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Abstract: There are limited proven therapeutic options for the prevention and treatment of COVID-19.

The role of vitamin and mineral supplementation or “immunonutrition” has previously been explored

in a number of clinical trials in intensive care settings, and there are several hypotheses to support their

routine use. The aim of this narrative review was to investigate whether vitamin supplementation

is beneficial in COVID-19. A systematic search strategy with a narrative literature summary was

designed, using the Medline, EMBASE, Cochrane Trials Register, WHO International Clinical Trial

Registry, and Nexis media databases. The immune-mediating, antioxidant and antimicrobial roles of

vitamins A to E were explored and their potential role in the fight against COVID-19 was evaluated.

The major topics extracted for narrative synthesis were physiological and immunological roles of

each vitamin, their role in respiratory infections, acute respiratory distress syndrome (ARDS), and

COVID-19. Vitamins A to E highlighted potentially beneficial roles in the fight against COVID-19 via

antioxidant effects, immunomodulation, enhancing natural barriers, and local paracrine signaling.

Level 1 and 2 evidence supports the use of thiamine, vitamin C, and vitamin D in COVID-like

respiratory diseases, ARDS, and sepsis. Although there are currently no published clinical trials due

to the novelty of SARS-CoV-2 infection, there is pathophysiologic rationale for exploring the use of

vitamins in this global pandemic, supported by early anecdotal reports from international groups.

The final outcomes of ongoing trials of vitamin supplementation are awaited with interest.

Keywords: COVID-19; SARS-CoV-2; vitamin; immunonutrition; supplementation

1. Introduction

December 2019 saw clusters of patients in the city of Wuhan, Hubei Provence, China presenting

with a severe acute respiratory syndrome coronavirus (SARS-CoV)-like illness. The causative organism,

now termed SARS-CoV-2 and its correspondent disease, COVID-19, has quickly spread from Asia

via Europe to the rest of the world. Previous viral pandemics due to novel corona and influenza

viruses, such as SARS-CoV, Middle Eastern respiratory syndrome coronavirus (MERS-CoV), and H1N1

influenza A have been a warning to global healthcare. However, none of these pathogens have

had such a catastrophic impact worldwide as the novel coronavirus SARS-CoV-2, a positive-sense
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single-stranded enveloped RNA virus, which is the seventh coronavirus known to infect humans [1].

RNA viruses are known to possess very high mutation rates, which correlate with enhanced virulence

and evolvability [2]. COVID-19 highlights the potency of this, with a case-fatality rate of 2.3% and over

5,000,000 infections in 216 countries at the time of writing [3,4]. The pandemic is gathering speed across

the world despite increasingly more drastic non-pharmacological interventions to limit its spread.

The clinical spectrum of COVID-19 ranges from asymptomatic carriage, mild upper respiratory tract

infection (URTI), severe viral pneumonia to acute respiratory distress syndrome (ARDS) and death [5].

Research has led to identification of the angiotensin-converting enzyme (ACE) 2 as the cell-entry

receptor for SARS-CoV-2 [6]. Despite this discovery, a systematic study of virus dynamics and the host

response is yet to be completed [7].

Although vaccine development is proceeding at an unprecedented pace, with reports of phase

1 trials already in progress [8], given the length of time required to develop, evaluate, produce,

and disseminate it to 7.8 billion citizens worldwide, there is an urgent need for evidence-based

treatment modalities for SARS-CoV-2.

At present, no effective antiviral therapy has been confirmed and symptomatic supportive

intervention is still the main treatment. There has been a previous suggestion that there is a role

for vitamin supplementation to attenuate the severity of the common cold, the development of

ARDS, and augment the immune system via antioxidant properties. The role of vitamin and mineral

supplementation or “immunonutrition” has previously been explored in a number of trials in intensive

care settings.

This review aims to interrogate the current evidence base, and to present the potential

immune-mediating, antioxidant, and antimicrobial roles of vitamins A to E in the context of respiratory

disease, and to extrapolate this evidence to evaluate the potential roles in the fight against COVID-19.

2. Methods

A systematic search strategy was employed to identify clinical, animal, and in vitro studies

that may elucidate mechanisms by which vitamins may play a role in the fight against COVID-19.

The Medline (1946-present), EMBASE (1980-present), Cochrane Trials Register, Clinicaltrials.gov,

and WHO International Clinical Trial Registry were all searched using the developed search strategy

up to 11 May 2020, supplemented with a search of newspaper and internet article sources using the

media database, Nexis.

In total, 5506 manuscripts were screened for relevance, of which 367 underwent full-text review,

with 204 studies warranting discussion in this narrative review (Figure 1). Figure 2 summarizes the

Nexis search data and highlights the increasing media interest in the role of vitamin supplementation

in the coronavirus pandemic since December 2019.

Inclusion and Exclusion Criteria

Case reports, case cohorts, case–control, randomized controlled studies, and meta-analyses were

considered for inclusion. Specifically, studies involving humans or animals (including ex vivo and

in vitro models) with a clinical (any recognized diagnostic criteria) diagnosis of SARS-CoV, SARS-CoV-2

infection, MERS-CoV, or viral-induced ARDS receiving vitamin supplementation of any form were

included. In addition to non-English language articles, lipopolysaccharide (LPS) animal models of

ARDS and clinical studies where the etiology of ARDS included sepsis were avoided. This was because

the clinical course of the viral pneumonia seen in COVID-19 has been described as an entity distinct

from the Third International Consensus Definitions for Sepsis and Septic Shock. There was a paucity of

published original evidence pertaining to a role of vitamin supplementation in the current coronavirus

pandemic, or previous MERS and SARS pandemics. As such, studies on the role of vitamins in

respiratory and immune system physiology and non-coronavirus respiratory tract infections were

identified and scrutinized for their potential relevance to the current coronavirus pandemic.

Clinicaltrials.gov
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Figure 1. Systematic search strategy flow diagram.
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Figure 2. Number of newspaper articles published on vitamin supplementation in COVID-19 over time.

3. Immunonutrition

Immunonutrition refers to the modulation of the immune system through the modification of

dietary nutrients [9]. Due to the proinflammatory state in ARDS it has been postulated for many years

that increasing the level of antioxidant nutrients within the body will have a beneficial effect [10].

