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1 Introduction

Supersymmetric quantum field theories (SQFT) can often be embedded within string the-
ory by using either branes, geometry, or a mixture of both (distinct approaches are often
related by string dualities). Over the years, string-theory techniques have led to a deeper
understanding of the rich landscape of superconformal field theories (SCFT) in space-time
dimension d > 2, and especially for d > 4. These SCFTs can also be analysed using SQFT
methods. A typical strategy is to analyse the low-energy effective field theories obtained af-
ter breaking conformal invariance (explicitly or spontaneously). Here, we are interested in
the geometric engineering approach, wherein conformal field theories correspond to certain
geometric singularities, and the massive phases correspond to smoothing the singularity.

This paper is part of a series started in [1], wherein we explore the geometric engineering
of 4d and 5d SCFTs at threefold isolated hypersurface singularities (IHS)

X = {F (x) = 0 | x ∈ C4} . (1.1)

We assume that X is a canonical threefold singularity, which is essentially the Calabi-Yau
condition. Consequently, Type II string theory or M-theory on this geometric background
preserves 8 supercharges.1 Then, we expect the existence of two distinct maps from ge-
ometries to theories in 4d and 5d, respectively

IIB : X 7→ T 4d
X , M-theory : X 7→ T 5d

X . (1.2)

On the one hand, the infrared limit of Type IIB string theory on X is expected to give us
a 4d N = 2 SCFT [2, 3]. On the other hand, the infrared limit of M-theory on X should
similarly give rise to a 5d SCFT [4, 5]. The 4d SCFT T 4d

X and the 5d SCFT T 5d
X are

closely related upon compactification to 3d, as discussed in [1, 6, 7].
1This is a subtle point, since any discussion of supersymmetry implicitly assumes the existence of a

Ricci-flat metric. Our discussion of the singularities will remain entirely algebraic, thus bypassing (and
postponing) any deeper questions about the metric.
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There are two types of smoothing of X we may consider: deformations or crepant
resolutions (i.e. resolutions which preserve the Calabi-Yau condition). This corresponds
to turning on some complex structure moduli or some Kähler moduli, respectively. In
Type IIB, families of deformation are ‘classical’, in that they are not subject to worldsheet
nor D-brane instanton corrections. The general family of deformed singularities, denoted
by X̂, gives us the Seiberg-Witten geometry on the extended Coulomb branch of the 4d
SCFT T 4d

X . Similarly, families of crepant resolutions π : X̃→ X, denoted by X̃, are often
‘classical’ in M-theory, where they correspond to the real extended Coulomb branch of
the 5d SCFT T 5d

X . By contrast, deformations in M-theory and crepant resolutions in IIB
are quantum-corrected, due to M2-brane instantons wrapping 3-cycles and to worldsheet,
D1- and D3-brane instantons wrapping exceptional curves and divisors, respectively. These
‘quantum’ geometries in M-theory and Type IIB correspond to going onto the Higgs branch
of T 5d

X or T 4d
X , respectively. Note that this class of geometric engineering of SCFTs reverses

the old QFT slogan about the Higgs branch being protected from quantum corrections
(which is true for Lagrangian theories, but misleading otherwise): from the viewpoint of
string theory, the Coulomb branch is ‘classical’ and the Higgs branch is ‘quantum’.

Topologically, the crepant resolutions of canonical IHS are rather more subtle than their
deformations. While the latter always have the homotopy type of a bouquet of 3-spheres,
crepant resolutions of canonical IHS can have a rich topology, including compact 2-, 3-
and 4-cycles. Moreover, crepant resolutions, even if they exist, are not always smooth. We
might have residual terminal singularities in the resolved threefold X̃, or it might happen
that X̃ is smooth but the exceptional divisors themselves are not. In this paper, we will
focus on isolated hypersurface singularities whose crepant resolutions are smooth. They
form a small but important subset of all canonical IHS, to which we can apply a number
of techniques to study the corresponding SCFT moduli spaces.

Part of the motivation for this paper is to explain some simple tools to study the
key properties of deformed and resolved canonical hypersurface singularities (details which
were ommited in [1]). All the necessary computations can be easily implemented on a
computer. We attached an ancillary Mathematica notebook Basic-Data-IHS.nb in the
supplementary material of this paper. The code takes as an input any canonical isolated
hypersurface singularity, whose classification [3, 8, 9] will be streamlined and updated in
section 4.1 below. (See also [10] for a related discussion.) We then provide two functions:

1. BasicIHSdata[F (x1, x2, x3, x4), {x1, x2, x3, x4}]: this outputs all the basic character-
istics of the 4d and 5d SCFTs such as ranks, flavor ranks, dimensions of the Higgs
branches, 4d Coulomb branch spectrum and central charges a and c, and the higher
form symmetries.

2. SmoothOperator[F (x1, x2, x3, x4), {x1, x2, x3, x4}]: determines a resolution of the hy-
persurface singularity.

This computational tool will hopefully be useful to the practitioner.
We will then apply these methods to explore hypersurface singularities that admit a

crepant resolution that is smooth (without residual terminal singularities). It is interesting
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to organise the discussion in terms of the 5d rank, r, which is the number of exceptional
divisors in the crepant resolution. We scanned through a large database of canonical IHS,
which included a large number theories of low r. While it appears that there exists an
infinite number of canonical IHS at any r (certainly, this is true at small r), we would like
to put forward the following:

Conjecture (1). For any r > 0, there exists a finite number of canonical IHS whose
crepant resolution is smooth.

We call such a singularity with a smooth resolution a ‘smoothable model’. In this paper,
we list all smoothable models for r ≤ 4 — this list is complete to the best of our current
knowledge. For r ≥ 5, the scan through our dataset becomes impractical, but we can focus
on a subset of ‘fully smooth models’, which are the smoothable models with exceptional
divisors which are themselves smooth. We can scan for such models using the following:

Conjecture (2). For any smoothable model with smooth exceptional divisors, the asso-
ciated 4d SCFT T 4d

X has an integral CB spectrum (i.e. the conformal dimensions of the
CB operators satisfy ∆ ∈ Z).

This conjecture is based on observation in many examples. If true, this is a remarkable
mathematical relation between the smoothness of the exceptional divisors and the spectrum
of the deformed singularity. Assuming Conjecture (2), we can efficiently explore the space
of all ‘fully smooth’ models up to r = 10, by first restricting to models with an integral 4d
CB spectrum.

For all these smoothable models, we performed a detailed analysis of their 4d and
5d properties, including a determination of their magnetic quivers or quiverines whenever
possible. The use of magnetic quivers (MQ) for 5d SCFTs was initiated in [11], where they
were motivated by brane-web constructions. The MQ associated to a 5d SCFT is a 3d
N = 4 theory whose Coulomb branch is isomorphic to the Higgs branch of the 5d SCFT.
Magnetic quivers have been a very powerful tool to explore the moduli spaces of supercon-
formal theories with 8 supercharges, with most approaches based on brane-webs [12–24].
From a geometric perspective, the magnetic quivers were studied e.g. in [1, 6, 25–27].

Further studies of more generic canonical singularities and of their 4d and 5d interpre-
tation, as well as a more in-depth discussion of the 3d electric and magnetic quiver(ines),
will be presented in part 2 of this series [7].

This paper is organised as follows. In section 2, we start with a lightning review of the
geometry of isolated hypersurface singularities and of their relation to 5d and 4d SCFTs.
In section 3, we discuss the topology of the link of the singularity, and its interpretation
in terms of higher-form symmetries of the 5d and 4d SCFTs. In section 4, we review the
classification of canonical IHS and explain how to use the ancillary Mathematica code. In
section 5, the (fully) smoothable models of rank r ≤ 10 are discussed in detail, highlighting
some examples with noteworthy properties, such as the models with 4d central charges
satisfying a > c and a = c, and a fully resolvable model that corresponds to the AD[E7, E7]
SCFT in 4d, for which we propose a 5d IR quiver gauge theory. An appendix contains
details on other smoothable models, including the infinite series of type AD[D2n, D2n].
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2 Hypersurface singularities and SCFTs: a practical summary

In this section, we review key aspects of the geometry of canonical threefold hypersurface
singularities, X, and of its relation to the SCFTs T 4d

X and T 5d
X . By definition, a canonical

singularity [28] admits a resolution π : X̃→ X such that

KX̃ = π∗KX +
∑
k

akSk , Sk ⊂ π∗(0) , (2.1)

with ak ∈ R such that ak ≥ 0, ∀k. Here, KX denotes the canonical divisor of X, and Sk
denote the exceptional divisors. A canonical singularity is called terminal if ak > 0, ∀k.

In this paper, we focus on canonical singularities that admit a (complete) crepant
resolution — that is, ak = 0, ∀k.2 We also focus exclusively on quasi-homogeneous isolated
hypersurface singularities (IHS) in C4,

X ∼=
{
F (x) = 0

∣∣ x ∈ C4} , (2.2)

which are defined by a single quasi-homogeneous polynomial with a unique critical point
at the origin — F ∈ C[x1, x2, x3, x4] such that dF (x) = F (x) = 0 if and only if x = 0.

2.1 Deformation and 4d Coulomb branch spectrum

Consider the quasi-homogeneous IHS X, with the C∗-action:

F (λqx) = λF (x) , with xi → λqixi , i = 1, · · · , 4 , (2.3)

for some scaling weights qi ∈ Q>0. Let us recall key properties of the deformation of such
singularities [29], and its interpretation in terms of the Coulomb branch of the 4d SCFT
T 4d

X .

Canonical singularity condition. The quasi-homogeneous IHS X is canonical if and
only if the weights qi are such that:

4∑
i=1

qi > 1 . (2.4)

If this inequality is not satisfied, X is worse than canonical. This condition can also be
written in terms of the reduced central charge [30]:

ĉ ≡
4∑
i=1

(1− 2qi) < 2 . (2.5)

Here, ĉ is the reduced central charge of the 2d N = (2, 2) LG model with four fields xi and
superpotential W = F (x).

2In previous works [1, 6], we studied canonical singularities without crepant resolution, which are either
terminal singularities or singularities that admit a partial crepant resolution (ak = 0 for some but not all k).
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Milnor ring and multiplicity. A deformation of an hypersurface singularity X ∼= {F =
0} is a (smooth) hypersurface of the generic form:

F̂ (x) = F (x) +
µ∑
l=1

tlx
ml = 0 , (2.6)

where {xml}µl=1 is a basis for the so-called Milnor ring of the singularity:

M(F ) = C[x1, x2, x3, x4]/J , J ≡ (∂x1F, · · · , ∂x4F ) . (2.7)

The integer
µ ≡ dimM(F ) , (2.8)

is the multiplicity of the singularity (also known as the Milnor number). For quasi-
homogeneous singularities,M(F ) has a basis in terms of µ distinct monomials:

xml ≡ xml,11 · · ·xml,44 , l = 1, · · · , µ , (2.9)

with the integers ml,i ≥ 0. These monomials can be determined for any F by standard
Gröbner basis algorithms implemented e.g. in Singular. Two hypersurface singularities
{F1 = 0} and {F2 = 0} are biholomorphically equivalent if and only if their Milnor rings
are isomorphic [31]. The multiplicity of X is related to the scaling weights according to

µ =
4∏
i=1

( 1
qi
− 1

)
. (2.10)

The spectrum of X. The monomials (2.9) are assigned weights Ql ∈ Q according to

Ql = q(ml) ≡
4∑
i=1

qiml,i . (2.11)

Let us (partially) order the monomials by their weights, with the lowest weight being
Q1 = 0 for xm1 = 1. Let us also introduce the shifted weights

`l = Ql +
4∑
i=1

qi − 1 , (2.12)

called the spectral numbers. These rational numbers are valued in the open interval (0, 2).
The so-called spectrum of the quasi-homogeneous singularity is then given by the ordered
set:

SX = {`l}µl=1 , `1 ≤ `2 ≤ · · · ≤ `µ . (2.13)

The ordered monomials xml and xmµ−l+1 ofM(F ) form pairs such that

`l + `µ−l+1 = 2 if `l < 1 . (2.14)

There can also be unpaired monomials such that `l = 1. The spectral numbers define a
grading of the Milnor ring

M(F ) =
⊕
`

M(F )` , . (2.15)

– 5 –
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There is also a simple formula for the Poincaré series of the graded ring

PM(F )(q) ≡
∑
`

dimM(F )` q` = 1
q

4∏
i=1

qqi − q
1− qqi , (2.16)

which reduces to (2.10) in the limit q → 1. The Poincaré series gives an efficient way of
computing the spectrum for quasi-homogeneous hypersurface singularities, bypassing the
need for finding an explicit basis ofM(F ). We denote by X̂ a (generic) deformation of X.

Another important number that characterizes the singularity X is its modality, m(X),
which is defined as the number of deformations of X which preserve its multiplicity. For
quasi-homogeneous singularities, this is given by

m(X) = #
{
xml

∣∣∣∣ `l ≥ 4∑
i=1

qi

}
. (2.17)

The corresponding deformation parameters tl are the ‘moduli’ of the singularity.

The Coulomb branch spectrum of T 4d
X . In the Type IIB engineering, the family of

deformations {X̂t} is interpreted as the Seiberg-Witten geometry of the 4d SCFT T 4d
X [2, 3].

The spectrum of X is equivalent to the spectrum of (extended) Coulomb branch (CB)
dimensions of T 4d

X , as follows. To each monomial xml , one assigns the CB dimension

∆l ≡ ∆(tl) = 1−Ql∑4
i=1 qi − 1

=
∑4
i=1 qi − `l∑4
i=1 qi − 1

, (2.18)

which are the scaling dimensions of the deformation parameters tl divided by ∑i qi − 1.
There are three classes of deformations, depending on ∆l:

• ∆l > 1: these geometric deformations are interpreted as VEVs of CB operators of
conformal dimensions ∆l and U(1)r charge r = 2∆l

tl =
〈

(Er,(0,0))l
〉
. (2.19)

We denote by r̂ the number of such operators.

• ∆l = 1: these geometric deformations are interpreted as the mass deformations of
T 4d

X

δS = tl

∫
d4x

∫
d4θ(B̂1)l , l = 1, · · · , f . (2.20)

They correspond to conserved currents, i.e. flavor symmetries. We may equivalently
view the deformation parameters as VEVs for the scalars φl in the U(1) background
vectors multiplets spanning a maximal torus of the flavour symmetry group

tl = 〈φl〉 ≡ ml . (2.21)

In particular, f is the rank of the flavor symmetry group of T 4d
X .

– 6 –
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• ∆l < 1: these geometric deformations correspond to the r̂ monomials which are
paired with the ones with ∆µ−l > 1, such that ∆l + ∆µ−l = 2. They are interpreted
as chiral deformations of the SCFT by the CB operators themselves

δS = tl

∫
d4x

∫
d4θ(Er,(0,0))µ−l . (2.22)

In particular, if ∆l = 0 (∆µ−l = 2), this is a marginal deformation of the SCFT —
indeed, this corresponds to deforming the IHS equation by a monomial with Ql = 1,
thus preserving the scaling symmetry, which is necessary for conformal invariance.
Note that we can also have deformations with 0 < ∆l < 1, corresponding to relevant
deformations of the SCFT (1 < ∆µ−l < 2), or else deformations with ∆l < 0,
corresponding to irrelevant deformations (∆µ−l > 2). The relevant deformations
only exists if there are generators of the Milnor ring with scaling dimensions in the
small range

ĉ

2 < Qµ−l < 1 . (2.23)

Note also that the modality (2.17) is the total number of marginal and irrelevant
operators of the 4d SCFT; thus, the ‘moduli’ of the singularity are precisely those
deformations that do not trigger an RG flow away from the fixed point T 4d

X .

