [23], [25], [26], [31], [33],
[38], [39], maximum [39], [40], median, and kurtosis [41] of
temperature distribution.

There are only a few studies in the literature that are
strictly devoted to experiments on the relationship between
sEMG parameters defined in the time or frequency domain
and thermal analysis. In [37], the research was carried out
in the case of incremental workload cycling. Researchers
were unable to report specific parameters that can correlate
thermal and sEMG parameters in the case of an incremental
workload cycle exercise to exhaustion. In their experiment,
ten physically active participants were examined. The sEMG
signals were recorded from rectus femoris (RF), vastus later-
alis, biceps femoris (BF), and gastrocnemius medialis (GM).
Thermal images were analyzed before, immediately after and
10 min after finishing the exercise at the aforementioned body
regions. In the case of vastus lateralis, an inverse relationship
between skin temperature and sEMG was found, but in the
case of BF and GM, no changes in temperature after the
test were reported. However, these conclusions contrast with
the result published in the next two cited studies [14], [42].
In [14], contractions of the upper limb in isometric condi-
tion were considered. Ten volunteers were tested and it was
proved that for 5%, 15%, and 30% of maximum voluntary
contraction (MVC), the rms and MPF parameters were corre-
lated (p < 0.05) with changes in skin temperature for biceps
brachii. The study by Ridzuan et al. [42] presented the results
for the lower limb running speed of 10 km/h and the period
of 30 min. However, the experiment was carried out for only
five participants. The results are questionable because the
authors used an air conditioner during the experiment and
did not determine the distance between the thermal imag-
ing camera and the examined person. However, the authors
suggest that the sEMG MF may be related to the average
temperature, but this assumption was made on the results

of linear approximation and Pearson correlation coefficient.
The study by Kuniszyk-Jóźkowiak et al. [43] considered a
static test for the RF with muscle at relatively high level of
contraction −70% of the MVC. The article by Ali et al. [34]
revealed a statistically significant difference in EMG amplitude
of the GM in case of extensive cooling of the muscles (20 min
in 10 ◦C water). A decreased maximum force of the tibialis
anterior (TA) was also revealed. Leg cooling resulted in
approximately 15.7 ◦C drop of skin temperature. The article by
Coletta et al. [44] revealed that raised core and skin tempera-
ture causes shifts of the sEMG signal toward higher frequen-
cies during the force task. According to authors, the higher
core temperature, as a thermal stress, influences neuromuscular
response, whereas skin temperature has a minimal influ-
ence on the submaximal task. The main conclusion is that
temperature has a task-dependent impact on neuromuscular
responses.

Daud et al. [45] presented the results of the study that
aimed to determine whether the skin temperature above the
muscle is related to the sEMG signals of these muscles.
The authors stated that “there exist strong correlations of
muscle contractions of upper extremities and heat that is
being generated during the activities as exhibited by the EMG
recordings and thermal images.”

In the literature, it can be found that temperature differences
below 1 ◦C are often considered (see studies [23], [26], [29],
[30], [38], [39]). In the case where the experiment is carried
out under controlled conditions, the thermal results can be
considered as significant [36], [46]. For more energetic exer-
cises, the results can be found in works [38], [42], and [43].
It should also be emphasized that the tests were carried out
using a motorized treadmill, which affects the gait parame-
ters [47], that may have an influence on the way of firing
and activation of lower limb muscles and the stabilization
method. Nevertheless, the treadmill is commonly used in gait
tests, especially in longer periods under controlled laboratory
conditions.

In all published studies dealing with a problem of corre-
lation between the thermal and sEMG results, no analysis
was devoted to the low level activity. Most publications are
devoted to activities that can cause high level of muscle fatigue
resulting in a higher level of changes in sEMG and thermal
parameters. That is why the motivation of this study was
to consider normal daily activity by assuming that muscle
activation (activation) is identified by using sEMG and muscle
activity (activity) can be detected by using thermovision. The
aim of the study was to verify a hypothesis that there exist
statistical relationships between muscle activation factors and
thermal factors for low level of muscle activity. The scope of
this study was to establish linear and nonlinear relationships
between sEMG parameters and thermal parameters. Based
on the cited literature (see [8], [9], [48]), it is assumed that
muscle activation can be estimated as the sEMG mean and
MF factors (parameters). From the physiology point of view,
a manifestation of fatigue phenomenon in muscle fibers is a
drop of their contraction properties, i.e., diminish of higher
frequencies of muscle fibers contraction [1], [49], [50]. Due
to this reason, we identified muscle fatigue by calculating the
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difference of the sEMG mean and MF at the beginning and
the end of tested time interval.

