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Abstract. Let (M̄, ω) be a compact symplectic manifold with convex boundary and c1(TM̄) =
0. Suppose that (M̄, ω) is equipped with a convex Hamiltonian G-action for some connected,
compact Lie group G. We construct an action of the pure Coulomb branch of G on the G-
equivariant symplectic cohomology of M̄. Building on work of Teleman [T2], we use this con-
struction to characterize the Coulomb branches of Braverman-Finkelberg-Nakajima [BFN2] in
terms of equivariant symplectic cohomology.

1. Introduction

Background. Fix a compact, connected Lie group G and a quaternionic representation E
of G. Physicists associate a 3D N = 4 supersymmetric gauge theory to such a pair. This gauge
theory defines various moduli of vacua, one of which is called the Coulomb branch, M(G,E).
Physical considerations predict that M(G,E) should have a number of remarkable properties,
for example it should be a (possibly singular) hyper-Kähler manifold with an SU(2)-action.
However, the physical definition of M(G,E) involves quantum corrections which are difficult to
interpret mathematically. In [BFN2], Braverman-Finkelberg-Nakajima proposed a definition of
M(G,E) for cotangent type representations E, i.e. those representations which are isomorphic
to V⊕ V∨ for some complex representation V.1 For these representations, they define M(G,E)
to be the spectrum Spec(C3(G;E)) of certain Poisson algebras C3(G;E). For our purposes, it will
be useful to note that the algebras C3(G;E) naturally arise in a one-parameter family C◦3(G;E)
over C[µ] (of which C3(G;E) is the zero fiber) which incorporates the central rescaling of the
representation.

The primordial example of a Coulomb branch is the pure Coulomb branch, M(G, 0), which
occurs when the “matter representation” E is trivial. C3(G; 0) is by definition the “semi-infinite”

homology of the based loop space of G, ĤG
∗ (ΩG), equipped with its Pontryagin product. An

important result ([BFM]) identifies M(G, 0) with the universal centralizer of the Langlands dual
group G∨. The variety M(G, 0) is a affine group scheme over H∗(BG,C) which acts on all of the
other Coulomb branches. Moreover, each M(G,E) contains a dense free M(G, 0)-orbit. When
the matter representation is non-trivial, the BFN construction extends and unifies many known
constructions in geometric representation theory — for example based maps from CP 1 to a flag
variety or slices in affine Grassmannians.

Pure Coulomb branches. If (M,ω) is a compact (monotone) symplectic manifold with a
Hamiltionian G action, then C3(G; 0) acts on the equivariant quantum cohomology, QH∗G(M)

1Constructions of Coulomb branches for more general representations have recently been proposed in [BDF+,
T3], however the interaction of these constructions with symplectic topology is not clear at present.
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([T,GMP]). Our first result is an analogue of this construction for compact symplectic mani-
folds (M̄, ω) with convex boundary and vanishing first Chern class. Recall that having convex
boundary means that in a neighborhood of the boundary, there is a primitive θ of ω such that the
ω-dual of θ points outward along the boundary. A Hamiltonian G-action on (M̄, ω) is convex if θ
can be chosen G-invariant and also to have nowhere dense spectrum. Given (M̄, ω) with a (con-
vex) Hamiltonian G-action, we can consider its equivariant symplectic cohomology, SH∗G(M̄),
which is the direct limit of equivariant Hamiltonian Floer groups of cylindrical Hamiltonians of
positive slope. We prove:

Theorem 1.1. Let (M̄, ω) be a compact symplectic manifold with convex boundary and
c1(TM̄) = 0. Suppose further that (M̄, ω) is equipped with a convex Hamiltonian G-action.
Then there is an algebra homomorphism:

S : C3(G; 0)→ SH∗G(M̄).(1)

In fact, for technical reasons discussed below, we first construct a ring homomorphism:

ST : ĤT
∗ (ΩG)→ SH∗T (M̄).(2)

We then show that this map is equivariant with respect to the natural Weyl group actions on
both sides. The map (1) is then obtained by passing to Weyl-invariants.

The starting point for our work is Seidel’s observation that for closed symplectic manifolds,
a loop γt of Hamiltonian symplectomorphisms induces an action on Hamiltonian Floer theory.
Seidel’s construction has been extended to include (convex) S1-actions on convex symplectic
manifolds in [R,LJ2]. The new feature, compared to the closed case, is that a Hamiltonian loop
can modify the behavior of the Hamiltonian at infinity. This means that given a Hamiltonian
H of some fixed slope, there may be no continuation map between the Floer cohomology of the
twisted Hamiltonian, γ∗tH, and the Floer cohomology H due to the failure of the maximum
principle for interpolating solutions. However, under suitable geometric assumptions, there is a
well-defined continuation map to a Hamiltonian H ′ of higher slope, giving rise to an action on
symplectic cohomology.

The map (2) is a “parameterized” or “family” version of Seidel’s construction over cycles in

ΩG. The idea is to represent cycles in ĤT
∗ (ΩG) “geometrically” by suitably decorated equivariant

maps from a compact, smooth manifold into ΩG (this is an equivariant version of “geometric
homology” due to [BD,J]). One needs to choose these cycles (as well as the auxiliary data needed
to define Floer cohomology) carefully to ensure that the maximum principle holds over their
associated families. A further complication is that the version of equivariant Floer cohomology
that we consider involves considering further families over the Borel space BT , which is an
infinite limit of finite-dimensional spaces. Additional care is required to ensure that there is a
continuation solution from the twisted Hamiltonian to some Hamiltonian of finite slope (in other
words, that the slope needed to dominate the twisted Hamiltonian does not “escape to infinity”
over the finite dimensional approximations). These problems were most easily overcome T -
equivariantly as opposed to G-equivariantly, which resulted in the slightly indirect construction
mentioned above.

Remark 1.2. For the discussion which follows, it will be relevant to note that above, SH∗G(M̄)
was defined over the Novikov field Λ with ground field C. However, when (M̄, ω, θ) is a Liouville
domain (meaning θ can be extended over all of M), symplectic cohomology can be also be defined
over C. The map (1) can also be defined for this version of symplectic cohomology, which we
denote by SH∗G(M̄,C).
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Coulomb branches with matter. In [BFN2], the Coulomb branch algebra is defined
via a convolution diagram involving a certain infinite rank vector bundle over the affine Grass-
mannian of the complexification of G. In [T2], Teleman gave an elegant and direct construc-
tion of C◦3(G;E) as the algebra of functions on a scheme obtained by gluing two copies of

M̊(G, 0) = Spec(C◦3(G; 0)) by group multiplication with a certain easily described rational section

of the Toda integrable system, εV . This construction characterizes M̊(G,E) := Spec(C◦3(G;E))

as the universal equivariant, affine compactification of M̊(G, 0) such that εV extends to a sec-
tion of the Toda system (see Corollary 6.9). While Teleman’s construction is algebraic, it was
motivated by consideration of 2D boundary conditions for the pure gauge theory and the gauge
theory with matter E.

Our second result realizes a closed-string version of this story. Given a Liouville domain
with convex G-action, it is natural to search for actions on the ordinary cohomology as opposed
to the symplectic cohomology. There is an acceleration map

ac : H∗G(M̄,C)→ SH∗G(M̄,C).(3)

In cases where this map is injective, it makes sense to look for subalgebras of C3(G; 0) which
preserve its image. The example relevant to Coulomb branches is the seemingly simple case where
M̄ = V̄ is a unit ball inside of a complex vector space V equipped with a unitary representation
of G. In this case, we consider the G×S1 equivariant symplectic cohomology SH∗G×S1(V̄), where

the additional S1-factor corresponds to the diagonal rotation action. The algebra C◦3(G; 0) :=

ĤG(ΩG)[µ] is naturally a subalgebra of ĤG×S1(Ω(G × S1)) and so (1) therefore induces an
action:

C◦3(G; 0)→ SHG×S1(V̄,C).(4)

We give the following symplectic interpretation of the ingredients in Teleman’s construction:

Theorem 1.3. The following hold:

(1) There is an isomorphism Γ(OεV) ∼= SH∗G×S1(V̄,C). The inclusion εV corresponds to the

homomorphism (4).
(2) There is a commutative diagram:

(5)

C◦3(G;E) H∗G×S1(V,C)

C3(G; 0)[µ] SH∗G×S1(V̄,C).

S

i ac

S

These calculations allows us to rephrase Teleman’s characterization of M̊(G,E) geometri-

cally as the universal equivariant, affine compactification of the group scheme M̊(G, 0) whose
coordinate ring fits into (5) (see Corollary 6.13). This result should be understood as a decat-
egorification of the expectation that a suitable equivariant “fully” wrapped Fukaya category of
V̄ should define a boundary condition for the pure gauge theory while a suitable infinitesimally
wrapped Fukaya category should define a boundary condition for the gauge theory with mat-
ter. Boundary conditions for the gauge theory with matter have been studied from the physics
perspective [BDGH] and from an algebro-geometric perspective [HKW].

Comparison with [GMP] suggests a natural (and potentially easy) extension of our results
here. Namely, [GMP] also studies actions of the quantum Coulomb branch algebra C3(G; 0)~ :=

ĤS1×G
∗ (ΩG) on loop-equivariant quantum cohomology. This suggests that the module action

induced by (1) should lift to an action of C3(G; 0)~ on the version of equivariant symplectic
cohomology which also incorporates loop equivariance, SH∗

S1
rot×G

(M̄). Section 7 of [T2] provides
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a similar characterization of the quantum Coulomb branch algebras C3(G;E)~ as subalgebras
of the pure quantum Coulomb branch algebra C3(G; 0)~. Somewhat more speculatively, we also
note that Teleman develops parallel results for K-theoretic Coulomb branches. Correspondingly,
we expect an analogue of Theorem 1.1 for (a suitable equivariant version of) the K-theoretic
symplectic cohomology recently constructed by Large [L].

Acknowledgements. D.P. would like to thank Constantin Teleman for his generous and
patient explanations of [T2]. The authors would also like to thank Justin Hilburn for informative
discussions about Coulomb branches. C.M. was partly supported by the Simons Collaboration
on Homological Mirror Symmetry, Award #652236, the Royal Society University Research Fel-
lowship, and the University of Southampton FSS ECR Career Development Fund while working
on this project. D.P. was partly supported by the Simons Collaboration in Homological Mirror
Symmetry, Award # 652299 while working on this project.

2. Floer theory over a family, pull-back and push-forward

In this section, we explain how to define the Floer cohomology for a Hamiltonian fibre bundle
with Liouvile fibres over a smooth finite dimensional base. It is analogous to [H] and similar
ideas have been used to define equivariant Floer cohomology ([SS], [BO], [S5], [LJ]).

Let (M̄, ω) be a compact symplectic manifold with a convex boundary (i.e. M̄ is a strong
convex filling of its boundary). Let θ be a primitive one form of ω near the boundary such
that the ω-dual of θ points outwards along the boundary. We will denote by M the symplectic
completion of M̄ . In other words,

M = M̄ ∪∂M̄ [1,∞)× ∂M̄
where the Liouville one form on the cylindrical end [1,∞) × ∂M̄ is given by rα for r ∈ [1,∞)
with α := θ|∂M̄ . Throughout this text, we will assume that c1(TM) = 0 so that we can put a
Z-grading on the Floer complexes later on (see the paragraph after Definition 2.9).

The Reeb vector field Rα on (∂M̄, α) is the unique vector field characterized by α(Rα) = 1
and ιRαdα = 0. The flow of the Reeb vector field is called Reeb flow. The action spectrum of
(∂M̄, α), denoted by Spec(∂M̄, α), consists of the period of the orbits of the Reeb flow.

Definition 2.1. A Hamiltonian function H ∈ C∞(S1 ×M) is cylindrical if there is a
positive function s : S1 × ∂M̄ → R>0 that is invariant under the Reeb flow and a function
c : S1 → R such that H(r, x) = rs(x) + c in the complement of a compact set.

The function s is called the slope of H. The space of cylindrical Hamiltonian is a vector space
over R and hence convex. We define a partial ordering on the space of cylindrical Hamiltonians
by

H1 ≤s H2 if sH1(x) ≤ sH2(x) for all x(6)

where sHi is the slope of Hi for i = 1, 2. We say that a Hamiltonian function H = (Ht)t∈S1 ∈
C∞(S1 ×M) is mean-normalized if

∫
∂M̄ Htα∧ ωn−1 = 0 for all t ∈ S1. Unless otherwise stated,

all Hamiltonians in the rest of the paper are mean-normalized.

Definition 2.2. Let G be a compact connected Lie group. A Hamiltonian G-action on
(M̄, ω, θ) is called convex if

• θ is G-invariant and
• the spectrum Spec(∂M̄, α := θ|∂M̄ ) is nowhere dense.

The hypothesis that θ is G-invariant implies that the action on [1,∞)× ∂M̄ is the product
of the trivial action on [1,∞) and a G-action on ∂M̄ .
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Lemma 2.3. Suppose that (M̄, ω, θ) is equipped with an convex Hamiltonian G-action.
Let γ ∈ ΩG ⊂ Ω Ham(M) and Kγ be a generating Hamiltonian function of γ. Then Kγ is a

cylindrical Hamiltonian function. Conversely, if H is a cylindrical Hamiltonian function, then
outside a compact set, the Hamiltonian flow of H on the cylindrical end preserves θ.

Proof. Let v ∈ g and Xv be the induced Hamiltonian vector field. Since θ is G-invariant,
we have

0 = LXvθ = ιXvω + d(rα(Xv|r=1))(7)

The last equality uses that Xv is independent of r on the cylindrical end. Let

sv := −α(Xv|r=1) : ∂M̄ → R.
By (7), Hamiltonian vector field of the Hamiltonian function rsv is Xv. Let Rα be the Reeb
vector field. The function sv, which is the slope of the Hamiltonian function rsv, is invariant
under Reeb flow because Rα(sv) = dsv(Rα) = ω(Xv, Rα)|r=1 = −dr(Xv) = 0. Now, let (Xt)t∈S1

be the vector field which generates γ. By the assumption that γ ∈ ΩG, we know that for each
t ∈ S1, Xt = Xvt for some vt ∈ g. Therefore (Kγ)t(r, y) = rsvt(y) up to a constant so Kγ is a
cylindrical Hamiltonian function. The converse is proved in [R, Lemma C.3]. �

Let B be a smooth finite dimensional closed manifold.

Definition 2.4. We say that p : P → B is an admissible bundle over B if it is a Hamiltonian
fibre bundle with fiber (M,ω, θ) and the structure group lies in G.

Since the G action is convex, p restricts to a subbundle p̄ : P̄ → B with fibres M̄ . Moreover,
there is a radial coordinate function r : P \ P̄ → [1,∞) such that for any fiber p−1(b) , the
symplectic form near the boundary equals to ωb = d(rθb).

Let η : B → R be a Morse function, gη be a Riemannian metric on B satisfying the Morse-
Smale condition and ∇ be a G-connection on P such that ∇ is flat near critical points of η.
The space of such connections ∇ is non-empty and contractible. The set of critical points of η
is denoted by critp(η). A gradient trajectory τ of η is a solution to the negative gradient flow
equation dτ

ds = − grad(η)(τ(s)). For every c ∈ critp(η), we can use the flatness of ∇ near c to
obtain a neighborhood Nc of c together with a decomposition

p−1(Nc) 'M ×Nc(8)

such that ∇ is trivial with respect to the decomposition.

Definition 2.5. We call a triple (η, gη,∇) as above an admissible base triple.

A Hamiltonian function of P is a function H : S1×P → R. For t ∈ S1 and b ∈ B, we denote
its restriction to p−1(b) by Hb : S1 × p−1(b)→ R.

Definition 2.6. A Hamiltonian function H ∈ C∞(S1×P ) is cylindrical if for every b ∈ B,
Hb : S1 × p−1(b)→ R is a cylindrical Hamiltonian.

This is a well-defined notion because the structure group of P is G and Hb being cylindrical
is a property that is invariant under G-action.

Definition 2.7. A cylindrical Hamiltonian H is compatible with (η, gη,∇) if:

• Hc := (Hc,t)t∈S1 is non-degenerate for every c ∈ critp(η)
• locally near each c ∈ critp(η), with respect to the decomposition (8), we have that Hb is

pulled back from the first factor.
• for any gradient trajectory τ of η and two real numbers s1 ≤ s2, we have Hτ(s1) ≥s

Hτ(s2) with respect to the parallel transport map along τ induced by ∇ (recall ≤s from
(6)).
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• for any gradient trajectory τ of η between two critical points c0 and c1, the parallel
transport map does not map a Hamiltonian orbit of Hc0 to a Hamiltonian orbit of Hc1 .

A cylindrical Hamiltonian H is compatible with η if it is compatible with an admissible base triple
(η, gη,∇) for some gη and ∇. A cylindrical Hamiltonian H is admissible if it is compatible with
some η.

Lemma 2.8. Given any admissible base triple (η, gη,∇) and any constant a ∈ R>0\Spec(∂M̄, α),
there is a cylindrical Hamiltonian H that is compatible with (η, gη,∇) with slope sH = a.

Proof. Let a ∈ R>0 \ Spec(∂M̄, α). For each critical point c of η, we first choose a non-
degenerate cylindrical Hamiltonian function Hc on M with slope a. Using the product decom-
position (8), we can pull it back to a cylindrical Hamiltonian over a neighborhood ∪c∈critp(η)Nc

of the critical points of η such that both the first and the second bullets are satisfied. The fact
that Hc is non-degenerate means that all Hamiltonian orbits are lying inside a compact set.
Since there are only finitely many critical points of η (because B is compact and η is Morse),
by a generic perturbation of each individual Hc over a compact set, we can further assume that
the fourth bullet is also satisfied.

We can then smoothly extend the cylindrical Hamiltonian to the rest of P (i.e. over the
complement of ∪c∈critp(η)Nc) such that Hb has slope a for all b ∈ B. Such an extension is always
possible because the space of cylindrical Hamiltonian with a fixed slope is convex. Since the
slope is the same for all Hb, the third bullet is automatically satisfied.

�

A pair ~x = (c, x) consisting of a critical point c of η and a 1-periodic orbit x of Hc in p−1(c)
is called a generator of (η,H). Let Λ be the Novikov field

Λ :=

{ ∞∑
i=0

biq
ri |ri ∈ R, lim

i→∞
ri =∞, bi ∈ C

}
Definition 2.9. The Floer cochain complex of (η,H) is defined to be

CF ∗(P,H, η,Λ) := ⊕Λ · ~x(9)

where the sum is taken over all generators ~x = (c, x) of (η,H).

We often suppress the coefficient field and denote the group by CF ∗(P,H, η). We can define
a Z-grading on CF ∗(P,H, η) as follows. Since we assume that c1(TM) = 0, we can and will
fix once and for all a homotopy class of trivialization of the canonical bundle of M . We then
choose a symplectomorphism identifying M with a reference fibre of P . The structure group of
the bundle P → B is G, which is connected, so it acts trivially on the homotopy class of the
trivialization of the canonical bundle. Therefore, by taking parallel transport from the reference
fibre, we get a well-defined homotopy class of trivialization of the canonical bundle on all other
fibres. We define the grading of ~x = (c, x) to be the sum of the Morse grading of c and the
Floer grading of x, where the Floer grading of x is the Conley-Zehnder index of x with respect
to the homotopy class of trivialization of the canonical bundle of the fibre M over c. Finally,
the Novikov variable q will be of degree zero.

Remark 2.10. The Z-grading on CF ∗(P,H, η) depends (only) on the homotopy class of
trivialization of the canonical bundle of M as well as the symplectomorphism identifying M with
the reference fibre of P .

Choose an S1-dependent fiberwise almost complex structure (Jb)b∈B which is compatible
with (ωb)b∈B and is of contact type in each fiber. Recall that Jb is of contact type if θb ◦ Jb = dr
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outside a compact set of p−1(b). Define the moduli space M̃(~x0, ~x1, (Jb)b∈B) to be the space of
pairs (τ, u) where

• τ : R→ B is a gradient trajectory of η such that lims→−∞ τ(s) = c0 and lims→∞ τ(s) =
c1

• u : R× S1 → P is a smooth map which lifts τ and solves the Floer equation
(duvert −XHτ(s)

⊗ dt)0,1
Jτ(s)

= 0.

lims→−∞ u(s, t) = x0(t)
lims→∞ u(s, t) = x1(t)

(10)

where duvert denotes the projection of du to the fibrewise direction T vertP under the
splitting TP = T vertP ⊕ T horP by ∇.

We let
M(~x0, ~x1) := M̃(~x0, ~x1)/R.

By trivializing P over τ using the connection ∇, a solution (τ, u) ∈ M(~x0, ~x1) can be recast as
either:

• Floer trajectories in the fiber over c0 = c1 (when τ is constant) or
• continuation solutions for a Hamiltonian (Hs,t)(s,t)∈R×S1 with respect to an ω-compatible

almost complex structure of contact type (Js,t)(s,t)∈R×S1 on M (when τ is non constant).

The modui space M(~x0, ~x1) is the zero locus of a Fredholm section and has a well-defined virtual
dimension given by

vdimM(~x0, ~x1) = |~x0| − |~x1| − 1.

For (τ, u) ∈M(~x0, ~x1), its topological energy is defined by

E(u) :=

∫
R×S1

(duvert)∗ω +

∫ 1

0
(Hc0)t(x0(t))dt−

∫ 1

0
(Hc1)t(x1(t))dt.(11)

The term (duvert)∗ω is defined to be the pull-back of the fibrewise 2-form along the composition
T (R × S1) → TP → T vertP . In other words, if we trivialize P along τ by ∇ and identify
u is as a map to a single fibre of P then E(u) is the topological energy in the literature (cf.
[AS, Equation (148)]) and the first term of (11) is the area of u. The space M(~x0, ~x1) splits as
a disjoint union

M(~x0, ~x1) := ∪AM(~x0, ~x1;A).

according to the relative homology class A ∈ H2(P, ~x0∪~x1) of a solution. The topological energy
is a locally constant function on M(~x0, ~x1) which depends only on A, so we can denote it by
E(A).

Proposition 2.11. Let H be a cylindrical Hamiltonian function compatible with η.

• For a generic choice of compatible J that is of contact type, the space M(~x0, ~x1) is a
manifold of the expected dimension for any pair of generators (~x0, ~x1).
• Moreover, if vdimM(~x0, ~x1) ≤ 1, then for any E ∈ R, the moduli space

∪A,E(A)<EM(~x0, ~x1;A)

admits a Gromov compactification ∪A,E(A)<EM(~x0, ~x1;A) making it a compact manifold
with boundary.

Proof. Since M is a symplectic Calabi-Yau manifold with a convex end, the strategy of
proof for both transversality (see e.g. [MS], [HS]) and compactness ([V], [R]) is standard.