Let us denote by Br̂ the Coulomb branch spanned by (2.19). In particular, r̂ is the rank
of the SCFT T 4d

X . We define the extended Coulomb branch MC [T 4d
X ] as the total space

of the Coulomb branch fibered over the mass parameters (2.21), namely

Br̂ →MC [T 4d
X ]→ {m} , (2.24)

The extended CB obviously has complex dimension r̂ + f . Note also the relation

µ = 2r̂ + f . (2.25)

The multiplicity µ gives the dimension of the charge lattice Γ of BPS particles on the CB,
which arise as D3-branes wrapping the compact 3-cycles of the deformed hypersurface

Γ ∼= H3(X̂,Z) ∼= Zµ . (2.26)

Let us also denote byM3,3 the intersection form on the third homology

(M3,3)αβ = S3
α · S3

β , (2.27)

where the 3-cycles {S3
α}

µ
α=1 give some basis of H3(X̂,Z).

Central charges. From the Coulomb branch spectrum, we can compute the conformal
anomaly coefficients a and c according to [3, 32]

a = R(A)
4 + R(B)

6 + 5r̂
24 , c = R(B)

3 + r̂

6 . (2.28)

– 7 –
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Here, we defined

R(A) =
∑

∆l>1
(∆l − 1) , R(B) = µ

4(∑4
i=1 qi − 1)

= 1
4µ∆max , (2.29)

with ∆max ≡ ∆1 the largest CB operator dimension. Here, we also used the fact that there
is no hypermultiplets on the Coulomb branch of T 4d

X because H2(X̂,Z) = 0 [3]. From a and
c, we may also compute the ‘effective number’ of hypermultiplets and of vector multiplets
of the SCFT

nh = −16a+ 20c , nv = 8a− 4c . (2.30)

For Lagrangian SCFTs, this gives the actual number of matter fields and gauge fields,
respectively. For further discussions of the spectrum of 4d SCFTs in related contexts, see
e.g. [33–36].

2.2 Crepant resolution and 5d Coulomb branch

For any canonical threefold singularity, there exists a crepant resolution π : X̃ → X, such
that the resolved singularity X̃ has at worst terminal singularities [37, 38]. In M-theory,
the resolution X̃ corresponds to probing the extended Coulomb branch of the 5d SCFT
T 5d

X [39]. (See also e.g. [40–44] for some further discussions.)

Topology of the crepant resolution X̃. We will call ‘a crepant resolution’ any (partial)
resolution π : X̃ → X that introduces r exceptional divisors with ak = 0 in (2.1). This is
excepted to preserves 5d N = 1 (or 4d N = 2) supersymmetry. A smooth (or ‘complete’)
crepant resolution, corresponding to ak = 0, ∀k, in (2.1), is a crepant resolution that is
smooth.

In general, there may be many distinct crepant resolutions of X, but some of their key
topological properties are invariant. The set of residual terminal singularities is such an
invariant, and so are the Betti numbers

b1(X̃) = 0 , b2(X̃) = r + f ,

b3(X̃) = b3 , b4(X̃) = r .
(2.31)

Here, r is the number of exceptional divisors in the crepant resolution, and f = ρ(X) is
the rank of the divisor class group of the singularity X. We can also understand f as the
number of 2-cycles of X̃ that are dual to non-compact divisors. They correspond to U(1)
flavor symmetries of the 5d SCFT T 5d

X . Note also that the crepant resolution X̃ generally
has three-cycles, as we will explain momentarily.

There is a remarkable relation between f as defined here and the integer f defined
in (2.20) from the spectrum of the singularity. It is a non-trivial mathematical fact that
the two quantities agree [45]

f = ρ(X) = #{`l | `l = 1} . (2.32)

– 8 –
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Physically, this can be interpreted in terms of generalised geometric transitions, wherein f
2-cycles in the resolution X̃ become f 3-cycles in the deformation X̂ [1].3 A third way to
compute f is from the five-dimensional link of the singularity, as we will review in section 3.

Newton polytope and weightings. For any quasi-homogeneous IHS, the Betti num-
bers (2.31) can be computed in the following way [45]. Let us define the Newton polytope
N (F ) associated to {F (x) = 0} as the polytope in the lattice of monomials M ∼= Z4

N (F ) = {(mn,1,mn,2,mn,3,mn,4) ∈M = Z4 |mn ∈ F} . (2.33)

Here, mn ∈ F means that the monomial xmn enters the polynomial F (x) with non-zero
coefficient. Let us also define the weightings α as the maps α : M → Z, which can be
viewed as vectors (α1, α2, α3, α4) in the dual lattice N ∼= Hom(M,Z). The evaluation map
on a monomial m reads

α(m) =
4∑
i=1

αimi , (2.34)

and the evaluation map on a polynomial F is defined as

α(F ) = minm∈F α(m) . (2.35)

We then define the sets

W+(F ) =
{
α ∈ N+ | ∀m ∈ N (F ) , α(m− (1, 1, 1, 1)) ≥ −1

}
. (2.36)

and
W (F ) = W+(F ) ∪ {(1, 0, 0, 0) , (0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 1)} . (2.37)

N+ is the open cone of N satisfying αi > 0 (i = 1, . . . , 4). We can then define a non-
compact toric fourfold TΣ with toric fan Σ. The elements of W (F ) are in one-to-one
correspondence with the 1d cone of Σ, and one must choose a set of 2d, 3d and 4d cones
of Σ, such that Σ is maximally triangulated. The resolved threefold X̃ is then exactly
the anti-canonical hypersurface −K(TΣ) of TΣ, and each triangulation corresponds to a
different (toric) resolution of X. Finally, each element of W+(F ) corresponds to a compact
exceptional divisor Si ⊂ X̃, which may be reducible.

Computation of r and b3. The topological numbers r and b3 are independent of the
choice of resolution, and they can computed as follows [45, 46] (analogously to the Batyrev
formula [47]). Consider the dual polytope Γ of W (F ), defined as

Γ =
{
m ∈M+ | ∀α ∈W (F ) , α(m− (1, 1, 1, 1)) ≥ −1

}
. (2.38)

The dual face Γα ⊂ Γ of α ∈W (F ), defined as

Γα = {m ∈ Γ|α(m− (1, 1, 1, 1)) = −1} (2.39)
3The proper mathematical understanding of this relation involves discussing the mixed Hodge structure

of the singularity, which we will review in more detail in [7].
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can have different dimensions, denoted by dim(Γα). The explicit formula for r is then

r =
∑

α∈W+(F )


0 if dim(Γα) = 0 ,
l′(Γα) + 1 if dim(Γα) = 1 ,
1 if dim(Γα) > 1 ,

(2.40)

where l′(Γα) is number of interior lattice points in Γα. When dim(Γα) = 1 and l′(Γα) > 0,
the compact divisor corresponding to α has l′(Γα) + 1 irreducible components.

To compute b3, the number of 3-cycles in the crepant resolution, we first note that each
compact divisor associated to the weighting α ∈ W+(F ) has the structure of P1 fibration
over a complex curve with genus gC(α). The numbers gC(α) are computed as

gC(α) =

l′(Γα) if dim(Γα) = 2 ,
0 if dim(Γα) 6= 2 .

. (2.41)

The formula for b3 is then
b3 = 2

∑
α∈W+(F )

gC(α) . (2.42)

In other words, there is a one-to-one correspondence between the 3-cycles and the 1-cycles
at the base of the ruled exceptional divisors. Note that the resolved threefold X̃ is itself
simply-connected.

Resolution sequence. Finally, let us discus the resolution sequence itself. A toric reso-
lution sequence is defined as follows. For any IHS, we start with the non-compact ambient
space C4 with coordinates (x1, x2, x3, x4), with the set of weightings {(1, 0, 0, 0) , (0, 1, 0, 0) ,
(0, 0, 1, 0) , (0, 0, 0, 1)}. Each step in the resolution sequence is a weighted blow-up of the
ambient space at the locus y1 = · · · = yk = 0, where yi = 0 is the toric divisor SΣ

i

in the ambient space corresponding to the weighting αi. It takes one of the following
forms [45, 48, 49]:

1. (y(a1)
1 , y

(a2)
2 , y

(a3)
3 , y

(a4)
4 ; δ): weighted blow-up of the locus y1 = y2 = y3 = y4 = 0 with

weight (a1, a2, a3, a4). Here, the only possible weights are (3, 2, 1, 1), (2, 1, 1, 1) and
(1, 1, 1, 1). The exceptional divisor {δ = 0} in the ambient space is associated to the
weighting

α(δ) =
4∑
i=1

aiα(yi) . (2.43)

In the hypersurface equation, one replaces

y1 → y1δ
a1 , y2 → y2δ

a2 , y3 → y3δ
a3 , y4 → y4δ

a4 , (2.44)

and then divide the equation by δa1+a2+a3+a4−1. There is a new SR ideal generator
y1y2y3y4 after the resolution.
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2. (y1, y2, y3; δ): blow up the locus y1 = y2 = y3 = 0. The exceptional divisor δ = 0 in
the ambient space is associated to the weighting

α(δ) = α(y1) + α(y2) + α(y3) . (2.45)

In the hypersurface equation, one replaces

y1 → y1δ , y2 → y2δ , y3 → y3δ , (2.46)

and then divide the equation by δ2. There is a new SR ideal generator y1y2y3 after
the resolution.

3. (y1, y2; δ): blow up the locus y1 = y2 = 0. The exceptional divisor δ = 0 in the
ambient space is associated to the weighting

α(δ) = α(y1) + α(y2) . (2.47)

In the hypersurface equation, one replaces

y1 → y1δ , y2 → y2δ , (2.48)

and then divide the equation by δ. There is a new SR ideal generator y1y2 after the
resolution.

After the resolution sequence, one can also compute the topological quantities associated
to each exceptional divisor. In particular, we can compute the intersection numbers of the
exceptional divisors Si inside X̃, according to

Si · Sj · Sk|X̃ = (−KΣ) · SΣ
i · SΣ

j · SΣ
k . (2.49)

This determines the prepotential on the 5d CB of T 5d
X [39].

3 Link topology and higher-form symmetries

The five-manifold L5 at the boundary of a non-compact Calabi-Yau three-fold encodes
global symmetries of the field theories, both in 4d and 5d. In particular, the torsion part
of H∗(L5,Z) encodes the higher-form symmetries [50] of both the 5d SCFT T 5d

X and the
4d SCFT T 4d

X [1, 51–54]. For isolated hypersurface singularities, L5 is simply connected,
and the 5d field theory T 5d

X does not have any 1-form symmetries. On the other hand, we
often have non-zero torsion in H2(L5,Z), which can be computed from the weights qi of
the quasi-homogeneous polynomial F (x) [55, 56]. In M-theory, this translates into 3-form
symmetries of T 5d

X that act on M5-branes wrapping relative 3-cycles (and/or its dual 0-form
symmetry acting on wrapped M2-branes). In Type IIB string theory, this torsion group
is related to the 1-form symmetry of the 4d SCFT T 4d

X , with the charged line operators
arising from wrapped D3-branes.

In the rest of this section, we first review an explicit formula for the link homology,
and we then briefly discuss its 5d and 4d interpretation.
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3.1 Topology of the link

The link of the singularity X is the 5-dimensional compact manifold L5(X) obtained by
intersecting the hypersurface with a seven-sphere S7

ε centered at the origin of C4

L5(X) =
{
x ∈ C4

∣∣∣∣∣ F (x) = 0 ,
4∑
i=1
|xi|2 = ε

}
, (3.1)

for a small radius ε > 0. For quasi-homogeneous singularities, we may pick any value of
ε due to the scaling symmetry. Therefore, by sending ε → ∞, we see that the link is
also the boundary manifold of X and of any local desingularization of the singularity; in
particular, for any smooth deformation X̂ of X, we have ∂X̂ ∼= L5(X). The five-manifold
L5 is connected and simply-connected, and its homology groups are

H0(L5,Z) ∼= H5(L5,Z) ∼= Z , H2(L5,Z) ∼= Zf ⊕ t2

H1(L5,Z) ∼= H4(L5,Z) ∼= 0 , H3(L5,Z) ∼= Zf ,
(3.2)

where
t2 = TorH2(L5,Z) (3.3)

denotes the torsion part of the second homology. This leads to our third definition of the
‘flavor rank’ f , as the Betti number of the link

f = b2(L5) = b3(L5) . (3.4)

This gives us an intuitive way of understanding the ‘generalised geometric transition’ men-
tioned below (2.32), generalising the conifold transition [57]: as we resolve or deform the
singularity X, we have f exceptional 2-cycles that survive ‘at the tip’ inside X̃, or f 3-cycles
that survive inside X̂, respectively.

The homology of L5(X): explicit formulas. The non-trivial quantities f and t2
in (3.2) can be computed from the scaling weights qi in (2.3) as follows. Let us define the
quantities

vi ≡
1
qi
, ai ≡ Numerator(vi) . (3.5)

Let us consider the set I = {1, 2, 3, 4}, and let Is denote any particular subset Is ⊂ I of s
elements. Then, we have the explicit formula [55, 56]

f = b2(L5) =
4∑
s=0

∑
Is⊂I

(−1)4−s
∏
j∈Is vj

LCMj∈Is(aj)
. (3.6)

The sum includes all subsets Is of I, including the trivial subset I0 = {}, which contributes
+1. More generally, we have the following formula for the torsion part, t2 [56]. For every
Is ⊂ I, we define

κ(Is) =
s∑
t=0

∑
It⊂Is

(−1)s−t
∏
i∈It vi

LCMj∈It(aj)
, (3.7)
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and

k(Is) =

κ(Is) if 4− s ∈ 2Z + 1 ,
0 if 4− s ∈ 2Z .