Thermal factors were evaluated as changes (at the begin-
ning and the end of tested time interval) in the minimum,
maximum, mean, median, kurtosis, and mode temperature of
the skin areas above the tested active muscles. The reason
of this decision is the fact that muscle activation changes its
temperature due to relatively low mechanical efficiency and
due to energy dissipation, i.e., this implies a change in skin
temperature.

II. MATERIALS AND METHODS

Seventeen healthy male volunteers were taken apart; how-
ever, one of them was not familiar with treadmill gait and
measurements of one of the participants were excluded due to
technical problems; also for further analysis, one of the volun-
teers was used as a control subject to ensure that the laboratory
conditions do not affect the results. Finally, 14 sets of mea-
surements were considered for the sEMG-thermal correlations.
All volunteers were students. None of the participants declared
any kind of cardiovascular or pulmonary problems, none of
them took cardiovascular medication, and none had problems
with motor system or postural stability. All volunteers pro-
vided written informed consent in accordance with procedures
approved by the Committee of Research Ethics with Human
participation at Gdansk University of Technology.

Inclusion criteria for volunteers were as follows: male, age
20–25 years, and body core temperature < 37 ◦C. An exclu-
sion criterion encompassed problems with postural stability,
neurological problems, cardiovascular drugs treatment, leg
length difference greater than 0.5 cm, failure to comply with
the preparation rules of thermal imaging examination, skin
inflammation, and visible “hot spots” on the body in IR.
All participants passed Romberg test.

Basic anthropometric measurements were made for each
participant (see Table I): body mass and height with medical
scale with a stadiometer (WPT Radwag, Poland) and body fat
estimation with a Harpenden skinfold caliper (Baty, U.K.) with
a dedicated software according to the Jackson/Pollock four-site
measurements method. Data of the volunteer who served as a
control are marked as CONTROL [51].

Noraxon MyoTrace 400 system (four channels, 1000 Hz of
sampling frequency) was used to measure the sEMG signals.
This Noraxon system transmits the results to the PC by
using wireless method and can simultaneously collect data
from four channels [Fig. 1(a)]. Each channel is connected
through the wire with a preamplifier to the double electrode
(working in different schemes of measurement). The first
channel has an additional third electrode that is a reference
(ground) [Fig. 1(b)]. To eliminate the interfering signals,
each preamplifier has common mode rejection ratio (CMRR)
that exceeds 100 dB. Also, each EMG channel is bandpass
antialias filtered in the range from 6 to 500 Hz and amplitude
range [−5000; 5000] µV. Analog-to-digital transformation
uses a 12-bit resolution. The MyoResearch XP Clinical Edition
software was used to postprocess sEMG data, i.e., to rectify
and smooth data by using the implemented root-mean-square

TABLE I

ANTHROPOMETRIC DATA OF VOLUNTEERS

Fig. 1. (a) Noraxon measurement gauge. (b) Electrode [50].

algorithm with 100-ms window. Postprocessed sEMG data
were used to calculate the sEMG mean and MF factors by
using MATLAB software.

Noraxon dedicated dual-EMG disposable electrodes (with
9-mm diameter of each electrode area) were placed according
to the SENIAM recommendations [8] on the following muscle
bellies of both legs.

1) gastrocnemius medialis (GM),
2) biceps femoris, long head (BF),
3) tibialis anterior (TA),
4) rectus femoris (RF).

The skin was prepared for placing the electrode by shaving
and cleaning with an abrasive medical swab, poured with alco-
hol (Skinsept PUR, Ecolab Deutschland GmbH) (in the area
where the electrode was placed). A reference electrode was
placed on the malleolus medialis. All electrodes and cables
were protected with an adhesive medical tape (Micropore 3M,
USA), to reduce the motion artifacts.