To run the transversality argument, we need to avoid solutions (τ, u) such that τ is non-
constant but u is s-independent with respect to the parallel transport map along τ induced by
∇. These solutions are ruled out exactly by the fourth bullet of Definition 2.7.
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To run the argument for compactness, first note that when vdimM(~x0, ~x1) ≤ 1, then by
genericity, we can assume that u(s, t) misses all Js,t-holomorphic spheres for all (s, t) ∈ R× S1

and u ∈M(~x0, ~x1) because the the image of the evaluation map of a 1-pointed Js,t-holomorphic
sphere is of real codimension 4. In particular, we can avoid sphere bubblings. It remains to
show that we have a C0 a priori estimate and a uniform geometric energy bound of solutions
(τ, u). The C0 a priori estimate for u is proved in [R, Theorem C.11]. More precisely, the fact
that H is a cylindrical Hamiltonian implies that conditions (2) and (3) in [R, Theorem C.11] are
satisfied (cf. [R, Theorem C.6]). The condition that (Hz, Jz) becomes independent of s for large
|s| follows from the second bullet of Definition 2.7. The condition ∂sHz ≤ 0 in [R, Theorem
C.11] translates to ∂sHτ(s) ≤ 0 in our setting, which is not necessarily true on the nose because
there is a constant term Hτ(s). But the Floer equation does not depend on the constant term in
Hτ(s) so the Theorem remains valid as long as ∂ssHτ(s)

≤ 0, which is precisely the third bullet
of Definition 2.7.

To obtain the uniform geometric energy bound on u, we suppose that u lies over a given
gradient trajectory τ and trivialize P along this trajectory. We can then apply the standard
energy estimate to give an upper bound to the geometric energy in terms of the topological
energy and the Hamiltonian H. This energy estimate may vary as we vary τ , but the moduli
of gradient trajectories can be compactified by including broken trajectories and so this gives a
uniform upper bound for the geometric energy of u. �

Choose a generic J and define a differential on CF (P,H, η) by

∂CF (~x1) :=
∑

~x0,|~x0|=|~x1|+1

∑
(τ,u)∈M0(~x0,~x1)

s(u)qE(u)~x0(12)

where s(u) ∈ {−1, 1} is the sign of (τ, u). The sum is well-defined because of the compactness of
the moduli (Proposition 2.20). For a discussion of how the signs are determined, see [H, Section
3 and 6].

Lemma 2.12. We have that

∂2
CF = 0

Moreover, HF (P,H, η) := H(CF (P,H, η), ∂CF ) is independent of the choice of J .

2.1. Continuation and invariance. We want to discuss the natural maps arising from
varying H and (η, gη,∇).

Let H ′ be another cylindrical Hamiltonian on P compatible with (η, gη,∇) and such that
the slope sH′b ≥ sHb for all b ∈ B. In this case, we can define the continuation map

HF (P,H, η)→ HF (P,H ′, η)(13)

as follows. A monotone homotopy from H to H ′ is a one-parameter family of cylindrical Hamil-
tonian (Hs)s∈R such that Hs = H ′ for s � 0, Hs = H for s � 0 and for every b ∈ B, we have
∂ss(Hs)b ≤ 0. We say that a monotone homotopy is compatible with (η, gη,∇) if ∂ss(Hs)τ(s)

≤ 0

along any gradient trajectory τ : R→ B of η (again, with respect to the parallel transport map
along τ induced by ∇). Note that for a monotone increasing smooth function ρ : R→ [0, 1] such
that ρ(s) = 0 for s� 0 and ρ(s) = 1 for s� 0, the family

Hs = ρ(s)H + (1− ρ(s))H ′, (for s ∈ R)

is a monotone homotopy that is compatible with (η, gη,∇) if both H and H ′ are compatible
with (η, gη,∇).

Let ~x = (c, x) and ~x′ = (c′, x′) be a generator of CF (P,H, η) and CF (P,H ′, η) respectively.
Choose a one-parameter family of S1-dependent fiberwise compatible almost complex structures
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(Js)s∈R that are of contact type. Define the moduli space M(~x′, ~x, (Hs)s∈R) to be the space of
pairs (τ, u) where

• τ : R→ B is a gradient trajectory of η such that lims→−∞ τ(s) = c′ and lims→∞ τ(s) =
c
• u : R× S1 → P is a smooth map which lifts τ and solves the Floer equation

(duvert −X(Hs)τ(s)
⊗ dt)0,1

(Js)τ(s)
= 0.

lims→−∞ u(s, t) = x′(t)
lims→∞ u(s, t) = x(t)

(14)

The virtual dimension of M(~x′, ~x, (Hs)s∈R) is |~x′| − |~x|. Similarly, M(~x′, ~x, (Hs)s∈R) splits as a
disjoint union

M(~x′, ~x, (Hs)s∈R) := ∪A∈H2(P,~x′∪~x)M(~x′, ~x, (Hs)s∈R;A)

and we can define the topological energy using the same formula (11) with x0 and x1 being
replaced with x′ and x, respectively.

Proposition 2.13. Let (Hs)s∈R be a monotone homotopy from H to H ′ that is compatible
with (η, gη,∇).

• For a generic choice of (Js)s∈R, the space M(~x′, ~x, (Hs)s∈R) is a manifold of the expected
dimension for any pair of generators (~x, ~x′).
• Moreover, if its virtual dimension is ≤ 1, then for any E ∈ R, the union of those

components with E(A) < E admits a Gromov compactification

∪A,E(A)<EM(~x′, ~x, (Hs)s∈R;A)

making it a compact manifold with boundary.

The proof is similar to Proposition 2.20. The compatibility with (η, gη,∇) provides us a C0

a priori estimate of the solutions as above. Therefore, we can define a linear map

κ(Hs)s∈R : CF (P,H, η)→ CF (P,H ′, η)

κ(Hs)s∈R(~x) =
∑

~x′,|~x′|=|~x|
∑

(τ,u)∈M(~x′,~x,(Hs)s∈R) s(τ, u)qE(u)~x′
(15)

where s(u) ∈ {−1, 1} is the sign of (τ, u).

Lemma 2.14. The linear map κ(Hs)s∈R is chain map. Moreover, the induced map on co-
homology is independent of the choice of the (η, gη,∇)-compatible monotone homotopy and the
family of cylindrical almost complex structure.

Proof. The fact that κ(Hs)s∈R is a chain map follows from looking at the boundary of the one

dimensional moduli of M(~x′, ~x, (Hs)s∈R). The induced map on cohomology being independent
of J can be proved by the standard homotopy argument [MS]. To run the argument for the
proof of the independence of choice of monotone homotopy, we need to show that the space of
monotone homotopies that are compatible with (η, gη,∇) is path connected. Indeed, the space
is convex so it is path connected. �

It is more tricky to vary η. Let H and H ′ be cylindrical Hamiltonians that are compatible
with (η, gη,∇) and (η′, g′η,∇′) respectively. Let (ηs)s∈R : B → R be a family of functions such
that ηs = η′ for s� 0 and ηs = η for s� 0, (∇s)s∈R be a family of connections for P → B such
that ∇s = ∇′ for s� 0 and ∇s = ∇ for s� 0, and (Hs)s∈R : P → R be a family of cylindrical
Hamiltonians such that Hs = H ′ for s � 0 and Hs = H for s � 0. We can use ηs to define a
chain map between the Morse cochain of η and η′ by counting solutions τ : R→ B of

d

ds
τ(s) = − grad(ηs, gηs)|τ(s).
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Suppose that (Hs)s∈R is a family of cylindrical Hamiltonian on P which is compatible with
((ηs)s∈R, (gηs)s∈R, (∇s)s∈R) in the sense that

∂ssHτ(s)
≤ 0 along any gradient trajectory τ of ηs, gηs with respect to (∇s)s∈R.(16)

Then, by choosing a generic family of S1-dependent cylindrical almost complex structure of
contact type (Js)s∈R on P , we can define a chain map (the continuation map)

κ(Hs)s∈R,(ηs)s∈R : CF (P,H, η)→ CF (P,H ′, η′)

κ(Hs)s∈R,(ηs)s∈R(~x) =
∑

~x′,|~x′|=|~x|
∑

(τ,u)∈M(~x′,~x,(Hs)s∈R,(ηs)s∈R) s(u)qE(u)~x′
(17)

where M(~x′, ~x, (Hs)s∈R, (ηs)s∈R) is the moduli of rigid solutions (τ, u) such that τ is a gra-
dient trajectory of (ηs, gηs)s∈R and u is a solution of (14) covering τ . The term E(u) and
s(u) ∈ {−1,−1} are again the topological energy (11) and the sign of u, respectively. When
(ηs, gηs ,∇s)s∈R are independent of s, it recovers κ(Hs)s∈R .

In general, the condition (16) is implicit and hard to verify so we introduce the following
defintion.

Definition 2.15. The relation ≤P on the space of cylindrical Hamiltonians on P is defined
by

H ′ ≥P H if there is a /∈ Spec(∂M̄, α) such that min sH′ ≥ a ≥ max sH(18)

To be crystal clear, the definitions are min sH′ := minb∈B min∂p̄−1(b) sH′b and max sH :=

maxb∈B max∂p̄−1(b) sHb . Since Spec(∂M̄, α) is nowhere dense, we can rewrite the condition (18)

as min sH′ > max sH or min sH′ = max sH /∈ Spec(∂M̄, α). Note that this relation is transitive
but not reflexive (cf. (21) and Corollary 2.17).

Lemma 2.16. Let H and H ′ be cylindrical Hamiltonians that are compatible with (η, gη,∇)
and (η′, g′η,∇′) respectively. Suppose that H ′ ≥P H. Then there exist (ηs, gηs ,∇s)s∈R and
(Hs)s∈R as above such that (Hs)s∈R is compatible with (ηs, gηs ,∇s)s∈R. Moreover, the induced
map on cohomology

κ(Hs)s∈R,(ηs)s∈R : HF (P,H, η)→ HF (P,H ′, η′)(19)

is independent of the choice of (ηs, gηs ,∇s)s∈R, (Hs)s∈R and (Js)s∈R.

Proof. For fixed (ηs, gηs ,∇s)s∈R, the space of (Hs)s∈R from H to H ′ that is compatible
with (ηs, gηs ,∇s)s∈R is convex so by a homotopy argument as in the proof of Lemma 2.14, we
conclude that it is independent of the choice of (Hs)s∈R and (Js)s∈R.

To argue that it is independent of the choice of (ηs, gηs ,∇s)s∈R, we first consider the case
that the slopes are constant functions that are independent of b ∈ B. In other words, we have
two real numbers s′, s such that sH′b = s′ and sHb = s for all b ∈ B. Moreover, we have

s′ ≥ s and s′, s /∈ Spec(∂M̄, α). In this case, we can choose a monotone decreasing function
fs : R → [s, s′] such that fs(s) = s′ for s � 0, fs(s) = s for s � 0 and a family (Hs)s∈R
from H to H ′ such that s(Hs)b = fs(s) for all b ∈ B. This choice of (Hs)s∈R is compatible with
any family (ηs, gηs ,∇s)s∈R from (η, gη,∇) to (η′, g′η,∇′). Therefore, we can apply a homotopy
argument with fixed (Hs)s∈R and varying (ηs, gηs ,∇s)s∈R to conclude that (19) is independent
of (ηs, gηs ,∇s)s∈R when sH′b = s′ and sHb = s for all b ∈ B.

Now, we consider the general case. Let š ∈ R>0 /∈ Spec(∂M̄, α) be such that min sH′ ≥ š ≥
max sH . Let Ȟ and Ȟ ′ be a cylindrical Hamiltonian such that sȞb = š = sȞ′b

for all b ∈ B and

is compatible with (η, gη,∇) and (η′, g′η,∇′), respectively.
We are going to show that (19) equals to the composition

HF (P,H, η)→ HF (P, Ȟ, η)→ HF (P, Ȟ ′, η′)→ HF (P,H ′, η′)(20)
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where the first and last maps are independent of choices by Lemma 2.14 and the second map is
independent of choices by above.

First of all, by gluing the auxiliary data defining these three maps, we can show the existence
of (Hs)s∈R that is compatible with (ηs, gηs ,∇s)s∈R.

Conversely, let (ηs, gηs ,∇s)s∈R and (Hs)s∈R be a choice of data used to define (19). By the
independent of choice of (Hs)s∈R, we can assume that it satisfies the following property: there
exists R1 > R2 > 0 such that

• ηs = η′ and ∇s = ∇′ for s < −R2, and ηs = η and ∇s = ∇ for s > R2

• H−R1 = Ȟ ′, HR1 = Ȟ
• for s ∈ [−R1, R1], s(Hs)b is a constant independent of b ∈ B and ∂ssHs ≤ 0

We have shown that the map HF (P, Ȟ, η) → HF (P, Ȟ ′, η′) does not depend on auxiiliary
choices. In particular, we can use (ηs, gηs ,∇s)s∈R to define it. Therefore, by choosing R1 �
R2 � 0, we can make (ηs, gηs ,∇s)s∈R and (Hs)s∈R coincide with the glued data coming the
composition of the three maps in (20), where the firs map corresponds to s < −R1, the second
map corresponds to −R1 < s < R1 and the third map corresponds to s > R1. It shows that
(19) equals to (20).

�

Even though we denote the Floer cohomology as HF (P,H, η), it also depends on (gη,∇). For
the collection of data {(H, η, gη,∇)} such that H is cylindrical and compatible with (η, gη,∇),
we define a reflexive and transitive relation on it by

(H ′, η′, g′η,∇′) ≥P (H, η, gη,∇) if H ′ ≥P H or the quadruples are identical(21)

Clearly, there is an upper bound for any two elements so it forms a directed set.

Corollary 2.17. The collection of cohomology groups

{HF (P,H, η) : H is cylindrical and compatible with (η, gη,∇)}
together with the continuation maps forms a direct system with respect to ≥P .

In particular, when sHb is a constant independent of b ∈ B, then HF (P,H, η) is independent
of the choice of η such that H is compatible with η.

As a consequence of Corollary 2.17, for each a ∈ R>0 \ Spec(∂M̄, α), the Floer cohomology

HF (P, a) := HF (P,H, η)

is independent of admissible H up to natural isomorphisms.

Sketch of proof of Corollary 2.17. For i = 0, 1, 2, let Hi := HF (P,Hi, ηi) be ele-
ments in the collection such that H0 ≤P H1 ≤P H2. Let κij be the continuation map from Hi

to Hj for i ≤ j. By gluing the auxiliary data defining κ01 and κ12, we can express the composi-
tion κ12 ◦κ01 as a map given by counting rigid solutions with respect to the glued auxiliary data.
Since the map H0 → H2 is independent of choices (Lemma 2.16), it shows that κ01 ◦ κ12 = κ02.

�

2.2. Product structure. Let SH∗(P ) := lim−→a
HF (P, a). We are going to define a product

structure on SH∗(P ). Roughly speaking, it comes from counting Floer pair of pants lying over
a Morse gradient tree with two inputs and one output. To ensure that the perturbation term
in the Floer equation is smooth, we need to pay special attention at the trivalent point of the
Morse gradient tree. The details are given in the section.

Let T2,1 be the unique trivalent Stasheff tree with three external edges, two of which are
incoming and one which is outgoing. Each of the two incoming edges ~e1, ~e2 is identified with
[0,∞) and the outgoing edge is identified with (−∞, 0].
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The classical approach to achieving transversality for these operations involves equipping
each edge with a different Morse function. Rather than doing this, we achieve transversality of
gradient flow solutions for maps from T2,1 by perturbing the gradient flow equation (for a single
Morse function). The main definition is the following [A, Definition 2.6]:

Definition 2.18. A gradient flow perturbation datum on T2,1 is a choice, for each edge
e ∈ E(T2,1) of a smoothly varying family of vector fields,

Xe : e→ C∞(TB)

vanishes away from a bounded subset of e.

Given a gradient flow perturbation datum as above, for each edge e ∈ E(T2,1) and any map
τ : e → B, one can ask for τ to solve the perturbed gradient flow equation (for η with respect
to Xe):

d

ds
τ(s) = (− grad(η) +Xe(s))|τ(s) for all s ∈ e.(22)

Definition 2.19. Let η : B → R, be a Morse function and fix gradient flow perturbation
data perturbation data {Xe}i=0,1,2 as above. Suppose that c0, c1, c2 lie in critp(η). With respect
to this data, let

(23) M(c0, c1, c2)

denote the moduli space of continuous maps τ : T2,1 → B whose restriction to each edge is a
solution to (22).

Note that near the vertex, the perturbation data can be arbitrary. It is not difficult to
show that for a generic choice of perturbation data, our moduli spaces are cut out transversally
Somewhat informally, this corresponds to the fact that infinitesimally, solutions to the perturbed
gradient flow equations correspond to intersections of the unstable and stable manifolds under
perturbations by the diffeomorphisms φe given by integrating the vector fields Xe. As the
vector fields Xe can be chosen arbitrarily, these diffeomorphisms are essentially arbitrary (for a
complete proof, see [A, Section 7]). Futhermore, when our data is chosen generically, the zero
dimensional components of the moduli spaces above induce maps between orientation lines as
before, hence an operation on Morse complexes.

Let Σ = P1 \{0, 1, 2}. For i = 1, 2, let εi : [0,∞)×S1 → Σ be a holomorphic embedding such
that lims→∞ εi(s, t) = i ∈ P1. Also let ε0 : (−∞, 0]× S1 → Σ be a holomorphic embedding such
that lims→−∞ εi(s, t) = 0 ∈ P1. In other words, εi is a positive cylindrical end and ε0 a negative
cylindrical end. We require that the images of εi are pairwise disjoint. Let πΣ → T2,1 be the
continuous map such that πΣ(εi(s, t)) = ei(s) for all i = 0, 1, 2, and it maps the complement
of the cylindrical ends of Σ to the trivalent vertex of T2,1. Let a0, a1, a2 ∈ R>0 \ Spec(∂M̄, α)
be such that a0 > a1 + a2. Let (η, gη,∇) be an admissible base triple as before, and Hi be a
cylindrical Hamiltonian of P that is compatible with (η, gη,∇) and has a constant slope ai (cf.
Lemma 2.8). We choose a perturbation data which consists of a domain and time dependent
cylindrical Hamiltonian H = (Hz)z∈Σ of P (i.e. Hz is a S1-dependent cylindrical Hamiltonian
of P ) and β ∈ Ω1(Σ) such that

• if z /∈ εi([1,∞)×S1) for all i, then Hz is time independent and (Hz)b is G-invariant for
all b ∈ B
• for each i = 0, 1, 2, there is R� 0 such that Hεi(s,t) = Hi when |s| > R

• for all z ∈ Σ, s(z) := sHz is a constant function on ∂M̄
• for each i = 0, 1, 2, we have ∂ssHεi(s,t) ≤ 0 over all (s, t)

• β = dt over the cylindrical ends, and
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• d(s(z)β) ≤ 0

The condition that a0 > a1+a2 guarantees the existence of H and β satisfying all the conditions.
We can view H⊗β ∈ Ω1(Σ, C∞(S1×P )) and it will give us a perturbation term in the upcoming
Floer equation we consider.

We also choose a domain and time dependent contact type fibrewise compatible almost
complex structure J = (Jz)z∈Σ of P such that

• for z /∈ εi([1,∞)× S1) for all i, (Jz)b is G-invariant for all b ∈ B
• for each i = 0, 1, 2, there is R � 0 such that Jεi(s,t) = Ji when |s| > R, where Ji is an

almost complex structure defining CF (P,Hi, η)

For i = 0, 1, 2, let ~xi := (ci, xi) a generator in CF (P, si). We define M(~x0, ~x1, ~x2) to be the
moduli space of pairs (τ, u) such that τ ∈ M(c0, c1, c2) and u : Σ → P satisfies the following
statements

• u(z) ∈ Pτ(πΣ(z))

• (duvert −X(Hz)τ(πΣ(z))
⊗ β)0,1

(Js)τ(πΣ(z))
= 0

• lim|s|→∞ u(εi(s, t)) = xi(t),

In the second bullet, duvert is defined with respect to the connection on P → B along τ . Over
the vertex 0 ∈ T2,1, in a prori, there is an ambiguity of the identification of Pτ(0) with M up

to an element in G. However, Hz and Jz are chosen to be G-invariant for z ∈ π−1
Σ (0) so the

Floer equation is independent of this ambiguity. Moreover, the perturbation term and almost
complex structure in the equation depend smoothly on z. The virtual dimension of M(~x0, ~x1, ~x2)
is |~x0| − |~x1| − |~x2|.

For A ∈ H2(P, ~x0 ∪ ~x1 ∪ ~x2), we can define M(~x0, ~x1, ~x2;A) to be the subset of M(~x0, ~x1, ~x2)
such that u∗[Σ] = A. The topological energy of u is defined to be (cf. [AS, Equation (148)])

E(u) =

∫
Σ

(duvert)∗ω −
∫

Σ
d(u∗H ⊗ β)

=

∫
Σ

(duvert)∗ω +

∫ 1

0
(Hc0)t(x0(t))dt−

2∑
i=1

∫ 1

0
(Hci)t(xi(t))dt

which only depends on the class A.

Proposition 2.20. The following statements hold:

• For a generic choice of compatible J that is of contact type, the space M(~x0, ~x1, ~x2) is
a manifold of the expected dimension for any triple of generators (~x0, ~x1, ~x2).
• Moreover, if the virtual dimension is ≤ 1, then for any E ∈ R, the moduli space
∪A,E(A)<EM(~x0, ~x1, ~x2;A) admits a Gromov compactification

∪A,E(A)<EM(~x0, ~x1, ~x2;A)

making it a compact manifold with boundary.

Proof. The main point is again to employ a maximum principle to give a priori C0 estimates
of the solutions. The maximum principle we need is in [R, Remark C.10]. The H in [R, Remark

C.10] corresponds to
(Hz)τ(πΣ(z))

s(z) , which equals to r (up to adding a constant) over the cylindrical

end, and the β in [R, Remark C.10] corresponds to our s(z)β. Since Hz is time independent
away from the cylindrical end, ∂ssHεi(s,t) ≤ 0 over all (s, t) and d(s(z)β) ≤ 0, [R, Remark C.10]

applies. �
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For any pair of generators, define a product

~x1 · ~x2 :=
∑

~x0,|~x0|=|~x1|+|~x2|

∑
(τ,u)∈M(~x0,~x1,~x2)

s(u)qE(u)~x0(24)

and extend it multi-linearly to the Floer complexes.

Proposition 2.21. Let a0 > a1 + a2.

• The product structure CF (P,H1, η)×CF (P,H2, η)→ CF (P,H0, η) descends to a prod-
uct structure on cohomology.
• The cohomological level product structure is independent of the auxiliary choices made

in the construction, namely, cylindrical ends, H = (Hz)z∈Σ, J = (Jz)z∈Σ, and the
perturbation vector field Xe on T2,1.
• Moreover, it is compatible with continuation maps so it induces a (graded-)commutative

and associative product structure on SH∗(P ).

Sketch of Proof. Denote the product structure by

µ2 : CF (P,H1, η)× CF (P,H2, η)→ CF (P,H0, η).

By considering the boundary of 1-dimensional strata of M(~x0, ~x1, ~x2), we get

µ2(d(~x1), ~x2) + µ2(~x1, d(~x2)) = dµ2(~x1, ~x2)

so µ2 descends to cohomology [µ2] : HF (P,H1, η)×HF (P,H2, η)→ HF (P,H0, η).
To see that [µ2] is independent of choice, we apply a cobordism argument. In other words, we

choose a one-parameter family of auxiliary data connecting two the ends (it is possible because
the space of auxiliary data is weakly contractible) and form the corresponding parametrized
moduli space. Counting the rigid elements in the parametrized moduli space gives us a chain
homotopy we need. It is important that the one-parameter family of auxiliary data is chosen
such that maximum principle applies as in the proof of Proposition 2.20.