(3.8)

We then define a set of integers, C(Is), inductively, starting with

C(I0) = C({}) = gcd
i∈I

(ai) = gcd(a1, · · · , a4) , (3.9)

and
C(Is) =

gcdi∈I−Is(ai)∏
It(Is C(It)

. (3.10)

Then, for the integers j > 1, we define

dj =
∏

Is|k(Is)≥j
C(Is) , j = 1, · · · , J , J ≡ max

Is⊂I
k(Is) . (3.11)

We then have:
t2 ∼= Zd1 ⊕ · · · ⊕ ZdJ , f = κ(I) . (3.12)

The torsion group t2 from the deformation X̂. Using a long-exact sequence for the
(relative) homology groups of the deformed threefold X̂, as reviewed in the next subsection,
one can show that the torsion group t2 is also isomorphic to the cokernel of the map
M3,3 : Zµ → Zµ given by the intersection form on H3(X̂,Z), namely

t2 ∼= Zµ/M3,3Zµ . (3.13)

We computed this cokernel in many examples, allowing us to check the general for-
mula (3.12) for t2, which appeared as a conjecture in [56], on a case-by-case basis.4

3.2 Defects and higher-form symmetries in 5d from M-theory

Consider the canonical singularity X, any desingularisation X6 of X (which will be either
the deformation X̂ or the crepant resolution X̃), and the boundary five-manifold L5 ∼= ∂X6.
M-theory on X6 provides us with a natural set of defect operators of the 5d low-energy
theory, from membranes wrapping non-compact k-cycles. The wrapped M2- and M5-branes
give rise to defect operators of dimension q = k − 3 and q = 6− k, respectively, which can
be charged under a non-trivial q-form symmetry. The sets of such charged ‘electric’ and
‘magnetic’ defect operators of dimension q are denoted by

Γ(q)
M2 = h(k=3−q) , Γ(q)

M5 = h(k=6−q) , (3.14)

respectively. They are computed as

h(k) ≡ Tor
(
Hk(X6, L5,Z)/im(fk)

)
, (3.15)

4A proof of (3.12) is given in [55] for Type I singularities and in [58] for Type XIX singularities, in the
notation of section 4.1 below. As far as we are aware, the general case remains a conjecture.
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where fk is the map of fk : Hk(X6,Z) → Hk(X6, L5,Z) that sends compact k-cycles to
relative k-cycles. It sits inside a long exact sequence for the relative homology (with integral
coefficients)

· · · → Hk(L5) hk−→ Hk(X6) fk−→ Hk(X6, L5) gk−→ Hk−1(L5) hk−1−→ Hk−1(X6)→ · · · . (3.16)

The objects counted by h(k) are the defects whose charge cannot be screened by the dy-
namical particles that arise from membranes wrapping compact k-cycles of X6. For q ≤ 1,
for definiteness, let us define the ‘defect groups’ of the 5d theory, in its massive phase
determined by X6

D(q)
T 5d

X

∼= Γ(q)
M2 ⊕ Γ(3−q)

M5 . (3.17)

The defect operators in Γ(q)
M2 and Γ(3−q)

M5 can have a non-trivial Dirac pairing given by the
intersection of the relative (3−k)- and (3+k)-cycles inside X6. The higher-form symmetry
of the 5d theory is determined after one chooses a polarisation of the defect group (3.17),

Λ(q)
T 5d

X
⊂ D(q)

T 5d
X
, (3.18)

by fixing a maximal set of mutually commuting defects [51, 53, 54, 59–63]. The higher-form
symmetry group itself is given by the Pontryagin dual group

Λ̂(q)
T 5d

X
= Hom

(
Λ(q)
T 5d

X
,U(1)

)
. (3.19)

Note that it is generally a mixture of q- and (3 − q)-form symmetries. We may also
choose, for simplicity, the ‘purely electric’ or the ‘purely magnetic’ polarisation, consisting
in picking one of the two summands in (3.17).

Given a general local Calabi-Yau threefold in M-theory, there are two defects groups
of interest

D(0)
T 5d

X

∼= h(3) ⊕ h(3) , D(1)
T 5d

X

∼= h(2) ⊕ h(4) , (3.20)

corresponding to the ‘0-form symmetry’ and the ‘1-form symmetry’, respectively, allowing
for a slight abuse of language. Using the exact sequence (3.16), we can write the groups
h(k) in terms of the homology of the boundary:

h(k) = Tor
(
im(gk)

)
= Tor

(
ker(hk−1)

)
⊂ TorHk−1(L5) . (3.21)

The charged defect operators wrap relative k-cycles Σk with non-trivial boundary on L5,
[∂Σk] ∈ TorHk−1(L5). For L5 any connected, orientable closed manifold, there are two
independent torsion groups in its homology

t1 ≡ TorH2(L5,Z) ∼= TorH3(L5,Z) , t2 ≡ TorH2(L5,Z) . (3.22)

Let us now see how these torsion groups are related to higher-form symmetries in 5d.
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1-form symmetry and Coulomb-branch defects. For the sake of generality, let us
first discuss the possibility of a non-trivial 1-form symmetry in 5d [51, 53, 63]. We will
assume that the smooth threefold X6 is simply-connected and that it has no torsion in
homology, which is the case for all examples we have studied (such as toric threefolds or
hypersurface singularities). It directly follows from (3.16) and (3.21) that the ‘electric’ part
of the defect group is isomorphic to the torsion part of the first homology group of the
boundary.

h(2) ∼= t1 . (3.23)

Alternatively, we can use the definition (3.15) of h(2) as the cokernel of the map f2, which
gives

h(2) ∼= Tor
(
Zb4/M4,2Zb2

)
, (3.24)

where bj denote the Betti numbers of X6. Similarly, we have

h(4) ∼= Tor
(
Zb2/M2,4Zb4

) ∼= h(2) , (3.25)

The 1-form (and/or 2-form) symmetry is then determined by the intersection pairing be-
tween the compact 2-cycles and 4-cycles of X6. The charged defect operators naturally live
on the Coulomb branch of the 5d SCFT, in which case X6 = X̃, b2 = r + f and b4 = f .
For the 5d SCFTs T 5d

X of interest in this paper, which arise at hypersurface singularities,
the link manifold L5 is simply connected, and therefore we find that h(2) = h(4) = 0.

0- and 3-form symmetry and Higgs-branch defects. The 0-form/3-form symmetries
of T 5d

X act on defect operators that are more naturally defined on the Higgs branch of T 5d
X .

Let us then take X6 = X̂ a deformed singularity, and assume that H2(X̂) = 0 for simplicity,
which is the case, in particular, for the generic deformation of an hypersurface singularity.
We then find that

h(3) ∼= t2 ∼= Tor
(
Zb3/M3,3Zb3

)
, (3.26)

with b3 = µ = 2r̂ + f for an IHS. It would be interesting to have a more detailed under-
standing of these charged HB defect operators from the 5d field-theory point of view. This
is left as a challenge for future work.

3.3 Defects and higher-form symmetries in 4d from type IIB

In the Type IIB compactification on X6, the natural set of charged defect operators of the
4d field theory arise from wrapped D-branes. We may define the defect group

D(0)
T 4d

X

∼= Γ(0)
D1 ⊕ Γ(2)

D5 ⊕ Γ(2)
D3 ⊕ Γ(0)

D3
∼= h(2) ⊕ h(4) ⊕ h(2) ⊕ h(4) , (3.27)

corresponding to D1-, D5- and D3-branes wrapping 2- and 4-cycles, as well as the defect
group

D(1)
T 4d

X

∼= Γ(1)
D3
∼= h(3) ∼= t2 , (3.28)

from D3-brane wrapping relative 3-cycles inside X6. Since our focus is on hypersurface
singularities, we will not consider further the interesting possibilities suggested by (3.27). In
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other words, our 4d theories T 4d
X will have no defects charged under non-trivial 0-form or 2-

form symmetries. On the other hand, the defect group (3.28) is generally non-trivial, and it
encodes all the (‘electric’ and ‘magnetic’) line operators of T 4d

X [1, 53] — see also [10, 62–64]
for related discussions. It is interesting to note that, for 4d SCFTs T 4d

X engineered at IHS,
non-trivial 1-form symmetries can only arise if the SCFT is non-isolated, as shown in [10].5

The actual one-form symmetry Λ̂(1)
T 4d

X
of T 4d

X is obtained upon choosing a polarisation

Λ(1)
T 4d

X
⊂ D(1)

T 4d
X
, Λ̂(1)

T 4d
X

= Hom
(
Λ(1)

T 4d
X
,U(1)

)
. (3.29)

For our hypersurface singularities, the torsion in the second homology of the link always
takes the form:

t2 ∼= f⊕ f , (3.30)

so that there exists a ‘purely electric’ choice of polarisation for which the one-form sym-
metry group is isomorphic to f [1].

4 Classification of canonical IHS and Mathematica code

In this section, we review the complete classification of canonical isolated singularities,
which is equivalent to the Kreuzer-Skarke classification of 2d N = (2, 2) Landau-Ginzburg
(LG) superpotentials [65]. This 2d perspective clarifies some aspects of the discussion
in [3, 8].

We then present an ancillary Mathematica code [66] (available in the supplementary
material of this paper) which implements the computations explained in the previous sec-
tions for any such singularity. The code computes the spectrum of X, the basic topological
data of its crepant resolution X̃, as well as the homology of the link L5. This directly gives
all the ‘basic data’ associated to the 5d SCFT T 5d

X and the 4d SCFT T 4d
X . The code also

implements the crepant resolution procedure explained in section 2.2.

4.1 Classification of canonical isolated hypersurface singularities in C4

Consider a quasi-homogeneous IHS in C4, defined by the polynomial

F (x1, x2, x3, x4) ∈ C[x1, x2, x3, x4] , (4.1)

with the scaling weights qi as in (2.3). Such quasi-homogeneous polynomials F (x) were
classified by Kreuzer and Skarke (KS) many years ago [65]. A classification of isolated
hypersurface threefold singularities was also given by Yau and Yu (YY) [8], which was
used by Xie and Yau in their studies of geometrically-engineered 4d N = 2 SCFTs [3]. The
YY classification is slightly incomplete, however [9].

5This claim was checked systematically in [10], and it is easily checked with the ‘experimental’ methods
of this paper. In particular, in our finite database of models discussed in section 5, 56% of the models are
isolated (no marginal deformations) and all those isolated models have t2 = 0. Only 15% of all models
(amounting to 35% of the models with marginal deformations) have a non-trivial one-form symmetry.

– 16 –



J
H
E
P
0
4
(
2
0
2
2
)
0
6
1

It is very useful to think of the polynomial (4.1) as defining a 2d Landau-Ginzburg
(LG) model with four chiral superfields xi and a superpotential W = F (x) [2]. Any quasi-
homogeneous IHS then defines a 2d N = (2, 2) SCFT as well as the 4d SCFT T 4d

X , with
the two perspectives related by a 4d/2d correspondence [67], provided that the reduced
central charge of the 2d theory satisfies [2, 68, 69]:

ĉ ≡
4∑
i=1

(1− 2qi) < 2 . (4.2)

In fact, the IHS is canonical if and only if (4.2) holds [28, 70]. Such LG models were recently
classified by Davenport and Melnikov [9].6 Let us review their result, while keeping the
YY notation for ease of comparison. One finds that the YY classification needs to be
refined, by introducing ‘subtypes’ for some of the 19 ‘types’. Since this classification is
essentially equivalent the KS classification of quasi-homogeneous polynomials, we will call
it the KS-YY classification.

The full KS-YY classification. The YY classification distinguishes between 19 types
of polynomials F (x), denoted by the roman numerals I to XIX, and we denote the subtypes
necessary for the full classification by subscripts.7 Then, for a given type and subtype, the
positive integers (a, b, c, d) fully determine the singularity (up to a choice of solution to
some linear Diophantine equation, in some cases, which we discuss momentarily). For
instance, the singularity IX2(2, 3, 4, 2) is given by F = x2

1 + x3
2x4 + x4

3x4 + x2x
2
4 + x1x2x

2
3.

The complete classification is given in tables 1, 2 and 3.
It is very important to note that this classification includes many redundacies: sev-

eral singularities of distinct types can be physically equivalent — two quasi-homogeneous
singularities are physically equivalent if and only they have same scaling weights, up to
ordering. From the 2d LG model perspective, these scaling dimensions (qi) are the funda-
mental quantities, and any two superpotentials W = F1(x) and W = F2(x) that realises
the same scaling dimensions must flow to the same 2d SCFT. From the 4d SCFT point
of view, two singularities with the same scaling weights obviously give rise to the same 4d
CB spectrum, as per (2.16).

In order to explain the KS-YY classification, let us introduce some useful terminology
and notation [9, 65]. First of all, an (LG) field xi that appears in F (x) is called a ‘root’
if it appears as xmii , and it is called a ‘pointer’ if it appears as xmii xj , for some positive
integer mi. One can show that every xi in F (x) must be either a root or a pointer. We say
that a pointer xi ‘points at’ the field xj . One can then introduce a convenient graphical
notation for the polynomial. Each xi, root or pointer, is denoted by a dot accompanied
with the integer mi, and for each pointer we draw an arrow from xi to xj . For instance,
the polynomial in two variables F = xm1

1 + x1x
m2
2 is represented by

◦
m1

◦
m2

. (4.3)

6Note that [9] also considered LG models with five fields such that ĉ < 2. We only consider four fields.
7We also use the notation {type, subtype} with type ∈ {1, 2, · · · , 19}, as in the Mathematica notebook.
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Type F (x1, x2, x3, x4) Skeleton and links Skeleton

I {1, 1} xa1 + xb2 + xc3 + xd4 ◦
a

◦
b

◦
c

◦
d (S1,1)⊕4

II {2, 1} xa1 + xb2 + xc3 + x3x
d
4 ◦

a

◦
b

◦
c

◦
d (S1,1)⊕2 ⊕ S2,1

III {3, 1} xa1 + xb2 + xc3x4 + x3x
d
4 ◦

a

◦
b

◦
c

◦
d (S1,1)⊕2 ⊕ S2,2

IV {4, 1} xa1 + x1x
b
2 + xc3 + x3x

d
4 ◦

a

◦
b

◦
c

◦
d

S2,1 ⊕ S2,1

V {5, 1} xa1x2 + x1x
b
2 + xc3 + x3x

d
4 ◦

a

◦
b

◦
c

◦
d

S2,2 ⊕ S2,1

VI {6, 1} xa1x2 + x1x
b
2 + xc3x4 + x3x

d
4 ◦

a

◦
b

◦
c

◦
d

S2,2 ⊕ S2,2

VII {7, 1} xa1 + xb2 + x2x
c
3 + x3x

d
4 ◦

a

◦
b

◦
c

◦
d

S1,1 ⊕ S3,1

VIII1 {8, 1}
xa1 + xb2 + x2x

c
3 + x2x

d
4

+xp3x
q
4

◦
a

◦
b

◦
c

◦
d

S1,1 ⊕ S3,2

VIII2 {8, 2}
xa1 + xb2 + x2x

c
3 + x2x

d
4

+x1x
p
3x
q
4

◦
a

◦
b

◦
c

◦
d

•
S1,1 ⊕ S3,2

IX1 {9, 1}
xa1 + xb2x4 + xc3x4 + x2x

d
4

+xp2x
q
3

◦
a

◦
b

◦
c

◦
d

S1,1 ⊕ S3,4

IX2 {9, 2}
xa1 + xb2x4 + xc3x4 + x2x

d
4

+x1x
p
2x
q
3

◦
a

◦
b

◦
c

◦
d

• S1,1 ⊕ S3,4

X {10, 1} xa1 + xb2x3 + xc3x4 + x2x
d
4 ◦

a

◦
b

◦
c

◦
d

S1,1 ⊕ S3,3

XI {11, 1} xa1 + x1x
b
2 + x2x

c
3 + x3x

d
4 ◦

a

◦
b

◦
c

◦
d

S4,1

XII1 {12, 1}
xa1 + x1x

b
2 + x1x

c
3 + x2x

d
4

+xp2x
q
3

◦
a

◦
b

◦
c

◦
d

S4,2

XII2 {12, 2}
xa1 + x1x

b
2 + x1x

c
3 + x2x

d
4

+xp2x
q
3x4

◦
a

◦
b

◦
c

◦
d

• S4,2

Table 1. The KS-YY classification of isolated hypersurface singularities in C4: types I to XIII.
Note that types I–VI exhaust the possibilities using skeleton with up to n = 2 fields, while the cases
I–X exhaust the possibilities using skeletons with up to n = 3 fields.
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Type F (x1,x2,x3,x4) Skeleton and links Skeleton

XIII1 {13,1}
xa1 +x1x

b
2 +x2x

c
3 +x2x

d
4

+xp3x
q
4

◦
a

◦
b

◦
c

◦
d

S4,3

XIII2 {13,2} xa1 +x1x
b
2 +x2x

c
3 +x2x

d
4 +x1x

p
3x
q
4 ◦

a

◦
b

◦
c

◦
d

• S4,3

XIV1 {14,1}
xa1 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3 +xr3x

s
4 +xu2x

v
4

◦
a

◦
b

◦
c

◦
d

S4,4

XIV2 {14,2}
xa1 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3x4 +xr3x

s
4 +xu2x

v
4

◦
a

◦
b

◦
c

◦
d

• S4,4

XIV3 {14,3}
xa1 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3x4 +x2x

r
3x
s
4 +xu2x

v
4

◦
a

◦
b

◦
c

◦
d

• • S4,4

XIV4 {14,4}
xa1 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3x4 +x2x

r
3x
s
4 +xu2x3x

v
4

◦
a

◦
b

◦
c

◦
d

• •
•

S4,4

XV1 {15,1} xa1x2 +x1x
b
2 +x1x

c
3 +x3x

d
4 +xp2x

q
3 ◦

a

◦
b

◦
c

◦
d

S4,6

XV2 {15,2} xa1x2 +x1x
b
2 +x1x

c
3 +x3x

d
4 +xp2x

q
3x4 ◦

a

◦
b

◦
c

◦
d

• S4,6

Table 2. The KS-YY classification of isolated hypersurface singularities in C4: types XIII to XVI.