For thermographic analysis, an NEC-Avio R300SR-S (NEC,
Japan) thermal imaging camera with an FPA-type sensor,
spectral range 8–14 µm, NETD 0.08K was used. All thermal
images (in the form of panoramic images) were taken in
pairs about 3 m from the front and back of the man stand-
ing in the anatomical position. There was no high tempera-
ture or objects with high reflectance in the laboratory during
the experiment. The ambient temperature was set in the range
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TABLE II

REQUIREMENTS FOR PREPARATION FOR

THERMOGRAPHIC MEASUREMENTS

of 21 ◦C–24 ◦C (the volunteer could decide about its value
before the experiment), and the humidity was in the range
of 30%–45% RH. It is worth noting that both parameters
were monitored during each experiment, stored, and used in
further analysis. Convection and advection in the laboratory
were minimized. Each participant had 30 min for thermal
adaptation. The skin emissivity was set to 0.98. In each case,
the skin was tattoo free and no inflammatory or other types
of dermatological or vascular problems were detected. For
a more accurate thermographic assessment of skin temper-
ature, a few days prior to the experiment, the volunteers
were asked to meet the requirements described in Table II;
the presented protocol is based on the requirements of the
International Association of Certified Thermographers (IACT),
American Academy of Thermology, European Association
of Thermology, and publications [36] and [46]. Suggestions
from the study by Moreira et al. [46] were also taken into
consideration and all mentioned conditions were fulfilled.
All restrictions were supplemented with additional restrictions,
based on the authors’ experience. Temperature measurement
was performed by means of dedicated IR camera software that
helps to properly select the area of interest and to export a raw
temperature data to MATLAB-compatible file.

The test procedure consisted of thermal imaging and sEMG
measurement at the beginning and end of walking on a self-
propelled treadmill. Subjects were asked to walk for 10 min
with a constant speed of 4.5 km/h. They were asked to walk
naturally, without holding treadmill handles, to minimize the
external disturbance. All of them were familiar with treadmill
walking. This gait speed can be considered as a low-level
fatigue exercise that causes low level of muscle activation [26].
Natural speed was also chosen to avoid extensive sweating,
what could influence thermal measurements [34].

Fig. 2. Differences in the whole body temperature distribution—an example
of a thermal image, (1) before exercise and (2) after exercise. (a) Front.
(b) Back. The areas of the muscles’ temperature measurement are marked:
GM—gastrocnemius medialis, BF—biceps femoris (long head), TA—tibialis
anterior, and RF—rectus femoris (similar to [34]).

Just before and immediately after the walk (approximately
in 30-s delay caused by moving of the volunteer in front of
the thermal imaging camera), thermal images of the whole
body (anterior and posterior sides) were taken. In addition,
the sEMG signals were recorded during the entire experiment;
for further analysis, the first minute and last minute of record-
ing the signal were selected. A sample set of thermal images
is shown in Fig. 2. All thermal parameters were calculated
from the areas of interest (similar to [34]) which were marked
in the software dedicated to the IR camera, then the data were
exported, and further analysis was performed in MATLAB.

Moreover, level of pulse and oxidation was monitored
before and after the experiment. The pulse changed from 65 to
75 bps (the average for all volunteers). The average value of
blood oxidation did not change.

A volunteer treated as a control was only asked to perform a
quiet standing in a comfortable position and perform slow gait
for the same time duration as described in the experimental
procedure. All thermal measurements were done in his case
in the same manner as for any other participant.

The statistical calculations had been done in STATISTICA
13.1 and MATLAB. The threshold of p-value was estab-
lished as 0.1 for linear regression and 0.05 for nonlinear
regression [31]. Using the Shapiro–Wilk test, the normal-
ity of all analyzed factors was checked: temperature ones
(1 minimum—Thermo-1Min, 1 maximum—Thermo-1Max,
1 kurtosis—Thermo-1Kurtosis, 1 mean—Thermo-1Mean,
1 median—Thermo-1Median, and 1 mode—Thermo-
1Mode) and sEMG frequency ones (1 mean frequency—
1MeanFreq, 1MF—1MedianFreq). It was assumed that the
difference (1) is the change between the end and beginning
of the experiment.