Once we know that it is independent of auxiliary choices, together with the standard gluing
argument we can prove the (graded-)commutativity and associativity because they correspond
to interpolating two different choices.

The compatibility with continuation map means that

κa0,a′0
([µa0,a1,a2 ](κa′1,a1

(~x1), κa′2,a2
(~x2))) = [µa′0,a′1,a′2 ](~x1, ~x2)

where κj,k : HF (P, j)→ HF (P, k) is the coninuation map when j ≤ k and [µl,j,k] : HF (P, j)×
HF (P.k)→ HF (P, l) is the product structure when l > j + k. This compatibility follows from
the gluing argument and independence of auxiliary choices. �

The product operation can be defined not only for cylindrical Hamiltonians with constant
slopes, it can also be defined as long as the maximum principle can be achieved. The analogue
of Lemma 2.16 for the product operation is as follow.

Lemma 2.22. For i = 0, 1, 2, let Hi be a cylindrical Hamiltonians that is compatible with ηi.
Suppose that max sH1 + max sH2 ≤ min sH0. After making an appropriate auxiliary choice, we
can define a product operation

CF (P,H1, η1)× CF (P,H2, η2)→ CF (P,H0, η0)

Moreover, the induced map on cohomology

HF (P,H1, η1)×HF (P,H2, η2)→ HF (P,H0, η0)(25)

is independent of the auxiliary choice in the construction.
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2.3. Pull-back. We want to discuss the functorality between two admissible bundles with
the same fibre (M,ω, θ) but different bases B and B′ (both B and B′ are smooth closed man-
ifolds). Let h : B′ → B be a smooth map and p′ : P ′ → B′ be the fiber bundle obtained by

pulling back p along h. Let h̃ : P ′ → P be the induced map covering h. Let η and η′ be Morse
functions on B and B′ respectively and assume that H and H ′ are Hamiltonians on P and P ′

that are compatible with (η, gη,∇) and (η′, g′η,∇′) respectively.
Let (Hs)s∈R≥0

and (H ′s)s∈R≤0
be two families of cylindrical Hamiltonians, on P and P ′

respectively, such that Hs = H for s � 0, H ′s = H ′ for s � 0 and h̃∗Hs = h̃∗H0 = H ′0 = H ′s
for s in an open neighborhood of 0. Choose one-parameter families of S1-dependent fiberwise
compatible almost complex structures (Js)s∈R≥0

and (J ′s)s∈R≤0
that are of contact type on P and

P ′, respectively. They are chosen such that Js is independent of s for s� 0, J ′s is independent

of s for s� 0, and h̃∗Js = h̃∗J0 = J ′0 = J ′s for s in an open neighborhood of 0. Note that h̃∗Js
is well-defined because Js is fiberwise and the restriction of h̃ to fibres are isomorphisms.

Given a generator ~x = (c, x) of H and ~x′ = (c′, x′) of H ′, we can consider the moduli space
Mpb(~x

′, ~x, (H ′s)s∈R≤0
, (Hs)s∈R≥0

) which consists of (τ−, τ+, u−, u+) such that

• τ− : (−∞, 0]→ B′ is a gradient trajectory of η′ with lims τ
−(s) = c′,

• τ+ : [0,∞)→ B is a gradient trajectory of η with lims τ
+(s) = c,

• τ+(0) = h(τ−(0)),
• u− : (−∞, 0]× S1 → P ′ is covering τ− and satisfies the Floer equation

(duvert −X(H′s)τ−(s)
⊗ dt)0,1

(J ′s)τ−(s)
= 0

with lims→−∞ u
−(s, t) = x′(t),

• u+ : [0,∞)× S1 → P is covering τ+ and satisfies the Floer equation

(duvert −X(Hs)τ+(s)
⊗ dt)0,1

(Js)τ+(s)
= 0

with lims→∞ u
+(s, t) = x(t),

• u+(0, t) = h̃(u−(0, t)),

Notice that τ(s) := (τ−(−s), τ+(s)) for s ∈ R≥0 is a gradient trajectory of the function
B′×B → R given by (b′, b) 7→ η(b)− η′(b′) starting at a point on graph(h) ⊂ B′×B. Similarly,
let πP : P ′ × P → P and πP ′ : P ′ × P → P ′ be the projection to the factors, then u(s, t) :=
(u−(−s, t), u+(s, t)) ∈ P ′ × P for (s, t) ∈ R≥0 × S1 is a solution to the Floer equation

(duvert −Xπ∗P (Hs)τ+(s)−π
∗
P ′ (H

′
−s)τ−(−s)

⊗ dt)0,1
−(J−s)τ−(−s)⊕(Js)τ+(s)

= 0(26)

covering τ with fiberwise Lagrangian boundary condition graph(h̃) ⊂ P ′ × P over τ(0) along
{0} × S1 ⊂ R≥0 × S1.

From this perspective (so-called ‘folding’ in [WW]), we can apply the standard Fredholm
theory package to study Mpb(~x

′, ~x, (H ′s)s∈R≤0
, (Hs)s∈R≥0

).

Lemma 2.23. For generic choice of (Js)s∈R≥0
and (J ′s)s∈R≤0

as above, every element in

the moduli space Mpb(~x
′, ~x, (H ′s)s∈R≤0

, (Hs)s∈R≥0
) is regular so it is a manifold of the expected

dimension.

Proof. By our assumptions on Hs and H ′s, when s is close to 0 and (p, p′) ∈ graph(h̃), we

have Hs,t(p) −H ′−s,t(p′) = 0 because h̃∗Hs = h̃∗H0 = H ′0 = H ′s for s in an open neighborhood
of 0. In other words, the Hamiltonian perturbation term

Xπ∗PHs,t−π
∗
P ′H

′
−s,t

dt|T vert graph(h̃)
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is zero along the fiberwise Lagrangian boundary condition graph(h̃) so it falls into the standard
Floer theory package (see [S4, (8.6)], [WW, Section 5], [C, (4.70)]). Therefore, the standard
transversality proof applies. �

Next, we want to impose conditions on (Hs)s∈R≥0
and (H ′s)s∈R≤0

to ensure compactness of

moduli. As before, we define the topological energy E(u−, u+) of (τ−, τ+, u−, u+) to be

E(u−, u+) = E(u−) + E(u+)(27)

E(u−) =

∫
(−∞,0]×S1

((du−)vert)∗ω +

∫ 1

0
(Hc′)t(x

′(t))dt

E(u+) =

∫
[0,∞)×S1

((du+)vert)∗ω −
∫ 1

0
(Hc)t(x(t))dt

It only depends on the relative homology class of its folding u : [0,∞)× S1 → P ′ × P , relative
to the fibrewise Lagrangian boundary condition and the asymptotic orbit (cf. (26)).

Lemma 2.24. Suppose that ∂ss(Hs)τ+(s)
≤ 0 and ∂ss(H′s)τ−(s)

≤ 0 for all s, and for all gradient

trajectory τ+ and τ− of η+ and η−, respectively. If the virtual dimension of the modui space
Mpb(~x

′, ~x, (H ′s)s∈R≤0
, (Hs)s∈R≥0

) is ≤ 1, then for any E ∈ R, the subspace of solutions with
topological energy at most E admits a Gromov compactification to a compact manifold with
boundary.

Proof. It suffices to prove an a priori C0 bound for the solutions. By trivializing P ′ over
τ− using ∇′, trivializing P over τ+ using ∇ and identifying fibres of P ′ to fibres of P using h̃,
we can regard u− and u+ as smooth maps to a fibre (M,ω, θ), say the fibre P ′τ−(0) ' Pτ+(0).

The map u−#u+ : R× S1 →M defined by

(u−#u+)(s, t) :=

{
u−(s, t) for s ≤ 0
u+(s, t) for s ≥ 0

(28)

is piecewise smooth and hence Lipschitz. Therefore, the first weak derivative exist [E, 5.8.2b].

Recall that h̃∗Hs = h̃∗H0 = H ′0 = H ′s and h̃∗Js = h̃∗J0 = J ′0 = J ′s for s in an open
neighborhood of 0. Therefore, u−#u+ satisfies a Floer equation with smooth auxiliary data
(both H and J). The existence of the first weak derivative of u−#u+ allows us to apply elliptic
bootstrapping [MS, Theorem B.4.1], so it is actually smooth. The required C0 estimate now
follows from maximum principle [R, Theorem C.11] (cf. proof of Proposition 2.20). �

The virtual dimension of Mpb(~x
′, ~x, (H ′s)s∈R≤0

, (Hs)s∈R≥0
) is |~x′| − |~x|. To see this, since we

are using cohomological convention, the virtual dimension of the moduli of pairs of gradient
trajectory (τ−, τ+) with h(τ−(0)) = τ+(0) is precisely |c′| − |c|, where | · | is the Morse index.
Therefore, by trivializing over τ− and τ+, we see that the virtual dimension of (u−, u+) for a
given (τ−, τ+) is |x′| − |x|. Therefore, the virtual dimension is |c′| − |c|+ |x′| − |x| = |~x′| − |~x|.

Lemma 2.25. Suppose that ∂ss(Hs)τ+(s)
≤ 0 and ∂ss(H′s)τ−(s)

≤ 0 for all s, and for all gradient

trajectory τ+ and τ− of η+ and η−, respectively. The pull-back defined by

CF ∗(P,H, η)→ CF ∗(P ′, H ′, η′)

~x 7→
∑

~x′,|~x′|=|~x|

∑
(u−,u+)∈Mpb(~x′,~x,(H′s)s∈R≤0

,(Hs)s∈R≥0
)

s(u−, u+)qE(u−,u+)~x′(29)

is a degree preserving chain map, where s(u−, u+) ∈ {−1, 1} is the sign.
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Lemma 2.26. Suppose that H ′ ≥P ′ h̃∗H. Then there exist (H ′s)s∈R≤0
and (Hs)s∈R≥0

as above
such that the assumptionn of Lemma 2.25 is satisfied (and hence the pull-back map (29) is well-
defined). Moreover, the induced map on cohomology is independent of the choice of (H ′s)s∈R≤0

,

(Hs)s∈R≥0
, (Js)s∈R≥0

and (J ′s)s∈R≤0
.

Proof. The arguments are in parallel with the proof of Lemma 2.16 so we will omit. �

The following is the analogue of Corollary 2.17.

Corollary 2.27. Suppose that h′ : B′′ → B′ is another smooth map between smooth compact
manifolds, and P ′′ → B′′ is the pull-back of P ′ → B′ along h′. Let h̃′ : P ′′ → P ′ be the induced
map covering h′. Suppose that H ′′ ≥P ′′ (h̃′)∗H ′ and H ′ ≥P ′ h̃∗H. Then the composition of the
pull-back maps HF ∗(P,H, η)→ HF ∗(P ′, H ′, η′) and HF ∗(P ′, H ′, η′)→ HF ∗(P ′′, H ′′, η′′) is the
pull-back map HF ∗(P,H, η)→ HF ∗(P ′′, H ′′, η′′).

Example 2.28. Let h : B′ → B (and hence h̃ : P ′ → P ) be an embedding. Let (η, gη,∇)
be chosen such that there is no gradient trajectory τ of η connecting two critical points with
lims→−∞ τ(s) ∈ B′ and lims→∞ τ(s) /∈ B′, and every gradient trajectory of η connecting two
critical points in B′ is completely lying inside B′. Let H be a cylindrical Hamiltonian that is
compatible with (η, gη,∇). Suppose that (η′, g′η,∇′) and H ′ are the restriction of (η, gη,∇) and H
to P ′ and B′. Then CM(B′, η′, g′η) is naturally a quotient complex of CM(B, η, gη) and the in-
duced map on cohomology coincide with the Morse theoretic pull-back. Similarly, CF (P ′, H ′, η′)
is naturally a quotient complex of CF (P,H, η) and the induced map on cohomology coincide with
the Floer theoretic pull-back introduced above.

Lemma 2.29. Let E1 ⊂ E2 ⊂ . . . be a sequence of smooth compact manifolds. Let Pn :=
En × M and view the projection to the first factor as an admissible bundle over En. Then
lim←−nHF

∗(Pn, a) = lim←−n(H∗(En)⊗HF ∗(M,a)) = (lim←−nH
∗(En))⊗HF ∗(M,a).

Proof. Let HM be a non-degenerate cylindrical Hamiltonian of M with constant slope a.
Let πM : Pn → M be the projection so π∗MHM is a cylindrical Hamiltonian of Pn. Choose a
Morse function η : En → R and take ∇ to be the trivial connection. Let H be a C2 small
perturbation of π∗MHM in a compact set so that it is a still cylindrical Hamiltonian of Pn with
constant slope a and it is compatible with (η, gη,∇) such that Hc = HM for every critical point
c of η.

Suppose that (τ, u) is a solution contributing to the differential. Then πM ◦ u satisfies the
Floer equation

(d(πM ◦ u)−XHτ(s)
⊗ dt)0,1

Jτ(s)
= 0

When the perturbation is sufficiently small (so that Hτ(s) is very close to HM for all s), the
virtual dimension of πM ◦ u must be at least 0, and when it is 0, the input and the output are
the same orbit. This identifies CF ∗(Pn, H, η) with CM∗(En, η) ⊗ CF ∗(M,HM ) as a cochain
complex so HF ∗(Pn, a) = H∗(En)⊗HF ∗(M,a).

When we consider Pn ⊂ Pn+1, we can choose η on En+1 such that the critical points of η
outside En forms a subcomplex, and any gradient trajectory connecting two critical points in
En is contained in En. Then the pull-back map CF (Pn+1, H, η) → CF (Pn, H|Pn , η|En) can be
identified with restricting to the quotient complex obtained by killing the generators outside Pn.
When the perturbation is sufficiently small, it can in turn be identified with the natural map
CM∗(En+1, η)⊗ CF ∗(M,HM )→ CM∗(En, η|En)⊗ CF ∗(M,HM ) so the result follows. �

Lemma 2.30. The pull-back map SH∗(P )→ SH∗(P ′) is an algebra map.
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Sketch of proof. The proof of Lemma 2.30 combines the ideas in Section 2.2 and this
section. The moduli space we need to construct consists of solutions (τ, u) of a coupled equation.
The domain of τ is T2,1 and the target is B tB′. There is r ∈ R such that τ({s ≤ r}) ⊂ B′ and
τ({s ≥ r}) ⊂ B, where s : T2,1 → R is the coordinate function on the edges of T2,1. The map
τ is a negative (Xe-perturbed) gradient trajectory over any edge and it satisfies the matching
condition h(τB′({s = r})) = τB({s = r}), where τB′ := τ |{s≤r} and τB := τ |{s≥r}. On the other

hand, u : Σ = P1 \ {0, 1, 2} → P ′ t P is a lift of τ that satisfies an appropriate Floer equation.
We can compactify this moduli space. If we consider the boundary of the compactification of
the one dimensional moduli space, then the limit when r goes to −∞ corresponds to taking the
product in SH∗(P ) and then pulling back to SH∗(P ′). Similarly, the limit when r goes to ∞
corresponds to pulling back two classes from SH∗(P ) to SH∗(P ′) and then taking the product
in SH∗(P ′).

�

Lemma 2.31. Suppose that h : B′ → B is a fibre bundle with fibres F such that H0(F ;C) = C,
and H∗(F ;C) = 0 otherwise. Then the pull-back map induces an isomorphism HF ∗(P, a) '
HF ∗(P ′, a).

Proof. We pick an admissible base triple (η, gη,∇) for P → B. Let g′ be a Riemannian
metric on B′ such that h is a Riemannian submersion. Let N be a neighborhood of the critical
points of η such that ∇ is flat over N . So the bundle P ′ over h−1(N) can be identified with
P ′|h−1(N) = M × h−1(N) = M × F × N . Let η′ : B′ → R be a Morse function obtained by

perturbing h∗η inside h−1(N). We pick η′ such that (η′, g′, h∗∇) is an admissible base triple.
We define a descending filtration on the chain complex CF ∗(P, a) and CF ∗(P ′, a) by taking

F pCF ∗(P, a) and F pCF ∗(P ′, a) to be the subcomplex generated by ~x = (c, x) such that |c| ≥ p,
and the subcomplex generated by ~x′ = (c′, x′) such that |h(c′)| ≥ p, respectively. By our choice
of admissible base triples, the pull-back map respects the fibration (i.e. it maps F pCF ∗(P, a) to
F pCF ∗(P ′, a)). It induces a homomorphism of the corresponding spectral sequences.

The E1-page of CF ∗(P, a) is given by (⊕c∈critp(η)HF
∗−|c|(M,a), d1), where the restriction of

d1 to the group HF (M,a) over c is the sum of the continuation map over each rigid gradient
trajectory with input c. On the other hand, by Lemma 2.29, the E1-page of CF ∗(P ′, a) is

given by (⊕c∈critp(η)H
∗(F ) ⊗ HF ∗−|c|(M,a), d′1). By our assumption on H∗(F ;C), we have

H∗(F )⊗HF ∗−|c|(M,a) = HF ∗−|c|(M,a). The homomorphism between the components of the

E1-pages can be identified with H∗(point) ⊗HF ∗−|c|(M,a) → H∗(F ) ⊗HF ∗−|c|(M,a) so it is
an isomorphism. This finishes the proof.

�

2.4. Push-forward. We now explain how to define the push-forward map in this setup by
simply reversing the s-direction. To clarify, we follow the notation set up in the first paragraph
of the previous section.

This time we let (Hs)s∈R≤0
and (H ′s)s∈R≥0

be two families of cylindrical Hamiltonians, on

P and P ′ respectively, such that Hs = H for s � 0, H ′s = H ′ for s � 0 and h̃∗Hs = h̃∗H0 =
H ′0 = H ′s for s in an open neighborhood of 0. Choose one-parameter families of S1-dependent
fiberwise compatible almost complex structures (Js)s∈R≤0

and (J ′s)s∈R≥0
that are of contact type

on P and P ′, respectively. They are chosen such that Js is independent of s for s � 0, J ′s is

independent of s for s� 0, and h̃∗Js = h̃∗J0 = J ′0 = J ′s for s in an open neighborhood of 0.
Given a generator ~x = (c, x) of H and ~x′ = (c′, x′) of H ′, we can consider the moduli space

Mpf (~x; ~x′, (Hs)s∈R≤0
, (H ′s)s∈R≥0

) which consists of (τ−, τ+, u−, u+) such that

• τ− : (−∞, 0]→ B is a gradient trajectory of η with lims τ
−(s) = c,
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• τ+ : [0,∞)→ B′ is a gradient trajectory of η′ with lims τ
+(s) = c′,

• h(τ+(0)) = τ−(0),
• u− : (−∞, 0]× S1 → P is covering τ− and satisfies the Floer equation

(duvert −X(Hs)τ−(s)
⊗ dt)0,1

(Js)τ−(s)
= 0

with lims→−∞ u
−(s, t) = x(t),

• u+ : [0,∞)× S1 → P ′ is covering τ+ and satisfies the Floer equation

(duvert −X(H′s)τ+(s)
⊗ dt)0,1

(J ′s)τ+(s)
= 0

with lims→∞ u
+(s, t) = x′(t),

• h̃(u+(0, t)) = u−(0, t),

The analogue of Lemma 2.23 and 2.24 are true. Moreover, the virtual dimension of the
moduli space Mpf (~x; ~x′, (Hs)s∈R≤0

, (H ′s)s∈R≥0
) is |~x|−|~x′|−dim(B)+dim(B′) because the virtual

dimension of (τ−, τ+) is |c|−dim(B)+ |c′|−dim(B′) this time. It leads to the following analogue
of Lemma 2.25, 2.26 and Corollary 2.27.

Lemma 2.32. Suppose that ∂ss(H′s)τ+(s)
≤ 0 and ∂ss(Hs)τ−(s)

≤ 0 for all s, and for all gradient

trajectory τ+ and τ− of η+ and η−, respectively. The push-forward defined by

CF ∗(P ′, H ′, η′)→ CF ∗(P,H, η)

~x′ 7→
∑

~x,|~x|=|~x′|+dim(B)−dim(B′)

∑
(u−,u+)∈Mpf (~x,~x′,(Hs)s∈R≤0

,(H′s)s∈R≥0
)

s(u−, u+)qE(u−,u+)~x(30)

is a chain map of degree dim(B)− dim(B′), where E(u−, u+) is defined by (27) and s(u−, u+)
is the sign.

Lemma 2.33. Suppose that h̃∗H ≥P ′ H ′. Then there exist (Hs)s∈R≤0
and (H ′s)s∈R≥0

as
above such that the assumption of Lemma 2.32 is satisfied (and hence the pull-forward map
(30) is well-defined). Moreover, the induced map on cohomology is independent of the choice of
(Hs)s∈R≤0

, (H ′s)s∈R≥0
, (Js)s∈R≤0

and (J ′s)s∈R≥0
.

Corollary 2.34. Suppose that h′ : B′′ → B′ is another smooth map between smooth compact
manifolds, and P ′′ → B′′ is the pull-back of P ′ → B′ along h′. Let h̃′ : P ′′ → P ′ be the induced
map covering h′. Suppose that (h̃′)∗H ′ ≥P ′′ H ′′ and h̃∗H ≥P ′ H ′. Then the composition of the
push-forward maps HF ∗(P ′′, H ′′, η′′) → HF ∗(P ′, H ′, η′) and HF ∗(P ′, H ′, η′) → HF ∗(P,H, η)
is the push-forward map HF ∗(P ′′, H ′′, η′′)→ HF ∗(P,H, η).

The analog of Lemma 2.30 is the following.

Lemma 2.35. Denote the pushfoward and pullback by h∗ : SH∗(P ′) → SH∗−dim(B)(P ) and
h∗ : SH∗(P )→ SH∗(P ′), respectively. Then we have h∗(~x

′h∗(~x)) = h∗(~x
′)~x for all ~x′ ∈ SH∗(P ′)

and ~x ∈ SH∗(P ).

Proof. It is the same as Lemma 2.30 except that one of the two inputs and the output of
the elements in the moduli space are swapped. �

3. Equivariant Floer theory

Let K ⊂ G be a connected closed subgroup.2 Let EK1 ⊂ EK2 ⊂ . . . be a K-equivariant
smooth finite dimensional approximation of a classifying space EK. In particular, each EKn

is a compact smooth manifold, ∪nEKn = EK and the connectivity of EKn goes to infinity

2We mainly consider K to be a maximal torus T or K = G in the paper.
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as n goes to infinity. Let BKn := EKn/K. For a manfiold X with a K action, we denote
(X × EKn)/K by Xborel,n and (X × EK)/K by Xborel.

Let P → B be an admissible bundle as in the previous section (see Definition 2.4). We say
that a K-action on P is compatible with the admissible structure if it covers a K-action on B
and the induced map Pborel,n → Bborel,n is an admissible bundle (so the structure group lies in
G) for all n. Notice that a choice of a symplectomorphism between M and a reference fibre of
P → B induces a symplectomorphism between M and a reference fibre of Pborel,n → Bborel,n
that is well-defined up to an element in G. As a result, it induces a well-defined homotopy class
of trivialization of the canonical bundle of the reference fibre so a choice of Z-grading on CF (P )
determines a choice of Z-grading on CF (Pborel,n). We assume for the rest of the paper that if
B carries a K-action, then B also admits a K-orientation.

