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Abstract

Defeasible reasoning is a mode of reasoning

where conclusions can be overturned by tak-

ing into account new evidence. A commonly

used method in cognitive science and logic lit-

erature is to handcraft argumentation support-

ing inference graphs. While humans find in-

ference graphs very useful for reasoning, con-

structing them at scale is difficult. In this pa-

per, we automatically generate such inference

graphs through transfer learning from a related

NLP task that shares the kind of reasoning that

inference graphs support. Through automated

metrics and human evaluation, we find that our

method generates meaningful graphs for the

defeasible inference task. Human accuracy on

this task improves by 20% by consulting the

generated graphs. Our findings open up excit-

ing new research avenues for cases where ma-

chine reasoning can help human reasoning.1

1 Introduction

Defeasible inference (Rudinger et al., 2020) is a

mode of reasoning in which given a premise P

(Rob went for a hike), a hypothesis H (Rob saw

an elephant, it was pink) may be weakened or

overturned in light of new evidence i.e., an up-

date U (Rob often has hallucinations). Given the

non-monotonic nature of this reasoning, humans

find it challenging to master this task (Morgan,

2004). This problem has been widely studied in

classical AI through logic (Israel, 1980; McCarthy,

1981), and in cognitive science through argumenta-

tive models (Pollock, 1987). A prominent approach

is to support defeasible inference through argumen-

tations by constructing an inference graph (Pollock,

2009).

∗Equal Contribution
1A dataset of 230,000 influence graphs for each de-

feasible query is located at: https://tinyurl.com/

defeasiblegraphs.

Despite their prominence (Bentahar et al., 2010),

argumentative models are not scalable because an

inference graph needs to be handcrafted for every

example. Recently, Rudinger et al. (2020) proposed

two auxiliary tasks related to defeasible inference:

(i) an NLI task to predict whether an update U

would weaken or strengthen a hypothesis H, and

(ii) a generative task to generate an update U given

a premise P and a hypothesis H. However, this

only addresses a part of the problem because their

inference is still not supported by the line of rea-

soning that a human typically uses to solve this

task, namely mediators (e.g., hallucinations can be

deceptive) and contextualizers (some elephants can

have mutated gene which makes them look differ-

ent) that are inherently embedded in an inference

graph, limiting their utility for humans (figure 1).

In this paper, we adopt the concept of an infer-

ence graph for defeasible reasoning from cognitive

science and provide a computational model to make

their generation scalable. Training such a model

would require a large amount of annotated infer-

ence graphs, which will be too expensive to obtain.

Instead, our solution is to draw a parallel to a re-

lated reasoning task in NLP (Tandon et al., 2019),

where the reasoning is supported by a graph that we

find has similarities with the kind of reasoning that

an inference graph supports. We train a model that

can learn from the NLP task and effectively transfer

it to generate inference graphs. Such transfer learn-

ing is made possible due to the powerful seq-to-seq

neural language models that did not exist before.

The contributions of this paper are the answers

to the following two research questions:

RQ1 Can we automate the construction of the ar-

gumentation supporting inference graphs? In

§2, we show that we can effectively construct

meaningful graphs using transfer learning.

RQ2 Can our generated graphs help improve hu-

https://tinyurl.com/defeasiblegraphs
https://tinyurl.com/defeasiblegraphs
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Figure 1: (a) An example of an Inference Graph adapted from Pollock (2009) and (b) Structure of an Influence

Graph adapted from WIQA (Tandon et al., 2019) dataset. The adapted influence graph incorporates the contextual-

izers, mediators, hypotheses and situations, making them useful for defeasible reasoning.

man performance? In §3, we show that humans

leverage generated graphs to improve their per-

formance on a previously reported benchmark.

2 RQ1: Generating argumentation

supporting Inference Graphs

We start by drawing parallels to a counterfactual

reasoning task in NLP - the WIQA (Tandon et al.,

2019) task. WIQA consists of a set of procedural

passages, each accompanied by a human-curated

influence graph. The influence graph captures the

causal influences between the events in the con-

text of the process described by the passage. We

draw a connection between inference graphs (Pol-

lock, 2009) and influence graphs (Tandon et al.,

2019) by drawing parallels between their reasoning

structures. In essence, each inference graph from

Pollock (1987) can be instantiated via an influence

graph from Tandon et al. (2019) by interpreting the

nodes in both the graphs as follows (Figure 1):

i. Contextualizers (C): these nodes set the con-

text around a situation and connect to the P

in some way.

ii. Updates (U): these nodes are new situations

that emerge which might overturn an infer-

ence.

iii. Hypothesis (H): Hypothesis nodes describes

the outcome/conclusion of the situation.

iv. Mediators (M): Mediators are nodes that

help bridge the knowledge gap between a sit-

uation and a hypothesis node by explaining

their connection explicitly.