III. RESULTS

Samples of thermal images of the whole body are presented
in Fig. 2. Also, the areas, where the muscles’ temperature was
analyzed, were marked.

The average temperature difference of the front and back
of the volunteer’s body between the end and beginning of
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TABLE III

AVERAGE TEMPERATURE MEASUREMENTS [◦C] FOR MUSCLES: BF, GM,
RF, AND TA. 1—BEGINNING. 2—END OF THE EXPERIMENT

the experiment was calculated. The results from frontal view
are as follows: Tmin = 0.01 ◦C, Tmax = 0.19 ◦C, Kurto-
sis = −0.56, Tmean = −0.56 ◦C, Tmedian = −1.29 ◦C, and
Tmode = −1.17 ◦C, while from the back view Tmin = 0.01 ◦C,
Tmax = 0.58 ◦C, Kurtosis = −0.30, Tmean = −0.45 ◦C,
Tmedian = −0.72 ◦C, and Tmode = −1.19 ◦C.

Detailed measurements (the mean values) of temperature
factors of the examined muscles [BF, GM, RF and TA] before
and after exercise are presented in Table III. The highest
difference obtained in the case of kurtosis for RF reached
−2.61 ◦C, and the smallest was obtained for the maximum
mode temperature for the TA muscle. In general, the lowest
temperature of 26.45 ◦C was reached by the GM muscle,
and the highest, during the entire experiment, did not exceed
32.95 ◦C in the case of the TA muscle.

Table IV shows the average differences in the mean and
median values of the sEMG signal of these muscles compared
to thermal parameters—calculated as the difference between
the temperatures of selected areas before and after exercise.
Regarding the sEMG signals, the analysis shows that the
average decrease in the mean and median values is 3.28 and
4.01 Hz, respectively (the average changes calculated for all
muscles examined).

According to the tests performed, all factors of RF, BF,
and GM have normal distribution. The TA frequency factors
1MedianFreq do not have a normal distribution, but the other
factors of this muscle have normal distribution.

According to the authors’ hypothesis, the relationships
between temperature factors and frequency factors were deter-
mined by using: 1) the linear regression and 2) nonlinear
regression. All graphical presentations of raw data and linear
and nonlinear relationships are given in Tables S1–S4 (See the
supplementary material).

Linear regression was found between factors with nor-
mal distribution using the Pearson’s correlation coefficient
r and the determination coefficient r2. On the other hand,
the statistical relationship between factors with nonnormal
distribution or when one of the two considered factors was not
normal was discovered by using the Spearman coefficient r∗.
In attempting to classify the strength of statistical relation-
ship, the following ranges were adopted: (0; 0.25]—weak,
(0.25; 0.5]—fair, (0.5; 0.75]—moderate, and (0.75; 1]—good.
Analyzing the results of linear correlation (Table V and Table
S5 in supplementary material), it was found as follows.

1) Between the results for thermal and frequency factors
of RF, there are the following statistically significant
relationships.

a) negative moderate relationship between 1Mean-
Freq and Thermo-1Mean (r = −0.58, r2

= 0.33,
p = −0.04);

b) negative moderate relationship between 1Mean-
Freq and Thermo-1Max (r = −0.62, r2

= 0.39,
p = 0.02);

c) negative fair relationship between 1MedianFreq
and Thermo-1Mean (r = −0.49, r2

= 0.24,
p = 0.09);

d) negative moderate relationship between
1MedianFreq and Thermo-1Max (r = −0.54,
r2

= 0.29, p = 0.05);
e) negative moderate relationship between

1MeanFreq and Thermo-1Median (r = −0.56,
r2

= 0.31, p = 0.05).

2) There is no statistically significant relationship between
the results for thermal and frequency factors of TA
and BF.

3) Between the results for thermal and frequency factors of
GM, there is one statistically significant positive good
relationship between 1 MedianFreq and Thermo-1Min
temperature (r = 0.76, r2

= 0.58, p = 0.01).