Example 3.1. If P = M and B is a point, then a K-action on P is compatible with the
admissible structure if and only if Mborel,n → BKn is admissible. This will hold if and only if
the K action on P (= M) factors through the convex G action on M .

Definition 3.2. Let a ∈ R>0 \ Spec(∂M̄, α). Suppose that P has a K-action that is com-
patible with the admissible structure. Then we define

HF ∗K(P, a) := lim←−
n

HF ∗(Pborel,n, a)(31)

where the inverse limit is defined with respect to pull-back induced by the inclusion Pborel,n →
Pborel,n+1 for all n.

This definition is well-defined thanks to Corollary 2.17 and 2.27.

Lemma 3.3. The collection {HF ∗K(P, a) : a ∈ R>0 \ Spec(∂M̄, α)} forms a direct system.

Proof. It is a consequence of Corollary 2.17 and 2.27. �

Definition 3.4. The K-equivariant symplectic cohomology of P is defined to be

SH∗K(P ) = lim−→
a

HF ∗K(P, a)

Continuing with Example 3.1, if P = M , then SH∗K(M) is the K-equivariant symplectic
cohomology of M . It is the main object of interest in Section 4.

For our later applications, we mainly consider the case P = B ×M and K is the diagonal
action. However, some results we need use P that are not of product type (e.g. Proposition 3.5
and Lemma 3.7).

3.1. Useful properties.
3.1.1. Free actions.

Proposition 3.5. Suppose that K acts on P in a way compatible with the admissible struc-
ture such that its action on B is free. Then for any a ∈ R>0 \ Spec(∂M̄, α), there is an
isomorphism

HF ∗(P ′, a) ' HF ∗K(P, a)(32)

Proposition 3.5 is a consequence of the following:

Proposition 3.6. Let P ′ → B′ be an admissible bundle. Let B1 ⊂ B2 ⊂ . . . be a sequence
of closed smooth manifolds such that there is a sequence hn : Bn → B′ making Bn a EKn-bundle
over B′ and hn+1|Bn = hn. Let Pn → Bn be the admissible bundle obtained by pulling back along
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hn. Then for any a ∈ R>0 \Spec(∂M̄, α), the pull-back maps HF ∗(P ′, a)→ HF ∗(Pn, a) induces
an isomorphism

HF ∗(P ′, a) ' lim←−
n

HF ∗(Pn, a).(33)

Proof of Proposition 3.5 assuming Proposition 3.6. For each n, Pborel,n is the pull-
back of P ′ → B′ along the EKn-bundle map hn : Bborel,n → B′. The result directly follows from
Proposition 3.6. �

Proof of Proposition 3.6. The strategy of proof is similar to Lemma 2.31. We can set
up the admissible base triples (ηn, gn,∇n) and (η′, g′,∇′) for Pn → Bn and P ′ → B′ as in the
proof of Lemma 2.31 so we get a homomorphism of the respective E1-page

⊕c′∈critp(η′)HF
∗−|c′|(M,a)→ ⊕c′∈critp(η′)H

∗(EKn)⊗HF ∗−|c′|(M,a)(34)

Recall from the paragraph after Defintion 2.9 that we have a Z-grading on the Floer complexes.
With a being fixed, there is N > 0 such that HF k(M,a) = 0 for all |k| > N and all c′ ∈ critp(η′).
We can take n large enough such that Hk(EKn) = 0 for 1 ≤ k ≤ 2N+dim(B′). It ensures that as

a spectral sequence, the RHS of (34) has a direct summand given by H0(EKn)⊗HF ∗−|c′|(M,a).
The map (34) gives an isomorphism between the LHS and this direct summand. When we take
inverse limit over n (cf. Lemma 2.29), only this summand survives so it gives the desired
isomorphism (33).

�

3.1.2. Classifying models.

Lemma 3.7. The definition HF ∗K(P, a) is independent of the choice of the classifying space
EK and the finite smooth approximation {EKn}n.

Proof. Let E′K be another classifying space with finite smooth approximation {E′Kn′}n′ .
For a K-manifold M , we denote (M × EKn × E′Kn′)/K by Mborel,n,n′ . We use the convention
that Mborel,0,n′ = (M × E′Kn′)/K and Mborel,n,0 = (M × EKn)/K.

In particular, we have the projection map hn : Bborel,n,n′ → Bborel,0,n′ . The admissible bundle
Pborel,n,n′ → Bborel,n,n′ is precisely the pull-back of the admissible bundle Pborel,0,n′ → Bborel,0,n′
along hn. Therefore, by Proposition 3.6, we have

HF ∗(Pborel,0,n′ , a) ' lim←−
n

HF ∗(Pborel,n,n′ , a)

for any n′. As a result, we have

lim←−
n′
HF ∗(Pborel,0,n′ , a) = lim←−

n′
lim←−
n

HF ∗(Pborel,n,n′ , a) = lim←−
n

HF ∗(Pborel,n,0, a)

showing the independence of the choice of the classifying space and finite smooth approximation.
�

3.1.3. Product structure. Another important property of SH∗K(P ) is that it admits a product
structure. To see this, note that we have the following commutative diagram

(35)

HF (Pn+1, a1)×HF (Pn+1, a2) HF (Pn+1; a0)

HF (Pn, a1)×HF (Pn, a2) HF (Pn; a0)

when a0 > a1 + a2, where the rows are the product operations from Proposition 2.21. The
commutativity of (35) comes from the compatibility between pull-back maps and the product



22 EDUARDO GONZÁLEZ, CHEUK YU MAK, AND DAN POMERLEANO

structure, which can be proved in the same way as Lemma 2.30 and we leave the details to
readers. Therefore, by taking the inverse limit in n, we get a product operation

HFK(P, a1)×HFK(P, a2)→ HFK(P ; a0)

The compatibility with continuation maps (see Proposition 2.21) imply that we can take direct
limit and get a product structure on SH∗K(P ). The product structure on SH∗K(P ) is graded-
commutative and associative.

3.1.4. Weyl group action. Recall that G is a connected compact Lie group which acts on
M (see Section 2). Let T ⊂ G be a maximal torus and N(T ) be the normalizer of T . Let
W = N(T )/T be the Weyl group. Let P → B be an admissible bundle with a compatible G
action.

Lemma 3.8. For any constant a ∈ R>0 \ Spec(∂M̄, α), we have

HF ∗G(P, a) ' HF ∗N(T )(P, a)(36)

Proof. For each n, the map (P × EGn)/N(T ) → (P × EGn)/G is a fibre bunle with
fibre G/N(T ). Since H∗(G/N(T );C) = H∗(point;C), we can apply Lemma 2.31 to get the
isomorphism HF ∗((P × EGn)/G, a) ' HF ∗((P × EGn)/N(T ), a). The result follows from
passing to inverse limit. �

Lemma 3.9. For any constant a ∈ R>0 \ Spec(∂M̄, α), we have

HF ∗T (P, a)W ' HF ∗N(T )(P, a)(37)

Proof. The map
(P × EGn)/T → (P × EGn)/N(T )

is a covering map which covers the corresponding covering map of their bases (B ×EGn)/T →
(B×EGn)/N(T ). We can use an admissible base triple and Floer data on (P×EGn)/T → (B×
EGn)/T that come from pulling back an admissible base triple and a compatible Floer data on
(P ×EGn)/N(T )→ (B×EGn)/N(T ). The compatibility of Floer data on (P ×EGn)/N(T )→
(B × EGn)/N(T ) implies that the pull-back data on (P × EGn)/T → (B × EGn)/T is also
compatible. Moreover, there is a isomorphism of

CF ∗((P × EGn)/T, a)W ' CF ∗((P × EGn)/N(T ), a)(38)

coming from sending (c, x) ∈ CF ∗((P × EGn)/N(T ), a) to the sum over its lifts devided by
|W |. It induces an isomorphism on the cohomology H(CF ∗((P × EGn)/T, a)W ) ' CF ∗((P ×
EGn)/N(T ), a). Moreover, since Λ has characteristic 0, we have

H(CF ∗((P × EGn)/T, a)W ) = HF ∗((P × EGn)/T, a)W

By passing to the inverse limit, we get the result.
�

4. Equivariant Seidel morphism

Let T ⊂ G be a maximal torus. In this section, we are going to construct an equivariant
Seidel map:

S : ĤT
∗ (ΩG)⊗ SH∗T (M)→ SH∗T (M).(39)

The papers [S2], [C2], [GMP] consider similar constructions in the context of quantum co-
homology for closed monotone, symplectic manifolds, and [CL] uses an algebraic approach to
give a similar construction for quantum K-theory of G/P . As explained in the introduction, a
crucial technical difference for SH∗T (M) is to achieve the maximum principle for the cylindrical
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Hamiltonians obtained by pulling back along a family of loops (cf. the discussion after (42)
below).

4.1. Overview. As the construction of (39) involves a number of steps, we devote this
subsection to providing an overview of our work. The actual construction is obtained by a
smooth finite dimensional approximation of the overview here.

We work with an alternative model for ĤT
∗ (ΩG), Hgeo,T

∗ (ΩG), which represents cycles as
tuples (B,α, f) such that B is a smooth oriented, closed manifold with T -action, α ∈ H∗T (B,Z),
and f : B → ΩG is a smooth, T -equivariant map (see §4.4). These cycles are considered up
to an appropriate notion of equivalence. To construct (39), it suffices to construct, for any
T -equivariant smooth map f : B → ΩG, a map:

Sf : H∗T (B)× SH∗T (M)→ SH∗T (M)(40)

which respects the various equivalence relations imposed in geometric homology. Let

PB := (B ×M)borel = (B × ET ×M)/T.

For a cylindrical Hamiltonian H ∈ C∞(S1×PB), let H̃ : S1×B×ET ×M → R be its lift. We
define

f∗H̃ : S1 ×B × ET ×M → R

f∗H̃t(b, y,m) = H̃t(y, (f(b)(t)) ·m)−Kf(b),t((f(b)(t)) ·m)
(41)

where Kf(b) : S1 ×M → R is the mean-normalized Hamiltonian (see the definition after (6))

generating the based loop f(b) ∈ ΩG ⊂ Ω Ham(M). The Hamiltonian f∗H̃ is T -invariant and
it descends to a cylindrical Hamiltonian, denoted by f∗H, on PB.

The key ingredient (beyond those already introduced) needed for (40) is the tautological
isomorphism

C :HF ∗(PB; f∗H) ' HF ∗(PB;H).(42)

A priori, even if H is compatible with η : Bborel → R, this doesn’t imply that f∗H is compatible
with η. This is because even if H has a constant slope sHb ≡ a ∈ R≥0 \ Spec(∂M̄, α) for all
b ∈ Bborel, f∗H does not have to have constant slope due to the second term in (41). However,
we will show in §4.2.2 and §4.2.3 that there are sufficiently many H such that both H and f∗H
are compatible with some η, and both sH and sf∗H are bounded functions even though PB is
infinite dimensional.

Let H ′ be a cylindrical Hamiltonian on PB with constant slope a′ such that

H ′ ≤PB f
∗H.

We can define a map

H∗T (B)×HF ∗T (M ; a′)→ HF ∗T (M ; f∗H)(43)

by composing the acceleration map from H ′ to f∗H with the Floer theoretic pull-back

H∗T (B)×HF ∗T (M ; a′)→ HF ∗(PB;H ′)(44)

More precisely, the map (44) is the composition of the Floer theoretic pull-back map induced by
(B ×ET ×M ×ET )/T → Bborel ×Mborel and the isomorphism induced by the pull-back along
the map (B × ET ×M × ET )/T → PB.

On the other hand, let H ′′ be a cylindrical equivariant Hamiltonian on PB with constant
slope a′′ such that

H ≤PB H
′′.
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We can define a map

HF ∗(PB;H)→ HF ∗T (M ; a′′)(45)

by composing the acceleration map from H to H ′′ and the Floer theoretic push-forward

HF ∗(PB;H ′′)→ HF ∗T (M ; a′′)(46)

The map (46) is induced by pushing forward along the composition map PB → (ΩG×M)borel →
Mborel. By composing (43), (42) and (45), we get

H∗T (B)×HF ∗T (M ; a′)→ HF ∗T (M ; a′′)(47)

Letting a′ and a′′ go to infinity, (47) becomes (40).

Remark 4.1. We emphasize that some of the maps above do not preserve gradings. The
necessary grading shifts for these maps are discussed in the subsequent subsections.

4.2. Tautological isomorphism. In this subsection, we are going to prove the isomor-
phism (42).

4.2.1. Identifying Hamiltonian loops. We start with some basic properties. The following
lemma is standard. A proof can be found in e.g. [O, Section 2.3].

Lemma 4.2. Let H,H ′ : S1 × M → R be Hamiltonian functions. Denote their time t
Hamiltonian flow by φtH and φtH′ respectively. Then

(1) (φtH ◦ φtH′)t∈S1 is generated by (H#H ′)t(x) := Ht(x) +H ′t((φ
t
H)−1(x))

(2) (φ−tH )t∈S1 is generated by Ht(x) := −Ht(φ
t
H(x))

(3) for any ψ ∈ Symp(M), ψ−1 ◦ φtH ◦ ψ is generated by Ht(ψ(x))

Let H̃ : S1 × B × ET × M → R be a Hamiltonian function. We define f∗H̃ : S1 ×
B × ET ×M → R by (41). Notice that if H̃ is an T -equivariant Hamiltonian function (i.e.

H̃t(gb, gy, gm) = H̃t(b, y,m) for all g ∈ T ), then so does f∗H̃ because

(f∗H̃)t(gb, gy, gm) = H̃t(gb, gy, (f(gb)(t))m)−Kf(gb),t((f(gb)(t))gm)

= H̃t(gb, gy, (gf(b)(t)g−1)gm)−Kgf(b)g−1,t((gf(b)(t)g−1)gm)

= H̃t(gb, gy, g(f(b)(t))m)−Kf(b),t(g
−1(gf(b)(t)g−1)gm)

= (f∗H̃)t(b, y,m)

Lemma 4.3 (cf. [S3], Lemma 2.3). Let H̃ : S1×B×ET×M → R be a Hamiltonian function.

For any (b, y) ∈ B × ET , if (x(t))t∈S1 is a Hamiltonian orbit of H̃(b, y, ·), then the loop (t 7→
(f(b)(t))−1x(t))t∈S1 is a Hamiltonian orbit of (f∗H̃)(b, y, ·) = H̃(b, y, f(b)(t)·)−Kf(b),t(f(b)(t)·).
Moreover, it defines a bijective correspondence between the Hamiltonian orbits.

Proof. Let γ(t) = f(b)(t). By Lemma 4.2(2), γ(t)−1 is generated by

(t,m) 7→ −Kγ,t(γ(t) ·m)(48)

By applying Lemma 4.2(1) to the composition of γ(t)−1 and φt
H̃

, we know that γ(t)−1φt
H̃

is

generated by H̃(b, t, f(b)(t)·)−Kf(b),t(f(b)(t)·). It follows that

φt
H̃(b,t,f(b)(t)·)−Kf(b),t(f(b)(t)·)x(0) = γ(t)−1φt

H̃
(x(0)) = γ(t)−1x(t)(49)

and hence the loop γ(t)−1x(t) is a Hamiltonian orbit of H̃(b, t, f(b)(t)·)−Kf(b),t(f(b)(t)·).
The other direction of the bijective correspondence can be proved analogously. �
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Let m ∈ M , b ∈ B and consider the loop c = (t 7→ (f(b)(t))−1m)t∈S1 . As discussed in the
paragraph after Definition 2.9, we have chosen a homotopy class of trivialization of the canonical
bundle of M . Let ι(f) be the Conley-Zehnder index of the linearization of (f(b)(t))−1 along the
loop c with respect to the homotopy class of trivialization (more precisely, since D(f(b)(1))−1

is the identity, ι(f) is defined as 2 times the Maslov index, see [S, Section 2.4]). By continuity,
ι(f) is independent of b ∈ B and the point m ∈M .

Lemma 4.4 (cf. [S3], Lemma 2.6). Let (x(t))t∈S1 be a Hamiltonian orbit of H̃(b, y, ·). The
grading of (t 7→ (f(b)(t))−1x(t))t∈S1 is the sum of the grading of (x(t))t∈S1 and ι(f).

Proof. This follows from the loop property of the Conley-Zehnder index (see [S, Section
2.4]). It can be proved by noticing that (t 7→ (f(b)(t))−1x(t))t∈S1 is homotopic to the concate-
nation of (t 7→ x(t))t∈S1 and (t 7→ (f(b)(t))−1x(0)), so the result follows from the additivity of
the Conley-Zehnder index for a path of symplectic matrices and a loop of symplectic matrices.

�

4.2.2. A good class of admissible base triples. Let B be a finite dimensional closed smooth
T -manifold. A continuous map f : B → ΩG is called smooth if the map B × S1 → G given
by (b, t) 7→ (f(b))(t) is smooth. Let f : B → ΩG be a T -equivariant smooth map. Let
PB,n := (B ×M)borel,n = (B × ETn ×M)/T and Bn := Bborel,n. We want to consider a good
class of admissible base triple (ηn, gn,∇n) of PB,n → Bn as follows.

Let ηBT : BT → R be a Morse function (i.e a sequence of Morse functions ηBT,n : BTn → R
such that ηBT,n+1|BTn = ηBT,n and critp(ηBT,n+1) ∩ BTn = critp(ηBT,n) for all n). Let gBT
be a Riemannian metric on BT (i.e. a sequence of Riemannian metrics gBT,n of BTn that is
compatible under embeddings BTn → BTn+1). We can choose ηBT and gBT such that any
gradient trajectory of ηBT,n which starts in BTk ⊂ BTn and tangent to BTk, for some k < n,
coincides with the gradient trajectory of ηBT,k in BTk for all time. Moreover, there is no
gradient trajectory which goes from a critical point of ηBT,n in BTk to a critical point of ηBT,n
in BTn \BTk for all n > k (cf. Example 2.28).

Let ∇T be a connection of the principal T -bundle ET → BT (i.e. a sequence of connections
∇T,n of ETn → BTn that is compatible under embeddings ETn → ETn+1) such that it is
flat near critical points of ηBT . It defines a decomposition of the tangent space T (ETn) =
T vertETn ⊕ T horETn, where T vertETn is the kernel of T (ETn) → T (BTn) and T horETn is the
horizontal subbundle determined by ∇T,n. The connection ∇T,n induces a connection for the
associated bundle Bn → BTn with the holonomy group in T , and the horizontal subbundle
T horBn is given by the projection of T horETn to TBn under T (B × ETn) → TBn (it is well-
defined because g · T horx ETn = T horgx ETn for all g ∈ T ). We choose a Riemannian metric gn
on Bn such that T horBn is orthogonal to the vertical subbundle, (Bn, gn) → (BTn, gBT ) is a
Riemannian submersion, and over the region U ⊂ BT where the connection is flat, gn is the
product of a T -invariant metric gB on B and the metric gBT |U on U .

We use ∇T again to induce a connection ∇n of PB,n → Bn by requiring that the horizontal

subbundle is the projection of TB ⊕ T horETn to TPB,n under

T (B × ETn ×M)→ TPB,n

Lemma 4.5. Let c : R/Z → BTn be a loop, c′ : [0, 1] → Bn be a horizontal lift of c and
c′′ : [0, 1] → PB,n be a horizontal lift of c′ with respect to ∇n. Let (B ×M)c(0) be the fibre of
the natural map PB,n → BTn over c(0) = c(1). Then c′′(0), c′′(1) ∈ (B ×M)c(0) lie in the same
T -orbit, where T acts diagonally.

Proof. Consider the connection ∇ of PB,n → BTn whose horizontal subbundle is given by

the projection of T horETn to TPBn under T (B×ETn×M)→ TPB,n. The holonomy group for
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this connection is T . It is easy to check that c′′ is a horizontal lift of c with respect to ∇ because
both the connections of Bn → BTn and PB,n → Bn are induced by ∇T . As a result, c′′(0) and
c′′(1) lie in the same T -orbit.

�

Let η′n be the pull-back of ηBT,n under the Riemannian submersion Bn → BTn. Gradient
trajectories of η′n are horizontal lifts of gradient trajectories of ηBT,n.

Lemma 4.6. Let f : B → ΩG be a T -equivariant map and Kf,n : S1 × PB,n → R be the
generating Hamilotnian function. Let τ ′ : R→ Bn be a gradient trajectory of η′n. Then Kf,n is
covariantly constant along τ ′ with respect to the connection ∇n

Proof. Let τ ′′ : R → PB,n be a horizontal lift of τ ′ with respect to ∇n. We need to show
that Kf,n(t, τ ′′(s)) is independent of s.

Recall that the T -invariant lift KF,n : S1 ×B × ETn ×M of Kf,n is defined by

KF,n(t, b, x,m) := Kf(b),t((f(b)(t))m)

and the T -invariance means

KF,n(t, gb, gx, gm) = Kf(gb),t((f(gb)(t))gm) = Kf(gb),t((f(gb)(t))gm)

= Kgf(b)g−1,t(g(f(b)(t))g−1gm) = Kf(b),t(g
−1g(f(b)(t))g−1gm)

= KF,n(t, b, x,m)

Note thatKF,n also T -invariant along the ETn direction (i.e. KF,n(t, b, x,m) = KF,n(t, b, gx,m)),
which is an additional feature that is not due to coming from lifting from PB,n. Combining both,
we have KF,n(t, b, x,m) = KF,n(t, gb, x, gm) for all g ∈ T .

By Lemma 4.5, τ ′′ is actually a horizontal lift of a gradient trajectory τ : R→ BTn of ηBT,n.
Since KF,n is independent of ETn and invariant under the diagonal T action on B×M , together
with the fact that the diagonal T action is precisely the holonomy group of PB,n → BTn, we
conclude that Kf,n(t, τ ′′(s)) is independent of s.

�

Note that η′n is only a Morse-Bott function so (η′n, gn,∇n) is not an admissible base triple.
We want to Morsify η′n to ηn so that we get an admissible base triple, and at the same time still
have some control on the derivative of Kf,n along gradient trajectory of ηn with respect to the
connection ∇n.

Before we explain this, we need to introduce the notion of a good pair.

Definition 4.7. Let f : B → ΩG be a T -equivariant map and η′B : B → R be a T -invariant
Morse-Bott function. We call (f, η′B) a good pair if f is a constant function near each connected
critical submanifold of η′B.

Lemma 4.8. Given a T -equivariant smooth map f : B → ΩG, we can homotope f to another
T -equivariant smooth map f ′ : B → ΩG such that there is a T -invariant Morse-Bott function
η′B making (f ′, η′B) a good pair.

Proof. Let η′B : B → R be a T -invariant Morse-Bott function such that every connected
component of its critical Morse-Bott submanifolds is isomorphic to T/H for some closed sub-
group H of T (see [W, Lemma 4.8] for its existence and genericity).