Furthermore, improving lymphocyte, macrophage, and neutrophil function through the addition of

nutrients, such as glutamine, has also been described as being beneficial [11]. Dietary supplementation

of nutrients has been recognized to alter the clinical course in a wide range of patients, including

those who are critically ill [12]. There are a number of commercially available enteral and parenteral

formulas containing a mix of immunonutrients. These most commonly consist of antioxidant vitamins,

trace elements, essential amino acids, or fatty acids and gamma-linolenic acid [13].

The evidence supporting the beneficial effects of immunonutrition in acute lung injury (ALI) and

ARDS is contradictory and often limited by significant bias. Clinical studies in patients with ARDS

have shown that their baseline plasma levels of beta-carotene, retinol, alpha-tocopherol, and total

radical antioxidant potential were all lower than normal. This could be normalized after 4 days of

feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants, compared to a control

group not receiving supplementation. There were, however, no clinical outcomes reported [14].

In a further randomized study investigating a similar supplementation of eicosapentaenoic acid,

gamma-linolenic acid, and antioxidants (including vitamins) in patients with severe sepsis and septic

shock, a significant reduction in 28-day mortality, ventilator-free days, and intensive care unit-free

days was observed [15]. Despite these results, the systematic review and meta-analysis data of those

reported studies is less promising. In a systematic review of enteral immunomodulatory diets in those

with ALI and ARDS, it was found that in a pooled analysis of the six controlled trials included, there

was no significant reduction in all-cause mortality and no increase in the number of ventilator-free or

intensive care-free days [16]. There was a suggestion from the two studies that those at highest risk of

mortality might, however, benefit. A 2019 Cochrane review identified 10 studies including 1015 ARDS

patients randomized to dietary supplementation of omega-3 fatty acids and antioxidants. There was

no reduction in all-cause mortality. There is a suggestion that ventilator-free days and intensive care

unit-free days were reduced, although the authors conclude that this is uncertain due to the low quality

of the evidence included [17].
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The importance of immunonutrition during the current SARS-CoV-2 pandemic has been identified

by others, with the publication of protocols for the early nutritional supplementation of those with

the disease [18]. Reported work on this during this pandemic is limited. In many trials of dietary

supplementation, the ‘immunonutrition diet’ is heterogenous, consisting of several vitamins, minerals,

and fatty acids administered together, making it difficult to ascertain the potential value of each vitamin

as discussed below.

3.1. Vitamin A

3.1.1. Source and Physiological Role

Vitamin A is, by structural definition, all-trans-retinol, a retinol in which all four exocyclic double

bonds have an E- (also known as trans) geometry (Figure 3) [19–21]. Retinoids, a term coined in the

mid-1970s, compromises both natural and synthetic chemical species that have similar structural

appearances with or without biological component/activity, the biological species being those we

colloquially refer to as vitamin A [22]. This would make vitamin A, a natural retinoid species.

The acquisition of retinoids is generally from a dietary source in a preformed form or provitamin

A carotenoids. The most active retinoid has been found to be retinoic acid. Retinoic acid has been

discovered to regulate the transcription of more than 500 genes by its binding mechanism: RARα/β/γ

receptor to its retinoid X counterpart [23].

 

α β γ

 

β

β

Figure 3. Chemical structure of vitamin A, retinol.

The sources of these are found commonly in animal food sources, such as meat, fish, and eggs.

The carotenoids, generally in the form of alpha/beta/gamma carotene, are more likely to found in fruit

and vegetables; β-carotene specifically contributes to the orange color of food and is typically associated

with carrots and sweet potatoes [24]. These provitamin carotenoids are converted to retinoids in the

body [25].

The site of action is throughout the tissues, where both retinol and β-carotene are oxidized to

retinal and retinoic acid, which are essential for the variety of biological roles of vitamin A [26].

The liver plays a key role: Retinol is esterified to retinyl esters and stored in the stellate cells [27].

The oxidative ability of vitamin A has been the subject of much debate, with cases made for it being

both antioxidative as well as pro-oxidative [28].

The biological functions of retinoids are wide and varied, including gene transcription [29], vision

maintenance and health (in the form of retinal) [30], epithelial and membrane regulation (from skin to

mucous to teeth) to bone metabolism, and antioxidative properties [31,32]. However, it has a major role

in immune system modulation [19]. Although not fully understood, many studies provide evidence

that vitamin A plays a crucial role in certain immunoregulatory processes. Vitamin A has been found

to not only promote proliferation of T-lymphocytes (through the increase of IL-2) but to also promote

their differentiation, especially into regulatory T cells. This has been interestingly used as an adjunct

to vaccine use, including tetanus, diphtheria, measles, influenza, rabies, and malaria, in infants to

improve the antibody response [33–36].

3.1.2. Mechanism of Action in Disease

Early work by Paiva et al. determined that vitamin A supplementation improved pulmonary

function test results in patients with chronic obstructive pulmonary disease (COPD) [37]. This was

explained on a cellular level by studies that showed that in fetal lung explants, retinoic acid (the most
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active retinoid species) was able to control the expression of surfactant protein [38–40]. Pediatric

asthma studies (alongside supportive in vitro work) of vitamin A deficiency reinforced these theories by

demonstrating that increased serum vitamin A induced good pulmonary function as retinoic acid can

reverse airway hyper-responsiveness, in turn conferring protection from asthma by downregulation of

oxidative stress [38,40].

3.1.3. Respiratory Infections

Since 1928, vitamin A has been found to have antimicrobial qualities, tied to the immune-

modulating factor of its derivatives [39,41]. Later studies showed that the risk of respiratory disease

was ‘more closely associated to vitamin A status then with general nutritional status [42]. The deficiency

of retinol has also been discovered to cause squamous metaplasia of the first barrier of respiratory

defense, the epithelium [43]. On a clinical basis, addressing vitamin A deficiency has effectively

prevented tuberculosis (TB) in high-risk patients [44]. Though it should be noted that wide-scale

studies have not shown a beneficial effect in areas of high prevalence of vitamin A deficiency [45].