Figure 1 presents an example to highlight the

similarities between the two graphs by labeling an

example node adapted from (Pollock, 2009), and

the structure of the influence graph from (Tandon

et al., 2019) with the four node types that we de-

fined above. A green edge indicates that the source

node has a positive influence on the target node,

and a red edge indicates a negative influence. Fur-

ther, each node can either act as a strengthener (+)

or a weakener (-) for the hypothesis. Consequently,

these graphs can support similar type of reasoning

e.g., the effect of U on H and how this can change

in light of external influences (C) is captured by

graph paths C+ to U and from U via a mediator

node (M+/M-) to H. Inspired by these similari-

ties, we hypothesize that influence graphs can be

used to supplement defeasible reasoning.

2.1 Influence Graphs Generation

To obtain an influence graph for each defeasi-

ble query, we perform a zero-shot transfer from

WIQA (Tandon et al., 2019), a corpus of 2100 (pas-

sage, influence graphs) pairs.2.

Training : We treat influence graph generation as

a sequence-to-sequence mapping task. We leverage

WIQA to derive parallel data {(seqi
ip, seq

i
op)}

N
i=1

for the task. Let (Ti,Gi) be a sample in WIQA,

2Dataset details in the Appendix §E.
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where Ti is the passage text (e.g. describing how

viruses spread), and Gi is the corresponding influ-

ence graph (e.g., Figure 2). To create tokens of the

input sequence seqi
ip, the model trains best with

explicit markers:3

seq
i

ip = Premise: Ti | Update: Ui | less/ more: Hi (1)

where Ti is the passage text (e.g. steps describing

how viruses spread) and Ui and Hi are nodes of

Gi (these are phrases as shown in Figure 2).

Figure 2: An example of an influence graph similar to

ones in WIQA that we train on.

The output seqi
op is set to a DOT-string repre-

sentation of the corresponding influence graph Gi,

as such a representation was shown to be effec-

tive at extracting high-quality graphs (Madaan and

Yang, 2021) from free-form text using language

models (examples in the appendix). Thus, each

passage-graph pair (Ti,Gi) from WIQA is mapped

to an input-output pair D = (seqi
ip, seq

i
op). We

use this corpus to fine-tune an autoregressive lan-

guage model L for graph generation. Essentially,

the fine-tuned L allows us to efficiently sample an

influence graph for a given input sequence seq
j
ip by

drawing samples from Gj ∼ Pθ(y | seqj
ip) using

greedy sampling, where θ denotes the parameters

of the language model.

Zero-shot Transfer to Defeasible Inference :

We use the model L trained on WIQA to gener-

ate inference graphs on the defeasible inference

dataset by Rudinger et al. (2020). We obtain an

influence graph for each defeasible input (P, H,

3An example shown in Appendix §A.

U) by converting it to an input sequence that can

be fed to L by filling the template (1). This con-

version from (P, H, U) to template (1) is done by

setting the premise P as the context passage T, the

update U as the node U, and the attenuated and

strengthened outcomes are simulated by prefixing

the hypothesis H with the tokens Less and More

respectively. This input is then passed to the L to

generate an influence graph.

Results on Influence Graph Generation We

use T5-11B (Raffel et al., 2020) fine-tuned on D
derived from WIQA (§2.1) as our graph genera-

tion language model (L). All the graphs generated

by our model were in valid DOT format. We use

the standard generation metrics BLEU (Papineni

et al., 2002) and ROUGE (Lin, 2004) to evaluate

L on the test split of WIQA. Each node Ni in the

reference graph is compared with the correspond-

ing generated node N̂i using BLEU(Ni, N̂i) (Node-

BLEU). Further, node-edge-node pairs (neigh-

bors) (Ni, Nj) and (N̂i, N̂j) are compared using

Rel-BLEU = HM(BLEU(Ni, N̂i),BLEU(Nj , N̂j))
where HM is the harmonic mean. These metrics