Let C ' T/H be one of the connected components. Note that f |T/H factors through

ΩC0
G(H) ⊂ ΩG, where C0

G(H) is the identity component of the centralizer CG(H) of H in
G. Note also that CG(T ) = T ⊂ C0

G(H) is a maximal torus in C0
G(H). Therefore, π1(T )

surjects onto π1(C0
G(H)). Let p ∈ T/H so f(p) ∈ ΩC0

G(H). We can find a smooth map
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Fp : [0, 1] → ΩC0
G(H) such that Fp(0) = f(p) and Fp(1) ∈ ΩCG(T ) = ΩT because of the

surjectivity of π1(T )→ π1(C0
G(H)). Let F : [0, 1]× T/H → ΩC0

G(H) be the T -equivariant map
given by F (s, g · p) := gFp(s)g

−1 ∈ ΩC0
G(H) for all g ∈ T and s ∈ [0, 1]. In other words, F is a

T -equivariant homotopy from F (0, ·) = f to the map F (1, ·) which lands in ΩT . In particular,
F (1, g · p) = F (1, p) for all g ∈ T . We want to use this homotopy to homotope f to another
T -equivariant map such that it is constantly equal to F (1, p) in a neighborhood of C.

To do that, let N be a T -invariant neighborhood of C. By choosing a T -invariant metric
on B and using the exponential map, we can identify N as the total space of a T -equivariant
normal bundle over C. Let πN : N → C be the projection map. Let r : N → R≥0 be the
distance function from C. Let ρε : R≥0 → R≥0 be a smooth function such that ρε(s) = 0 near
s = 0 and ρε(s) = s when s > ε > 0. For ε > 0 being sufficiently small, we define a T -equivariant
smooth map cε : N → N by b 7→ ρε(r(b))b. This map collapses a small neighborhood of C to C.
We define fc := f ◦ c, which is a T -equivariant smooth map that is T -equivariant homotopic to
f . Moreover, by definition, we know that fc factors through πN in a small neighborhood NC of
C. Let ρCδ : [0, δ] → [0, 1] be a smooth function such that ρCδ (s) = 1 near s = 0 and ρCδ (s) = 0
near s = δ. For δ being sufficiently small, we define f ′ : B → ΩG by f ′(b) := fc(b) if r(b) ≥ δ,
and f ′(b) := F (ρCδ (r(b)), πN (b)) if r(b) ≤ δ. Clearly, f ′ is T -equivariant homotopic to f , and f ′

is a constant near C.
By applying this procedure to every connected component of the critical submanifolds of

η′B, we get a good pair (f ′, η′B) as desired.
�

Let (gn,∇n) be as above. We are now ready to introduce ηn, which is a special form of
Morsification of η′n that makes use of (f, η′B).

Since (f, η′B) is a good pair, we can find a T -invariant neighborhood Nη of critp(η′B) such
that f |Nη is locally constant. Let ηB : B → R be a Morsification of η′B such that ηB(b) = η′B(b)
if b /∈ Int(Nη).

Let UBT,n be a small neighborhood of the critical points of ηBT,n where ∇T is flat. Let
Un ⊂ Bn be the preimage of UBT,n under Bn → BTn. Since ∇n and the connection of Bn → BTn
are both induced by ∇T , we can identify Un as B × UBT,n and trivialize the bundle PB,n over
Un as B ×M × UBT,n.

Let η′n be the Morse-Bott function on Bn above. The critical submanifolds of η′n are contained
in Un = B × UBT,n, and are of the form B × critp(ηBT,n). Note that, there is a choice in the
identification of B coming from the choice of trivialization, and it is canonical only up to an
element in T . Our argument below works for any such choice. We Morsify η′n inside Un by adding
a function of the form εχ(u)ηB(b) for (b, u) ∈ B×UBT,n, where 0 < ε� 1, χ is a bump function
and ηB is the Morse function constructed above. We can choose χ : UBT,n → [0, 1] such that
over each connected component of UBT,n, it ony depends on the distance from the corresponding
critical point of ηBT,n, the only critical values are {0, 1} and χ−1(1) = critp(ηBT,n). Denote the
Morse funciton η′n + εχ(u)ηB(b) by ηn. In the next subsection, we will use the admissible basse
triple (ηn, gn,∇n).

We end this subsection with the following observation.

Lemma 4.9. Let (f, η′B) be a good pair and ηB, gB be defined as above. For any constant
c ∈ R, there is a T -invariant function s ∈ C∞(S1 ×B) such that s > c, s(b) /∈ Spec(∂M̄, α) for
any b ∈ critp(ηB), and for any gradient trajectory τB of ηB with respect to gB, we have

d

ds
s(t, τB(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddssKf(τB(s)),t(m)

∣∣∣∣(50)

for all t ∈ S1.
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Proof. To see that s exists even though ηB is NOT T -invariant, we argue as follows.
Recall that (f, η′B) is a good pair and f |Nη is locally constant. It implies that Kf(b),t(m) is
locally independent of b ∈ Nη. Therefore, the RHS of (53) is 0 when τB(s) ∈ Nη. When
τB(s) /∈ Nη, τB(s) is also a gradient trajectory of η′B, and η′B is T -invariant. Therefore, it
suffices to find a T -invariant function s ∈ C∞(S1 × B) such that it is locally constant in Nη,
s > c, s(b) /∈ Spec(∂M̄, α) for any b ∈ critp(ηB), and for any gradient trajectory τ ′B of η′B, we
have

d

ds
s(t, τ ′B(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddssKf(τ ′
B

(s)),t
(m)

∣∣∣∣(51)

but this is easy because η′B is T -invariant, Nη is T -invariant and gB is also T -invariant. �

4.2.3. A good class of admissible Hamiltonians. Let f∗0 be the Hamiltonian function on
PB given by (41) with H = 0. It is descended from −KF,n(t, b, y,m) and KF,n(t, b, y,m) :=
Kf(b),t((f(b)(t))m) is independent of ETn. Therefore, for any b ∈ Bborel, there is b′ ∈ B such
that

max
(t,m)∈S1×∂M̄

|s(f∗0)b(m)| = max
(t,m)∈S1×∂M̄

|sKf(b′),t(m)|

Since S1 ×B × ∂M̄ is compact, the value

cf,K := sup
b∈Bborel

max
(t,m)∈S1×∂M̄

|s(f∗0)b(m)| = sup
b′∈B

max
(t,m)∈S1×∂M̄

|sKf(b′),t(m)|(52)

is finite.
Given a T -invariant function s ∈ C∞(S1 × B), we can pull it back to get a T -invariant

function on S1 ×B × ET . It descends to a function on S1 ×Bborel which we denote by sborel.

Proposition 4.10. Let (f, η′B) be a good pair. Then there is a constant Cf > 0 depending
only on (f, η′B) with the following property. There is an admissible base triple (η, g,∇) of PB →
Bborel (i.e. a sequence of admissible base triples (ηn, gn,∇n) of PB,n → Bn) such that for any
c ∈ R>0, there is a cylindrical Hamiltonian Af ∈ C∞(S1 × PB) (i.e a sequence of cylindrical
Hamiltonian Af,n on PB,n such that Af,n+1|PB,n = Af,n) and a T -invariant function s obtained
by Lemma 4.9 such that

• s > cf,K + c, and
• s(Af )b = sborel(b) for all b ∈ Bborel, and

• both f∗Af,n and Af,n are compatible with (ηn, gn,∇n) for all n, and
• c ≤ sAf , sf∗Af ≤ c+ Cf .

Proof. Recall that gB is a T -invariant metric on B such that gn|Un = gB + gBT |UBT,n . By

Lemma 4.9, we can pick a T -invariant function s ∈ C∞(S1 ×B) such that s > cf,K + c, and for
any gradient trajectory τB of ηB with respect to gB, we have

d

ds
s(t, τB(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddssKf(τB(s)),t(m)

∣∣∣∣(53)

for all t ∈ S1.
Since s is T -invariant, it induces a function sborel ∈ C∞(S1 ×Bborel). We claim that

d

ds
sborel(t, τ(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddss(f∗0)τ(s)
(t,m)

∣∣∣∣(54)

for all gradient trajectory τ : R → Bn of ηn, for all t ∈ S1, and for all n. To see why, note
that outside Un, τ is also a gradient trajectory of η′n because εχ(u)ηB(b) is supported inside
Un. Moreover, gradient trajectories of η′n are horizontal lifts of gradient trajectory of ηBT,n. By
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Lemma 4.6, the RHS is 0. The LHS is also 0 because sborel is also covariantly constant. Inside
Un, we use the trivialization Un = B × UBT,n so for (b, u) ∈ B × UBT,n, we have

sborel(t, (b, u)) = s(t, b)(55)

and

s(f∗0)(b,u)
(t,m) = sKf(b),t

(m)(56)

Both of them are independent of u ∈ UBT,n. On the other hand, we have

dηn = dη′n(u) + εχ(u)dηB(b) + εdχ(u)ηB(b)

The gradient grad(ηn) of ηn is therefore lying inside εχ(u)grad(ηB(b)) + TUBT,n. By (53), (55)
and (56), we conclude that (54) is true.

Now, we would like to choose Af such that s(Af )b(m) = sborel(b) for all m ∈ ∂M̄ . This choice
of Af trivially satisfies the second bullet of the proposition.

For the last bullet, note that

cf,K + c ≤ min
B

s ≤ sAf ≤ max
B

s

Therefore, we have

c ≤ sf∗Af ≤ max
B

s + cf,K

So the last bullet is satisfied with Cf = maxB s + cf,K − c. Recall that, cf,K is a constant which
only depends on (f, η′B). Therefore, in order to find a Cf which depends only on (f, η′B) we need
to give a uniform upper bound for maxB s − c that is independent of c, and only depends on
(f, η′B). This uniform upper bound exists because, if s > cf,K + c is obtained from Lemma 4.9,
then for any other c′ > 0, s − c + c′ > cf,K + c′ almost satisfy all the conditions in Lemma 4.9
except possibly that (s−c+c′)(b) might lie in the spectrum Spec(∂M̄, α) for some b ∈ critp(ηB).
Therefore, one can T -equivariantly perturb s− c+ c′ to get a T -invariant function s′ > cf,K + c′

which satisfy all the conditions in Lemma 4.9. The perturbation can be as small as we want so
maxB s− c and maxB s′ − c′ can be made as close to each other as we want. This implies that
there is a uniform upper bound for maxB s − c that is independent of c, which in turn implies
that we can find a Cf we want which depends only on (f, η′B).

It remains to show that it also fulfills the third bullet. Recall the condition of compatiblity
with (ηn, gn,∇n) from Definition 2.7. Our choice of s is intensionally chosen such that the third
bullet of Definition 2.7 is satisfied for both Af and f∗Af (see (54)).

The first bullet of Definition 2.7 can be achieved because s : S1 × B → R is chosen such
that over the critical points of ηB, s does not lie in the spectrum of the Reeb flow, so a generic
choice of cylindrical Af with s(Af )b = sborel(b) will be non-degenerate over the critical points of
η. When s(Af )b is non-degenerate over the critical points of η, so is true for s(f∗Af )b .

The second bullet of Definition 2.7 can be achieved because sborel is locally constant in
Nη × UBT,n ⊂ B × UBT,n = Un, so we can pick Af,n which is locally constant over Nη × UBT,n,
which contains all the critical points of ηn. Since f is also locally constant over Nη, f

∗Af,n will
also be locally constant over Nη × UBT,n.

The last bullet of Definition 2.7 can be achieved by generic fibrewise-compactly supported
perturbation of Af outside Un. It will imply that so is true for f∗Af .

�

We have the following tautological isomorphism.
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Proposition 4.11. Let B be a finite dimensional closed smooth T -manifold. Let H be a
cylindrical Hamiltonian of PB such that both f∗H and H are compatible with (ηn, gn,∇n). Then
we have an isomorphism

Cf : HF ∗(PB,n, f
∗H) ' HF ∗−ι(f)(PB,n;H)(57)

By taking inverse limit in n, we get the isomorphism (42).

Remark 4.12. In fact, Proposition 4.11 is true even if H is compatible with (ηn, gn,∇n) but
f∗H is not. The only difference is that when f∗H is not compatible with (ηn, gn,∇n), we cannot
apply Lemma 2.12 to get the well-definedness of HF (PB,n, f

∗H). But as we shall see from the
proof below, the identification CF (PB,n, f

∗H) ' CF (PB,n;H) proves that HF (PB,n, f
∗H) is

well-defined in a posterori.

Proof of Proposition 4.11. The strategy to prove (57) is to establish a cochain level

isomorphism with respect to appropriate auxilary data. Let Φ̃t : B ×ET ×M → B ×ET ×M
be Φ̃t(b, y,m) = (b, y, f(b)(t)m). It satisfies

Φ̃t(gb, gy, gm) = (gb, gy, f(gb)(t)gm) = (gb, gy, gf(b)(t)m)(58)

so it descends to a map Φt : PB → PB for all t ∈ S1.
By Lemma 4.3, Φt provides a bijection between the generators of CF (PB,n, f

∗H) and
CF (PB,n, H).

Let (Jb)b∈Bn be a generic S1-dependent fibrewise almost complex structure on PB,n that is
compatible with the fibrewise symplectic form and is of contact type. The differential in the
Floer complex CF (PB,n;H) is defined by counting solutions of coupled equations with gradient
trajectories on BTn with respect to (ηn, gn), and Floer solution liftings of the gradient trajectories
with respect to (∇n, H, J).

If we use (Φ∗tJb)b∈Bn to define the Floer differential of CF (PB,n, f
∗H), then we will have a

bijective correspondence between the solutions contributing to the differential of CF (PB,n, f
∗H)

and solutions contributing to the differential of CF (PB,n;H). More precisely, if (τ(s), u(s, t)) is
a solution contributing to the differential of CF (PB,n, H), then (τ(s), (Φt)

−1 ◦ u(s, t)) will be a
solution contributing to the differential of CF (PB,n, f

∗H).
Moreover, by trivializing PB along τ and applying the Lemma 4.13 below, we see that the

correspondence preserves the topological energy E((Φt)
−1 ◦ u(s, t)) = E(u(s, t)). Therefore, we

get the isomorphism (see Lemma 4.4 for the grading shift).
�

Lemma 4.13. Let u : R×S1 →M be a Floer solution with respect to H = (Hs,t)(s,t)∈R×S1 ∈
C∞(R× S1 ×M). Let γ ∈ ΩG and v(s, t) = γ(t)−1u(s, t). Then E(v) = E(u).

Proof. We have

∂sv(s, t) = (Dγ(t))−1∂su(s, t)

∂tv(s, t) = (Dγ(t))−1∂tu(s, t) +Xγ(t)−1(v(s, t))



COULOMB BRANCH ALGEBRAS VIA SYMPLECTIC COHOMOLOGY 31

where Xγ(t)−1 is the Hamiltonian vector field generating γ−1 at time t (recall from Lemma 4.2(2)

the generating Hamiltonian of γ−1). Therefore,∫
R×S1

v∗ω

=

∫ ∞
−∞

∫ 1

0
ω((Dγ(t))−1∂su(s, t), (Dγ(t))−1∂tu(s, t) +Xγ(t)−1(v(s, t))dtds

=

∫
R×S1

u∗ω +

∫ ∞
−∞

∫ 1

0
ω(∂su(s, t), (Dγ(t))Xγ(t)−1(v(s, t))dtds

=

∫
R×S1

u∗ω +

∫ ∞
−∞

∫ 1

0
d(−Kγ,t(u(s, t)))(∂su(s, t))dtds

=

∫
R×S1

u∗ω +

∫ 1

0
Kγ,t(u(−∞, t))dt−

∫ 1

0
Kγ,t(u(∞, t))dt

where u(±∞, t) := lims→±∞ u(s, t). As a result,

E(v)

=

∫
R×S1

v∗ω +

∫ 1

0
(H−∞,t −Kγ,t)(γ(t)v(−∞, t))dt−

∫ 1

0
(H∞,t −Kγ,t)(γ(t)v(∞, t))dt

=

∫
R×S1

u∗ω +

∫ 1

0
H−∞,t(u(−∞, t))dt−

∫ 1

0
H∞,t(u(∞, t))dt

=E(u)

�

The isomorphism (57) is compatible with the product structure as follow.

Proposition 4.14. Let B be a finite dimensional closed smooth T -manifold. Let H be
a cylindrical Hamiltonian of PB such that both f∗H and H are compatible with (ηn, gn,∇n).
Let H ′ be another cylindrical Hamiltonian of PB that is of constant slope s′. Let H ′′ be a
cylindrical Hamiltonian of PB such that both f∗H ′′ and H ′′ are compatible with (ηn, gn,∇n),
max sH +max sH′ ≤ min sH′′ and max sf∗H +max sH′ ≤ min sf∗H′′. Then the following diagram
commutes

HF (PB,n, f
∗H)×HF (PB,n, H

′) HF (PB,n; f∗H ′′)

HF (PB,n, H)×HF (PB,n, H
′) HF (PB,n;H ′′)

Sketch of proof. Similar to the proof of Proposition 4.11, we want to construct Φ =
(Φz,t : PB → PB)z∈Σ,t∈S1 to give a chain level identification of the product operation on the first
row and on the second row. More precisely, over the first positive cylindrical end and the negative
cylindrical end of Σ, we choose Φ̃z,t : B × ET ×M → B × ET ×M to be Φ̃εi(s,t),t(b, y,m) =

(b, y, f(b)(t)m). Over the second positive cylindrical end, we choose Φ̃ε2(s,t),t(b, y,m) = (b, y,m).

There is no homotopical obstruction to extends the definition of Φ̃z,t over the complement of

cylindrical ends and at the same time having Φ̃z,t to be T -equivariant for all z, t. For example,

we can start with a s-invariant Φ̃ over a cylinder and then isotope it such that it is the identity
in some s-invariant neighborhood. Adding a puncture in this s-invariant neighborhood and
introducing a cylindrical end ε2 near the puncture will give what we want. The T -equivariant
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Φ̃ descends to Φ. We can choose all the auxiliary data in the definition of the two product
operations to be intertwined by Φ.

�

Let (f, η′B) be a good pair. For each a ∈ R>0 \ Spec(∂M̄, α), we can apply Proposition 4.10
to find an Af with the listed properties. Together with Proposition 4.11 and the continuation
maps 2.16, we get

Ca,f,Af :HF (PB, a)→ HF (PB, f
∗Af ) ' HF (PB;Af )→ HF (PB; a+ Cf + εa)(59)

where εa ≥ 0 is a small number such that a+Cf + εa ∈ R>0 \Spec(∂M̄, α). The first map exists
because min f∗Af ≥ a. The second map is the isomorphism in Proposition 4.11. The last map
exists because maxAf ≤ a+ Cf + εa.

4.2.4. Independence of choice and functorality.

Lemma 4.15. Let (f0, η
′
B,0) and (f1, η

′
B,1) be good pairs. Suppose that c : R × B → ΩG is

a T -equivariant smooth map such that c(s, ·) = f0 for s � 0 and c(s, ·) = f1 for s � 0. For
i = 0, 1, let Cfi be as in Proposition 4.10. For a1 ∈ R>0 \ Spec(∂M̄, α) and a1 + Cf1 + εa1 <
a2 ∈ R>0 \ Spec(∂M̄, α), we let Af1 and Af0 be as in Proposition 4.10 such that

a1 ≤ sAf1 , sf
∗
1Af1

≤ a1 + Cf1 , a2 ≤ sAf0 , sf
∗
0Af0

≤ a2 + Cf0

Then we have

κa1+Cf1+εa1 ,a2+Cf0+εa2
◦ Ca1,f1,Af1

= Ca2,f0,Af0
◦ κa1,a2

Proof. The content of the lemma is that the following diagram commutes

HF (PB, a1) HF (PB, f
∗
1Af1) HF (PB;Af1) HF (PB; a1 + Cf1 + εa1)

HF (PB, a2) HF (PB, f
∗
0Af0) HF (PB;Af0) HF (PB; a2 + Cf0 + εa2)

In the first row, we are using admissible base triple coming from applying Proposition 4.10
to (f1, η

′
B,1) and in the second row, we are using admissible base triple coming from applying

Proposition 4.10 to (f0, η
′
B,0).

Note that, we have

f∗1Af1 ≤PB f
∗
0Af0 and Af1 ≤PB Af0

so the second the third vertical maps are well-defined (see Lemma 2.16).
The left and right squares commute because of the functorality of compatible Hamiltonians

(Lemma 2.16 and Corollary 2.17). The middle square commutes because the two vertical maps
can be tautologically identified by identifying the respective moduli spaces as in the proof of
Proposition 4.11.

�

As a consequence of Lemma 4.15, we obtain the following corollary

Corollary 4.16. Suppose that (f, η′B) is a good pair. Then the maps {Cc,f,Af }c∈R induce
a well-defined map

Cf : SH∗(PB)→ SH∗(PB).(60)

which is independent of the choice of admissible base triples, Af and the representative in the
T -equivariant homotopy class of f .
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Proof. Recall that SH∗(PB) := lim−→a
HF (PB, a). To define the map, we take f0 = f1 = f

in Lemma 4.15. We can take a sequence (ak)k∈N such that ak+1 > ak + Cf + εak for all k.
Applying Lemma 4.15 to ak for all k, we get a sequence of commutative diagrams which induces
a map Cf on the direct limit (60). To see that Cf is independent of choices, we use the fact that
Lemma 4.15 is true for any a2 > a1 +Cf + εa1 . Therefore, we can apply Lemma 4.15 to compare
Cf with respect to two different choices. The commutativity of the diagrams and the functorality
of continuation maps (Lemma 2.16 and Corollary 2.17) imply that Cf is independent of choices
as claimed.

�

Lemma 4.17. For any z1, z2 ∈ SH∗(PB), we have

Cf (z1z2) = Cf (z1)z2(61)

Proof. It follows from Proposition 4.14 and the compatibility with continuation maps. �

4.3. Construction over a T -equivariant cycle. The goal of this section is to complete
the construction of (40) following the outline in Section 4.1. The main ingredients are Proposi-
tion 4.11 and the pull-back/push-forward maps in Section 2.3, 2.4.