Vitamin A is believed to have antioxidative properties, and has a key role in the development of

bronchopulmonary dysplasia and neonatal respiratory distress syndrome [46,47]. This finding was

pioneered by Hustead et al. in 1984 with his work on retinol concentrations in preterm infants, in which

it was discovered that neonates developing bronchopulmonary dysplasia had lower concentrations of

retinol at birth [48].

3.1.4. Relevance to COVID-19

The pulmonary, immunomodulatory, and antimicrobial roles of vitamin A may enact a crucial

element in the fight against viral diseases, including COVID-19, and are summarized in Figure 4 [18].

From a pulmonary perspective, retinoic acid has been implicated in modulating the pathogenesis of

ARDS, influencing the production of IL1-β and IL-1 receptor antagonist by alveolar macrophages,

and the subsequent pulmonary infiltration of neutrophils [49]. In addition, a study of retinoic acid

with simvastatin has demonstrated augmented pulmonary regeneration and remodeling in animal

studies [50], meaning both oxidative damage and the regenerative capacity of the lungs may be, in part,

mediated through vitamin A-dependent mechanisms. There may also be relevance in the role of

vitamin A in viral infections. Retinoids have been implicated in the development of an innate immunity

against measles virus in vitro through an interferon-mediated mechanism, which in particular renders

bystander cells protected against a subsequent round of viral replication [51]. The vitamin has been

the subject of animal studies looking at inactivated bovine coronaviruses, with dietary supplements

shown to increase the effect of antibody responses to the vaccine in feedlot calves [52], and lower levels

of vitamin A in chickens with viral infections has been associated with an increased rate of epithelial

damage to tissues [53]. These findings correlate with clinical studies, which have found increasing host

susceptibility to influenza and SARS-CoV with a lower concentration of vitamin A in several disease

models [54]. In light of its pulmonary and immunological roles, oral supplementation of vitamin A is

currently being investigated in the treatment of COVID-19 alongside a host of other antioxidants [55].
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Figure 4. Retinoic acid and carotenoids exert a number of physiological effects, including the

augmentation of T cell function, which may improve the adaptive immune response to pathogens,

such as viruses. Furthermore, antioxidant and surfactant-mediating properties of vitamin A derivatives

may have a protective role in the pathogenesis of ARDS, a known complication of severe cases

of COVID-19.

3.2. Vitamins B

3.2.1. Sources and Physiological Role

B vitamins are a class of water-soluble vitamins (B1, B2, B3, B5, B6, B7, B9, and B12) that play

important roles in cell metabolism (Table 1). They are chemically distinct entities but may coexist in

the same foods, including meat and plant-based sources. B12 is found predominantly in meat, such as

turkey, tuna, and liver, whereas folate is largely present in plant products, such as legumes (pulses

or beans), greens, nuts, whole grains, potatoes, bananas, chili peppers, tempeh, and yeast. They are
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also found in small quantities in unprocessed carbohydrates whereas processed carbohydrates, such

as sugar and white flour, have lower vitamin B levels, often corrected by supplementation. Dietary

supplements containing all eight are referred to as a vitamin B complex.

Studies suggest that vitamin B complex may regulate cytokine/chemokine generation and mediate

interaction with immune cells involved in pathophysiological pathways and inflammation [56].

Vitamin B1 (thiamine), like other B-complex vitamins, acts as a coenzyme in its phosphorylated forms,

contributing to glucose, fat, and protein metabolism, participating in the production of energy for the

body. Its deficiency in the nervous system may impair the ability to synthesize fatty acid and cholesterol,

necessary for membrane function. With specific regard to inflammation, vitamin B1 deficiency in the

brain induces overexpression of proinflammatory mediators, such as IL-1, IL-6, COX-2, and TNF-α,

which cause neuronal cell death in the central nervous system (CNS) damage and neuroinflammation,

leading to Wernicke’s encephalopathy and an irreversible dementia of Korsakoff’s syndrome [57].

Vitamin B2 (riboflavin) has immunomodulatory effects, and deficiency upregulates proinflammatory

gene expression [56]. Niacin, an amide of B3, reduces TNFα, IL-6, and IL-1β in stimulated alveolar

macrophages and inhibits NF-κB activation [58]. Similarly, vitamin B7 (biotin) is also recognized as an

immunoregulatory vitamin through its effects on proinflammatory cytokine expression [59].

Table 1. Physiological role of the B vitamins.

B Vitamin Chemical Name Chemical Structure Physiological Role
Evidence Related
to SARS-CoV-2

Pandemic

B1 Thiamine

 

 α

 

 

Precursor of coenzymes in
sugar and amino acid

catabolism

IV thiamine
(together with high
dose vitamin C and

corticosteroids)
shown to prevent
deaths in people
with sepsis [60]

B2 Riboflavin

 

 α

 

Precursor of coenzymes
needed for flavoprotein

enzyme reactions

Riboflavin (B2) and
UV light effectively
reduced the titer of

MERS-CoV in
human plasma [61]

B3

Niacin (nicotinic
acid), nicotinamide,

nicotinamide
riboside

 

 α

 

Precursor of coenzymes
needed in many metabolic

processes

Nicotinamide
identified to have
potential binding

affinity for the
SARS-CoV-2
protease [62]

B5 Pantothenic acid

 

 α

acid 
 

 

Precursor of coenzyme A None to date

B6

Pyridoxine,
pyridoxal,

pyridoxamine

 

 
 

Precursor of coenzyme in
metabolic reactions

None to date

B7 Biotin

Coenzyme for carboxylase
enzymes needed for

gluconeogenesis and fatty
acid synthesis

None to date
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Table 1. Cont.