With four fields x1, · · · , x4, there are 19 distinct possible ‘skeletons’, corresponding to the
19 classes in the YY classification. As we see from the tables, some of the skeletons are
reducible. The basic building blocks are the skeletons denoted by Sn,α in [9], where n
denotes the number of fields connected by arrows. For n = 1, 2, 3, 4, there are 1, 2, 4 and
9 distinct skeletons, respectively [9, 65].

Whenever a skeleton contains a pair of pointers xi and xj that point to the same node
xk (with i 6= j 6= k), the corresponding polynomial is not an isolated singularity. One
should introduce a ‘link’ or a ‘pointing link’, which is an additional monomial involving
xi and xj such that the singularity is isolated. The link is denoted by the dashed line
connecting the two nodes

xmii xk + x
mj
j xk + xpi x

q
j : ◦

mk

◦
mj

◦
mi

. (4.4)

The link, and therefore the singularity, exists only if there exists positive integers p and
q such that the polynomial is quasi-homogeneous. We must then solve a Diophantine

– 19 –



J
H
E
P
0
4
(
2
0
2
2
)
0
6
1

Type F (x1,x2,x3,x4) Skeleton and links Skeleton

XVI1 {16,1}
xa1x2 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3 +xr3x

s
4 +xu2x

v
4

◦
a

◦
b

◦
c

◦
d

S4,9

XVI2 {16,2}
xa1x2 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3x4 +xr3x

s
4 +xu2x

v
4

◦
a

◦
b

◦
c

◦
d

• S4,9

XVI3 {16,3}
xa1x2 +x1x

b
2 +x1x

c
3 +x1x

d
4

+xp2x
q
3x4 +xr3x

s
4 +xu2x3x

v
4

◦
a

◦
b

◦
c

◦
d

•
•

S4,9

XVII1 {17,1}
xa1x2 +x1x

b
2 +x2x

c
3 +x1x

d
4

+xp1x
q
3 +xr2x

s
4

◦
a

◦
b

◦
c

◦
d

S4,8

XVII2 {17,2}
xa1x2 +x1x

b
2 +x2x

c
3 +x1x

d
4

+xp1x
q
3 +xr2x3x

s
4

◦
a

◦
b

◦
c

◦
d

•

S4,8

XVII3 {17,3}
xa1x2 +x1x

b
2 +x2x

c
3 +x1x

d
4

+xp1x
q
3 +xr2x

s
4

◦
a

◦
b

◦
c

◦
d

• •

S4,8

XVIII1 {18,1} xa1x3 +x1x
b
2 +x2x

c
3 +x2x

d
4 +xp3x

q
4 ◦

a

◦
b

◦
c

◦
d

S4,7

XIX {19,1} xa1x3 +x1x
b
2 +xc3x4 +x2x

d
4 ◦

a

◦
b

◦
c

◦
d

S4,5

Table 3. The KS-YY classification of isolated hypersurface singularities in C4: types XVII to XIX.

equation determined by the scaling weight qi of the four fields. For instance, in (4.4), if qk
is the scaling weight of xj , we must have p1−qk

mi
+ q 1−qk

mj
= 1.

A pointing link is a link that is itself a pointer to another field y, of the form xpi x
q
jy. A

link associated to a field xk can only point to a field y that is not xk nor any of the fields
that are pointed at by the fields xi and xj involved in the link. For instance, we can have

xmii xk + x
mj
j xk + xpi x

q
jy : ◦

mk

◦
mj

◦
mi

◦
n

•
(4.5)

We denote the pointed link as shown here. As for simple links, pointed links can only exists
if they preserve the quasi-homogeneity of the polynomial.
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4.2 Computing the basic data of any canonical IHS: Mathematica code

Given any F (x) defining a canonical threefold singularity X, we can easily compute all
the mathematical and physical quantities introduced in the previous sections, which we
call ‘the basic data’ associated to X. We implemented these computations on a computer
using Mathematica [66], and we provided the Mathematica notebook Basic-Data-IHS.nb
as an ancillary file in the supplementary material of this paper. Here, we describe the main
routines in that notebook.

Basic characteristics of IHSs. The code implements many computations which are
collated through the main routine:

BasicIHSdata[F (x1, x2, x3, x4), {x1, x2, x3, x4}] . (4.6)

The code also generate any allowed polynomial F (x) given a type, subtype and the positive
integers (a, b, c, d):

FfromABCD[{t, s}, {a, b, c, d}] , (4.7)

with {t, s} = {type, subtype}. The ‘basic data’ routine can be called directly as:

BasicIHSdataFromABCD[{t, s}, {a, b, c, d}] . (4.8)

The output is given as a list with the following information:

• F (x) itself;

• the scaling weights (qi);

• r: the rank of the 5d SCFT T 5d
X (that is, the number of exceptional divisors in X̃);

• f : the flavor rank preserved on the Coulomb branch of T 4d
X and T 5d

X ;

• dH = r̂ + f : the quaternionic Higgs branch dimension of T 5d
X ;

• r̂: the rank of the 4d SCFT T 4d
X ;

• d̂H = r + f : the quaternionic Higgs branch dimension of T 4d
X ;

• µ = 2r̂ + f : the multiplicity (Milnor number) of X;

• modality: the modality m(X) of X;

• nh: the effective number of hypermultiplets of T 4d
X ;

• nv: the effective number of vector multiplets of T 4d
X ;

• b3: the number of 3-cycles in the resolved threefold X̃;

• ∆A ≡ ∆Ar: the difference between the ‘virtual dimension’ nh−nv of the HB of T 4d
X

and the actual HB dimension, ∆Ar = nh − nv − d̂H ;
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• gC : the list {g1,2 , · · · } of genera for the higher-genus (g > 0) complex curves at the
base of the exceptional divisors inside X̃;

• specL: the spectrum {`l} of the Milnor ringM(F );

• CB spectrum: the Coulomb branch spectrum of T 4d
X ;

• a and c: the conformal anomaly coefficients of T 4d
X ;

• marginal Defs: the number of marginal deformations of T 4d
X ;

• TorH2: the torsional part of the second homology of the link L5, TorH2(L5,Z) = t2.

Smoothing operator. The crepant resolution procedure described in secton 2.2 is en-
coded in an additional routine, which constructs the (partially) resolved Calabi-Yau three-
fold X of any IHS {F (x1, x2, x3, x4) = 0}. Using the function:

SmoothOperator[F (x1, x2, x3, x4), {x1, x2, x3, x4}] , (4.9)

one gets an output in form of {Resolution sequence, Resolved equation, Patches}. Note
that there can be several distinct resolution sequences for a given IHS, and the code only
generates one of them.

The set “Resolution sequence” contains the crepant resolution sequence of the IHS, in
the form {Blp1,Blp2, . . . ,Blpn}. Each Blpi is a blow-up of the toric ambient space, given in
the form {{{y1, y2, . . . , yk}, {w1, w2, . . . , wk}}, δ}, which corresponds to the blow-up of the
locus y1 = y2 = · · · = yk = 0 with weights (w1, w2, . . . , wk), with the exceptional divisor
δ = 0. Using the notations of section 2.2, Blpi is also written as (y(w1)

1 , y
(w2)
2 , . . . , y

(wk)
k ; δ),

and the superscripts wi are omitted if they all equal to one.
The set “Patches” contains the coordinate patches of the toric ambient space TΣ after

the blow-ups, which are in one-to-one correspondence with the 4d cones of the toric fan
Σ. This coordinate patch structure also extends to the anti-canonical hypersurface X̃ =
−K(TΣ). On each coordinate patch {y1, y2, y3, y4}, where yi are the local coordinates of
X̃, one can set y1 = y2 = y3 = y4 = 0 unless the intersection locus is not contained in X̃.

We always use the notation δi = 0 (δ[i] = 0 in the code) for the exceptional divisors
inside the blow-up of TΣ. They may not intersect X̃ = −K(TΣ) eventually, and they may
be reducible in X̃. Hence, the total number of δi does not equal to the 5d rank r in general.

Note that this code also works in the generic case with residual terminal singularities.
In these cases, the resolution sequence is a partial crepant resolution that gives rise to X̃
with at most terminal singularities.

As an example, take F = x5
1+x2

2x1+x5
3+x2

4x3. We input SmoothOperator[x5
1+x2

2x1+
x5

3 + x2
4x3, {x1, x2, x3, x4}], and get the output {Resolution sequence, Resolved equation,

Patches} where

Resolution sequence =
= {{{{x1, x2, x3, x4}, {1, 1, 1, 1}}, δ[1]}, {{{x2, x4, δ[1]}, {1, 1, 1}}, δ[2]}} ,

(4.10)
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and after applying this to the singular IHS, we obtain the resolved equation (including the
proper transforms):

Resolved equation = x1x
2
2 + x3x

2
4 + (x5

1 + x5
3)δ[1]2 . (4.11)

The patches are then given by

Patches = {{x1, x2, x3, δ[1]}, {x2, x4, x1, δ[2]}, {x2, δ[1], x1, δ[2]}, {x4, δ[1], x1, δ[2]},
= {x1, x3, x4, δ[1]}, {x2, x4, x3, δ[2]}, {x2, δ[1], x3, δ[2]}, {x4, δ[1], x3, δ[2]}} . (4.12)

The resolution sequence and the resolved equation match (A.7)–(A.8).

5 Smoothable models

In the previous section, we spelled out a general approach to determine the basic prop-
erties of the SCFTs T 5d

X and T 4d
X for any IHS X. We also explained how to explicitly

construct the crepant resolution π : X̃ → X. This allows us to determine the smoothness
properties of the resolved model X̃ (whether it contains residual singularities or not), as
well as possible 5d infrared gauge theory descriptions. In earlier works [1, 6], we studied
interesting models with terminal singularities (whether X was a terminal singularity with
r = 0, or a singularity with r > 0 that contains remnant terminal singularities after a
crepant resolution). In this section, we would like to focus on smoothable models — that
is, singularities X whose crepant resolution X̃ is a smooth CY threefold (below, we also
call such a CY threefold ‘a smooth model’).

5.1 Tabulating the smoothable models

We found it useful to organise the smoothable singularities X into three categories:

1. Smooth models with smooth exceptional divisors and b3(X̃) = 0

2. Smooth models with smooth exceptional divisors and b3(X̃) > 0

3. Smooth models with singular divisors (for any b3(X̃)).

It is also useful to organise the models by their 5d rank, r, i.e. by the number of exceptional
divisors. For low rank, we gathered (conjecturally) all such models by brute force, by
generating a large dataset of 15,142 physically distinct models with r > 0.8 The number
of models for r ≤ 10 in that dataset is given in table 4.

For r = 1, 2, 3, we resolved all the models explicitly and found all the smoothable
models in our dataset. For larger r, this becomes impractical, but we can sharply re-
duce the number of cases to consider by realising that a necessary condition for having a
smoothable model is that ∆A ∈ Z, because ∆A /∈ Z can only arise from residual terminal

8We considered all canonical IHS of type I to XIX with (a, b, c, d) ‘small enough’, and then identified the
many models with identical scaling weights. For definiteness, we chose the cap a, b, c, d ≤ K with K = 60
for the 19 types (and for each subtype) in the KS-YY classification. This gives us a total of 39,094 physically
distinct models. 61% of these models have r = 0, and we do not consider them further in this paper.
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r 1 2 3 4 5 6 7 8 9 10
# of models 1167 649 693 666 506 549 486 495 491 461

# of ∆Ar ∈Z models 161 128 143 131 113 154 98 117 137 117
# of smoothable models 12 24 32 23 32 39 23 41 ? ?

# of ZCB models 3 6 10 9 12 18 7 9 12 12
# of ‘fully smooth’ models 3 5 10 7 9 14 5 8 7 7

Table 4. Number of low-rank models in our dataset. Here, ZCB refers to the models with integral
CB dimensions and ‘fully smooth’ refers to the smoothable models with smooth exceptional divisors.

singularities [1]. We are also particularly interested in the smoothable models with smooth
exceptional divisors (the ‘fully smooth models’, for short). We then make the following
conjecture, based on explicit analysis of our dataset:

Conjecture 5.1 For any smoothable model X with smooth exceptional divisors, the asso-
ciated 4d SCFT T 4d

X has an integral CB spectrum.
Note that the converse is not true. On the other hand, we propose the following:

Conjecture 5.2 Any model X with an integral CB spectrum is smoothable (not necessarily
with smooth divisors).

In summary, we have the following inclusions of sets, at any fixed rank r > 0:

{‘fully smooth’ } ⊂ {integral CB} ⊂ {smoothable} ⊂ {∆A ∈ Z} ⊂ {rank-r models} ,
(5.1)

where the first and second inclusions are conjectures. The number of models at fixed
rank appears to be infinite, but we conjecture that the number of smoothable models of
a fixed rank is finite. For small r, we also believe that all these models are included in our
dataset.9 The numbers of models with various properties (in our dataset) are shown in
table 4. For r ≤ 10, we considered all the models with integral CB spectrum and extracted
all the ‘fully smooth’ models from that set. They are discussed in detail in the following,
and in appendix.