are averaged over the graph (i.e., across the nodes

and the edges), and further averaged across the

corpus. We perform these experiments across two

different language models: GPT-2-MEDIUM (Rad-

ford et al., 2019) and T5-11B. Finally, we calculate

the overlap in the edge structures of the reference

and generated graphs match as Edge-MATCH%. We

report the numbers in Table 1, and include a ran-

dom baseline for reference. A random baseline

will correctly generate the nodes S, H+, and H-

as they are part of the query (3
8

nodes). As nei-

ther of these nodes are connected to another, the

random baseline will likely not generate any node

pair correctly ( Rel-BLEU ∼ 0). Since two unique

graph structures are possible (Tandon et al., 2019),

a random baseline would get Edge-match ∼ 50%.

Table 1 shows that our T5-based model is able to

generate syntactically valid (high edge-match) and

semantically meaningful graphs. Additionally, we

find that our generated graphs are helpful to hu-

mans on a downstream task, as described next.

3 RQ2: Do generated graphs help

humans at defeasible reasoning?

Human Evaluation Rudinger et al. (2020) per-

formed a human evaluation on 2000 defeasible

queries, where given (P, H, U), the task was to la-

bel the nature of the effect of U on H as Intensifies
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Model Random GPT-2-MEDIUM T5-11B

Node-BLEU 37.5 46.05 50.94
Rel-BLEU 0.0 19.34 33.01
Edge-match% 50.0 92.86 97.63

Table 1: Results on automated metrics showing that our

T5-11B model is able to generate very accurate graph

structure and meaningful nodes that sufficiently match

the reference nodes.

or Attenuates. Three human judges labeled each

query, and the majority label was then compared

with the ground-truth to ascertain the accuracy. In

their setup, human judges were collectively right on

1745 samples (correct pool) and wrong on 255 sam-

ples (wrong pool). We create a challenging pool

of 510 queries for the human judges by combining

the 255 queries in the wrong pool with 255 queries

sampled from the correct pool, giving a baseline ac-

curacy of 50% for this eval pool. Each query in this

pool is supplemented with a generated influence

graph (§2).4 We found that our generated influence

graphs showed high-levels of redundancy in con-

textualizers and mediators, with about 46% of the

generated influence graphs repeating these nodes.

We found that humans find it simpler to follow posi-

tive chains of influence, so to reduce their cognitive

load, we post-process each influence graph to only

retain the strengthening contextualizer (Figure 1),

the situation (U), the strengthening mediator (M+),

and the hypothesis (H).

In order to establish comparable gains, we

replicate the evaluation setup of Rudinger et al.

(2020) by using use the same Amazon Mechanical

Turk template and the instruction set, and the same

pool of 230 qualified annotators that Rudinger et al.

(2020) selected based on a paid qualification test,

in which the workers were asked to answer SNLI

queries of varying levels of difficulty. We paid

slightly above $15 per hour for the tasks.

For each query, in addition to answering the de-

feasible question, three judges were asked to evalu-

ate the augmented influence graphs on two aspects:

i) Is the influence graph useful? The judges

were allowed to select from the following:

(a) helpful: the graph was crucial in helping

towards answering the question

(b) relevant but not helpful: the graph had

the right topic (relevant to the question)

4Discussion on IRB exemption in Section §B.

but did not help in answering the ques-

tion.

(c) irrelevant or misleading: the graph was

irrelevant to the question or misled the

human judge to a wrong answer.

ii) Why is the influence graph useful? The

judges were given an option to highlight the

most useful aspect of the generated influence

graph. They were allowed to tag one or more

of the following aspects as the most helpful:

i) Extraneous node, ii) Mediating node, and

iii) Structure of the graph.

We summarize the key findings below.

Finding 1: influence graphs are helpful and

relevant As Table 2 shows, a large majority

of the human judges found the influence graphs

to be helpful or relevant. We calculate the

inter-annotator agreement for this question using

majority-agreement = 1

N

∑N
i=1

mai where mai in-

dicates a majority agreement for the ith sample

(i.e., at least 2 out of 3 judges agreed on the label

for the sample). The majority-agreement (ma) on

these labels was 0.83. The judges marked about

25% of the graphs as relevant but not helpful. The

graphs in such cases were on topic but not helpful

in answering the query, thereby distinguishing the

cases when the graph was crucial in reaching the

correct answer. Finally, we note that the graphs

provided as hints could have been helpful in two

ways: by helping the human annotators arrive at the

answer, or by reinforcing their mental picture that

helped them in making the right decision. Future

research in this direction is needed to study these

aspects in depth.