4.3.1. Pull-back. To define the pull-back (44), the commutative diagram to keep in mind is

PB,n (B × ETn ×M × ET )/T (B × ETn)/T × (M × ET )/T = Bborel,n ×Mborel

Bn (B × ETn × ET )/T (B × ETn)/T × ET/T = Bborel,n ×BT

We first consider the square on the LHS. By applying Proposition 3.5 to the admissible
bundle B × ETn ×M with respect to the diagonal T action, we have

HF (PB,n, a) ' HF ∗T (B × ETn ×M,a)(62)

Now we consider the square on the RHS. For each n′ ∈ N, we have a commutative diagram

(63)

(B × ETn ×M × ETn′)/T Bborel,n ×Mborel,n′

(B × ETn ×M × ETn′+1)/T Bborel,n ×Mborel,n′+1

Let Hn = HF ((B×ETn×M)borel,n′ , a). By the commutative diagram (63) and the functorality
of pullback (see Corollary 2.27), the following diagram commutes

Hn′ H∗(Bborel,n)×HF (Mborel,n′ , a)

Hn′+1 H∗(Bborel,n)×HF (Mborel,n′+1, a)

Passing to the inverse limit over n′, we get a map

H∗(Bborel,n)⊗HF ∗T (M,a)→ HF ∗T (B × ETn ×M,a)(64)

By composing it with (62) and passing to the inverse limit over n, we get a map

H∗T (B)⊗HF ∗T (M,a)→ HF (PB, a)(65)

Composing it with the acceleration map, it gives the desired map in Equation (44).
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Another commutative diagram which can be easily verified is

(66)

H∗T (B)⊗HF ∗T (M,a0) HF (PB, a0)

H∗T (B)⊗HF ∗T (M,a1) HF (PB, a1)

when a0 ≤ a1. As a result, we have

H∗T (B)⊗ SH∗T (M)→ SH∗(PB)(67)

4.3.2. Pushforward. On the other hand, as explained in the overview, we consider the Floer
theoretic push-forward associated to the following diagram

PB,n = (B × ETn ×M)/T (ΩG×M × ETn)/T (M × ETn)/T = Mborel,n

Bn (ΩG× ETn)/T BTn

Note that both the square on the left and right are fibre product squares so the outer square is
also a fibre product square and Lemma 2.32 gives us the push-forward map

HF (PB,n; a)→ HF (Mborel,n, a).(68)

Lemma 4.18. The following diagram commutes

HF (PB,n+1; a) HF (Mborel,n+1, a)

HF (PB,n; a) HF (Mborel,n, a)

Proof. The first vertical map is induced by a chain level short exact sequence

0→ SP → CF (PB,n+1; a)→ CF (PB,n; a)→ 0

where SP is the subcomplex of CF (PB,n+1; a) generated by generators of CF (PB,n+1; a) that
does not lie inside PB,n. Similarly, the other vertical map is induced by a chain level short exact
sequence

0→ SM → CF (Mborel,n+1; a)→ CF (Mborel,n; a)→ 0

where SM is the subcomplex of CF (Mborel,n+1; a) generated by generators of CF (Mborel,n+1; a)
that does not lie inside Mborel,n. Therefore, to prove the result, it suffices to show that the chain
level pushforward maps sit inside the following commutative diagram

0 SP CF (PB,n+1; a) CF (PB,n; a) 0

0 SM CF (Mborel,n+1; a) CF (Mborel,n; a) 0

In other words, we need two results. The first result is that the image of SP is in SM . It in
turn follows easily from the fact that for our choice of Morse data on the bases, if the positive
asymptote (i.e. input) of the underlying gradient trajectory of a solution which contributes to
the pushforward map is lying in Bn+1 \Bn, then its negative asymptote (i.e. output) is lying in
BTn+1 \BTn.

The second result we need is that if the input is in PB,n and the output is not in Mborel,n,
then the moduli space of solutions computed with respect to PB,n+1 → Mborel,n+1 and with
respect to PB,n →Mborel,n are the same. This is true because the underlying gradient trajectory
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of a solution with input in Bn and output in BTn is entirely contained in Bn and BTn. It allows
us to choice auxiliary data such that the two moduli spaces completely coincide.

�

By Lemma 4.18, we can take to the inverse limit with respect to n, then we obtain the
pushforward map

HF (PB; a)→ HF (Mborel, a)(69)

Another commutative diagram which can be easily verified is

(70)

HF (PB; a0) HF (Mborel, a0)

HF (PB; a1) HF (Mborel, a1)

when a0 ≤ a1. As a result, we have

SH∗(PB)→ SH
∗−dim(B)
T (M)(71)

The map Sf (see (40)) is defined to be the composition of (67), (60) and (71).

Lemma 4.19. Let (f, η′B) be a good pair. For any a0, a1 ∈ SH∗T (M) and α ∈ Ĥ∗T (B), we
have

Sf (α, a0)a1 = Sf (α, a0a1)(72)

Proof. Denote the pull-back (67) and push-forward map (71) by h∗ and h∗, respectively.
We have

Sf (α, a0a1) = h∗(Cf (h∗(α, a0a1)))

= h∗(Cf (h∗(α, a0)h∗(eB, a1)))

= h∗(Cf (h∗(α, a0))h∗(eB, a1))

= h∗(Cf (h∗(α, a0)))a1

= Sf (α, a0)a1

The first and last equality follow from the definition of Sf . The second equality uses that pull-
back maps are algebra maps (Lemma 2.30). The third equality comes from Lemma 4.17. The
fourth equality uses Lemma 2.35 and the fact that h∗(eB, a1) equals to the pull-back of a1 to
SH∗(PB). �

4.4. Equivariant geometric homology and Semi-infinite homology. In this subsec-
tion, we first construct an equivariant version of the geometric homology theory developed in
[BD,J]. Then we recall the definition of semi-infinite homology and prove a comparison result
between these two theories. Closely related results have been obtained in [BOOSW, GM].
Throughout this section we let K denote a compact, connected Lie group.

4.4.1. Equivariant geometric homology.

Definition 4.20. We say that a smooth, closed manifold B is K-oriented if it is oriented
and equipped with a smooth (necessarily orientation-preserving) K-action. We let cManK denote
the collection of closed K-oriented manifolds.
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Let N be a topological space with K-action. We consider triples (B,α, f) such that B ∈
cManK , α ∈ H∗K(B,Z), and f : B → N is a continuous, K-equivariant map. Two such triples
(B,α, f) and (B′, α′, f ′) are called equivalent if there is an orientation preserving, K-equivariant
diffeomorphism φ : B′ → B such that φ∗α = α′ and f ′ = f ◦ φ. Let Zgeo,K(N) denote the free
abelian group generated by equivalence classes of triples.

Definition 4.21. The geometric homology Hgeo,K
∗ (N) is the quotient of Zgeo,K(N) by the

following relations:

(1) If B = B1 tB2, then (B,α, f) = (B1, α|B1 , f |B1) + (B2, α|B2 , f |B2)
(2) (B,α1 + α2, f) = (B,α1, f) + (B,α2, f).
(3) Suppose there is a K-equivariant map F : B × [0, 1]→ N then

(B,α, FB×{0}) = (B,α, FB×{1}).

(4) Let B0, B1 be in cManK and j : B0 → B1 be a smooth, equivariant embedding. Let
f : B1 → N be an equivariant map and α ∈ H i

K(B0). Then

(B0, α, f|B0
) = (B1, j!(α), f),(73)

where j! denotes the equivariant Gysin morphism ([A2] or (83) below).

Remark 4.22. The reader may notice that compared to the axioms of [J], we have weakened
Axiom (3) but strengthened Axiom (4). This is because the product cobordisms from Axiom
(3) are especially easy to incorporate into our setup (though we could also allow for general
cobordisms without too much difficulty). On the other hand, concerning Axiom (4), the special
sphere bundle suspensions from [J] do not play a special role in our Floer theoretic setup.

Geometric homology is covariantly functorial. It is also homotopy invariant:

Lemma 4.23. If h0, h1 : N0 → N1 are K-homotopic (equivariant) maps between K-spaces,

then h0
∗ = h1

∗ : Hgeo,K
∗ (N0)→ Hgeo,K

∗ (N1).

Proof. Let ht : N0 × [0, 1] → N1 denote the homotopy between h0 and h1. Suppose we

have a tuple (B,α, f) representing a class in Hgeo,K
∗ (N0). We then push it forward by h0, h1

to obtain Z0 := (B,α, h0 ◦ f), Z1 := (B,α, h1 ◦ f) representing classes in Hgeo,K
∗ (N1). Then

ht ◦ f : B × [0, 1] gives a homotopy h0 ◦ f and h1 ◦ f . Thus by Axiom (3) above of geometric

homology, Z0 = Z1 ∈ Hgeo,K
∗ (N1). �

There is also an Eilenberg-Zilber map:

EZgeo : Hgeo,K
∗ (N0)⊗Hgeo,K

∗ (N1)→ Hgeo,K×K
∗ (N0 ×N1)(74)

(B0, α0, f0)⊗ (B1, α1, f1)→ (B0 ×B1, π
∗
0(α0) ∪ π∗1(α1), f0 × f1)

Finally, we let T ⊂ K be a maximal torus inside K and let W = N(T )/T denote the Weyl

group of T. Given a K- space N , we want to construct a Weyl-group action on Hgeo,T
∗ (N). To

this end, let ρN : T ×N → N denote the induced T -action on N and let

φw : T → T(75)

t→ wtw−1

denote the homomorphism associated to some Weyl group element. Then ρN ◦ φ−1
w gives a new

T -action on N . Given (B,α, f) ∈ Hgeo,T (N), we set

φ∗w(B,α, f) = (BρB◦φ−1
w
, φ∗w(α), f) ∈ Hgeo,T (NρN◦φ−1

w
).(76)
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Here BρB◦φ−1
w

denotes B with the w-twisted group action (so that f remains equivariant) and

φ∗w(α) ∈ H∗T (BρB◦φ−1
w

) is the pull-back of α along

(B × ET )/T → (B × ET )/T(77)

(b, y)→ (b, w−1y).

Next, we note that multiplication by (a representative of) a Weyl group element w induces
a map

w∗ : Hgeo,T (NρN◦φ−1
w

)→ Hgeo,T (N)

We define the Weyl group action on Hgeo,T (N) by

w∗ ◦ φ∗w : Hgeo,T (N)→ Hgeo,T (N).(78)

At the level of cycles we have:

w · (B,α, f) = (BρB◦φ−1
w
, φ∗w(α), w ◦ f).(79)

4.4.2. Semi-infinite homology. Unless otherwise stated, all homology groups in this subsec-
tion are taken with Z-coefficients.

Definition 4.24. A closed K-equivariant subspace N of a finite dimensional K-representation
V is said to be a K-ENR if there is an equivariant open set U ⊂ V which equivariantly retracts
onto N . We let cENRK denote the collection of compact K-ENRs.

Remark 4.25. The property of being a compact K-ENR can be shown to be independent
of the representation V [G]. By combing the results of [J2, Theorem 2.1] and [M], any finite
K-CW complex is a compact K-ENR.

For any N ∈ cENRK , we let ĤK
∗ (N) denote the semi-infinite homology [EG, B, G2]. Let

us recall the definitions from which are given in terms of finite dimensional approximations to
classifying spaces of compact Lie groups. A unitary embedding K ↪→ U(n) gives a model EK
for the classifying space of K. These models come with finite dimensional approximations EKn

and we let BKn := EKn/K to be the corresponding finite dimensional approximations of BK.
Let Nborel,n := (N ×EKn)/K be the finite dimensional approximations to the Borel mixing

space Nborel := (N × EK)/K. The semi-infinite homology of N is defined to be the limit

ĤK
∗ (N) = lim←−

n

HdimBKn+∗(Nborel,n)(80)

where the maps in the inverse system are defined using certain Gysin pull-back maps ([GMP,
§3]).

Remark 4.26. One can also consider homology groups with coefficients in a field K. We
will denote these by ĤK

∗ (N,K).

In any fixed degree, the inverse limit (80) stabilizes (see e.g. [B, page 79] or [G2, page 601]).
This implies that, if N0, N1 ∈ cENRK , there are Eilenberg-Zilber maps:

EZ : ĤK
∗ (N0)⊗ ĤK

∗ (N1)→ ĤK×K
∗ (N0 ×N1)(81)

which come from their non-equivariant counterparts on the finite dimensional approximations.
Let us briefly discuss the case of a closed, compact K-oriented manifold B. In this case,

ĤK
∗ (B) carries an equivariant fundamental class [B]K ∈ ĤK

dim(B)(B) and there is a Poincare

duality isomorphism:

PDB : ĤK
∗ (B) ∼= H

dim(B)−∗
K (B).(82)
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If j : B0 → B1 is an equivariant map between closed, compact K-oriented manifolds, the Gysin
map on equivariant cohomology j! : H i

K(B0) → H i+r
K (B1) (r = dim(B1) − dim(B0)) can be

expressed as:

α→ PD−1
B1

(j∗(PDB0(α))).(83)

We will need to consider certain infinite dimensional spaces as well. The precise definition
is as follows:

Definition 4.27. A topological space N will be called an infinite type K-ENR if N is an
ascending union of K-ENRs. Namely, we require that N = colimiNi where Ni ∈ cENRK and

N1 ⊂ N2 ⊂ · · ·Ni ⊂ · · ·(84)

are all closed K-equivariant inclusions. We let ENR∞K denote the collection of all infinite type
K-ENRs.

For any N ∈ ENR∞K , we define

ĤK
∗ (N) := colimiH

geo,K
∗ (Ni).(85)

The Eilenberg-Zilber map (81) also exists when both spaces are infinite type K-ENRs.

4.4.3. Comparison. There is a natural transformation ψ : Hgeo,K
∗ (−) → ĤK

∗ (−) which for
any N ∈ cENRK is defined by

ψ : Hgeo,K
∗ (N)→ ĤK

∗ (N)(86)

ψ : (B,α, f) 7→ f∗(PDB(α)).

It follows easily from the definition that this is well-defined. For example, to see that this
map respects (73), we have that

f∗(PDB1(j!(α)) = f∗ ◦ PDB1 ◦ PD−1
B1
◦ j∗ ◦ PDB0(α) = f|B0

(PDB0(α))(87)

Also note that Hgeo,K
∗ (N) also commutes with direct limits and thus we can define a com-

parison map ψ extending (86) for any N ∈ ENR∞K . We will need the following observation in
our main argument.

Lemma 4.28 (Lemma 2.1 of [BOOSW]). Let N be in cENRK , then N is an equivariant
retract of M ∈ cManK .

Proof. Let U be an equivariant open subset of the representation V which retracts on to
N . Fix a K-invariant metric on V and let f : U → R be a C0-close K-equivariant smoothing of
the distance function to N . A suitable level set of f bounds a smooth compact manifold with
boundary Ū which retracts onto N . By doubling Ū , we obtain our manifold M . �

The main result of this section is the following:

Theorem 4.29. For any N ∈ ENR∞K , the canonical map

ψ : Hgeo,K
∗ (N)→ ĤK

∗ (N)(88)

is an isomorphism.

Proof. It clearly suffices to consider the case N ∈ cENRK which we do for the rest of the
argument.

Surjectivity: In view of Lemma 4.28, it suffices to prove surjectivity when N ∈ cManK . In
this case, consider cycles of the form (N,α, id). These surject onto homology by Poincare duality.
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Injectivity: Again we can suppose that N is a closed oriented smooth manifold. Now fix a

(B,α, f) of Hgeo,K
∗ (N) so that f∗(PDB(α)) = 0. By taking the representation V in the proof

of Lemma 4.28 sufficiently large (i.e. to include sufficiently many irreducible representations
with high enough multiplicity), [W, Corollary 1.10] implies that we may embed N as a retract
of a higher dimensional manifold N ′ so that f : B → N ′ is K-homotopic to an equivariant
embedding f ′ : B → N ′. In view of (73), the fact that f ′∗(PDB(α)) = 0 implies that

(B,α, f) = (B,α, f ′) = (N ′, 0, id) = 0 ∈ Hgeo,K(N ′).(89)

It follows that (B,α, f) = 0 ∈ Hgeo,K(N).

�

Lemma 4.30. The comparison map satisfies the following additional properties

(1) The comparison map is compatible with Eilenberg-Zilber maps. More precisely, the
following diagram commutes

Hgeo,K
∗ (N0)⊗Hgeo,K

∗ (N1) ĤK
∗ (N0)⊗ ĤK

∗ (N1)

Hgeo,K×K
∗ (N0 ×N1) ĤK×K

∗ (N0 ×N1)

ψ⊗ψ

EZgeo EZ

ψ

(2) Let ∆ : K ⊂ K ×K be the diagonal subgroup. Then the following diagram commutes:

Hgeo,K×K
∗ (N0 ×N1) ĤK×K

∗ (N0 ×N1)

Hgeo,K
∗ (N0 ×N1) ĤK

∗ (N0 ×N1)

ψ

rgeo∆
r∆

ψ

where rgeo∆ and r∆ denote the restriction to the diagonal subgroup.
(3) For any N ∈ ENR∞K and T ⊂ K a maximal torus, the comparison map ψ intertwines

the Weyl group action on Hgeo,T
∗ (N) from (78) with the natural action on ĤT

∗ (N).

Proof. Claim (1): We again take N ∈ cENRK . We need to check that

(f0 × f1)∗(PDB0×B1(α0 ∪ α1)) = EZ((f0)∗(PDB0(α0)⊗ (f1)∗(PDB1(α1)).(90)

In view of the naturality of EZ(− ⊗ −) in the two arguments (which can be proved on finite
dimensional approximations), it suffices to prove

PDB0×B1(α0 ∪ α1)) = EZ((PDB0(α0)⊗ (PDB1(α1))(91)

which also can be checked on finite dimensional approximations.

Claim (2): Immediate from the definitions.

Claim (3): The comparison map ψ is natural and it therefore suffices to show that it inter-

twines φ∗w : Hgeo,T
∗ (N) → Hgeo,T

∗ (N) with the corresponding map φ∗w : ĤT
∗ (N) → ĤT

∗ (N) on
semi-infinite homology. Without a loss of generality, we can assume that N ∈ cManK and that
geometric cycles are represented by (N,α, id). The claim then follows from the fact that the

pull-back map φ∗w : ĤT
∗ (N)→ ĤT

∗ (N) induced by the automorphism coincides with the induced
map on equivariant cohomology under Poincare duality. �
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4.4.4. Based loop spaces. Let G be a compact connected Lie group and let ΩG denote the
space of smooth loops in G based at id ∈ G. This admits a natural action of G given by

G× ΩG→ ΩG(92)

g · γ(t) = gγ(t)g−1.

The space ΩG also admits a Pontryagin product given by pointwise multiplication:

mΩG : ΩG× ΩG→ ΩG.(93)

This map (93) is manifestly G-equivariant if ΩG×ΩG is given the diagonal G-action. Thus for
any connected, closed subgroup K ⊂ G, it therefore induces a map

mK : Hgeo,K
∗ (ΩG)⊗Hgeo,K

∗ (ΩG)→ Hgeo,K
∗ (ΩG)(94)

where mK is the composition of mΩG,∗ with the restriction along the diagonal subgroup and the

Eilenberg-Zilber map. This product equips Hgeo,K
∗ (ΩG) with the structure of an associative (in

fact commutative) algebra.
Now let ΩpolyG ⊂ ΩG denote the space of based loops S1 → G which extend to an algebraic

map C∗ → GC, where GC is the complexification of G ([PS, 3.5] or [AP, Definition 2.1]). We
have that ΩpolyG is a colimit of finite dimensional GC-projective varieties ΩpolyG≤λ each of which
is a compact G-ENR by [J2, Theorem 2.1]. The G-action (92) and Pontryagin product (93)
restrict to ΩpolyG. As a consequence, we have a product

mK : ĤK
∗ (ΩpolyG)⊗ ĤK

∗ (ΩpolyG)→ ĤK
∗ (ΩpolyG).(95)

We have the following comparison result:

Lemma 4.31. For any connected, closed subgroup K ⊆ G, there is a natural isomorphism of

rings Hgeo,K
∗ (ΩG) ∼= ĤK

∗ (ΩpolyG).

Proof. Note that the Pontryagin product also gives Hgeo,K
∗ (ΩpolyG) the structure of an

associative algebra. The inclusion ΩpolyG → ΩG is a G-equivariant homotopy equivalence (see

e.g. [GMP, Lemma 2.6]). Hence, by Lemma 4.23, Hgeo,K
∗ (ΩpolyG) ∼= Hgeo,K

∗ (ΩG). Finally,

because ΩpolyG ∈ ENR∞K , Theorem 4.29 and Lemma 4.30 (1)-(2) imply that Hgeo,K
∗ (ΩpolyG) ∼=

ĤK
∗ (ΩpolyG) as rings as well. �

4.5. Concluding the construction. Given (B,α, f) ∈ Hgeo,T
∗ (ΩG), we define

S((B,α, f), ·) : SH∗T (M)→ SH∗T (M)

S((B,α, f), z) := Sf (α, z)(96)

Proposition 4.32. The map S : Hgeo,T
∗ (ΩG) × SH∗T (M) → SH∗T (M) given by (96) is

well-defined.

Proof. We need to check that S is independent of the four equivalence relations in Definition
4.21. The independence of the first two is obvious. The independence of the third follows from
a cobordism argument.

For the last relation, let B0, B1 be in cManK and j : B0 → B1 be a smooth, equivariant
embedding. Using j, we identify B0 as a submanifold of B1. Let f : B1 → N be an equivariant
map and α ∈ H i

T (B0). Let η′B1
: B1 → R be a T -invariant Morse-Bott function and gB1 be a

T -invariant Riemannian metric such that any gradient trajectory from a Morse-Bott manifold
in B0 to another Morse-Bott manifold in B0 stays in B0 for all time, and there is no gradient
trajectory which starts from a Morse-Bott manifold in B1 \ B0 to a Morse-Bott manifold in
B0. In other words, in terms of Morse-Bott complex, we want the generators from B0 forms a
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subcomplex that can be identified with the Morse-Bott complex of B0. Moreover, we require
that every connected critical submanifold of η′B1

is of the form T/H. By Lemma 4.8, at the cost

of possibly T -equivariantly homotope f to another map, we can assume that (f, η′B1
) is a good

pair (and hence (f |B0 , η
′
B1
|B0) is also a good pair).

Let k := dim(B1)− dim(B0). The commutative diagram we want is
(97)

H∗T (B0)⊗HF ∗T (M,a0) //

��

HF ∗(PB0 , (f)∗Af |PB0
)

��

// HF ∗−ι(f)(PB0 , Af |PB0
)

��

// HF
∗−ι(f)−dim(B0)
T (M,a1)

��

H∗+kT (B1)⊗HF ∗T (M,a0) // HF ∗+k(PB1 , f
∗Af ) // HF ∗+k−ι(f)(PB1 , Af ) // HF

∗−ι(f)−dim(B0)
T (M,a1)

With our setup, the chain level groups in the first row are subcomplexes of the ones in the second
row up to grading shifts. These induce the vertical maps in the diagram. Equivalently, these can
also be identified with the push-forward maps. The commutativity of the diagram follows from
the fact that the chain level maps send the subcomplexes to the subcomplexes. Applying the
composition of maps in the first row to (α, a) gives Sf |B0

(α, a), while applying the composition

of maps on the other side of the diagram gives Sf (j!(α), a). This finishes the proof.
�

4.6. Weyl-equivariance.

Proposition 4.33. The map S(·, e) : Hgeo,T
∗ (ΩG)→ SH∗T (M) is Weyl-equivariant.

Proof. Let EG be a classifying space of G. For any w ∈ N(T ), we define φw : T → T to

be φw(g) = wgw−1. Let (B,α, f) be a cycle in Hgeo,T
∗ (ΩG). At the cost of possibly homotoping

f (Lemma 4.8), we assume that there is an η′B making (f, η′B) a good pair. We denote the T
action on B, M and EG by ρB, ρM and ρE , respectively. We define w∗ρB := ρB ◦ φw, and
similarly for w∗ρM and w∗ρE . Recall that the class w(B,α, f) is represented by (B,φ∗wα,wf)
with the ρB ◦ φ−1

w action (79).
The map M → M given by m 7→ ρM (w)m is (ρM , w

∗ρM )-equivariant (i.e. it is equivariant
with respect to the ρM action on the domain and the w∗ρM action on the target). Similarly, the
map EG→ EG given by y 7→ ρE(w)y is (ρE , w

∗ρE)-equivariant. For a space X and a T -action
ρX on X, we denote the quotient X/T by X/ρX to emphsise the action of T on X. For two T
actions ρX1 and ρX2 , we use ρX1 ⊗ ρX2 to denote the diagonal action by T .