B Vitamin Chemical Name Chemical Structure Physiological Role
Evidence Related
to SARS-CoV-2

Pandemic

B9 Folate

 

 Folate 

 

Precursor needed for DNA
synthesis and repair

especially during rapid
cell division

Folate identified to
have potential

binding affinity to
the SARS-CoV-2

protease [63]

B12

Cobalamins e.g.,
cyanocobalamin,
methylcobalamin

 

 

Coenzyme in metabolic
reactions affecting DNA,
fatty acid and amino acid

metabolism

Vitamin B12
identified to have
potential binding

affinity to the
SARS-CoV-2
protease [62]

3.2.2. Mechanism of Action in Disease

Vitamins B6, B12, and folate play important and complementary roles in both innate and adaptive

immune responses and have been granted health claims in the European Union for contributing to the

normal function of the immune system [64,65]. It is not surprising that deficiencies in these vitamins

can impair immune functions. Vitamin B6 reduces the function and proliferation of T-lymphocytes

and inhibits cytokine/chemokine release [56]. Vitamin B9 (folate) deficiency has been reported to lead

to megaloblastic anemia, failure to thrive, and infections due to combined immunodeficiency with an

impaired T-cell proliferation response, pan-hypogammaglobinemia, and an altered proinflammatory

cytokine profile, which are reversed with folate therapy [66]. Vitamin B12 (cobalamin) deficiency is

particularly common in the elderly due to reduced absorption [67], and induces an imbalance in the

cytokine and growth factor network in the CNS. Studies allude to a role in mediating the immune

response to viral infection, as supplementation significantly improved sustained viral response rates in

patients chronically infected with hepatitis C virus [68].

3.2.3. Respiratory Disease

Thiamine acts as a cofactor for pyruvate dehydrogenase, the enzyme necessary for converting

pyruvate to acetyl-coenzyme A (acetyl-CoA) for entry into the Krebs cycle. When thiamine levels are

insufficient, pyruvate is unable to be converted to acetyl-CoA, resulting in impaired aerobic respiration

and a compulsory shift to the anaerobic pathway, resulting in elevated serum lactate [69]. Thiamine

and niacin is also needed for the generation of NADPH and glutathione cycling, which is an important

antioxidant pathway [70]. These pathways (Figure 5) form the basis of thiamine administration in

critically ill populations, which demonstrate reduced lactate and improved mortality in a trial of

patients with septic shock [71]. It is of particular relevance that there are a number of studies showing

a benefit of thiamine (200 mg every 12 h) in combination with vitamin C (1500 mg every 6 h) and

hydrocortisone (50 mg every 6 h) in people with sepsis [60], leading to dramatic improvements in organ

injury, time to shock reversal, and mortality [60] as well as severe pneumonia [72]. Fimognari et al.

reported lower levels of folate and vitamin B12 in chronic obstructive pulmonary disease (COPD)

patients [73], but there is little evidence of the role of supplementation on improving symptoms,

hospitalization, or pulmonary function [74].
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Figure 5. Thiamine and its derivatives act synergistically with ascorbic acid to reduce anaerobic

respiration and reduce oxidative stress. It has been suggested this combination may improve mortality

and organ recovery in critically ill patients with septic shock through vasoactive effects, bacteriostatic

action, and immune cell mediation. The significance of these actions on viral infections, such as

COVID-19, remain to be elucidated.

3.2.4. Relevance to COVID-19

The coronavirus polyprotein encodes two proteases, called 3-C-like protease (M-pro) and a

papain-like protease (PL-pro), which were previous targets for drug discovery in the SARS and MERS

coronavirus epidemics [75]. A recent study utilized the available crystal structure of SARS-CoV-2 protein

M-pro to screen existing approved drugs to see if they could be repurposed to combat COVID-19 [62,76].

This study, based on docking scores, ligand efficiency, lipophilic, and hydrogen bonding interactions to

predict the more powerful binding drugs, found that vitamin B12 and nicotinamide ranked at the fourth

and sixth positions, respectively [62]. Another computational study also investigated molecules that

are predicted to bind tightly to M-pro in SARS-CoV-2 and identified that folate has the potential to form

strong hydrogen bonds with active site residues and therefore be a possible therapeutic strategy [63].

These computational screening tools may allow targeted drug testing to be undertaken using cell-based

assays and clinical trials, with niacin (B3), folate (B9), and B12 being possible contenders. These tools are

particularly important in the COVID-19 pandemic, where there is currently no targeted therapeutics

and effective treatment options remain very limited.

3.3. Vitamin C

3.3.1. Source and Physiological Role

Vitamin C, also known as ascorbic acid (Figure 6), is an essential water-soluble nutrient, required

as a cofactor for a number of enzymatic reactions required in norepinephrine biosynthesis, amidation

of peptide hormones, collagen hydroxylation, hypoxia-inducible factor (HIF) hydroxylation, regulation

of HIF, carnitine biosynthesis, tyrosine metabolism, and histone demethylation [77]. Its effects on the

immune system during infection is wide ranging and includes the promotion of phagocytosis and

chemotaxis of leucocytes and development and maturation of T-lymphocytes. It also has an important

homeostatic antioxidant role, whereby phagocytes import oxidized vitamin C, (dehydroascorbic acid)
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and reduced vitamin C (L-ascorbic acid) is regenerated in exchange [78,79]. There is also speculation

that vitamin C may play a role in mediating the adrenocortical stress response, particularly in sepsis [80].

 

 

α

κ
κ

Figure 6. Chemical structure of vitamin C, ascorbic acid.

3.3.2. Mechanism of Action in Disease

Vitamin C has been proposed as a treatment for respiratory infections ever since it was first

synthesized in 1933 [81]. The Nobel laureate, Linus Pauling, concluded from early randomized

controlled trials (RCTs) that vitamin C prevented and alleviated the common cold and as such

popularized its use in the 1970s [82,83]. It is postulated to exert an antiviral effect through direct

virucidal activity and augmenting interferon production whilst also having effector mechanisms in

both arms of the innate and adaptive immune system [84–86]. The host response to viruses and bacteria

include the release of reactive oxygen species (ROS) from activated phagocytes. Paradoxically, this has

been shown to be harmful to host cells and in some cases is implicated in the pathogenesis of viral

and bacterial infections [87–89]. Animal studies support a beneficial role of vitamin C in reducing the

incidence and severity of bacterial and viral infections [90]. These positive effects include increased

resistance of chick embryo tracheal organ cultures to infection and protecting broiler chicks against

avian coronavirus [91,92]. The relationship between oxidative stress and the induction of genes integral

to the systemic inflammatory response, including TNFα, IL-1, IL-8, and ICAM-1, has been shown to be

mediated through activation of the nuclear transcription factor NF-κB [93–95]. Vitamin C has been

shown to reduce inflammation and ROS via attenuation of NF-κB activation [96].