Helpful 47.25

Relevant but not helpful 25.09

Irrelevant or misleading 10.58

No majority agreement 17.05

Table 2: Helpfulness of the augmentations.

Finding 2: Mediators are the most helpful for

defeasible queries For every sample, we asked

the human judges to mark which parts of the graph

was the most helpful (as shown in Figure 6 in Ap-

pendix §D.1). The judges could select more than

one aspect of the graph if they found multiple use-

ful aspects. Table 3 shows the percentage of human
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judges that selected the particular graph aspect as

most helpful. We observe that 49.48% of the judges

who found the graphs useful indicated the mediator

node as the most helpful. This indicates that while

there may be other events that impact U and H,

the mediating events are the most informative in

determining the type of link between them.

Aspect % marked useful

Mediator 49.48

Extraneous 32.03

Structure 12.81

None helpful 5.68

Table 3: Most useful aspects of an influence graph.

Finding 3: Machine generated influence graphs

help humans in defeasible reasoning Table 4

shows that performance improves across all three

tasks when the defeasible query is augmented with

an influence graph. On our challenging set of 510

queries, the overall accuracy jumps nearly 20 points

from 0.50 to 0.698. Figure 3 highlights that 113

queries that were previously given the wrong an-

swers were marked correctly when augmented with

the influence graphs.

Dataset Human Human

(Rudinger et al., 2020) (ours)

SNLI 0.461 ± 0.11 0.553 ± 0.11

SOCIAL 0.628 ± 0.07 0.814 ± 0.06

ATOMIC 0.418 ± 0.06 0.657 ± 0.06

overall 0.500 ± 0.04 0.698 ± 0.04

Table 4: Human performance (accuracy) on the three

tasks with and without generated influence graphs

along with Wilson’s score intervals for α = 95%. We

tested the statistical significance of these results using

the McNemar’s test (McNemar, 1947) and found the re-

sults to be statistically highly significant (p < 1e− 6).

4 Discussion and Conclusion

Our work takes the idea of using inference graphs

for defeasible inference and scales up its usabil-

ity by automatically generating and augmenting

them to a downstream defeasible task that both hu-

mans and machines are known to find difficult. We

identify that the contextualizer and mediator nodes

are crucial to defeasible inference, and show that

our generated graphs generate these critical nodes

Figure 3: Human performance before and after the hu-

man judges were provided with the influence graph.

effectively. Humans perform significantly better

(20% absolute improvement) across diverse defea-

sible datasets and overwhelmingly attribute their

success to the mediator nodes – giving insights into

what helps and why. In this case study, we show

that machines can fill the gaps in human knowledge

when for defeasible reasoning. While we establish

that humans are helped by these graphs, a further

investigation on how (and if) the graphs reinforced

their beliefs, and what additional information in the

graphs was beneficial to their understanding is es-

sential. Furthermore, a deeper understanding of the

trade-offs (time spent in answering these questions

with and without the graphs) also forms important

future work.
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A Sample input-output sequence for

training L

We now present a sample input-output sequence

used to train out L for graph generation. The input-

output sample (seqip, seqop) is presented below.

As mentioned in Section

1. As described in section 2.1, each in-

put sequence seqip is formatted in a

special template to be fed to the lan-

guage model (Template (1)). We show

an example of the same next for a sam-

ple from our training data. Premise:

Sunlight shines on plants.

Cells with chlorophyll in

them . . . other parts of the

plant. | Situation : more

minerals are absorbed |

Less : LESS sugar and oxygen

being produced | More :

MORE sugar and oxygen being

produced

2. Each output graph is encoded in as

a DOT string. The output DOT se-

quence seqop corresponding to the input

shown above is: strict digraph

"C+ : less minerals in the

soil [OR] less root system"

-> "S : more minerals are

absorbed" [label=hurts]; "C-

:more minerals in the soil

[OR] a better root system"

-> "S : more minerals are

absorbed" [label=helps]; "S

: more minerals are absorbed"

-> "M- : less conversion

into sugars [OR] less oxygen

produced" [label=hurts]; "S

: more minerals are absorbed"