Nonlinear regression was performed by using the polyno-
mial regression method. The results of nonlinear regression
are given in Table VI and described by the determination
coefficient R2, correlation coefficient R∗ calculated between
the measured thermal factor and predicted thermal factor (i.e.,
estimated by using nonlinear relationship), statistically signif-
icant threshold p, and the power of polynomial regression.
It is worth emphasizing that this power was established on the
base of assumption that it should be the lowest degree, which
allows obtaining statistically significant nonlinear regression.
Considering the obtained results of nonlinear correlation,
we found as follows.

1) 1MeanFreq versus Thermo-1Min relations were statis-
tically significant in all tested muscles, and with respect
to the R2 value and R∗ value, the best fitting was found
for TA.

2) 1MeanFreq versus Thermo-1Max relation was statisti-
cally significant in BF, GM, and RF, and with respect
to the R2 value and R∗ value, the best fitting was found
for RF.

3) 1MeanFreq versus Thermo-1Kurtosis relation was sta-
tistically significant in GM and TA, and with respect to
the R2 value and R∗ value, the best fitting was found
for TA.

4) 1MeanFreq versus Thermo-1Mean relation was statis-
tically significant in BF and RF, and with respect to the
R2 value and R∗ value, the best fitting was found for BF.

5) 1MeanFreq versus Thermo-1Median relation was sta-
tistically significant in BF, GM, and RF, and with respect
to the R2 value and R∗ value, the best fitting was found
for BF.
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TABLE IV

AVERAGE SEMG MEAN AND MEDIAN VALUES DIFFERENCES OF BF, GM, RF, AND TA BETWEEN THE END AND THE BEGINNING

OF THE EXPERIMENT IN COMPARISON WITH THERMAL PARAMETERS

TABLE V

STATISTICAL RELATIONSHIPS BETWEEN THERMAL AND MYOGRAPHICAL

PARAMETERS FOR MUSCLES: BF, GM, RF, AND TA

6) 1MeanFreq versus Thermo-1Mode relation was statis-
tically significant in all muscles, with respect to the R2,
the best fitting was found for GM, and with regard to
the R∗ value, the best fitting was found for BF.

7) 1MedianFreq versus Thermo-1Min relation was statis-
tically significant in GM, RF, and TA, and with respect
to the R2 and R∗ value, the best fitting was found
for GM.

8) 1MedianFreq versus Thermo-1Max relation was statis-
tically significant in all the tested muscles, with respect
to the R2 value, the best fitting was for BF, and with
regard to the R∗ value, the best fitting was found for BF
and RF.

9) 1MedianFreq versus Thermo-1Kurtosis relation was
statistically significant GM, RF, and TA, and with
respect to the R2 value and R∗ value, the best fitting
was found for GM.

10) 1MedianFreq versus Thermo-1Mean relation was sta-
tistically significant in all the tested muscles, with

respect to the R2 value, the best fitting was for GM,
and with regard to the R∗ value, the best fitting was
found for BF and RF.

11) 1MedianFreq versus Thermo-1Median relation was
statistically significant in all the tested muscles, and with
respect to the R2 value and R∗ value, the best fitting was
found for BF.

12) 1MedianFreq versus Thermo-1Mode relation was sta-
tistically significant in GM, RF, and BF, and with respect
to the R2 value and the R∗ value, the best fitting was
found for BF.

IV. DISCUSSION

The measured average temperature differences of the front
and back of the volunteer’s body show that despite low inten-
sity of the exercise, a general decrease in body temperature
was observed, the average differences being 0.56 ◦C and
0.45 ◦C for the ventral and dorsal sites of the body, respec-
tively. At the same time, the maximum detected temperature
increased by about 0.19 ◦C for the front part and 0.58 ◦C
for the rear part. This fact is consistent with many works
regarding changes (even small) in body temperature during
different activities, see [23], [26], [29], [31], [34], [38], [39],
[52], and work [30] where the authors analyze and take into
account temperature changes at the level of 0.05 ◦C.