Models with b3 = 0. We first discuss the smoothable models with smooth exceptional
divisors with b3(X) = 0. We studied all such models with rank r ≤ 10 in our dataset
(assuming Conjecture 5.1 is true). We also considered the infinite series AD[D2n, D2n],
which engineers the 4d SCFT of type [G,G′] = [D2n, D2n] [67]. These b3 = 0 models are
summarized in tables 8 and 9.

This class of models have the simplest 5d interpretation, as they correspond to 5d
SCFTs T 5d

X whose Coulomb-branch low-energy physics is described entirely by r 5d U(1)
9We do not have a proof that our lists of ‘smoothable’ and ‘fully smooth’ models up to r = 10 is

complete within the infinite class of models defined by canonical IHSs. This is largely due to the fact that
the correlation between rank r and the hypersurface equation types is not one we understand systematically
at this point. It would be very interesting to determine more direct relations between the (a, b, c, d)’s defining
the equation F (x) = 0 and the rank r, if possible.
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vector multiples, with a prepotential determined by the intersection numbers (2.49) in the
smooth resolved threefold. Similarly, the 4d SCFT T 4d

X is such that the Higgs-branch
low-energy physics consists of only d̂H = r + f hypermultiplets [1].

Models with b3 > 0. Similarly, the smoothable models with smooth exceptional divi-
sors but b3 > 0 are listed until rank r = 10 in tables 10, 11, 12, 13 and 14.

Note that, in all these tables, we color the labels {t, s}{a, b, c, d} in (i) black for the cases
with a Lagrangian T 4d

X ; (ii) blue for the cases with a Db
p(G) trinion description studied

in [6]; (iii) red for the cases with a generalised Db
p(G) description of T 4d

X (to be discussed
below); (iv) orange for the cases without a known description of T 4d

X yet. For the case (i),
the Lagrangian quiver description of T 4d

X is written down in the table. For the other cases,
we simply list the CB spectrum. Many of theses models were already discussed in [1, 6].

The physical interpretation of the 3-cycles in X̃ was already discussed in [1]. The 5d
SCFT T 5d

X has an ‘enhanced Coulomb branch’ with 1
2b3 free hypermultiplets at any generic

point on the CB. The 4d SCFT T 4d
X has an Higgs branch whose low-energy physics includes

1
2b3 free abelian vector multiplets in addition to the d̂H hypermultiplets.

Once we have a resolved threefold with 3-cycles, it is generally possible to perform
a sort of geometric transition that results in a distinct local geometry [71], as we will
see in some examples below. Such transitions change the asymptotic of the threefold.
Physically, they correspond to mass deformations that lift the Higgs branch component of
the enhanced CB. To precisely characterise the physics of enhanced Coulomb branches in
5d is an interesting question, which is left for future work (for a discussion of 4d enhanced
Coulomb branches, see [72]).

Smoothable models with singular divisors. Finally, one can consider the smooth-
able models whose exceptional divisors are not all smooth. The interpretation of such
singularities in the divisors (while the threefold itself is smooth) appears to be more subtle,
and we hope to come back to this in future work. Here, we simply list all the smoothable
models up to rank r = 4 in the tables 15, 16, 17, 18, 19, 20 and 21.

5.2 The AD[E7, E7] model

We now illustrate one example of ‘fully smooth’ model with b3 = 0, which turns out to have
r = 5. We consider the geometry that is associated to the Argyres-Douglas-type theory
[G,G′] = [E7, E7] [67]. This is the Type{4, 1}{3, 3, 3, 3} singularity, with basic data:

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x3
1 + x3

2x1 + x3
3 + x3

4x3 5 7 SU(2)6 ×U(1) 28 21 12 0 0 —
(5.2)

Deformations and 4d SCFT. In this case, the CB spectrum of T 4d
X contains operators

with ∆ = 7 and ∆ = 9, but there is no operator with ∆ = 8. Although the CB spectrum
is fully integral,

∆ = {24, 35, 44, 53, 62, 72, 9} , (5.3)

it cannot match any set of Casimir operators of Lie groups. Hence there is no Lagrangian
description of T 4d

X . There is, however, a generalised quiver using Db
p(G) building blocks.
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The conjectured 4d generalised Dp(G) description is:10

[1]− SU(3)− SU(5)− SU(7)−D2(SO(20))− SO(8)−D2(SO(8)) , (5.4)

where the D2(SO(2N)) factor contributes the CB operators of dimensions ∆ =
3, 5, 7, · · · , N − 1, and the SO(2N) gauge groups contribute ∆ = 2, 4, · · · , 2N − 2, N .
The flavor symmetry of D2(SO(20)) is SO(22)×U(1), of which we gauge an SU(7)×SO(8)
subgroup. Note that D2(SO(8)) is the E6 MN theory [73, 74].

Resolutions and 5d SCFT. This is a fully resolvable IHS, and a resolution sequence
is given by:

(x1, x2, x3, x4; δ1) , (x1, x3, δ1; δ2) , (δ1, δ2; δ3) . (5.5)

After the resolution, the equation

x3
1δ2 + x3

2x1δ1 + x3
3δ2 + x3

4x3δ1 = 0 (5.6)

is smooth. The exceptional divisor δ1 = 0 has three components:

δ1 = 0 : x3
1 + x3

4 = 0 . (5.7)

The exceptional divisors δ2 = 0 and δ3 = 0 are irreducible, thus resulting in total in a
rank r = 5 theory. The intersection numbers of the compact surfaces are shown on the
l.h.s. of figure 1. The three components of δ1 = 0 are S2, S3 and S4, which are all P2s. S1
corresponds to δ3 = 0 and S5 corresponds to δ2 = 0.

The conventions for the intersection diagrams are as follows (similarly to the ones
in [75, 76]):

(1) Each oval denotes an irreducible compact divisor Si. The number in the bracket after
Si is the self-triple intersection number S3

i .

(2) The line segment between ovals Si and Sj corresponds to the complete intersection
curve Si · Sj . The numbers in the boxes at the end of the line segment describe the
self-intersection numbers of the curves inside their respective divisors. The number
on Si corresponds to Si · S2

j while the number of Sj corresponds to Sj · S2
i .

(3) For each triangle among three ovals Si, Sj and Sk, we use a boxed number to denote
the triple intersection number Si · Sj · Sk.

To see the structure of the curves more clearly, we may do four flops by blowing up
S2, S3, S4, S5 once and blowing down S1 four times, which gives the local model shown on
the right-hand-side of figure 1. Here, S1 is a gdP6 of type 4A1, which is also known as the
(resolution of) Cayley’s cubic surface [77]. We plot the Mori cone generators of S1 and their

10We thank Simone Giacomelli for discussions of this model and for suggesting this particular quiver.
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S1(-1)

-3

-3 -3

-3

1

S2(9)

1S3(9)

1

S4(9)

1 S5(8) S1(3)

-2

-2 -2

-2

0

S2(8)

0S3(8)

0

S4(8)

0 S5(7)

Figure 1. Resolved AD[E7, E7] geometry: compact surfaces are Si and gluing curves are links
between these, with self-intersection numbers shown in the boxes. The l.h.s. is the model after
resolution of the IHS, and the r.h.s. after the flop.

representations under the Picard group generators h, ei (h2 = 1 , h · ei = 0 , ei · ej = −δij),
showing the four (−2)-curves S1 · S2, S1 · S3, S1 · S4 and S1 · S5:

-2

-2

-2

-2

-1

-1

-1
-1

-1

-1

-1 -1

-1

S2

S3

S4

S5

e1-e2

e3-e4

e5-e6

2h-e1-e2-e3-e4-e5-e6

h-e1-e3

h-e3-e5

e2

e6

h-e3-e4

h-e5-e6

h-e1-e5

e4
h-e1-e2

(5.8)

We also plot the curves on S2, S3, S4 and S5:

S2 0
S1

0

S3 0
S1

0

S4 0
S1

0

S5 0
S1

0 -1

-1-1 (5.9)

Now we can combine the curves on each Si and get the combined fiber diagram (CFD)
introduced in [49, 78–80] of T 5d

X by applying the procedure in [80]. The CFDs are — in
brief — a collection of (usually rational) curves, which encode the flavor symmetries (in
terms of the subgraph of green-colored nodes) and the (−1)-self-intersection curves that
can be flopped and the associated hypermultiplet decoupled.
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The CFD is constructed by connected to the same Si ·Sj are combined, with the proper
multiplicities. For example, on S1 the six (−1)-curves between the four (−2)-curves have
multiplicities two, which correspond to (−2) nodes in the CFD. Hence the CFD can be
read off as:

-1 -1

-1

-1

-1

(5.10)

The UV flavor symmetry algebra is therefore gF = su(2)6 ⊕ u(1).
On the geometry, we can also identify a ruling structure by taking S1 · S2 and S1 · S5

to be the section curves, S1 · S3 and S1 · S4 to be the fiber. From the spectrum of massless
hypermultiplets in the IR gauge theory limit, we can identify the following 5d gauge theory
description:

SU(2)0 SU(4)− 1
2

SU(2)0

1AS + 1F

(5.11)

If we decouple the two SU(2) gauge factors by sending the volume of S3 and S4 to infinity,
the surfaces S1, S2, S5 give rise to IR gauge theory SU(4)− 1

2
+1AS+5F. It would be inter-

esting to see whether this IR gauge theory description can inform the computation of the
magnetic quiver for this theory, and to then match this with the conjectured 4d quiver (5.4).

5.3 4d SCFTs: Db
p(G)-trinions

We now turn our attention ‘fully smooth’ models that have b3 > 0. The 5d interpretation
becomes more difficult in general, due to existence of an enhanced Coulomb branch. As
before, the 4d SCFTs T 5d

X may not have a Lagrangian description, as can be seen from
tables 10, 11, 12, 13 and 14. Some of these models have an interpretation in terms of the
Db
p(G)-trinions introduced in [6]. Using the notation for the trinions introduced therein,

namely:

Db2
p2(G) G Db1

p1(G)

Db3
p3(G)

(5.12)

the models with 4d trinion description are summarized in table 5.

5.4 4d SCFTs with c− a < 0

Another interesting class of models are those for which the conformal anomalies of T 4d
X

satisfy the inequality c < a. Such 4d SCFTs are slightly peculiar, and appear to be more
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Type (a,b,c,d) F Trinion Representation CB Spectrum

{1,1}{3,4,4,4} x4
2 +x4

3 +x4
4 +x3

1
D12

4 E6 D12
4

D12
2

26,37,53,66,8,93,12

{1,1}{2,3,10,10} x10
3 +x10

4 +x3
2 +x2

1

D30
10 E8 D30

10

D24
1

27,38,56,69,85,98,114,127,143

156,172,185,20,214,243,272,30

{1,1}{2,5,6,6} x6
3 +x6

4 +x5
2 +x2

1

D30
6 E8 D30

6

D20
1

23,34,45,54,72,83,94,105,12
132,143,154,18,192,203,24,252,30

{2,1}{3,6,9,2} x9
3 +x2

4x3 +x6
2 +x3

1

D18
3 SO(20) D18

6

D18
2

25,34,47,53,65,74,83,93

104,11,123,13,14,15,16,18

{2,1}{4,4,8,2} x8
3 +x2

4x3 +x4
1 +x4

2
D16

4 SO(18) D16
4

D16
2

28,48,52,66,86,9,103,123,14,16

{2,1}{2,5,5,6} x5
3 +x6

4x3 +x2
1 +x5

2

D24
6 E8 D30

5

D20
1

27,45,67,86,104,126,144,

162,184,202,22,242,26,30

{2,1}{3,6,12,2} x12
3 +x2

4x3 +x3
1 +x6

2

D24
6 SO(26) D24

3

D24
2

29,49,52,68,88,9,106,126,

13,144,164,182,202,22,24

Table 5. Models with integral spectrum and a 4d SCFT description as a Db
p(G) trinion.
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Type F (x, y, z, t) r = d̂H f dH = r̂ 24(c− a) b3 t2

{1, 1}{2, 5, 5, 5} x2 + y5 + z5 + t5 2 0 32 −4 12 Z12
2

{1, 1}{2, 3, 8, 8} x2 + y3 + z8 + t8 2 0 49 −1 6 Z6
3

{1, 1}{2, 3, 9, 9} x2 + y3 + z9 + t9 3 0 64 −4 14 Z14
2

{1, 1}{3, 4, 4, 4} x3 + y4 + z4 + t4 3 0 27 −3 12 Z6
3

{2, 1}{2, 7, 7, 3} x2 + y7 + z7 + t3z 3 0 45 −3 12 Z12
2

{1, 1}{2, 3, 10, 10} x2 + y3 + z10 + t10 5 0 81 −3 16 Z8
3

{2, 1}{2, 3, 15, 7} x2 + y3 + z15 + t7z 5 0 91 −1 12 Z12
2

{1, 1}{2, 5, 6, 6} x2 + y5 + z6 + t6 6 0 50 −2 16 Z4
5

Table 6. Table of 4d SCFTs with c < a engineered from IHS in IIB.

‘rare’; from the point of view of the superconformal index, c−a < 0 is analogous to having
c < 0 for a 2d CFT — see e.g. [81–84]. It turns out that there are only 8 canonical IHS for
which c < a in our database, and they are all smoothable models with b3 > 0. Their basic
data is shown in table 6.

The 4d Coulomb branch spectrum of all these singularities except for the type
{1,1}{2,3,8,8} is integer-valued, ∆α ∈ Z. (And these 7 models are actually ‘fully smooth’.)
Note that we have:

24(c− a) = nh − nv = r + f − 1
2b3 , (5.13)

in agreement with the physical interpretation of the 3-cycles as vector multiplets in IIB. We
will now provide the corresponding 4d SCFTs T 4d

X (whose description is simply related to
the electric and magnetic quiverines in 3d, since f = 0 [1, 6]). We also study the resolution
of these singularities and identify the 5d gauge theory phase if it exists. Note that most
of these theories are non-Lagrangian 4d SCFTs, and that in general we do not have a
Lagrangian description of the 3d quiverines either.