3.3.3. Respiratory Disease

Vitamin C is generally considered safe; however, reported adverse effects of high-dose intravenous

vitamin C (HDIVC) include oxalate kidney stone production [97,98]. Its potential benefits, low cost, and

safety profile make it an attractive therapeutic candidate in treating respiratory infections. A Cochrane

review examining placebo-controlled trials testing 200 mg/day or more of oral vitamin C for preventing

and treating the common cold found that supplementation did not reduce incidence in the general

population [99], but doses of 6–8 g/day were associated with a shorter duration and severity of common

cold symptoms with 46% symptom-free within 24 hours on an 8g dose [100]. A subgroup analysis

of heavy acute physical stress trials did find that it halved the incidence in this population [101–104].

Based on these findings, vitamin C may be useful for people exposed to brief periods of severe physical

exercise or in high doses for those with active cold symptoms. This work has led to the investigation

of vitamin C as a candidate treatment to offset the effects of inflammation and oxidative stress seen

in sepsis and ARDS. Excessive generation of potent proinflammatory cytokines and chemokines

soon after the onset of sepsis sets the stage for the development of multi-organ failure (MOF) [105].

The cytokine storm can result in neutrophil migration and accumulation within the lung interstitium

and bronchioalveolar space and is regarded a key determinant of progression in ARDS [106]. Neutrophil

extracellular traps or NETosis is a cell death pathway different from apoptosis and necrosis that traps

and kills pathogens [107]. An excessive NETosis response is a maladaptive response that leads to

tissue injury, organ damage, and contributes to MOF. There is evidence to suggest that vitamin C is a

novel regulator of this process [108]. Furthermore, vitamin C had been shown to significantly decrease

serum TNFα and IL-1β levels and increased superoxide dismutase, catalase, and glutathione levels
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in a rat ARDS model supporting its antioxidant effect [109]. Additionally, vitamin C also enhances

lung epithelial barrier function by promoting epigenetic and transcriptional expression of protein

channels at the alveolar capillary membrane that regulate alveolar fluid clearance, which include

aquaporin-5, cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and the

Na+/K+-ATPase pump [110].

Vitamin C bioavailability is 100% for a single oral 200 mg dose but decreases to 33% with a single

1250 mg dose in a healthy individual [111]. Additionally, inflammatory cytokines negatively regulate

an isoform of the sodium-dependent vitamin C transporter (SVCT2), which results in depletion of

intracellular vitamin C [112]. Limitations in bioavailability coupled with consumption of vitamin

C seen in severe infection have led to the hypothesis that therapeutic plasma levels to mitigate

the degree of oxidative stress generated in critically unwell patients cannot be achieved with oral

administration [113,114]. In the largest trial investigating the role of high-dose (50 mg/kg every 6 h

for 4 days) intravenous vitamin C in sepsis-associated ARDS, the CITRIS-ALI trial, patients in the

high-dose group did not significantly improve organ dysfunction scores or markers of inflammation

and vascular injury [115]. However, mortality, while a secondary outcome, was dramatically reduced

among the patients receiving vitamin C. Other authors have commentated how statistics may have been

used to obfuscate the true findings of the study and thus confounding factors in that trial methodology

potentially exist [116]. A meta-analysis of intravenous vitamin C supplementation in the critically

ill (burns, sepsis, and septic shock) patients found that it may lead to vasopressor sparing effects,

a reduced duration of ITU stay, and a reduced need for mechanical ventilation in the critically ill,

without affecting overall mortality [117,118]. Combination therapies exist and consist of vitamin C

along with enteral omega-3 fatty acid, γ-linolenic acid, steroids, thiamine, and antioxidants [119,120].

System biology analysis has also identified vitamin C in combination with curcumin, and glycyrrhizic

acid acts on multiple hub targets closely connected and associated with immune and inflammatory

responses, warranting in vitro and in vivo investigation [121]. However, these other compounds

potentially confound the effect of vitamin C alone and therefore are not appraised here. Other RCTs

of HDIVC in progress include the Vitamin C, Thiamine, and Steroids in Sepsis (VICTAS) trial [122].

Clearly, further carefully designed RCTs are needed to evaluate the potential role of vitamin C for other

outcomes in sepsis and ARDS before supplementation is considered as a standard of care.

3.3.4. Relevance to COVID-19

Given the potential role of vitamin C in sepsis and ARDS, there is gathering interest of whether

supplementation could be beneficial in COVD-19 [123–125]. Research is gathering pace, with an

HDIVC cohort study in progress in Palermo, Italy [126]. Recruitment has also begun on a new clinical

trial investigating vitamin C infusion for severe 2019-nCoV-infected pneumonia in Wuhan, China.

This is the first RCT to test whether there is a benefit of HDIVC in COVID-19. One-hundred and forty

patients are planned to be treated with a placebo or HDIVC at a dose of 24 g/day for 7 days [127].

Despite what we know about the antioxidant properties, antiviral effect, and pleiotropic function of

vitamin C, whether or not there are beneficial pathophysiological mechanisms involved in the response

to COVID-19 remain to be elucidated [128]. Given the favorable safety profile of vitamin C, current

treatment is potentially justified with compassionate use until COVID-19 data becomes available.

3.4. Vitamin D

3.4.1. Source and Physiological Role

Vitamin D (Figure 7) encompasses a number of fat-soluble secosteroids with a physiological

role in mineral homeostasis, primarily calcium, magnesium, and phosphate. As such, deficiencies

in vitamin D have been implicated in a number of metabolic bone diseases, such as osteoporosis,

osteomalacia, and rickets [129]. Vitamin D in its natural form, cholecalciferol, is acquired through

dietary sources, such as oily fish and egg yolks, but is also produced through de novo synthesis in the
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stratum basale and stratum spinosum of the epidermis using dehydrocholesterol in the presence of

ultraviolet B (UVB) radiation. Cholecalciferol is thereafter hydroxylated into its biologically active

forms 25-hydroxyvitamin D (calcifediol) and 1,25-dihydroxyvitamin D (calcitriol) [130].