Analysis of the volunteer serving as a control showed that
conditions in the laboratory did not affect the body surface
temperature after thermal adaptation. The difference of the
average temperature of the dorsal site and ventral site of the
body before and after the experiment was lower than 0.05 ◦C
after the adaptation period. At the same time, the maximal
detected temperature increased by 0.02 ◦C in case of the front
part and 0.03 ◦C for the back.

Considering thermal parameters, positive values are treated
as manifestation of clear muscular activity. On the other hand,
negative values mean that the activity of the muscle was too
low or the phenomenon of skin thermoregulation (sweating)
took place.

Analyzing the results of linear regression, the most infor-
mative statistically significant relations are revealed by using:
1) the mean thermal factor and max thermal factor (for each
factor, two moderate linear relationships were established)
and 2) the sEMG MF factor and sEMG mean frequency
factor (for each factor, three moderate linear relationships were
estimated). For the RF, there are three moderate relationships
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TABLE VI

STATISTICAL NONLINEAR RELATIONSHIPS BETWEEN THERMAL AND MIOGRAPHICAL PARAMETERS FOR MUSCLES: BF, GM, RF, AND TA

between the sEMG mean frequency parameter and the mean,
maximum, and median thermal parameters. For the same mus-
cle, there are two moderate relationships between sEMG MF
factor and the mean, maximum thermal factor. For the GM,
there is one good relationship between sEMG MF factor and
minimum thermal factor. These established moderate relation-
ships approve our hypothesis that chosen thermal parameters
can be used to assess the low-level physical activity (normal
gait) by assuming linear link between these thermal factors
and sEMG factors.

Analyzing the raw data and results of nonlinear regressions
between the thermal and sEMG factors, a conclusion about
good fitting (prediction) was drawn on the basis of the fol-
lowing assumption: data placed in quarter II (positive thermal
and negative sEMG) and quarter III (negative thermal and
negative sEMG) show manifestation of the fatigue, whereas
data placed in quarter I (positive thermal and positive sEMG)
and quarter IV (negative thermal and positive sEMG) show
that muscle is in the regeneration process (without fatigue).
It is worth emphasizing that each person uses a different motor
command program to activate the muscles to perform the
motion. That is why this scatter between raw data is observed
(due to different biomechanical properties that also influence
different thermoregulation processes in the skin over tested
muscles). Applying polynomial regression, we revealed the
following classifications.

1) 1MeanFreq versus Thermo-1Min relation is treated as
good (because all the tested muscles were considered),
and it can be described by using polynomial regression
with the third power to the fifth power.

2) 1MeanFreq versus Thermo-1Max relation is treated
as medium (because only three tested muscles were
considered), and it can be described by using polynomial
regression with the fourth power to the sixth power.

3) 1MeanFreq versus Thermo-1Kurtosis relation is treated
as bad (only two tested muscles can be considered), and
it can be described by using polynomial regression with
the fifth power.

4) 1MeanFreq versus Thermo-1Mean relation is treated
as bad, and it can be described by using polynomial
regression with the third power.

5) 1MeanFreq versus Thermo-1Median relation is treated
as medium, and it can be described by using polynomial
regression with the third power to the seventh power.

6) 1MeanFreq versus Thermo-1Mode relation is treated
as good, and it can be described by using polynomial
regression with the second power to the fifth power.

7) 1MedianFreq versus Thermo-1Min relation is treated
as medium, and it can be described by using polynomial
regression with the third power to the fifth power.

8) 1MedianFreq versus Thermo-1Max relation is treated
as good, and it can be described by using polynomial
regression with the third power to the fifth power.

9) 1MedianFreq versus Thermo-1Kurtosis relation is
treated as medium, and it can be described by using
polynomial regression with the fourth power to the fifth
power.

10) 1MedianFreq versus Thermo-1Mean relation is treated
as good, and it can be described by using polynomial
regression with the third power to the fifth power.

11) 1MedianFreq versus Thermo-1Median relation is
treated as good, and it can be described by using
polynomial regression with the third power to the fifth
power.

12) 1MedianFreq versus Thermo-1Mode relation is treated
as medium, and it can be described by using poly-
nomial regression with the third power to the fifth
power.