5.4.1 Rank 2: {1, 1}{2, 5, 5, 5}

This case was also discussed in [1]. We have the Lagrangian description of T 4d
X as the

quiver:

Spin(5)

Sp(3)

Spin(11)

Sp(2)
Spin(1)

Sp(4)

Spin(9)

Sp(3)

Spin(7)

Sp(2)

Spin(5)

Sp(1)

Spin(3) (5.14)

Note that the six Spin(2n+ 1) (n > 0) gauge groups give rise to a f = Z6
2 1-form symmetry

(the vector of Spin(2n+ 1) does not break the Z2 center), in agreement with the geometric
determination of t2.
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Let us also discuss the resolution of this model. Starting with the hypersurface equation
x2

1 + x5
2 + x5

3 + x5
4 = 0, the resolution sequence is

(x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, δ1; δ2) , (δ1, δ2; δ3) (5.15)

The resolved equation is
x2

1δ2 + (x5
2 + x5

3 + x5
4)δ1 = 0 . (5.16)

The set δ1 = 0 is empty, so there are only two exceptional divisors S1 : δ2 = 0 and
S2 : δ3 = 0. The triple intersection numbers are

-15S1(-40) 25 S2(9)

(5.17)

Hence S1 · S2 is a genus-6 curve, and S1 is a ruled surface over that curve. Note that S2 is
a P2 and S1 · S2 has equation δ2 = δ3 = x5

2 + x5
3 + x5

4 = 0, which is a degree-5 curve on P2

with genus g = 6. Since S1 has 12 3-cycles, the total b3 of the resolved CY3 is b3(X̃) = 12.
The presence of the 3-cycles in X̃ makes the M-theory interpretation more subtle, as

mentioned above. We can obtain a distinct and more ‘conventional’ model by performing
a geometric transition, as described in [71], to obtain a new Calabi-Yau threefold with
distinct asymptotics and b3 = 0. In the present example, one performs a complex structure
deformation of the geometry, such that the intersection curve S1 · S2 has six double point
singularities. Then we perform flop operations six times by blowing up six double points
on S2. After these flops, the triple intersection numbers of the new surfaces S′1 and S′2 are

-3S1’(8) 1 S2’(3)

(5.18)

Hence S′1 is a F3 and S′2 is a dP6. These triple intersection numbers exactly give rise to
the 5d SCFT with IR description SU(3)9/2 + 5F , Sp(2) + 3F + 2AS or G2 + 5F , and UV
flavor symmetry G5d

F = Sp(6). Before the flops, the geometry gives f = 0. After the flops,
there are six new 2-cycles in the flopped geometry, which give rise to the flavor rank f ′ = 6
that matches G5d

F .

5.4.2 Rank 2: {1, 1}{2, 3, 8, 8}

The 4d CB spectrum of this model is non-integral. In [6], a non-Lagrangian description of
T 4d

X is found, where Db
p denotes the Db

p(G) theory [74, 85, 86], here with G = E6 for the
central gauge group:

T 4d
X = D12

8 E6 D9
1

D12
8

(5.19)
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The singularity x2
1 + x3

2 + x8
3 + x8

4 = 0 is fully resolved by

(x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, x2, δ1; δ2) . (5.20)

The resolved equation is completely smooth:

x2
1 + x3

2δ2 + x8
3δ

2
1 + x8

4δ
2
1 = 0 . (5.21)

The triple intersection numbers of S1 : δ1 = 0 and S2 : δ2 = 0 are computed to be

4S1(9) -6 S2(-2)

(5.22)

These numbers appears to match the rank-2 5d SCFT with an SU(3)1/2+9F IR description
and GF = SO(20) flavor symmetry. The intersection curve S1 · S2 is an irreducible curve.

However, this model has flavor rank f = 0, which leads to a contradiction. The reason
is that the equation of S2 is

x2
1 + x8

3δ
2
1 + x8

4δ
2
1 = 0 . (5.23)

At a generic locus δ1 6= 0, x1 6= 0, the equation is a smooth genus-3 curve, because the
Newton polytope with vertices (2, 0, 0), (0, 8, 0) and (0, 0, 8) has exactly 3 interior points.
On the other hand, S2 is singular at the point

x1 = x3 = x4 = δ2 = 0 . (5.24)

Note that this point is not a singular point in the resolved CY3 X̃, but it is a singular
point on S2.

From the genus-3 curve on S2, we have

b3(S2) = b3(X̃) = 6 , (5.25)

although S1 · S2 has genus 0. The 5d physical interpretation of this geometry is unclear.

5.4.3 Rank 3: {1, 1}{2, 3, 9, 9}

The 4d SCFT has the Lagrangian description:

Spin(8)

Sp(6)

Spin(20)

Sp(8)

Spin(16)

Sp(6)

Spin(12)

Sp(4)

Spin(8)

Sp(2)

Spin(4)

Sp(4)

(5.26)

It is a simple exercise to check that this quiver has a 1-form symmetry f = Z7
2, in agreement

with the geometric determination. The resolution of the singularity x2
1 + x3

2 + x9
3 + x9

4 = 0
is achieved by

(x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, x2, δ1; δ2) , (x1, δ2; δ3) , (δ2, δ3; δ4) . (5.27)
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The resolved equation is

x2
1δ3 + x3

2δ2 + (x9
3 + x9

4)δ3
1δ2 = 0 . (5.28)

The set δ2 = 0 is empty. The other surface components are irreducible. The triple inter-
section numbers of S1 : δ1 = 0, S2 : δ3 = 0 and S3 : δ4 = 0 are

1S1(9) -3 S3(8) 27 S2(-48)-15

(5.29)

The intersection curve S2 ·S3 is a genus-7 curve, and the surface S2 is ruled over that curve.
S1 is a P2 and S4 is a F3. There are 14 3-cycles on S3, and b3(X) = 14. After the flop
that results from blowing up S3 at seven double points on S2 · S3, the triple intersection
numbers become

1S1’(9) -3 S3’(1)  -1 S2’(8)-1

(5.30)

The model does not appear to have a 5d gauge-theory description.

5.4.4 Rank 3: {1, 1}{3, 4, 4, 4}

A non-Lagrangian description of T 4d
X was found in [6]:

T 4d
X = D12

2 E6 D12
4

D12
4

(5.31)

The singularity x3
1 + x4

2 + x4
3 + x4

4 = 0 leads to the resolution sequence

(x1, x2, x3, x4; δ1) , (x1, δ1; δ2) , (δ1, δ2; δ3) , (δ1, δ3; δ4) . (5.32)

The resolved equation is
x3

1δ
2
2δ3 + (x4

2 + x4
3 + x4

4)δ1 = 0 . (5.33)

The set δ1 = 0 is empty, hence there are only three exceptional divisors S1 : δ2 = 0,
S2 : δ3 = 0 and S3 : δ4 = 0. The triple intersection numbers are

-8S1(-16) 12 S2(-16)  -12 S3(9)16

(5.34)
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Hence the intersection curves S1 · S2 and S2 · S3 both have genus g = 3, and both S1 and
S2 are ruled over genus-three curves. The divisor S3 is a P2. Since S1 and S2 both have 6
3-cycles, we have b3(X̃) = 12. If we perform flops by blowing up S3 at three double points
on S2 · S3, we end up with

-8S1’(8) 6 S2’(8)  -6 S3’(6)4

(5.35)

5.4.5 Rank 3: {2, 1}{2, 7, 7, 3}

The 4d SCFT for this model has the Lagrangian description:

Sp(1)

Spin(8)

Sp(5)

Spin(16)

Sp(6)

Spin(12)

Sp(4)

Spin(8)

Sp(2)

Spin(4)

Sp(3)

(5.36)

This quiver has a 1-form symmetry f = Z6
2. The singularity x2

1 + x7
2 + x7

3 + x3
4x3 = 0 has a

resolution sequence

(x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, x4, δ1; δ2) , (x1, δ2; δ3) , (δ2, δ3; δ4) (5.37)

The resolved equation is

x2
1δ3 + x7

2δ
3
1δ2 + x7

3δ
3
1δ2 + x3

4x3δ2 = 0 . (5.38)

The triple intersection numbers of S1 : δ1 = 0, S2 : δ3 = 0, S3 : δ4 = 0 are

-2S1(8)
0

0 S2(-40)
-14

S3(8)
-2 24

1

(5.39)

S3 is ruled over a genus-6 curve S3 · S4. After the flop by blowing up S3 · S4 at the six
double points on S4, the new intersection numbers are

-2S1(8)
0

0 S2(8)
-2

S3(2)
-2 0

1

(5.40)
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Since the assignment of base and ruling curves on Si cannot match, this geometry does not
have a gauge theory description.

5.4.6 Rank 5: {1, 1}{2, 3, 10, 10}

As we noted earlier this model has a trinion represetation in 4d

D24
6 SO(26) D24

3

D24
2

(5.41)

The singularity x2
1 + x3

2 + x10
3 + x10

4 = 0 has a resolution sequence

(x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, x2, δ1; δ2) , (x1, δ2; δ3) , (x2, δ3; δ4)

(δ2, δ3; δ5) , (δ3, δ4; δ6) , (δ3, δ6; δ7)
(5.42)

The resolved equation is

x2
1δ3 + x3

2δ2δ
2
4δ6 + (x10

3 + x10
4 )δ4

1δ
2
2δ3δ

2
5 = 0 . (5.43)

The sets δ2 = 0 and δ3 = 0 is empty. The other surface components are irreducible. The
Coulomb branch rank is r = 5. The triple intersection numbers of S1 : δ1 = 0, S2 : δ4 = 0,
S3 : δ5 = 0, S4 : δ6 = 0 and S5 : δ7 = 0 are

1S1(9) -3 S3(8) 3 -5 S5(8) 20 -14 S4(-24) 14 -8 S2(-24)

(5.44)
The surface components S2 and S4 are ruled over a genus-4 curve, and the other surface
components are rational. On each of S2 and S4, there are eight 3-cycles. In total we have
b3(X̃) = 16. After a flop performed by blowing up four double points on S5 ·S4, we obtain
the geometry

1S1’(9) -3 S3’(8) 3 -5 S5’(4) 4 -6 S4’(8) 6 -8 S2’(8)

(5.45)

5.4.7 Rank 5: {2, 1}{2, 3, 15, 7}

For this model, we did not find a Lagrangian nor a generalised quiver description. The
equation x2

1 + x3
2 + x15

3 + x7
4x3 = 0 leads to the resolution sequence

(x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, x2, δ1; δ2) , (x(2)

1 , x
(1)
2 , x

(1)
4 , δ

(1)
2 ; δ3) , (x1, x2, δ3; δ4)

(x1, δ4; δ5) , (δ4, δ5; δ6) (5.46)
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The resolved equation is

x2
1δ5 + x7

2δ
8
1δ

13
2 δ

16
3 δ

21
4 δ

20
5 δ

19
6 + x15

3 δ
9
1δ

7
2δ

3
3δ4 + x7

4x3δ
2
1δ

3
3δ4 = 0 . (5.47)

The set δ4 = 0 is empty, and the other divisors are irreducible, hence the 5d rank is r = 5.
The triple intersection numbers of S1 : δ1 = 0, S2 : δ2 = 0, S3 : δ3 = 0, S4 : δ5 = 0 and
S5 : δ6 = 0 are

0S3(8)
2

-2 S5(8)
0

S2(-4)
-4 -2

1

0 S4(-40)

-143

24

-6

S1(9)
4

-6

(5.48)

S4 is ruled over a genus-6 curve, the other surfaces are rational. There are 12 3-cycles on
S4, and b3(X̃) = 12.

5.4.8 Rank 6: {1, 1}{2, 5, 6, 6}

This 4d SCFT for this model has a trinion description [6]:

T 4d
X = D30

6 E8 D30
6

D20
1

(5.49)

The singularity x2
1 + x5

2 + x6
3 + x6

4 = 0 leads to the resolution sequence

(x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1) , (x1, δ1; δ2) , (x2, δ2; δ3) , (δ1, δ2; δ4)

(δ2, δ3; δ5) , (δ2, δ5; δ6) , (δ2, δ6; δ7) , (δ2, δ7; δ8)
(5.50)

The resolved equation is

x2
1δ2 + x5

2δ1δ
4
3δ

3
5δ

2
6δ7 + (x6

3 + x6
4)δ2

1δ2δ
2
4 = 0 . (5.51)

The sets δ1 = 0 and δ2 = 0 are empty, and the other divisors are irreducible, so that r = 6.
The triple intersection numbers of S1 : δ3 = 0, S2 : δ4 = 0, S3 : δ5 = 0, S4 : δ6 = 0,
S5 : δ7 = 0 and S6 : δ8 = 0 are

-4S1(-8) 6 S3(-8) -6 8 S4(-8) -8 10 S5(-8) -10 12 S6(8) -3 1 S2(9)

(5.52)
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The divisors S1, S3, S4 and S5 are all ruled over a genus-2 curve. S6 is F3 and S2 is P2.
S1, S3, S4 and S5 each has four 3-cycles, and thus b3(X̃) = 16. After the flop performed
by blowing up two double points on S6 · S5, we obtain the geometry

-12S1’(8) 10 S3’(8) -10 8 S4’(8) -8 6 S5’(8) -6 4 S6’(6) -3 1 S2’(9)

(5.53)

5.5 4d SCFTs with a = c

Another noteworthy class of models consists of the smoothable models such that a = c.
They all satisfy

f = 0 , r = 1
2b3 = d̂H , r̂ = dH . (5.54)

Therefore, any such model with r > 0 is either smoothable or it has residual terminal
singularities that correspond to some a = c model.11 They also all have higher-form
symmetries (t2 non-trivial). These cases include the following infinite series, which are
called E(l)

k models in [6]. We have E(3n−2)
6 and E(3n−1)

6 models:

Type(a, b, c, d) E
(l)
k F r f dH a = c b3 t2

{1, 1}{3, 3, 3, 3n+ 1} E(3n−2)
6 x3

1 + x3
2 + x3

3 + x3n+1
4 n 0 12n 2n(3n+ 2) 2n Z2

3n+1

{1, 1}{3, 3, 3, 3n+ 2} E(3n−1)
6 x3

1 + x3
2 + x3

3 + x3n+2
4 n 0 12n+ 4 (2n+ 2)(3n+ 1) 2n Z2

3n+2

The model E(l)
6 have a 4d G = SU(l + 3) trinion description [6]:

D3 SU(l + 3) D3

D3

(5.55)

We similarly have the E(4n−3)
7 and E(4n−1)

7 models:

Type(a, b, c, d) E
(l)
k F r f dH a = c b3 t2

{1, 1}{2, 4, 4, 4n+ 1} E(4n−3)
7 x2

1 + x4
2 + x4

3 + x4n+1
4 n 0 18n 6n(2n+ 1) 2n Z2

4n+1

{1, 1}{2, 4, 4, 4n+ 3} E(4n−1)
7 x2

1 + x4
2 + x4

3 + x4n+3
4 n 0 18n+ 9 6(n+ 1)(2n+ 1) 2n Z2

4n+3

as well as the E(6n−5)
8 and E(6n−1)

8 models:

Type(a, b, c, d) E
(l)
k F r f dH a = c b3 t2

{1, 1}{2, 3, 6, 6n+ 1} E(6n−5)
8 x2

1 + x3
2 + x6

3 + x6n+1
4 n 0 30n 10n(3n+ 1) 2n Z2

6n+1

{1, 1}{2, 3, 6, 6n+ 5} E(6n−1)
8 x2

1 + x3
2 + x6

3 + x6n+5
4 n 0 30n+ 20 10(n+ 1)(3n+ 2) 2n Z2

6n+5

11When there are several terminal singularities, the residual IR theory on the 4d HB can be a direct sum
of irreducible theories so that the total central charges satisfy a = c.
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The E(l)
7 and E(l)

8 models have a 4d SU(l+4) and SU(l+6) trinion description, respectively:

D2 SU(l + 4) D4

D4

D2 SU(l + 6) D3

D6

(5.56)

These trinion models were also recently discussed in [87]. We also find an interesting infinite
family of a = c models with r = 0:

Type(a, b, c, d) F r f dH a = c b3 t2

{2, 1}{2, 2k + 1, 2k + 1, 2} x2
1 + x2k+1

2 + x2k+1
3 + x2

4x3 0 0 2k(k + 1) 1
9k(k + 1)(4k + 5) 0 Z2k

2

Finally, we find six ‘sporadic’ models with r > 0:

Type(a, b, c, d) F r f dH a = c b3 t2

{1, 1}{2, 3, 7, 14} x2
1 + x3

2 + x7
3 + x14

4 3 0 78 286 6 Z6
3

{1, 1}{2, 3, 7, 21} x2
1 + x3

2 + x7
3 + x21

4 6 0 120 860 12 Z12
2

{2, 1}{3, 5, 5, 2} x3
1 + x5

2 + x5
3 + x3x

2
4 2 0 24 34 4 Z4

3

{2, 1}{3, 7, 7, 2} x3
1 + x7

2 + x7
3 + x3x

2
4 6 0 48 176 12 Z6

3

{2, 1}{4, 5, 5, 2} x4
1 + x5

2 + x5
3 + x3x

2
4 6 0 36 126 6 Z4

4

{3, 1}{2, 11, 3, 4} x2
1 + x11

2 + x4
4x3 + x4x

3
3 5 0 60 230 10 Z10

2

(5.57)

All of the six models have a crepant resolution with no terminal singularities. Among these
models, the type {2, 1}{4, 5, 5, 2} has a crepant resolution with no singular divisor, see the
entry in table 12. The other five models have singular divisors in their crepant resolution.
We will now discuss the ‘fully smooth’ model in more detail.