Fix w ∈ N(T ), we consider the following commutative diagram
(98)

(B × EG)/(ρB ⊗ ρE)× (M × EG)/(ρM ⊗ ρE)

'
��

(B × EG×M × EG)/(ρB ⊗ ρE ⊗ ρM ⊗ ρE)

'
��

oo

(B × EG)/(ρB ⊗ w∗ρE)× (M × EG)/(w∗ρM ⊗ w∗ρE) (B × EG×M × EG)/(ρB ⊗ w∗ρE ⊗ w∗ρM ⊗ w∗ρE)oo

where the first vertical map sends ((b, y1), (m, y2)) to ((b, wy1), (wm,wy2)), the second vertical
map sends (b, y1,m, y2) to (b, wy1, wm,wy2) and the horizontal maps are the natural maps.

Let Af ∈ C∞(S1 × (B ×EG×M ×EG)/(ρB ⊗ ρE ⊗ ρM ⊗ ρE)) be a Hamiltonian given by
Proposition 4.10 and

Ãf : S1 ×B × EG×M × EG→ R
be its lift. We define

Ãwf :S1 ×B × EG×M × EG→ R

(t, b, y1,m, y2) 7→ Ãf (t, b, w−1y1, w
−1m,w−1y2)
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which is ρB ⊗w∗ρE ⊗w∗ρM ⊗w∗ρE-invariant. As a result, Ãwf descends to a function, denoted
by Awf , on S1 × (B ×EG×M ×EG)/(ρB ⊗w∗ρE ⊗w∗ρM ⊗w∗ρE). It is direct to check that

((wf)∗Ãwf )t(b, wy1, wm,wy2)

=(Ãwf )t(b, wy1, wf(b)(t)w−1wm,wy2)−Kwf(b)w−1,t(wf(b)(t)w−1wm)

=(f∗Ãf )t(b, y1,m, y2).

Moreover, both Awf and (wf)∗Awf are cylindrical Hamiltonians compatible with the admissible
base triple on (B×EG×EG)/(ρB⊗w∗ρE⊗w∗ρE) obtained by pushing forward the admissible
base triple on (B × EG× EG)/(ρB ⊗ ρE ⊗ ρE).

As a result, we can use the commutative diagram (98) to deduce the following commutative
diagram

(99) H((B × EG)/(ρB ⊗ ρE))⊗HF ∗T (M,a0) //

φ∗w⊗w∗
��

HF (PB, (f)∗Af )

����
H((B × EG)/(ρB ⊗ w∗ρE))⊗HF ∗T (M,a0) // HF (PwB , (wf)∗Awf )

where PwB := (B×EG×M ×EG)/(ρB⊗w∗ρE⊗w∗ρM ⊗w∗ρE). Note that (M ×EG)/(w∗ρM ⊗
w∗ρE) is canonically the same as (M × EG)/(ρM ⊗ ρE) so the second factor in the top left
and bottom left tensor products in (99) can be canonically identified and we just denote it by
HF ∗T (M,a0). Moreover, the map on HF ∗T (M,a0) is precisely the action by w so we denote it by
w∗. On the other hand, the map between the first factor in the top left and bottom left tensor
products is precisely the φ∗w described in (77).

Similarly, we also have the following commutative diagram of maps between spaces
(100)

(B × EG×M × EG)/(ρB ⊗ ρE ⊗ ρM ⊗ ρE)

'
��

// (EG×M × EG)/(ρE ⊗ ρM ⊗ ρE)

'
��

(B × EG×M × EG)/(ρB ⊗ w∗ρE ⊗ w∗ρM ⊗ w∗ρE) // (EG×M × EG)/(w∗ρE ⊗ w∗ρM ⊗ w∗ρE)

where the first vertical map sends (b, y1,m, y2) to (b, wy1, wm,wy2) and the second vertical map
sends (y1,m, y2) to (wy1, wm,wy2). The corresponding commutative diagram of maps between
cohomology is

(101) HF (PB, (f)∗Af )

��

// HF (PB, Af )

��

// HFT (M,a1)

w∗
��

HF (PwB , (wf)∗Awf ) // HF (PwB , Awf ) // HFT (M,a1)

In the last column, we use the canonical isomorphism between (EG×M ×EG)/(ρE⊗ρM ⊗ρE)
and (EG ×M × EG)/(w∗ρE ⊗ w∗ρM ⊗ w∗ρE) again. Moreover, the last vertical map w∗ is
precisely the action on HFT (M,a1) by w.

By combining (99), (101) and passing to the direct limit, we show that w∗Sf (α, e) (the
output of (α, e) under the composition of the maps in the first row and the last vertical map)
equals to Swf (φ∗wα,w∗e) (the output of (α, e) under the composition of the first vertiical map
and the maps in the second row). Moreover, we know that Swf (φ∗wα,w∗e) = Swf (φ∗wα, e) so it
proves that S(·, e) is Weyl-equivariant.

�
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5. An algebra homomorphism

In this section, we are going to show that S(·, e) : Hgeo,T
∗ (ΩG) → SH∗T (M) is an algebra

homomorphism as promised in (2).

First note that for (B1, α1, f1), (B2, α2, f2) ∈ Hgeo,T
∗ (ΩG), their product is represented by

(B2 × B1, π
∗
2α2 ∪ π∗1α1, f), where f : B2 × B1 → ΩG is given by f(b2, b1) = f2(b2)f1(b1) (see

(74)).

Proposition 5.1. For i = 1, 2, let (fi : Bi → ΩG, η′Bi) be a good pair. Let B := B2 × B1,

Fi : B → R be Fi(b2, b1) = fi(bi) and F : B → R be F (b2, b1) = f2(b2)f1(b1). Let η′ : B → R be
η′B2×B1

(b2, b1) = η′B1
(b1) + η′B2

(b2) Then (Fi, η
′) and (F, η′) are good pairs, F ∗1F

∗
2H = F ∗H for

any cylindrical Hamiltonian H ∈ C∞(S1 × PB) and

CF ' CF2 ◦ CF1 : HF (PB, F
∗H)→ HF (PB, H)(102)

Proof. Clearly, η′B2×B1
is T -invariant (in fact, T × T -invariant). A critical submanifold of

η′ is a product of critical submanifolds of η′B1
and η′B2

. Let Nηi be a T -invariant neighborhood

of critp(η′Bi) such that fi is locally constant. Then Fi and F are locally constant near the

T -invariant set Nη1 ×Nη2 so (Fi, η
′
B2×B1

) and (F, η′B2×B1
) are good pairs.

Let H̃ : S1 ×B1 ×B2 × ET ×M → R be the lift of H. Now we check that

F ∗1F
∗
2 H̃t(b1, b2, y,m)

=F ∗2 H̃t(b1, b2, y, (f1(b1)(t)) ·m)−Kf1(b1),t((f1(b1)(t)) ·m)

=H̃t(y, (f2(b2)(t))(f1(b1)(t)) ·m)−Kf2(b2),t((f2(b2)(t))(f1(b1)(t)) ·m)−Kf1(b1),t((f1(b1)(t)) ·m)

=H̃t(y, (f2(b2)(t))(f1(b1)(t)) ·m)−Kf2(b2)f1(b1),t((f2(b2)(t))(f1(b1)(t)) ·m)

=F ∗H̃t(b1, b2, y,m)

Here the third equality follows from Lemma 4.2(1).

To see (102), we simply observe that in the proof of Proposition 4.11, the Φ̃ associated to F

is the composition of the Φ̃ associated to F2 and F1. �

The commutative diagram we want to establish is the following, and Proposition 5.1 gives
the commutativity of the triangle in the middle.
(103)

H∗T (B2)⊗H∗T (B1)⊗HF ∗T (M,a0)
id⊗Q1 //

Q2⊗id
��

H∗T (B2)⊗HF ∗(PB1 , f
∗
1Af1)

Q3

��

id⊗Cf1 // H∗T (B2)⊗HF ∗(PB1 , Af1)

Q4

��

id⊗Π1 // H∗T (B2)⊗HF ∗T (M,a1)

Q5

��
H∗T (B2 ×B1)⊗HF ∗T (M,a0)

Q6 // HF ∗(PB2×B1 , F
∗AF )

CF1 //

CF

++

HF ∗(PB2×B1 , F
∗
2AF )

Π2 //

CF2

��

HF ∗(PB2 , f
∗
2Af2)

Cf2
��

HF ∗(PB2×B1 , AF )

Π5

**

Π3 // HF ∗(PB2 , Af2)

Π4

��
HF ∗T (M,a2)

The rest of the subsection is devoted to explaining all the maps in the commutative diagram
and proving their commutativity.

Once the commutativity of the diagram is proved and after passing to the direct limit with
respect to slopes, the composition of the maps in the first row and last column is (α2, α1, z) 7→
Sf2(α2, Sf1(α1, z)), while the composition of the maps on ‘the other side’ is (α2, α1, z) 7→
SF (π∗2α2 ∪ π∗1α1, z). When z is the unit e ∈ SH∗T (M), we obtain

SF (π∗2α2 ∪ π∗1α1, e) = Sf2(α2, Sf1(α1, e)) = Sf2(α2, e)Sf1(α1, e)
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so S(·, e) is an algebra map. Here, the second equality comes from Lemma 4.19.
Our first task is to explain the maps Q3 and Q4. To fix the ideas, the maps Q3 and Q4 are

pull-back maps (in the sense of Section 2.3) with respect to the following fibre product diagram.

(104)

(B2 × ET ×B1 ×M × ET )/T (B2 × ET )/T × (B1 ×M × ET )/T

(B2 × ET ×B1 × ET )/T (B2 × ET )/T × (B1 × ET )/T

However, the slopes of the Hamiltonians are not constant functions so we have to be careful with
the auxiliary choices so that C0 a priori estimates can be achieved to give well-defined pull-back
maps. The auxiliary choices are explained below.

For i = 1, 2, let (ηi, gi,∇i) be the admissible base triple obtained by applying Proposition
4.10 to the good pairs (fi, η

′
Bi

). We assume that the connections on (Bi × ET )/T → BT for
both i = 1, 2 are induced by the same connection ∇T for the bundle ET → BT . In particular,
over the region U where ∇T is flat, we have ((Bi)borel|U , gi) ' (Bi × U, gBi ⊕ gBT |U ), where gBi
is a T -equivariant metric on Bi. However, for regularity reason, we don’t want to build ηi using
the same Morse function ηBT : BT → R. Instead, let ηBT,i : BT → R be a Morse function
that is a small perturbation of ηBT so that it satisfies the properties as required in Section
4.2.2. Let η′i : (Bi ×ET )/T → R be the pull-back of the Morse function ηBT,i. We assume that
ηi = η′i + εiχi(u)ηBi(bi), where ηBi : Bi → R is a Morsification of η′Bi as in Section 4.2.2.

It is easy to check that the following diagram is a fibre product diagram

(B2 × ET ×B1 × ET )/T (B2 × ET )/T × (B1 × ET )/T

(ET × ET )/T (ET )/T × (ET )/T

The map from the top-left to bottom-right, the second horizontal map and the second vertical
map are T × T -bundles with fibres T × B2 × B1, T and B2 × B1, respectively. We equip all of
them with the connection induced by ∇T ⊕∇T .

We choose a Riemannian metric gBBT on (ET × ET )/T such that the map to ((ET )/T ×
(ET )/T, gBT ⊕ gBT ) is a Riemannian submersion, and the orthogonal complement of the fibres
argees with the horizontal subspace T hor ⊂ T ((ET × ET )/T ) of the connection. The second
vertical map is also a Riemannian submersion, where the source is equipped with the metric
g2⊕ g1. The metric gBBT and g2⊕ g1 together induces a Riemannian metric g21 on (B2×ET ×
B1 × ET )/T such that all the four maps are Riemannian submersions. Indeed, the tangent
spaces of (B2×ET ×B1×ET )/T , (B2×ET )/T × (B1×ET )/T and (ET ×ET )/T are given by
T (T )⊕T (B2×B1)⊕T hor, T (B2×B1)⊕T hor and T (T )⊕T hor respectively, and the Riemannian
metrics gBBT and g2⊕g1 respect the product decomposition and agree on T hor. Therefore, they
uniquely determine a metric g21 making all the four maps Riemannian submersions. Moreover,
if we equip the first vertical map the connection induced by ∇T , then its horizontal subspaces
agree with the g21-orthgonal complement of the fibres.

Let η′BBT : (ET × ET )/T → R be the pull-back of ηBT . Over the flat region U , we have
((ET ×ET )/T |U , gBBT ) ' (T × U, gT × gBT |U ). To Morsify η′BBT , we choose a Morse function
ηT : T → R and define ηBBT = η′BBT + χ(u)ηT (g). Let η′21 : (B2 × ET × B1 × ET )/T → R be
the pull-back of ηBBT and define its Morsification η21 := η′21 + χ(u)(ηB1(b1) + ηB2(b2)).

Let∇21 be the connection for the first vertical map in (104) induced by∇T . Then (η21, g21,∇21)
is an admissible base triple, and is of the form obtained by applying Proposition 4.10 to
(f2f1, π

∗
1η
′
B1

+ π∗2η
′
B2

).
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Following Proposition 4.10, let Afi ∈ C∞(S1 × PBi) be a cylindrical Hamiltonian such that
both Afi and f∗i Afi are compatible with (ηi, gi,∇i) and Afi has slope sAfi = (si)borel. Here,

si ∈ C∞(S1 × Bi) is a T -invariant function such that it is locally constant on Nηi , si > cfi,K
and (53) is satisfied (ηB, τB and f are replaced with ηBi , τBi and fi, respectively). We assume
furthermore that Afi are chosen such that there are constants a0, a1, a2 with

0 < a0 ≤ sf∗1Af1 , sAf1 ≤ a1 ≤ sf∗2Af2 , sAf2 ≤ a2(105)

The maps in the first row and last column of (103) are precisely those maps introduced in
Section 4.2 and 4.3 to define Sfi .

Similarly, we are going to pick a cylindrical Hamiltonian AF ∈ C∞(S1 × PB2×B1) such that
AF , F ∗2AF and F ∗AF are all compatible with (η21, g21,∇21). To do that, let s′2 ∈ C∞(S1 ×B2)
be another T -invariant function such that it is locally constant in Nη2 , s′2 > cf2,K and (53) is
satisfied. The following lemma explains the choice of cylindrical Hamiltonians we use for the
target of the maps Q3 and Q4.

Lemma 5.2. If the values of (π∗1s1 +π∗2s′2)|Nη2×Nη1 does not lie in the action spectrum of the

contact boundary ∂M̄ , then there is a cylindrical Hamiltonian AF ∈ C∞(S1×PB2×B1) with slope
sAF = (π∗1s1 + π∗2s′2)borel such that AF , F ∗2AF and F ∗AF are all compatible with (η21, g21,∇21).

Proof. The proof is in parallel to the proof of Proposition 4.10. The key statement to
check is d

dssF ∗AF (t, τ(s)), ddssF ∗2AF (t, τ(s)) ≤ 0 for any gradient trajectory τ : R→ (B2×ETn2 ×
B1 × ETn1)/T . Note that, before taking the Borel construction, for any gradient trajectory
τB2×B1 = (τB2 , τB1) : R→ B2 ×B1, we have

d

ds
(π∗1s1 + π∗2s′2)(t, τB2×B1(s))

≤ d

ds
s1(t, τB1(s)) +

d

ds
s′2(t, τB2(s))

≤− max
m∈∂M̄

∣∣∣∣ ddssKf1(τB1
(s)),t(m)

∣∣∣∣− max
m∈∂M̄

∣∣∣∣ ddssKf2(τB2
(s)),t(m)

∣∣∣∣
≤− max

m∈∂M̄

∣∣∣∣ ddssKf2f1(τB2×B1
(s)),t(m)

∣∣∣∣
where the last inequality comes from Lemma 4.2(1).

It in turn follows that the analogue of (54) is true in our case. More precisely, we have

d

ds
(π∗1s1 + π∗2s′2)borel(t, τ(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddss(F ∗0)τ(s)
(t,m),

∣∣∣∣ , and

d

ds
(π∗1s1 + π∗2s′2)borel(t, τ(s)) ≤ − max

m∈∂M̄

∣∣∣∣ ddss(F ∗2 0)τ(s)
(t,m),

∣∣∣∣
which show that d

dssF ∗AF (t, τ(s)), ddssF ∗2AF (t, τ(s)) ≤ 0. �

For a fixed a′2 as in Lemma 5.2, by possibly choosing a larger a1 and a2, we can assume that

a0 ≤ sF ∗AF , sF ∗2AF , sAF ,≤ a1(106)

This is not needed at the moment to define the maps Q3 and Q4, but it will be needed when we
define Π2 and Π3 in (103).

We are now ready to define Q3 and Q4.
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Lemma/Definition 5.3. Let Af1 and AF be as above. Then there are well-defined pull-back
maps

Q3 : H∗T (B2)⊗HF ∗(PB1 , f
∗
1Af1)→ HF ∗(PB2×B1 , F

∗AF )(107)

Q4 : H∗T (B2)⊗HF ∗(PB1 , Af1)→ HF ∗(PB2×B1 , F
∗
2AF )(108)

such that CF1 ◦Q3 = Q4 ◦ (id⊗ Cf1).

Proof. We are going to explain the definition of Q3. The definition of Q4 is similar.
Following Section 2.3, for n1, n2 ∈ N, let B′ = (B2 × ETn2 × B1 × ETn1)/T , B = (B2 ×

ETn2)/T × (B1×ETn1)/T and h : B′ → B be the obvious map. We also let P ′ = (B2×ETn2 ×
B1 ×M ×ETn1)/T , P = (B2 ×ETn2)/T × (B1 ×M ×ETn1)/T and h̃ : P ′ → P be the obvious
map. Note that P ′ is the pull-back of P → B along h.

Let ρ : (−∞, 0] → [0, 1] be a smooth monotone increasing function that is 0 for s � 0 and

equals to 1 near s = 0. We define Hs := f∗1Af1 for all s ≥ 0, and H ′s := (1−ρ(s))F ∗AF+ρ(s)h̃∗H0

for s ≤ 0. We claim that the condition in Lemma 2.25 is satisfied so that the pull-back is well-
defined. To see this, note that h̃∗H0 = h̃∗f∗1Af1 = F ∗1 (h̃∗Af1) and sh̃∗Af1

= (π∗1s1)borel. Recall

that sAF = (π∗1s1 + π∗2s′2)borel and F ∗AF = F ∗1F
∗
2AF so

H ′s = F ∗1 ((1− ρ(s))F ∗2AF + ρ(s)h̃∗Af1) = F ∗1 (h̃∗Af1 + (1− ρ(s))(F ∗2AF − h̃∗Af1)).

Let H ′′s := h̃∗Af1 + (1− ρ(s))(F ∗2AF − h̃∗Af1). For a gradient trajectory τ− : (−∞, 0]→ B′, we

denote its projection to (Bi × ETni)/T by τ−i for i = 1, 2. Then we have

d

ds
(s(H′s)τ−(s),t

(m))

≤max
m

d

ds
(s(H′′s )τ−(s),t

(m)) + max
m

∣∣∣∣ ddss(F ∗1 0)τ−(s)
(t,m)

∣∣∣∣
≤max

m

d

ds
(s(h̃∗Af1 )τ−(s),t

(m)) + max
m

d

ds
(s((1−ρ(s))(F ∗2AF−h̃∗Af1 ))τ−(s),t

(m)) + max
m

∣∣∣∣ ddss(F ∗1 0)τ−(s)
(t,m)

∣∣∣∣
≤
(
d

ds
(s1)borel(t, τ

−
1 (s)) + max

m

∣∣∣∣ ddss(F ∗1 0)τ−(s)
(t,m)

∣∣∣∣)
+ (1− ρ(s))

(
d

ds
(s′2)borel(t, τ

−
2 (s)) + max

m

∣∣∣∣ ddss(F ∗2 0)τ−(s)
(t,m)

∣∣∣∣)
− ρ′(s)

(
(s′2)borel(t, τ

−
2 (s))−max

m

∣∣∣s(F ∗2 0)τ−(s)
(t,m)

∣∣∣)
On the RHS, the first term and the second term are non-positive because s1 and s2 are cho-
sen to satisfy this property (see (54)). The third term is also non-positive because ρ′ ≥ 0
and s′2 > cf2,K = cF2,K ≥ maxm

∣∣sF ∗2 0(t,m)
∣∣ for all t ∈ S1 (see (52)). As a result, we have

d
ds(s(H′s)τ−(s),t

(m)) ≤ 0 so the condition in Lemma 2.25 is satisfied.

The definition of Q4 is similar. Moreover, if we use the same cutoff function ρ(s) for both
Q3 and Q4 and appropriate almost complex structures, then they are tautologically identified
with each other via the map Φ in Proposition 4.11. This gives the commutativity CF1 ◦ Q3 =
Q4 ◦ (id⊗ Cf1).

�

Lemma 5.3 gives us the commutativity of the upper middle square in (103). Now we turn
to the upper left square.
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Lemma 5.4. The following diagram commutes

(109)

H∗T (B2)⊗H∗T (B1)⊗HF ∗T (M,a0) H∗T (B2)⊗H∗(PB1 , a0)

HF ∗T (B2 ×B1)⊗HF ∗T (M,a0) HF (PB2×B1 , a0)

Proof. The commutativity of

(B2 × ETn2)/T × (B1 × ETn1)/T × (M × ETm)/T (B2 × ETn2)/T × (B1 × ETn1 ×M × ETm)/Too

(B2 × ETn2 ×B1 × ETn1)/T × (M × ETm)/T

OO

(B2 × ETn2 ×B1 × ETn1 ×M × ETm)/Too

OO

and the naturality (Corollary 2.27) imply a commutative diagram of the corresponding pull-back
maps. By passing to the inverse limit and using the independence of the model of the classifying
space (Lemma 3.7), we obtain the result.

�

Note that, the Hamiltonians in the domain and the target of the second vertical map of
(109) have constant slopes so the groups and the map are independent of the model of the
classifying space (cf. Lemma 3.7). To complete the upper left square in (103). We need to show
the following commutativity.

Lemma 5.5. The following diagram commutes

(110)

H∗T (B2)⊗HF ∗(PB1 , a0) H∗T (B2)⊗HF ∗(PB1 , f
∗
1Af1)

HF (PB2×B1 , a0) HF ∗(PB2×B1 , F
∗AF )

Q3

Proof. We use the admissible base triple (η1, g1,∇1) for H∗(PB1 , a0) and HF ∗(PB1 , f
∗
1Af1),

and the admissible base triple (η21, g21,∇21) for HF (PB2×B1 , a0) and HF ∗(PB2×B1 , F
∗AF ).