-> "M+ : more conversion into

sugars" [label=helps]; "S- :

less minerals absorbed [OR]

less root system" -> "M+ :

more conversion into sugars"

[label=hurts]; "M- : less

conversion into sugars [OR]

less oxygen produced" -> "H-

: LESS sugar and oxygen being

produced" [label=helps]; "M-

: less conversion into sugars

[OR] less oxygen produced" ->

"H+ : MORE sugar and oxygen

being produced" [label=hurts];

"M+ : more conversion into

sugars" -> "H+ : MORE sugar

and oxygen being produced"

[label=helps]; "M+ : more

conversion into sugars" -> "H-

: LESS sugar and oxygen being

produced" [label=hurts];

B IRB Exemption

Our study was not an experimentation on humans

(posed no identifiable risk to the human judges),

did not collect any identifying information, and

ensured it involved only adults. As per the IRB

guidelines, this falls under the purview of human re-

search, and we are not publishing individual work-

ers’ answers but rather the data is tallied up, much

like a “benign behavioral intervention.” This ex-

empts us from IRB (category 3 of Federal Reg-

ulations for Protection of Human Research Sub-

jects https://www.hhs.gov/ohrp/regulations-and-

policy/regulations/45-cfr-46/).

C Infrastructure and hyperparameters

To train the T5-11B model, comprising of 11 bil-

lion parameters, we used v3-8 TPUs. The average

time to train was 7 hours for about 10 epochs. We

used the same hyperparameters as provided with

the T5 checkpoint at gs://t5-data/pretrained_

models/11B. We used maximum block size of 512

tokens, and max generation length set to 512. For

decoding, we sample according to predicted dis-

tribution. We train the GPT-2 model on a Nvidia

GTX 2080 Ti, and training the model takes about

30 minutes per epoch.

We use the medium (355M) variant of GPT-

2 (Radford et al., 2019) with 24 layers, 1024 hidden

size, 16 attention heads.

D Details of our Mechanical Turk Setup

We follow the same instructions for humans as

(Rudinger et al., 2020)5, and only additionally pro-

vided instructions for the inference graph. We used

a pool of 230 annotators that were previously qual-

ified and selected to do the defeasible inference

task, thus providing a fair comparison to their setup.

Eventually 12 workers out of these 230 workers

5We are grateful to the authors of (Rudinger et al., 2020)
for sharing their mechanical turk setup template with us.

gs://t5-data/pretrained_models/11B
gs://t5-data/pretrained_models/11B
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Figure 4: The influence graph corresponding to dot code shown in seqop

worked on our HITs. The graph we showed to hu-

mans was a subgraph of the inference graph, where

the selected path has the relevant content from the

inference graph to avoid showing redundant op-

posite edges. These redundant edges are useful

in training a model as the model must jointly pre-

dict all the nodes, but this is redundant for humans.

Figure 5 shows this subgraph.

Figure 5: Part of the generated influence graph that is

presented in the hit.

D.1 A sample HIT

We now show a sample HIT in Figure 6. We had

two set of annotations in every HIT.

D.2 Examples that helped humans

Next, we show two examples (Figure 7, Figure 8)

where humans were previously unsuccessful on this

answer (in the original setup of (Rudinger et al.,

2020)), and were successful now having looked

at the inference graphs. The humans marked that

the mediator nodes and the contextualizer nodes

provide useful information.

E Dataset

Dataset Split # Samples Total

WIQA

train 1522
2107test 189

dev 152

ATOMIC

train 35,001
42,977test 4137

dev 3839

SOCIAL

train 88,675
92,295test 1836

dev 1784

SNLI

train 77,015
95,795test 9438

dev 9342

Table 5: Number of samples in each dataset by split.

ATOMIC, SNLI, SOCIAL are available at https://

github.com/rudinger/defeasible-nli, WIQA

is avilable at https://allenai.org/data/wiqa

https://github.com/rudinger/defeasible-nli
https://github.com/rudinger/defeasible-nli
https://allenai.org/data/wiqa
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Figure 6: A sample HIT in mechanical turk.
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Figure 7: An example where the graph helped the hu-

man in getting the correct answer, that humans were

unsuccessful on, in the past.

Figure 8: Another example where the graph helped the

human in getting the correct answer, that humans were

unsuccessful on, in the past.