 

 

Figure 7. Chemical structure of vitamin D3, cholecalciferol.

In addition to its well-recognized roles in calcium and bone homeostasis, the physiological

roles of vitamin D also include immunomodulation and in critically ill patients [131], and there

are well-documented associations between vitamin D deficiency and infection rates [132], renal

and respiratory failure [133,134], sepsis [135], and mortality [136]. There have been a number of

studies in which an association between vitamin D deficiencies have also been associated with

immunological disorders, such as multiple sclerosis [137], ulcerative colitis [138], Crohn’s disease [139],

and asthma [140].

Vitamin D deficiency is believed to affect one billion people worldwide [141]. At particular risk

are individuals with darker skin, as the increased levels of pigmentation hinder the penetration of

ultraviolet (UV) light needed for epidermal vitamin D synthesis. Additional at-risk groups include

the elderly, who are often deficient in vitamin D, compounded by increased time indoors, reduced

epidermal synthesis, and impaired vitamin D metabolism with some pharmaceutical agents, such

as antihypertensives and antiepileptics [142]. Furthermore, as our knowledge of the causality of UV

light exposure and the development of skin cancer and skin ageing has deepened, our behaviors

have necessarily adjusted to minimize our exposure to UV light, with protective clothing and solar

protective factors becoming more commonplace over the course of the last century. A sun cream with a

sun protection factor (SPF) of only 8 is sufficient to reduce epidermal vitamin D synthesis by 95% [143].

As vitamin D is so difficult to acquire through dietary means, and especially challenging to acquire

through sunlight in the autumn and winter months, many commonplace foods are now fortified with

vitamin D. Nonetheless, Public Health England recommended in 2016 that a daily supplement of 10 µg

vitamin D should be considered for all during the autumn and winter months to minimize the risk,

and consequences, of deficiency [144].

3.4.2. Mechanism of Action in Disease

Beyond its role in mineral homeostasis, recent research has emerged regarding the potential role of

vitamin D as an immune system regulator. With regard to infectious and immune etiology, vitamin D

has been linked to increased severity of numerous viral infections, including human immunodeficiency

virus (HIV) [145,146], and for certain bacterial infections, including TB [147]. Supplementation with

vitamin D has also been reported previously as reducing the risk of acute upper respiratory tract

infections, which has led to speculation that there may be a role for vitamin D in the response to

COVID-19 [36,148].

It has been hypothesized that vitamin D exerts its antimicrobial effects in three main ways:

Through augmenting natural protective barriers, enhancing innate cellular immunity, and boosting

adaptive immunity [149]. With regard to reinforcing natural barriers, vitamin D has been implicated

in the preservation of tight junctions, gap junctions, and adheren junctions between epithelial cells,
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the disruption of which is a pathogenic mechanism of upper respiratory tract viruses, such as respiratory

syncytial virus [150,151]. Specifically, with regard to COVID-19, correction of vitamin D deficiency is

thought to suppress CD26/DDP4, one of the adhesion molecules through which the closely related

COVID-MERS virus and indeed the COVID-19 virus is believed to acquire access to host cells [152–154].

Should the virus successfully invade the host, the next immunological barrier is the innate immune

system. Vitamin D has been shown to enhance innate immunity through promoting the release of

defensins and cathelicidins, the latter of which have demonstrated direct antimicrobial effects against

enveloped and non-enveloped viruses [155,156]. Vitamin D also has been shown, in both animal data

and clinical data, to be linked to reduced viral replication [157].

Of further significance is the role of vitamin D in mediating the inflammation that underlies ALI

and ARDS. Vitamin D deficiency in particular has been recognized as a direct contributor to ARDS

in the aftermath of bacterial sepsis, major surgery, and non-cardiogenic respiratory failure [158–160].

Vitamin D is believed to stimulate Th2 cells and regulatory T cells yet attenuate Th1 cells. This leads

to a reduction in the release of proinflammatory cytokines, such as TNFα and IFNγ, by Th1 cells,

which is believed to contribute to the pathogenesis of ARDS [161–163]. Vitamin D also upregulates

the expression of some antioxidant genes, such as glutathione reductase, reducing the free radicals

generated in inflammation, which are believed to contribute to the pulmonary damage that leads to

the development of ARDS [164].

3.4.3. Respiratory Disease

Specifically, with regard to pulmonary physiology, it has been demonstrated in animal models

that vitamin D attenuates microbial ALI and ARDS through modulating the expression of the

renin-angiotensin system (RAS), including ACE 1 and 2 [165]. One of the key pathogenic mediators

of microbial-induced ALI is the increase in alveolar capillary membrane permeability, which evokes

pulmonary oedema, hypoxemia, and pulmonary hypertension. The respiratory epithelium is able

to convert vitamin D to its active form as part of local paracrine and autocrine signaling pathways

implicated in host defense [166]. ACE2 enzyme inactivates angiotensin II, and as such acts as a

negative regulator of the RAS. As such, ACE2 has been deemed protective against the development of

ARDS, with animal models suggesting a key role in regulating vascular permeability, lung oedema,

and oxygenation [167]. In a rat model of ARDS, calcitriol was demonstrated to upregulate pulmonary

ACE2 and downregulate renin and angiotensin II, indicating there may be a key mechanistic role for

vitamin D in hindering the progression of infection-induced ARDS [165]. Results from a meta-analysis

of vitamin D supplementation and risk of acute (bacterial and viral) respiratory tract infection show

a 12% overall protective effect of vitamin D supplementation. This increased to 19% with a daily or

weekly regimen compared to a monthly bolus regimen. Furthermore, a 70% protective effect was

observed when deficiency was corrected [168].