5.5.1 Rank 6: {2, 1}{4, 5, 5, 2}

The theory does not have known quivernines EQ(4) and MQ(5). The resolution sequence
of the singularity x4

1 + x5
2 + x5

3 + x3x
2
4 = 0 reads

(x1, x2, x3, x4; δ1) , (x4, δ1; δ2) , (x3, δ1; δ3) , (x1, δ2; δ4) , (δ1, δ2; δ5)
(δ2, δ4; δ6) , (δ2, δ6; δ7) , (δ2, δ7; δ8) .

(5.58)

The resolved equation is

x4
1δ1δ

3
4δ

2
6δ7 + x5

2δ
2
1δ2δ3δ

2
5 + x5

3δ
2
1δ2δ3δ

2
5 + x3x

2
4δ2 = 0 . (5.59)

The sets δ1 = 0 and δ2 = 0 are empty, while the other exceptional divisors δi = 0 are
irreducible. The triple intersection numbers of S1 : δ3 = 0, S2 : δ4 = 0, S3 : δ5 = 0,
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S4 : δ6 = 0, S5 : δ7 = 0 and S6 : δ8 = 0 are

1S3(9)
1

-3 S6(7)
-1

S1(5)
-3 -1

1

0 S5(-8)

-9

11

-2

S2(-8)
0

-2 -2

7 S4(-8)

0

9

-7
-5

1

1
1

(5.60)

The compact divisors S2, S4 and S5 are rules over genus-two curves. After the flop per-
formed by blowing up two double points on S6 · S5, the resulting geometry is

1S3’(9)
1

-3 S6’(5)
-1

S1’(5)
-3 -1

1

0 S5’(8)

-5

3

-2

S2’(8)
0

-2 -2

7 S4’(8)

0

5

-7
-9

1

1
1

(5.61)
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A Crepantly resolvable geometries with smooth divisors and b3 = 0

We already discussed one example of a completely smoothable model with b3 = 0 in the
main text, section 5.2. Here we will discuss the remaining theories in this class up until
rank r = 10.
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A.1 AD[D2n, D2n] theories

There is an interesting infinite series of IHS which are ‘fully smooth’ with b3 = 0. In Type
IIB, they gives rise to the 4d generalised Argyres-Douglas [D2n, D2n] (n ≥ 3) theories. Note
that for n = 2, the theory is the rank 1 E6 SCFT. Consider the type IV (2, 2n−1, 2, 2n−1)
canonical singularity

x2n−1
1 + x1x

2
2 + x2n−1

3 + x3x
2
4 = 0 . (A.1)

M-theory on this canonical singularity AD[D2n, D2n] results in a class of 5d SCFTs with
the IR gauge theory description:

SU(n)±3/2 + (2n+ 1)F . (A.2)

The UV flavor symmetry is GF = SO(4n+2)×U(1). Let us first summarize the properties
of these singularities:

r f G5d
F dH r̂ d̂H ∆Ar b3 t2

n− 1 2n+ 2 SO(4n+ 2)×U(1) 2n2 + n+ 1 2n2 − n− 1 3n+ 1 0 0 —
(A.3)

Now we check these properties from both deformation and resolution of X.

A.1.1 Deformation and magnetic quiver

From the spectrum of the singularity, we can check that it is a Lagrangian theory with

f = 2n+ 2 , nh = 4
3n(1 + 2n2) , nv = 1

3(n− 1)(3 + 8n+ 8n2) , (A.4)

so that we find the virtual dimension of the 4d HB, nh − nv = 3n + 1. This equals the
actual dimension as computed from the geometry, d̂H = r+f = 3n+1. The 4d Lagrangian
reads [6]:

EQ(4)
AD[D2n,D2n] =

1 2 3
· · ·

2n− 2 2n− 1 n 1

n

1

(A.5)

where the nodes are special unitary gauge groups. The 5d magnetic quiver is obtained by
gauging all the special-unitary and flavor nodes in (A.5), and then modding out a common
U(1):

MQ(5)
AD[D2n,D2n] =

1 2 3
· · ·

2n− 2 2n− 1 n 1

n

1

(A.6)
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...

e6

d7

d9

d2n+1

Figure 2. Hasse diagram for the AD[D2n, D2n] singularity, which has the IR gauge theory descrip-
tion SU(n)±3/2 + (2n+ 1)F .

The Hasse diagram is shown in figure 2 (it was already computed in [11]). Note that the
AD[D4, D4] theory is also equivalent to the rank-1 Seiberg E6 theory. The 3d mirror MQ(4)

to (A.5) was recently discussed in [88], together with the magnetic quiver for any of the
AD[Dn, Dm] 4d SCFTs.

A.1.2 Resolution and 5d SCFT interpretation

The singularity (A.1) allows for a complete resolution, with the following sequence:

(x1, x2, x3, x4; δ1)
(x2, x4, δi; δi+1) (i = 1, . . . , n− 2) .

(A.7)

The resulting equation

x2n−1
1

n−2∏
i=1

δ2n−2i−2
i + x1x

2
2 + x2n−1

3

n−2∏
i=1

δ2n−2i−2
i + x3x

2
4 = 0 (A.8)

is completely smooth, and all the exceptional divisors Si : δi = 0 are smooth as well. We
can compute the non-vanishing triple intersection numbers among the different divisors,
which are represented as

S1(8) 1 -3 S2(8) Sn-2(8) Sn-1(7-n)2n-53 5-2n 3-2n...
(A.9)

The intersection numbers are consistent with the 5d IR gauge theory description (A.2) as
well.

A.2 Rank 1

There are only three rank r = 1 5d SCFTs in this cateory: the Seiberg rank 1 E6, E7 and
E8 SCFTs, and we discussed them in [1]. They are described by the following type {1, 1}
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F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x2
1 + x3

2 + x6
3 + x6

4 1 6 E6 11 5 N + 6 0 0 —
x2

1 + x4
2 + x4

3 + x4
4 1 7 E7 17 10 N + 7 0 0 —

x2
1 + x3

2 + x6
3 + x6

4 1 8 E8 29 21 N + 8 0 0 —

Table 7. All smooth rank 1 models with smooth divisors and b3 = 0.

isolated hypersurface singularities:

XE6 : x3
1 + x3

2 + x3
3 + x3

4 = 0
XE7 : x2

1 + x4
2 + x4

3 + x4
4 = 0

XE8 : x2
1 + x3

2 + x6
3 + x6

4 = 0 .
(A.10)

The resolution of these singularities consists of a single weighted blow-up in the ambient
space:

XE6 : (x1, x2, x3, x4; δ1)

XE7 : (x(2)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ; δ1)

XE8 : (x(3)
1 , x

(2)
2 , x

(1)
3 , x

(1)
4 ; δ1) .

(A.11)

The exceptional divisors S1 : δ1 = 0 are del Pezzo surfaces dP6, dP7 and dP8 respectively.
We also list the full data of these theories in table 7. The EQ(4) for the rank 1 Ek theory
are SU(n) quivers in the shape of affine Ek Dynkin diagram, while the MQ(5) are U(n)
quivers in the same shape. The Hasse diagram is simply a single ek, which corresponds to
the minimal nilpotent orbit of Ek.

A.3 Rank 3: {4, 1}{3, 3, 9, 2}

The model is characterized by the following data:

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x3
1 + x1x

3
2 + x9

3 + x3x
2
4 3 8 E7 ×U(1) 39 31 11 0 0 —

(A.12)

A.3.1 Deformations and magnetic quiver

From the CB spectrum we can infer the EQ(4) and MQ(5). The magnetic quiver for the 5d
theory is

MQ(5) =
3 6 9 7 5 3 1

5

1

(A.13)
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and the Hasse diagram is

e6

d7

e7
(A.14)

From the Hasse diagram, we can read off the flavor symmetry GF = E7 ×U(1).

A.3.2 Resolution and 5d SCFT

The resolution sequence that completely resolves this model is

(x1, x2, x3, x4; δ1) , (x(2)
1 , x

(1)
2 , x

(3)
4 , δ

(1)
1 ; δ3) , (x1, x4, δ1; δ2) (A.15)

with the intersection numbers

-3S1(7)
-1

-1 S2(7)
0

S3(1)
-1 -2

2

(A.16)

This theory does not have a 5d IR gauge theory description. Nonetheless, the theory is a
descendant of 6d (E7, SO(7)) conformal matter [79] with the following CFD transitions

-1 -1

-1 -1

-1

-1 -1

-1

-1

-1

-1 -1

0

-1

-1-1

-1 -1

1

-1 -1

(A.17)

The CFD of this 5d SCFT with GF = E7 ×U(1) is at the bottom-right corner.

A.4 Rank 3: {12, 1}{7, 2, 3, 2}

The data of this equation is

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x7
1 +x1x

2
2 +x1x

3
3 +x2x

2
4 +x2x

2
3 3 8 E6×SU(2)×U(1) 29 21 11 0 0 —

(A.18)
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A.4.1 Deformations and magnetic quiver

The magnetic quiver again follows from the CB spectrum of T 4d
X :

MQ(5) =
1 3 5 7 5 3 1

4

1

(A.19)

and the Hasse diagram is

e7 e6

e6 a7

a1 e6

a1 e7

(A.20)

From the Hasse diagram, we can read off the flavor symmetry is GF = E6× SU(2)×U(1),
which is different from the subgraph of the balanced nodes in the magnetic quiver.

A.4.2 Resolution and 5d SCFT

The resolution sequence is

(x1, x2, x3, x4; δ1) , (x(2)
2 , x

(1)
3 , x

(1)
4 , δ

(1)
1 ; δ3) , (x2, δ1; δ2) . (A.21)

The non-vanishing triple intersection numbers are

-2S1(7)
-1

-2 S2(6)
-1

S3(2)
-1 -1

2

(A.22)
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This theory does not have a 5d IR gauge theory description. Nonetheless, the theory is a
descendant of 6d (E7, SO(7)) conformal matter as well, with the following CFD transitions

-1 -1

-1 -1

-1

-1 -1

-1

-1

-1 -1

-1

-1

-1

-1

-1 -1

0

-1

-1

-1 (A.23)

The theory on the bottom-right has the correct rF and GF . There is no valid BG-CFD
embedding.

A.5 Rank 6: {18, 1}{2, 3, 2, 5}

The model with integral spectrum at this rank is:

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x2x
5
4 + x3x

4
4 + x1x

3
2 + x2x

2
3 + x2

1x3 6 6 SU(5)×U(1)2 36 30 12 0 0 —
(A.24)

A.5.1 Deformations and 4d SCFT

In this case the CB spectrum of T 4d
X is

∆ = {24, 35, 44, 54, 63, 73, 82, 92, 10, 11, 13} , (A.25)

which contains operators with ∆ = 11 and ∆ = 13, but there is no operator with ∆ = 12.
The CB spectrum cannot match any set of Casimir operators of Lie groups, and there is
no Lagrangian description of T 4d

X . Again there is a conjectural generalised quiver that
matches all the data of this model (flavor rank and CB spectrum)

[1]− SU(5)− SU(9)−D2(SO(28))− SO(12)× Spin(6)−D2(SO(16))− [4] (A.26)

Note that Spin(6) is gauged as a subgroup of the SO(18)×U(1) flavor of the D2(SO(16)).
Similarly, we gauge an SO(12)× SU(9) subgroup of the SO(30)×U(1) flavor symmetry of
D2(SO(28)).

A.5.2 Resolution and 5d SCFT

Resolution sequence that fully resolves this model is

(x1, x2, x3, x4; δ1) , (x1, x2, x3, δ1; δ4) , (x(1)
1 , x

(2)
3 , δ

(1)
1 , δ

(1)
4 ; δ6)

(x3, δ1; δ2) , (x1, δ2; δ3) , (x3, δ4; δ5) .
(A.27)
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The intersection relations among the compact surfaces Si : δi = 0 are

S6(2)-1 -1
-2

2

-1-1

S1(7) -1

-1-3 S2(7)
-1

-1-1

S3(8)
-1

0

S4(7)
-1

-2

1

S5(6)
-1 -1

-2

1

11

1

(A.28)

Note that S1 · S2 · S6 = S1 · S3 · S6 = S2 · S3 · S6 = 1, the curve S1 · S2 = S2 · S3 = S1 · S3
coincides, S1 · S2 · S3 = −1. Since the curve S3 · S1 is a section curve on S3 and a ruling
curve on S1, the geometry does not have a consistent ruling structure.

For the non-abelian part of flavor symmetry, it comes from the extra (−2)-curves on
S6, which has the topology of gdP7. The curves on S6 shown in (A.28) are written in the
Picard group generators h, e1, . . . , e7:

S6 · S3 = e6 − e7

S6 · S2 = e7

S6 · S5 = h− e6 − e7

S6 · S4 = 2h− e1 − e2 − e3 − e4 − e5

S6 · S1 = 3h− e1 − e2 − e3 − e4 − e5 − 2e6 − e7 .

(A.29)

The maximal set of extra (−2)-curves with non-negative intersection numbers with the
above curves are

C1 = e1 − e2

C2 = e2 − e3

C3 = e3 − e4

C4 = e4 − e5 ,

(A.30)

which generate an SU(5) flavor symmetry factor. Hence we have at least

GF = SU(5)×U(1)2 . (A.31)

A.6 Rank 6: {12, 2}{13, 3, 2, 3}

The model has the following basic characteristics

F r f G5d
F dH r̂ d̂H ∆Ar b3 f

x13
1 + x1x

3
2 + x1x

2
3 + x2x3x4 + x2x

3
4 6 9 E7 ×U(1)2 57 48 15 0 0 —

(A.32)
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A.6.1 Deformations and magnetic quiver

From the CB spectrum we can identify the magnetic quiver as

MQ(5) =
1 5 9 13 10 7 4 1

7

1

(A.33)

From the balanced nodes and the Hasse diagram, we can read off the non-abelian part of
flavor symmetry GF,nA = E7. Hence the full UV flavor symmetry is GF = E7 ×U(1)2.