Similar to Lemma 2.14 and 2.16, it suffices to find a homotopy between the Floer data cor-
responding to the two different compositions such that the maximum principle can be achieved.
The Hamiltonian (Hs)s∈R defining H∗(PB1 , a0)→ HF ∗(PB1 , f

∗
1Af1) is of the form

Hs = (1− ρ(s))f∗1Af1 + ρ(s)Aa0

for some Hamiltonian Aa0 ∈ C∞(S1 × PB1) that is of constant slope a0, and some monotone
increasing function ρ : R → [0, 1] such that ρ(s) = 0 for s � 0 and ρ(s) = 1 for s � 0.3

We can regard (Hs)s∈R as a family of elements in C∞(S1 × (B2)borel × PB1) which defines
H∗T (B2)⊗H∗(PB1 , a0)→ H∗T (B2)⊗HF ∗(PB1 , f

∗
1Af1). The Hamiltonian defining Q3 is explained

in Lemma/Definition 5.3.
On the other side, the Hamiltonians (H ′s)s∈R≤0

and (Hs)s∈R≥0
definingH∗T (B2)⊗H∗(PB1 , a0)→

HF (PB2×B1 , a0) are family of Hamiltonians of constant slope a0 in C∞(S1 × PB2×B1) and
C∞(S1×(B2)borel×PB1) respectively. Finally, the Hamiltonian (Hs)s∈R definingHF (PB2×B1 , a0)→
HF ∗(PB2×B1 , F

∗AF ) is of the form

Hs = (1− ρ(s))F ∗AF + ρ(s)Aa0

for some Hamiltonian Aa0 ∈ C∞(S1×PB2×B1) that is of constant slope a0, and some monotone
increasing function ρ : R→ [0, 1] such that ρ(s) = 0 for s� 0 and ρ(s) = 1 for s� 0.

3More precisely, we need to use the restriction of Hs to the finite approximations to define the continuation
maps and then pass to direct limit.
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Let ρ+ : R≥0 → [0, 1], ρ− : R≤0 → [0, 1] and ρ : R→ [0, 1] be monotone increasing functions
such that ρ+(s), ρ−(s), ρ(s) = 0 when s near the left end, and ρ+(s), ρ−(s), ρ(s) = 1 when s near
the right end. To construct a homotopy between the two concatenation of Floer data coming
from the two compositions, we consider (Hs,r)s∈R≥0,r∈R ∈ C∞(S1 × PB1) of the form

Hs,r = (1− ρ(r))Aa0 + ρ(r)
(
(1− ρ+(s))f∗1Af1 + ρ+(s)Aa0

)
and (H ′s,r)s∈R≤0,r∈R ∈ C∞(S1 × PB2×B1) of the form

H ′s,r = ρ−(s)
(

(1− ρ(r)h̃∗Aa0 + ρ(r)h̃∗f∗1Af1

)
+ (1− ρ−(s))F ∗AF

where h̃ : PB2×B1 → PB1 is the obvious map (as in Lemma/Definition 5.3). Notice that for

any fixed r, Hs,r = Aa0 when s � 0, H ′s,r = F ∗AF when s � 0, and h̃∗Hs,r = H ′s,r when s
is close to 0. It is straightforward to check that for all r, the slope of Hs,r and H ′s,r along any
gradient trajectory is decreasing. Therefore, the maximum principle can be applied. Moreover,
for appropriate ρ+, ρ−, ρ, the limit as r → ±∞ can be made arbitrarily close to the glued
Floer data of the two compositions respectively. Therefore, the rigid count of the moduli space
associated to the pair (Hs,r)s∈R≥0,r∈R and (H ′s,r)s∈R≤0,r∈R defines a homotopy between the two
chain level compositions and hence induces the comutativity of (110). This finishes the proof. �

Our next task is to define Π2 and Π3. The pull-back diagram we use this time is

(111)

PB2×B1 = (B2 ×B1 ×M × ET )/T (B2 × ET ×M)/T = PB2

(B2 ×B1 × ET )/T (B2 × ET )/T

Let h̃2 : PB2×B1 → PB2 be the obvious map. The bundle in the second column is equipped
with the admissible base triple (η2, g2,∇2). We can choose a Riemannian metric on (B2 ×B1 ×
ET )/T such that the second horizontal map is a Riemannian submersion. By doing the same
Morsification procedure as above to the pull-back of η2 on (B2×B1×ET )/T , we can obtain an
admissible base triple for the bundle in the first column such that the push-forward maps

HF ∗(PB2×B1 , h̃
∗
2f
∗
2Af2)→ HF ∗(PB2 , f

∗
2Af2)

and

HF ∗(PB2×B1 , h̃
∗
2Af2)→ HF ∗(PB2 , Af2)

are well-defined. Moreover, we have the following tautological commutative diagram (as in the
proof of Proposition 4.11)

(112)

HF ∗(PB2×B1 , h̃
∗
2f
∗
2Af2) HF ∗(PB2 , f

∗
2Af2)

HF ∗(PB2×B1 , h̃
∗
2Af2) HF ∗(PB2 , Af2)

h̃∗2

h̃∗2

Recall the bounds from (105) and (106). By Lemma 2.16, we have the following commutative
diagram

(113)

HF ∗(PB2×B1 , F
∗
2AF ) HF ∗(PB2×B1 , a1) HF ∗(PB2×B1 , h̃

∗
2f
∗
2Af2)

HF ∗(PB2×B1 , AF ) HF ∗(PB2×B1 , a1) HF ∗(PB2×B1 , h̃
∗
2Af2)

CF2
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By Lemma 3.7, for the second vertical map, we can use either the Borel model (B2×ET ×B1×
M × ET )/T or (B2 × B1 ×M × ET )/T for PB2×B1 . For the square on the left, we picked the
former choice when we define CF2 . However, for the square on the right, we can use the latter
model to make it consistent with (112) Now, by combining (112) and (113), we get Π2, Π3 as
well as the commutativity of the middle right square in (103).

By Lemma 2.16, 2.26 and 2.33, we obtain the commutative diagram
(114)

H∗T (B2)⊗HF ∗(PB1 , Af1) //

��

H∗T (B2)⊗HF ∗(PB1 , a1) //

��

H∗T (B2)⊗HF ∗T (M,a1)

**��
HF ∗(PB2×B1 , F

∗
2AF ) // HF ∗(PB2×B1 , a1) // HF ∗(PB2 , a1) // HF ∗(PB2 , f

∗
2Af2)

which gives the commutativity of the top right square in (103).
By Lemma 2.16, 2.33 and Corollary 2.34, we obtain the commutative diagram

(115) HF ∗(PB2×B1 , AF )

��

// HF ∗(PB2 , Af2)

�� ((
HF ∗(PB2×B1 , a2) // HF ∗(PB2 , a2) // HF ∗T (M,a2)

which gives the commutativity of the bottom right triangle in (103).

Theorem 5.6. The map

ĤT
∗ (ΩG)→ SH∗T (M)

[B,α, f ] 7→ Sf (α, eM )

is an algebra homomorphism (cf. (2)).

Proof. As explained in the paragraph after (103), it suffices to verify the commutativity
of (103) and the compatibility with passing to the direct limit with respect to slope. The
commutativity of (103) follows from Proposition 5.1, Lemma 5.4, 5.5, and Equations (112),
(113), (114) and (115). The compatibility of this commutative diagram with respect to increasing
the slope is straightforward and left to the readers.

�

Theorem 5.7 (=Theorem 1.1). There is a ring homomorphism:

S : ĤG
∗ (ΩpolyG)→ SH∗G(M̄).(116)

Proof. There is a natural isomorphism ([BFM, Lemma 6.2], [BFN2, Lemma 5.3]) :

ĤT
∗ (ΩpolyG,C)W ∼= ĤG

∗ (ΩpolyG,C).(117)

By Theorem 5.6, there is a ring map S : ĤT
∗ (ΩpolyG) → SH∗T (M̄). By Proposition 4.33, this

map is W -equivariant and hence taking W - invariants induces a map of the form (116). �

6. Coulomb branches and symplectic cohomology

6.1. Background on Coulomb branches. In this section, we recall some relevant facts
about Coulomb branch algebras. As in previous sections, we let T ⊂ G be a maximal torus and
W denote the Weyl group N(T )/T .
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6.1.1. Pure Coulomb branches.

Definition 6.1. The algebra C3(G; 0) is defined to be the vector space ĤG
∗ (ΩpolyG,C) equipped

with the Pontryagin product.

The two basic geometric facts concerning Spec(C3(G; 0)) are the following ([BFM]):

(1) ĤG
∗ (ΩpolyG,C) is a Hopf algebra over H∗(BG,C). As a consequence, Spec(C3(G; 0))

has the structure of a group scheme over Spec(H∗(BG,C)).
(2) The spectrum Spec(C3(G; 0)) is a smooth holomorphic symplectic manifold. Moreover

the “Toda projection”

πToda : Spec(C3(G; 0))→ Spec(H∗(BG,C))(118)

defines a completely integrable system.

The algebra C3(G; 0) can be described in relatively explicit terms. First, recall that ĤT
∗ (ΩpolyG,C)

can be described as an affine blowup of Spec(ĤT
∗ (ΩpolyT,C)) := T ∗T∨C ([BFM, §2.5], [T2, §3.1]).

Namely, a root α (respectively a co-root α∨) is given by a function tC → C (respectively t∨C → C).
Consider the ring

˜C3(G; 0) := C[T ∗T∨C ][(eα
∨ − 1)/α] ⊂ C(T ∗T∨C )

given by adjoining to C[T ∗T∨C ] the rational functions (eα
∨ − 1)/α where α, α∨ range over all

root-coroot pairs of G. Here eα
∨

is the exponential of the coroot viewed as a function T∨C → C∗.
This is an affine blow up of T ∗T∨C along the loci where eα

∨ − 1 = α = 0.

Proposition 6.2. There is an isomorphism:

ĤT
∗ (ΩpolyG,C) ∼= ˜C3(G; 0).(119)

Combining this with the isomorphism (117), we obtain that

ĤG
∗ (ΩpolyG,C) ∼= ˜C3(G; 0)

W
.(120)

Note that the isomorphism (120) gives rise to a birational map

πT,W : Spec(C3(G; 0))→ Spec(ĤT
∗ (ΩpolyT,C)W ) ∼= T ∗T∨C /W.(121)

Example 6.3. Let G = SU(2) and T be its maximal torus. Take C(T, 0) with coordinates
z±, τ. Following the recipe from Proposition 6.2, we adjoin two more variables:

u =
z − 1

τ
, v =

1− 1/z

τ
(122)

to C(T, 0) to obtain the ring ˜C3(G; 0). The Weyl group W := Z/2Z acts on this ring by u →
v, τ → −τ. The pure Coulomb branch is then isomorphic to the Weyl invariants:

C3(G; 0) ∼= ˜C3(G; 0)
W
.(123)

6.1.2. Teleman’s construction. We next review Teleman’s description ([T2]) of the Coulomb
branch associated to a “cotangent type” representation E of GC. Being of cotangent type means
that it comes with a (fixed) decomposition of the form

E := V⊕ V∨.(124)
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To describe the Coulomb branches, it is convenient to introduce an additional parameter µ. The
Coulomb branch C3(G;E) arises as the fiber over µ = 0 in a flat family C◦3(G;E) over C[µ]. We
set C◦3(G; 0) := C3(G; 0)[µ] and denote the parameterized (or “massive”) version of (118) by

π̊Toda : Spec(C◦3(G; 0))→ Spec(H∗(BG,C)[µ]).(125)

Let ν ∈ t∨ be a weight of V under the action of T . We let ψν : tC × C → C denote the linear
function

ψν(η, µ) = µ+ < ν|η > .(126)

Let (tC×C)o denote the complements of the hyperplanes cut out by ψν(η, µ) = 0. For any w ∈ C∗
and a weight ν, we let wν := exp(ν log(w)) ∈ T∨C . Consider the following map: (tC×C)o → T∨C ,

(η, µ)→
∏
ν

(ψν(η, µ))ν .(127)

Over (tC × C)o, this defines a W -equivariant section, εpre
V , of

π̊TToda : Spec(C◦3(T ; 0))→ Spec(H∗(BT,C)[µ]).

It therefore descends to a rational section ε̂V of

T ∗T∨C /W × C→ tC/W × C.

Definition 6.4. We define εV to be the proper transform of ε̂V to Spec(C◦3(G; 0)). For each
µ ∈ C, εV is a rational section of the Toda integrable system and thus defines a family of
holomorphic Lagrangians. We refer to εV as the Euler Lagrangian.

Remark 6.5. Equivalently, we can first take the proper transform of the rational section εpre
V

defined by (127) to the blow-up Spec( ˜C◦3(G; 0)) := Spec( ˜C3(G; 0)[µ]) and then take W -invariants.

Let U := π̊−1
Toda((tC×C)o). Translation by εV using the group scheme structure on Spec(C◦3(G; 0))

defines a rational fiberwise symplectomorphism

ε+
V : C◦3(G;E)|U ∼= C◦3(G;E)|U .(128)

Theorem 6.6. [T2, Theorem 1] Let AV denote the scheme given by gluing two copies of
Spec(C◦3(G; 0)) by ε+

V . Then

C◦3(G;E) ∼= Γ(AV).(129)

In purely algebraic terms, the description of C◦3(G;E) from Theorem 6.6 is equivalent to
saying that C◦3(G;E) ⊂ C◦3(G; 0) is the subring of C◦3(G; 0) which remain regular after applying
the translation (128). Following the idea of Proposition 6.2, we can also describe C◦3(G;E) as

the Weyl invariants of the subring ˜C◦3(G;E) ⊂ ˜C◦3(G; 0) of functions which remain regular after
translation by the rational section from Remark 6.5 ([T2, Corollary 4.5]).

Example 6.7. [T2, Example 5.2] Let G = U(1) and V = C2 be a rank 2 representation with
weight (1,−1). Let z±, µ, τ be the coordinates on Spec(C◦3(G; 0)). The rational automorphism

ε+
V : z → z(

µ+ τ

µ− τ
)(130)

preserves the subring generated by

µ, τ, x = z(µ− τ), y = z−1(µ+ τ)(131)

The ring C◦3(G;E) is given by

C◦3(G;E) ∼= C[µ, τ, x, y]/(xy = µ2 − τ2).(132)
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Example 6.8. [T2, Example 5.3] Let G = SU(2) and V = C2 be the standard representa-
tion. The restriction of this representation to the maximal torus T gives the previous example.

The pure Coulomb branches C◦3(G; 0) and ˜C◦3(G; 0) have been computed in Example 6.3 (up to
adjoining the formal variable µ). The relevant automorphism is still given by (130) and the

subring ˜C◦3(G;E) ⊂ ˜C◦3(G; 0) is generated by

x := µu− z, y = µv − z−1, w :=
x− y
τ

.(133)

By construction, the subvariety εV compactifies to a section ε̄V ⊂ Spec(C◦3(G;E)) of the
projection (125) (c.f. [T2, Theorem 3]). Namely, under the gluing construction, εV is identified
with an open subset of the unit section in the other copy of Spec(C◦3(G; 0)) (“chart”). Note that
the image of this unit section in Spec(C◦3(G;E)) remains a section and is automatically closed
(because global functions on Spec(C◦3(G;E)) restrict surjectively). Conversely, this property
characterizes Spec(C◦3(G;E)) as follows:

Corollary 6.9. Let S be an H∗(BG)[µ] algebra such that Spec(S) is a Spec(C◦3(G; 0))-
equivariant compactification of Spec(C◦3(G; 0)) which compactifies εV to a section ε̄V of the mas-
sive Toda projection. Then S is a subalgebra of C◦3(G;E).

Proof. The orbit of ε̄V under the group defines a second chart Spec(C◦3(G; 0)) → Spec(S).
Together our two orbits/charts give a map from Teleman’s scheme to Spec(S):

AV := Spec(C◦3(G; 0)) ∪ Spec(C◦3(G; 0))→ Spec(S).(134)

There is a pull-back on global functions S → Γ(AV) = C◦3(G;E) which must be injective. In
other words, S is a subalgebra of C◦3(G;E). �

We conclude this section by mentioning a few further properties of Coulomb branches which
are important, but not needed for our immediate purposes:

(1) The Coulomb branch C3(G;E) (and indeed the entire family C◦3(G;E)) can be shown
to be independent of the decomposition (124). However, this requires further analysis
(see [BFN2, §6(viii)]).

(2) Note that in Example 6.7, the Coulomb branch at µ = 0 is singular. Canonical (partial)
resolutions of Coulomb branches have been studied in [BFN].

6.2. Proof of Theorem 1.2. Let (M̄, ω, θ) be a Liouville domain with a convex Hamil-
tonian G-action. Recall from Remark 1.2 that SH∗G(M̄,C) denotes the version of symplectic
cohomology defined over C. We have the following obvious variant of Theorem 5.7:

Corollary 6.10. Let (M̄, ω, θ) be a Liouville domain with a convex Hamiltonian G-action.
Then there is a ring homomorphism:

S : ĤG
∗ (ΩpolyG)→ SH∗G(M̄,C).(135)

Next, let V := Cn be a unitary representation of G. Introduce complex coordinates zi on
Cn as well as corresponding polar coordinates (ri, θi). Equip this with the standard symplectic
form

ωCn :=
∑
i

ridri ∧ dθi.(136)

The Hamiltonian K = π|z|2 generates the diagonal circle action S1 × Cn → Cn

eit · (z1, · · · , zn) = (e2πitz1, · · · , e2πitzn).(137)
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The unit ball V̄ is a Liouville domain with contact boundary S2n−1. We consider the G ×
S1 equivariant symplectic cohomology SH∗G×S1(V̄,C) (as well as SH∗T×S1(V̄,C)), where the

additional S1-factor corresponds to the diagonal rotation (137). The diagonal rotation defines
a Seidel operator s∆ which acts on H∗T×S1(V̄,C). This Seidel operator determines symplectic
cohomology as follows:

Lemma 6.11 (Localization). There is an isomorphism:

SH∗T×S1(V̄,C) ∼= H∗T×S1(V̄,C)[s−1
∆ ].(138)

Proof. See [R] for the non-equivariant version and [LJ2, Section 5.1] for the equivariant
version. �

Next, view C◦3(G; 0) := ĤG
∗ (ΩpolyG)[µ] as a subalgebra of ĤG×S1

∗ (Ωpoly(G×S1)) ∼= ĤG
∗ (ΩpolyG)[µ,w±]

given by those elements which are constant in w. There is therefore a ring homomorphism:

C◦3(G; 0)→ SH∗G×S1(V̄,C).(139)

Theorem 6.12 (=Theorem 1.3). The following hold:

(1) There is an isomorphism Γ(OεV) ∼= SH∗G×S1(V̄,C). Moreover, the inclusion εV corre-

sponds to the homomorphism (139).
(2) There is a commutative diagram:

(140)

C◦3(G;E) H∗G×S1(V̄,C)

C3(G; 0)[µ] SH∗G×S1(V̄,C).

S

i ac

S

Proof. Proof of Claim (1): We first calculate the Seidel operator for the diagonal circle
action (137) viewed as an operation on H∗T×S1(V̄,C). Suppose first that V := Cν , a rank-
one representation of T with weight ν. The diagonal action acts by the Hamiltonian loop
t → e2πitz. Then by the argument of [LJ2, Theorem 5.6]4 the Seidel operator for this loop
is given by ψν(η, µ) := µ+ < ν|η > viewed as an element of H2

T×S1(V̄). In general, our
representation of T decomposes as a direct sum of these one-dimensional representations, and
the Seidel operator s∆ for the diagonal circle action is clearly the product of the Seidel operators
for these representations. In other words, we have

s∆ =
∏
ν

ψν(η, µ).(141)

By Lemma 6.11, it follows that

(tC × C)o ∼= SH∗T×S1(V̄,C).(142)

Now trivialize T ∼= (S1)r. The i-th circle will act on each of the one-dimensional representations
with some weight νi and the corresponding Seidel operator si will be

si :=
∏
ν

ψν(η, µ)νi .(143)

It follows that the homomorphism C(T, 0)[µ] → SH∗T×S1(V̄,C) is given by (127). By (the T -

equivariant version of) Corollary 6.10, this homomorphism extends to

˜C◦3(G; 0) := ĤT
∗ (ΩpolyG)[µ]→ SH∗T×S1(V̄,C).(144)

4Theorem 5.6 of [LJ2] assumes that the toric variety is compact and that the torus acting is the maximal
torus, however the proof carries over without change to our setting.
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As the subscheme corresponding to (127) is irreducible and does not lie entirely in the blowup
locus, the subscheme corresponding to (144) must coincide with its proper transform. By Remark
6.5, taking Weyl invariants gives the homomorphism (139) as claimed.

Proof of Claim (2): As in Corollary 6.9, we let ε̄V denote the compactified section. The
image of the pull-back of Γ(Oε̄V) ∼= H∗(BG)[µ] is characterized intrinsically as the free rank-
one H∗(BG)[µ] submodule of Γ(OεV) containing the unit. Under the isomorphism Γ(OεV) ∼=
SH∗G×S1(V̄,C) from Theorem 6.12, this corresponds to the inclusionH∗G×S1(V̄,C)→ SH∗G×S1(V̄,C).

�

Corollary 6.13. Let S be an H∗(BG)[µ] algebra such that Spec(S) is a Spec(C◦3(G; 0))-
equivariant compactification of Spec(C◦3(G; 0)) where S fits into (140). Then S is a subalgebra of
C◦3(G;E).

Proof. This is a direct reinterpretation of Corollary 6.9 in view of Theorem 6.12. �
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of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), no. 3, 746–768. MR2135527

[BFN1] A. Braverman, M. Finkleberg, and H. Nakajima, Line bundles over coulomb branches, Advances in
Theoretical and Mathematical Physics 25 (2021), 957 – 993.

[BFN2] Alexander Braverman, Michael Finkelberg, and Hiraku Nakajima, Towards a mathematical definition
of Coulomb branches of 3-dimensional n = 4 gauge theories, II, Adv. Theor. Math. Phys. 22 (2018),
no. 5, 1071–1147. MR3952347

[BO] Frédéric Bourgeois and Alexandru Oancea, S1-equivariant symplectic homology and linearized contact
homology, Int. Math. Res. Not. IMRN 13 (2017), 3849–3937. MR3671507

[BOOSW] P. Baum, H. Oyono-Oyono, T. Schick, and M. Walter, Equivariant geometric k-homology for compact
lie group actions, Abh. aus dem Mathemat. Sem. der Universität Hamburg 80 (2010), 149–173.

[C1] Guillem Cazassus, Equivariant Lagrangian Floer homology via cotangent bundles of EGN ,
arXiv:2202.10097 (2022).

[C2] Chi Hong Chow, Peterson-Lam-Shimozono’s theorem is an affine analogue of quantum Chevalley for-
mula, arXiv:2110.09985 (2021).

[CL] Chi Hong Chow and Naichung Conan Leung, Quantum K-theory of G/P and K-homology of affine
Grassmannian, arxiv:2201.12951 (2022).

[E] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American
Mathematical Society, Providence, RI, 1998. MR1625845

[EG] Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3,
595–634. MR1614555



COULOMB BRANCH ALGEBRAS VIA SYMPLECTIC COHOMOLOGY 55

[G1] A. Gleason, Spaces with a compact lie group of transformations, Proc. Amer. Math. Soc. 1 (1950),
35–43.

[G2] William Graham, Positivity in equivariant Schubert calculus, Duke Math. J. 109 (2001), no. 3, 599–
614. MR1853356

[GM] H. Guo and V Mathai, An Equivariant Poincare Duality for proper cocompact actions by matrix groups,
arxiv:2009.13695 (2020).
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