3.4.4. Relevance to COVID-19

This picture is confounded somewhat in the case of COVID-19, which acquires entry to cells

through binding to ACE2 [1]. However, the binding of the viral S1 spike protein to ACE2 causes

both the virus and the enzyme to be translocated into the cell through endocytosis, thereby effectively

reducing the surface expression of ACE2 and possibly contributing to the progression of pulmonary

disease [169]. There does appear to be associations between high levels of ACE2 and survival benefit,

implicating the attenuation of the RAS system as a means of protection against ARDS [170]. Ethnic

variations in the expression of ACE2 receptors have also been noted, with the highest expression

seen in East Asian males [171]. The ethnic disparities in ACE2 expression and polymorphisms may

be a contributor to disease severity either independently or in conjunction with vitamin D status,

and warrants further investigation. Additionally, the higher preponderance of male:female sex-specific

COVID-19 mortality may in part be related to hormonal dependency of expression and/or activity of

ACE2 seen in animal studies [172]. The effects of severe vitamin D deficiency have been explored in



Nutrients 2020, 12, 2550 15 of 30

humans: Following the inhalation of bacterial cell wall constituent, lipopolysaccharide (LPS), a marked

increase in alveolar inflammation (IL-1B) was noted in vitamin D-deficient individuals compared to

those with mild deficiency [173]. Specifically, there has been increasing speculation that vitamin D

deficiency may underpin the likelihood of mortality and disease severity in COVID-19 [125,174–189].

Observed differences in COVID-19 mortality between the northern and southern hemispheres also

add to the case for vitamin D having a role in the pathogenesis of COVID-19 [190]. The emergence of

Brazil as a disease hotspot may change these findings in time. Crude pan-European analysis, however,

showed a negative correlation between mean levels of vitamin D in each country and the number

of COVID-19 cases and mortality [191,192]. These associations, along with the physiological and

immunological roles of vitamin D summarized in Figure 8, have prompted clinical trials in vitamin D

supplementation in COVID-19 patients and warrant further mechanistic investigation [193,194].

 

 

 

α β γ
δ α β γ δ

α
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Figure 8. Vitamin D and potential anti-COVID19 mechanisms of action. Vitamin D derivatives are

thought to mediate the immune system responses to infective agents through enhanced Treg and Th2

cell function, attenuating the cytokine storm that is thought to be a key pathogenic mechanism in ARDS.

Other speculated roles include the protection against lung injury through modulating the pulmonary

renin-angiotensin system and reducing viral entry and replication.
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3.5. Vitamin E

3.5.1. Source and Physiological Role

Vitamin E is fat-soluble compound, which consists of eight isoforms, four tocopherols (α-, β-, γ,

and δ-tocopherols), and four tocotrienols (α-, β-, γ-, and δ-tocotrienols), and it is a lipid component of

biological membranes. The various isoforms are not interchangeable and only α-tocopherol meets

the human vitamin E requirements. The main source in human diet varies depending on the isoform,

with α-tocopherol found predominantly in sources, such as nuts like almonds and hazelnuts; legumes,

such as peanuts; as well as avocados and sunflower seeds.

Vitamin E is absorbed via the small intestine and metabolized, regulated, and excreted by the

liver. Vitamin E as α-tocopherol, and to a lesser degree tocotrienols, is processed by the liver by

α-tocopherol transfer protein into chylomicrons [195] that are transported to tissues in the lymphatic

system [196]. Although α-tocopherol is the main biologically active isoform, some evidence has

shown that tocotrienols have a more potent antioxidant effect in neutralizing peroxyl radicals and lipid

peroxidation in rat models; however, owing to its lesser bioavailability, less than 3% of research has

focused on the tocotrienol isoforms [197–199].

3.5.2. Mechanism of Action in Disease

Vitamin E is considered a potent antioxidant capable of neutralizing free radicals and ROS

by donating a hydrogen ion from its chromanol ring (Figure 9). Free radicals generated from

metabolic processes react with polyunsaturated fats within the cell membrane, causing peroxidative

decomposition [200]. Vitamin E deficiency results in greater levels of lipid peroxidation in both

in vivo and in vitro models and this is supported clinically by an inverse relationship between plasma

lipoperoxidase and vitamin E in ARDS patients [201–203].

 

α
α

α

′ ′ ′
Figure 9. Chemical structure of vitamin E, (2′R, 4′R, 8′R)-tocopherol.

Vitamin E has been shown to enhance the immune response both in animal and human

models through the following mechanisms: (1) Decreased production of nitrogen oxide resulting in

prostaglandin E2 downregulation and inhibition of cyclooxygenase-2, (2) initiation of T-lymphocyte

signals, and (3) modulation of the Th1/Th2 balance (Figure 10) [204].

An additional immunomodulatory effect of vitamin E is actioned through protein kinase C

(PKC). Inhibiting PKC has been shown to affect the proliferation of monocytes, macrophages,

neutrophils, and smooth muscle cells, and reduce superoxide free radical production in neutrophils

and macrophages [205].
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Figure 10. Vitamin E and potential anti-COVID19 mechanisms of action in ARDS. The antioxidant

properties of Vitamin E derivatives may augment cell membrane integrity and improve the adaptive

immune system response to viral respiratory tract infections.

3.5.3. Respiratory Disease

Clinical trials have shown some benefit in relation to vitamin E supplementation and upper

respiratory tract infections. Randomization of 617 nursing home residents receiving 200 IU per day for

a year of vitamin E showed a reduced incidence of upper but not lower respiratory tract infections [206].

ARDS is characterized by the acute onset protein rich pulmonary edema. The initial phase of the

pathological mechanism is referred to as the exudative phase [207]. Complement activation results

in upregulation of granulocytes, releasing ROS [208]. When liberated, these ROS result in lipid

peroxidation in cell membranes, resulting in increased permeability and loss of integrity. This has been

demonstrated in lung parenchyma, resulting in increased protein permeability. High thiobarbituric acid

reactive substances (TBARS), an indicator of plasma lipid peroxidation, and low α-tocopherol levels

have been recognized previously in critically ill patients [209]. One study specifically examined the

tocopherol level as related to plasma total lipid (tocopherol:lipid ratio), to control for the dependency

of plasma tocopherol concentrations on the level of circulating lipids, and showed a specific deficiency
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in ARDS patients as compared to non-ARDS patients [210]. It is stipulated that a combination of

excessive ROS formation and lipoperoxidation during ARDS and septicemia result in a consumptive

loss of vitamin E due to its antioxidant effect. In a rabbit albumin microembolization ARDS model,

enteral α-tocopherol in vegetable oil versus enteral vegetable oil control significantly improved lung

compliance and gas exchange and demonstrated dose-dependent effects on vascular permeability and

pulmonary artery pressure. Other animal models have demonstrated similar results with aerosolized

α-tocopherol [211,212]. However, no randomized controlled trials were identified that met the focus of

this review [213].