The presented statistical results of the linear correlations
are similar to the observations of other authors [23], [25],
[26]; however, contrary to all cited studies, in the presented
case, the experiment lasted 10 min and there was no excessive
sweating in any of the volunteers. Another remark has also
been made: for some of them, a higher temperature was
observed for semimembranosus and semitendinosus muscles
instead of the BF. In one case, instead of RF, a higher
temperature was observed for the sartorius muscle (no prob-
lems with gait or unnatural limb behavior were observed for
any of the volunteers). In general, an average increase in
maximum temperature for the area of interest was observed
at 0.19 ◦C and 0.58 ◦C for ventral and dorsal body sites,
respectively. At the same time, the average temperature values



4001310 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

decreased to 1.29 ◦C for the median, to 0.72 ◦C for the mode,
and to 1.17 ◦C and 1.19 ◦C for ventral and dorsal sites,
respectively.

V. CONCLUSION

On the basis of the obtained results, we concluded that
neuromuscular and thermal phenomena of low-level muscle
fatigue (induced by a 10-min physical activity in the form
of a treadmill gait) can be detected by assessing sEMG
changes and surface temperature changes. The exercise effects,
low level of temperature differences (see Section III), and a
small change in the sEMG mean and median signals were
revealed (Tables V and VI) by estimating two frequency
factors (the sEMG mean and MF factors) and six thermal
factors (minimum, maximum, mean, kurtosis, median, and
mode temperature factors). To reveal the most proper relations,
we tested dependences between all thermal factors (parame-
ters) and all frequency factors (parameters). The novelty of
our work was to find out statistically significant linear and
nonlinear relationships between sEMG factors and thermal
factors that can be used to reveal a low-level fatigue in normal
daily activity.

In this study, six linear correlations between thermal and
myographic parameters are found (Tables IV and V) using
a linear regression method. Considering the results in detail,
five moderate statistically significant differences were found
for the RF. For the other muscles examined, the results were
incoherent in the case of low fatigue. This can be explained
that changes in the calculated parameters could be related as
nonlinear functions.

To study whether some nonlinear correlations exist between
universal thermal and myographic parameters, we applied
nonlinear regression (polynomial regression) between thermal
factors and sEMG factors. The good fitting results were
obtained for five relations: 1MeanFreq versus Thermo-1Min
relation, 1MeanFreq versus Thermo-1Mode, 1MedianFreq
versus Thermo-1Max, 1MedianFreq vs Thermo-1Mean rela-
tion, and 1MedianFreq versus Thermo-1Median relation.
On the other hand, the moderate fitting results were established
also for five relations: 1MeanFreq versus Thermo-1Max,
1MeanFreq versus Thermo-1Median, 1MedianFreq ver-
sus Thermo-1Min, 1MedianFreq versus Thermo-1Kurtosis,
and 1MedianFreq versus Thermo-1Mode. Considering the
obtained correlation results, we concluded that more relation-
ships were established using nonlinear regression. This means
that tested phenomenon (identification of low load fatigue)
is complex one and can be identified in practice by using
nonlinear regression, especially for a low level and relatively
short time of muscle activity, e.g., examining daily activities
which do not cause high level of muscle fatigue. The results of
thermographic tests may be treated as complement to sEMG
studies to obtain more accurate assessment of muscle activity,
especially in the case of a limited number of electrodes.
However, it should be emphasized that: 1) thermography will
not, at this stage of thermal imaging development, replace
sEMG testing, due to skin sweating occurring in case of higher
temperatures or more vigorous exercises and 2) application of
thermal imaging and sEMG testing is limited due to the fact

that skin sweating can blemish the results of thermal analysis
and cause ungluing of sEMG electrodes.

This study can help to understand the thermal and elec-
tromyographical phenomena that occur during gait with mod-
erate speed. Analysis of parameters obtained from sEMG
measurements and thermal imaging could be used to predict
the state of the considered live object. Thermal imaging
could give a whole-body image and detect unpredicted and
nonstandard muscle activation caused by overloading and/or
disorders. Also, the technique of thermal imaging undergoes
constant improvements and becomes, due to technical devel-
opment and advanced knowledge, more precise. In this light,
the presented results can be treated as preliminary study of
how to supplement electromyography by the thermal methods
in case of muscle examining.
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