A.6.2 Resolution and 5d SCFT

The following sequence of resolutions smoothes this model

(x1, x2, x3, x4; δ1) , (x(1)
2 , x

(2)
3 , x

(1)
4 , δ

(1)
1 ; δ4) , (x(2)

2 , x
(3)
3 , x

(1)
4 , δ

(1)
4 ; δ6)

(x3, δ1; δ2) , (x2, δ2; δ3) , (x2, x3, δ4; δ5) .
(A.34)

The triple intersection numbers of Si : δi = 0 are given in the following diagram:

S1(7)

S2(7)

S4(5) S3(5)

S5(8) S6(1)

-1

-1

0-1

-1
-1-1

-1 -1
-2 -2

-2

0 -1

-1-4

0 -2

11

1

2

(A.35)

For the non-Abelian part of flavor symmetry GF , it comes from the extra (−2)-curves on
S6. The topology of S6 can be chosen as gdP8 of type E7 + A1 [89], and the (−2)-curves
arranged in an E7 Dynkin diagram exactly gives rise to GF,nA = E7.

A.7 Rank 9: {4, 1}{4, 2, 4, 4}

We consider the type {4, 1}{4, 2, 4, 4} singularity, with the data

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x4
1 + x2

2x1 + x4
3 + x3x

4
4 9 5 SU(2)4 ×U(1) 35 30 14 0 0 —

(A.36)
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In this case the CB spectrum of T 4d
X contains operators with ∆ = 13 and ∆ = 16,

but there is no operator with ∆ = 14 or 15. The CB spectrum cannot match any set of
Casimir operators of Lie groups, and there is no Lagrangian description of T 4d

X . It would
be interesting to identify similarly to the other models a generalised quiver.

The resolution sequence for this model is

(x1, x2, x3, x4; δ1) , (x1, x2, x3, δ1; δ4) , (x2, δ1; δ2) , (x1, δ1; δ3)
(δ1, δ2; δ5) , (δ2, δ4; δ6) , (δ2, δ6; δ7)

(A.37)

The equation δ1 = 0 is empty, and the equation δ2 = 0 has four irreducible components,
which correspond to compact divisors S(1)

2 , . . . , S
(4)
2 . The triple intersection numbers of

Si : δi = 0 are given in the following diagram:

S5(8)

0

-1

0

0 0
0

S2
(1)(8) -20

S2
(2)(8) -20

S2
(3)(8) -20

S2
(4)(8) -20

S7(-1)-1

-2
-5

-1

-2
-2

-2
S3(6)

-2
-1

-2

-2

S6(8)
0 3

-3S4(8) 1

0

1
1

1

1

(A.38)
Note that S5 · S7 · S(i)

2 = 1 for i = 1, 2, 3, 4. Since S(i)
2 (i = 1, 2, 3, 4) are Hirzebruch surface

F2, and S5 is F1, S(i)
2 ·S5 is a section curve on S(i)

2 ·S5 but a ruling curve on S5. Hence the
geometry does not have a ruling structure and IR gauge theory description.

For the non-abelian part of flavor symmetry GF,nA, it comes from additional (−2)-
curves on S7. Note that the curves on S7 appeared in (A.38) can be written in terms of
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Picard group generators h, e1, . . . , e10 as

S7 · S6 = 2h− e1 − e2 − e3 − e4 − e5 − e6 − e7 − e8 − e9

S7 · S3 = h− e9 − e10

S7 · S5 = e10

S7 · S(1)
2 = h− e1 − e2 − e10

S7 · S(2)
2 = h− e3 − e4 − e10

S7 · S(3)
2 = h− e5 − e6 − e10

S7 · S(4)
2 = h− e7 − e8 − e10

(A.39)

The maximal set of additional (−2)-curves on S7 with non-negative intersection numbers
with the above curves are

C1 = e1 − e2

C2 = e3 − e4

C3 = e5 − e6

C4 = e7 − e8 .

(A.40)

These curves generate non-abelian flavor symmetry GF,nA = SU(2)4, hence we have (at
least)

GF = SU(2)4 ×U(1) . (A.41)

A.8 Rank 10: {10, 1}{5, 2, 2, 6}

The model has the following data

F r f G5d
F dH r̂ d̂H ∆Ar b3 t2

x2x
6
4 + x2

3x4 + x5
1 + x2

2x3 10 4 SU(5) 50 46 14 0 0 —
(A.42)

In this case the CB spectrum of T 4d
X contains operators with ∆ = 22 and ∆ = 25, but

there is no operator with ∆ = 23 or 24. The CB spectrum cannot match any set of Casimir
operators of Lie groups, and there is no Lagrangian description of T 4d

X .
Resolution sequence is

(x1, x2, x3, x4; δ1) , (x(1)
1 , x

(1)
2 , x

(2)
3 , δ

(1)
1 ; δ5) , (x(1)

2 , x
(2)
3 , δ

(1)
1 , δ

(1)
5 ; δ9)

(x(1)
2 , x

(2)
3 , δ

(1)
5 , δ

(1)
9 ; δ11) , (x3, δ1; δ2) , (x3, δ2; δ3) , (x2, δ2; δ4) , (x3, δ5; δ6)

(x2, δ6; δ7) , (δ2, δ4; δ8) .

(A.43)

The equation δ9 = 0 is empty, and the triple intersection numbers among the remaining
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10 compact divisors Si : δi = 0 are given in the following diagram:
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1

1

1

1

2

(A.44)
Note that S1·S4·S8 = S1·S8·S9 = 1, S4·S8·S9 = 2, S11·S5·S6 = S11·S5·S7 = S11·S6·S7 = 1,
S5 · S6 · S7 = −1. The curve S5 · S6 = S5 · S7 = S6 · S7 coincides. Since S6 · S7 is a section
curve on S7 but a ruling curve on S5 and S6, the whole geometry does not have a ruling
structure.

For the flavor symmetry GF , note that the topology of S11 is exactly the same as the
topology of S6 in the rank-6 model (A.24). Following the same argument based on extra
(−2)-curves on S11, we get

GF = SU(5) . (A.45)

B Tables: smoothable models
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Type (a, b, c, d) F r f dH r̂ d̂H ∆Ar b3 t2 Magnetic Quiver (MQ(5))

{1, 1} {2, 3, 6, 12} x12
4 + x6

3 + x3
2 + x2

1 2 8 59 51 10 −1 2 Z2
2

2 4 6 8 10 12 8 4

6

{1, 1} {2, 4, 4, 8} x8
4 + x4

2 + x4
3 + x2

1 2 7 35 28 9 −1 2 Z2
2

2 4 6 8 6 4 2

4

{1, 1} {2, 5, 5, 5} x5
2 + x5

3 + x5
4 + x2

1 2 0 32 32 2 −6 12 Z12
2

Spin(5)

Sp(3)

Spin(11)

Sp(2)Spin(1)

Sp(4)

Spin(9)

Sp(3)

Spin(7)

Sp(2)

Spin(5)

Sp(1)

Spin(3)

{1, 1} {3, 3, 3, 6} x6
4 + x3

1 + x3
2 + x3

3 2 6 23 17 8 −1 2 Z2
2

2 4 6 4 2

4

2

{1, 1} {2, 3, 6, 18} x18
4 + x6

3 + x3
2 + x2

1 3 8 89 81 11 −2 4 Z2
3

3 6 9 12 15 18 12 6

9

{1, 1} {2, 3, 9, 9} x9
3 + x9

4 + x3
2 + x2

1 3 0 64 64 3 −7 14 Z14
2

Spin(8)

Sp(6)

Spin(20)

Sp(8)

Spin(16)

Sp(6)

Spin(12)

Sp(4)

Spin(8)

Sp(2)

Spin(4)

Sp(4)

{1, 1} {2, 4, 4, 12} x12
4 + x4

2 + x4
3 + x2

1 3 7 53 46 10 −2 4 Z2
3

3 6 9 12 9 6 3

6

{1, 1} {3, 3, 3, 9} x9
4 + x3

1 + x3
2 + x3

3 3 6 35 29 9 −2 4 Z2
3

3 6 9 6 3

6

3

{1, 1} {3, 4, 4, 4} x4
2 + x4

3 + x4
4 + x3

1 3 0 27 27 3 −6 12 Z6
3 26, 37, 53, 66, 8, 93, 12

{2, 1} {2, 7, 7, 3} x7
2 + x7

3 + x3x3
4 + x2

1 3 0 45 45 3 −6 12 Z12
2

Sp(1)

Spin(8)

Sp(5)

Spin(16)

Sp(6)

Spin(12)

Sp(4)

Spin(8)

Sp(2)

Spin(4)

Sp(3)

{2, 1} {4, 4, 4, 2} x4
1 + x4

2 + x4
3 + x3x2

4 3 3 24 21 6 −3 6 Z6
2

Spin(4)

Sp(2)

Spin(8)

Sp(4)

6 4 2

Table 10. Rank r = 2, 3 Models with smooth divisors and b3 > 0. Blue indicates models with
trinion representations in 4d.
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Type (a, b, c, d) F r f dH r̂ d̂H ∆Ar b3 t2 Magnetic Quiver (MQ(5))

{1, 1} {2, 3, 6, 24} x24
4 + x6

3 + x3
2 + x2

1 4 8 119 111 12 −3 6 Z2
4

4 8 12 16 20 24 16 8

12

{1, 1} {2, 4, 4, 16} x16
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1 4 7 71 64 11 −3 6 Z2
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1 + x5

2 + x2x2
3 + x3x2

4 4 4 30 26 8 −2 4 Z4
2

Sp(1)

Spin(8)
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8 6 4 2

{1, 1} {2, 3, 6, 30} x30
4 + x6

3 + x3
2 + x2

1 5 8 149 141 13 −4 8 Z2
5

5 10 15 20 25 30 20 10

15

{1,1} {2,3,10,10} x10
3 + x10

4 + x3
2 + x2

1 5 0 81 81 5 −8 16 Z8
3

27, 38, 56, 69, 85, 98, 114, 127, 143

156, 172, 185, 20, 214, 243, 272, 30

{1, 1} {2, 4, 4, 20} x20
4 + x4

2 + x4
3 + x2

1 5 7 89 82 12 −4 8 Z2
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5 10 15 20 15 10 5
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{1, 1} {3, 3, 3, 15} x15
4 + x3

1 + x3
2 + x3

3 5 6 59 53 11 −4 8 Z2
5

5 10 15 10 5

10

5

Table 11. Rank r = 4, 5 Models with smooth divisors and b3 > 0. Blue indicates models that have
a Db

p(G) trinion representation.
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Type (a, b, c, d) F Divs r f dH r̂ d̂H ∆Ar b3 t2

{1, 1} {2, 3, 6, 24} x24
4 + x6

3 + x3
2 + x2

1 Smt 4 8 119 111 12 −3 6 Z2
4

{1, 1} {2, 3, 6, 25} x25
4 + x6

3 + x3
2 + x2

1 Sgl 4 0 120 120 4 −4 8 Z2
25

{1, 1} {2, 4, 4, 16} x16
4 + x4

2 + x4
3 + x2

1 Smt 4 7 71 64 11 −3 6 Z2
4

{1, 1} {2, 4, 4, 17} x17
4 + x4

2 + x4
3 + x2

1 Sgl 4 0 72 72 4 −4 8 Z2
17

{1, 1} {2, 4, 6, 6} x6
3 + x6

4 + x4
2 + x2

1 Smt 4 5 40 35 9 −2 4 Z4
2

{1, 1} {3, 3, 3, 12} x12
4 + x3

1 + x3
2 + x3

3 Smt 4 6 47 41 10 −3 6 Z2
4

{1, 1} {3, 3, 3, 13} x13
4 + x3

1 + x3
2 + x3

3 Sgl 4 0 48 48 4 −4 8 Z2
13

{2, 1} {3, 4, 5, 3} x5
3 + x3

4x3 + x4
2 + x3

1 Sgl 4 0 33 33 4 −1 2 Z2
4

{2, 1} {3, 5, 15, 2} x15
3 + x2

4x3 + x5
2 + x3

1 Sgl 4 8 68 60 12 0 0 0
{2, 1} {3, 5, 16, 2} x16

3 + x2
4x3 + x5

2 + x3
1 Sgl 4 0 68 68 4 0 0 0

{2, 1} {3, 6, 6, 2} x6
2 + x6

3 + x3
1 + x3x

2
4 Smt 4 2 36 34 6 −4 8 Z8

2

{4, 1} {9, 2, 9, 2} x9
1 + x2

2x1 + x9
3 + x3x

2
4 Smt 4 12 56 44 16 0 0 0

{4, 1} {9, 2, 10, 2} x10
3 + x2

4x3 + x9
1 + x1x

2
2 Sgl 4 2 56 54 6 0 0 0

{7, 1} {2, 7, 4, 4} x7
2 + x4

3x2 + x3x
4
4 + x2

1 Sgl 4 0 45 45 4 −1 2 Z2
4

{7, 1} {2, 12, 3, 4} x12
2 + x3

3x2 + x3x
4
4 + x2

1 Sgl 4 1 60 59 5 0 0 0
{7, 1} {4, 8, 2, 2} x8

2 + x2
3x2 + x4

1 + x3x
2
4 Sgl 4 3 36 33 7 0 0 0

{7, 1} {5, 5, 2, 2} x5
1 + x5

2 + x2x
2
3 + x3x

2
4 Smt 4 4 30 26 8 −2 4 Z4

2

{8, 1} {2, 16, 3, 5} x16
2 + x5

4x2 + x3
3x2 + x2

1 + x2
3x

2
4 Sgl 4 9 76 67 13 0 0 0

{10, 1} {2, 3, 10, 4} x4x
10
3 + x3

2x3 + x2x
4
4 + x2

1 Sgl 4 0 60 60 4 0 0 0
{10, 1} {4, 2, 2, 6} x2x

6
4 + x2

3x4 + x4
1 + x2

2x3 Sgl 4 0 36 36 4 0 0 0
{11, 1} {7, 3, 2, 2} x7

1 + x3
2x1 + x2x

2
3 + x3x

2
4 Sgl 4 3 30 27 7 0 0 0

{11, 1} {10, 2, 5, 2} x10
1 + x2

2x1 + x2x
5
3 + x3x

2
4 Sgl 4 1 56 55 5 0 0 0

{19, 1} {2, 2, 5, 3} x4x
5
3 + x2

1x3 + x2x
3
4 + x1x

2
2 Sgl 4 2 31 29 6 0 0 0

Table 21. Rank r = 4: smoothable models. ‘Divs’ indicates whether all exceptional divisors of the
resolution are smooth (Smt) or some are singular (Sgl). The CB spectra are rather expansive and
we include them instead in the ancillary mathematica file.
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