3.5.4. Relevance to COVID-19

COVID-19, as with most viral respiratory infections, has a predilection for those that are

immunosuppressed, those with chronic ailments, and the elderly. Immunosenescence refers to

the gradual deterioration of the immune system with age. Vitamin E has been illustrated to enhance

T lymphocyte-mediated immune function in response to mitogens and IL-2 but also neutrophil and

natural killer function, the decline of which is seen with increasing age [206,214–216].

Oxidative stress is one of the driving pathological mechanisms that underpins the biology of

ARDS as a result of COVID-19. The oxidant-antioxidant balance is severely shifted, resulting in

excessive lipid peroxidation and failure of biological membranes. The diffuse alveolar damage, hyaline

membrane formation, and pulmonary edema are the pathological outcomes seen in the most severely

affected [217,218]. Vitamin E ingestion is known to lower the production of superoxides and perhaps

tilt the balance back in favor of antioxidants. Deficiency in animal models has also been shown to

cause increased genetic mutations that promote the virulence of coxsackievirus, and influenza virus,

and two RNA viruses, such as COVID-19 [65,219].

As global efforts turn towards the production of a vaccine, vitamin E supplementation may

enhance vaccine efficacy in those most susceptible within our society as seen with increased tetanus

antibody titers [214]. Highly complex mechanisms underpin the biological effects of vitamin E and as

the pandemic evolves further research may unravel the potential benefits.

4. Conclusions

In the absence of a vaccine, the world is eagerly awaiting a panacea of treatment options for

COVID-19. In this article, we critically appraised the potential immunomodulatory, antioxidant,

and antimicrobial roles of vitamins A to E. Although there is currently no evidence from completed

randomized controlled trials to conclusively and specifically demonstrate a role for vitamin

supplementation in the fight against COVID-19, there is strong scientific evidence, based on studies

of vitamin physiology, pharmacology, and their role in clinical studies of infection and ARDS to

indicate a role for vitamins in the battle against this global pandemic. In particular, disease models

of a lower vitamin A concentration and increasing host susceptibility to influenza and SARS-CoV

have prompted investigation into the relationship between oral supplementation with vitamin A

and COVID/COVID-like viruses. Furthermore, computational screening tools is a novel approach

revealing promise for targeted drug testing of B vitamins, such as folate and B12, and supplementation

if warranted. Vitamin C, owing to its potential role in attenuating upper respiratory tract infections,

its antioxidant properties, and use as a high-dose intravenous therapy in ARDS and sepsis, may prove

beneficial in COVID-19. The RCTs currently underway might indeed demonstrate a role for this

vitamin in the intensive care setting. The Front Line COVID-19 Critical Care (FLCCC) Working Group

released the MATH+ protocol in April 2020 and included vitamin C within its multimodal therapeutic

strategy. The protocol consists of intravenous methylprednisolone, high-dose intravenous ascorbic acid,

full-dose low-molecular-weight heparin and optional treatment components (including thiamine, zinc,

and vitamin D) [220]. This is an early intervention protocol directed at suppressing hyperinflammation

seen in COVID-19. Anecdotal experience with this regime has shown that early provision (within 6 h of

admission) of MATH+ has reduced the need for mechanical ventilation and improved mortality rates
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within North America and China. The FLCCC working group are reporting 2 deaths in 100 patients

treated with the MATH+ protocol; however, they did not compare their results to a control group.

These findings are striking, but larger series and tightly defined indications will be required before

widespread adoption of this treatment can be advocated. The vitamin receiving the most publicity

at present is vitamin D in light of the association between disease severity and populations at risk of

vitamin D deficiency, the elderly and black, Asian, and minority ethnic (BAME) populations [221].

There is certainly emerging and existing evidence to postulate a mechanism through which this vitamin

might play an essential role in the fight against COVID-19, including its association with the pulmonary

renin-angiotensin system. The therapeutic potential of vitamin D has already captured the attention

of the scientific and medical communities as evidenced through a number of emerging clinical trials

and journal articles. The interest has even percolated through to government [222], with the United

Kingdom now advocating the supplementation of vitamin D for individuals in minority ethnic groups,

over 65s, and those confined to life indoors [223–226]. However, UK Biobank analyses of blood

calcifediol concentration and COVID-19 risk contradicts existing data and government advice. Despite

the calcifediol concentration being lower in BAMEs, the study failed to demonstrate an association

between calcifediol and COVID-19 infection after adjusting for potential confounders [227].

It would be unjustified to claim that vitamins are the answer to the coronavirus pandemic, but it

would be fair to say that there is emerging evidence that they may play a role in either preventative

measures or supportive therapy in established respiratory infections and intensive care settings.

The physiology, pharmacology, and basic science behind vitamins A to E does allude to potential

benefits that warrant further investigation and completion of the clinical trials, even if this translates to

a need for diligent deficiency correction rather than routine mass supplementation.

The current and emerging guidance to supplement at-risk populations with vitamin D is justified

given the as of yet unexplained predisposition for the elderly and BAME communities to have the most

severe outcomes, potentiated by the fact that an increasing number of individuals will be confined to a life

indoors during the lockdown period of the COVID-19 pandemic. Caution must, however, be exercised

when recommending vitamin supplementation on a larger scale: The effects of hypervitaminosis

can be severe, particularly the fat-soluble vitamins A, D, and E. Of note, hypervitaminosis is almost

exclusively a product of ingesting an excess of vitamin supplements, rather than a product of vitamins

acquired through normal dietary and physiological means.

The value of maintaining a diet containing a balance of vitamins seems prudent and applicable to

the general population during these unprecedented times. We hope in the near future that well-designed

clinical trials provide the evidence needed to determine whether the clinical value of vitamins matches

the promise of their antioxidative, antimicrobial, and immunomodulatory properties.
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