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1 Introduction

N = 4 supersymmetry in three dimensions provides a rich middle ground between the

availability of calculable supersymmetry-protected observables and nontrivial dynamics.

As an example that will be relevant to us, N = 4 gauge theories with matter hypermul-

tiplets exhibit an infrared duality known as mirror symmetry [1], under which the Higgs

and Coulomb branches of the vacuum moduli space of a given theory are mapped to the

Coulomb and Higgs branches of the other. In particular, the half-BPS operators that

acquire expectation values when the theory is taken to the Higgs/Coulomb branch, hence-

forth referred to as Higgs/Coulomb branch operators (HBOs/CBOs), are mapped to the

CBOs/HBOs of the mirror dual theory. The duality is nontrivial for several reasons: while

the Higgs branch is protected by a non-renormalization theorem and can simply be fixed

classically from the UV Lagrangian [2], the Coulomb branch generically receives quantum

corrections; the duality exchanges certain order operators and disorder operators; and non-

abelian flavor symmetries visible in one theory may be accidental in the mirror dual. At the

same time, N = 4 supersymmetry allows for various calculations of protected observables

that led to the discovery of the duality and to various tests thereof, such as the match

between the infrared metrics of the Coulomb and Higgs branches [3], scaling dimensions of

monopole operators [4], various curved-space partition functions [5–7], expectation values

of loop operators [8, 9], and the Hilbert series [10].

Our goal in the present paper is to provide new insights into the mirror symmetry

duality and, more generally, into 3D N = 4 QFTs, by developing new techniques for cal-

culating correlation functions of certain CBOs that include monopole operators. These

techniques are related to the observation of [11, 12] that all N = 4 superconformal field

theories (SCFTs) contain two one-dimensional topological sectors, one associated with the

Higgs branch and one associated with the Coulomb branch. These sectors are described

abstractly as consisting of the cohomology classes with respect to a pair of nilpotent su-

percharges, and each cohomology class can be represented by a position-dependent linear

combination of HBOs/CBOs that can be inserted anywhere along a line. For the Higgs

branch case, it was shown in [13] that the 1D sector has a Lagrangian description that

can be obtained by supersymmetric localization and that gives a simple way of computing

all correlation functions of the 1D Higgs branch theory. The objective of this work is to

provide an explicit description of the Coulomb branch topological sector. Having explicit
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descriptions of both the Higgs and Coulomb branch 1D sectors allows for more explicit

tests of mirror symmetry, including a precise mapping between all half-BPS operators of

the two theories.

For simplicity, in this work, we focus only on abelian N = 4 gauge theories.1 Any

abelian N = 4 gauge theory has a known mirror dual, which is also abelian. The funda-

mental abelian mirror duality, proven in [4], states that the IR limit of N = 4 SQED with

one flavor coincides with a free (twisted) hypermultiplet. All other abelian mirror pairs

can be formally deduced from the fundamental one by gauging global symmetries [15].

Compared to the Higgs branch 1D theory described in [13], the description of the

Coulomb branch theory is more complicated because it involves monopole operators. Mon-

opole operators in 3D gauge theories are local disorder operators, meaning that they can-

not be expressed as polynomials in the classical fields. Instead, their insertion in the

path integral is realized by assigning boundary conditions for the fields near the insertion

point. Specifically, a monopole operator is defined by letting the gauge field approach the

singular configuration of an abelian Dirac monopole at a point. Calculations involving

monopole operators are notoriously difficult, even in perturbation theory. Following [16],

the IR conformal dimensions of monopole operators have been estimated for various non-

supersymmetric theories using the 1/Nf expansion [17–22], the (4− ǫ)-expansion [23], and

the conformal bootstrap [24]. In supersymmetric theories, one can also construct BPS

monopole operators by assigning additional singular boundary conditions for some of the

scalars in the vector multiplet. For such BPS monopoles, some nonperturbative results are

known: for instance, in N = 4 theories, their exact conformal dimension was determined

in [4, 25–27].2 The correlation functions that we calculate in this paper provide additional

nonperturbative results involving BPS monopole operators.

The Coulomb branch 1D theory whose description we will derive encodes information

on the geometry of the quantum-corrected Coulomb branch. The Coulomb branch is

constrained by supersymmetry to be a (singular) hyperkähler manifold which, with respect

to a fixed complex structure, can be viewed as a complex symplectic manifold whose

holomorphic symplectic structure endows its coordinate ring with Poisson brackets.3 The

holomorphic coordinate ring of the Coulomb branch, which describes it as a complex variety,

is believed to coincide with the ring of chiral CBOs. As explained in [11], the OPE of the

1D Coulomb branch theory provides a deformation quantization of the Poisson algebra

associated with the chiral ring.

In brief, we obtain an explicit description of the Coulomb branch 1D theory as follows.

First, we stereographically map the N = 4 theory from R3 to S3. While the 1D theory

is defined on a straight line in R3, after the mapping to S3, it is defined on a great circle.

1In fact, our results can easily be generalized to theories with both ordinary and twisted multiplets

coupled through BF terms, first studied in [14].
2The exact results mentioned above are valid for “good” or “ugly” theories, to use the terminology

of [25]. We will only consider such theories in this paper.
3The description of the Coulomb branch as a complex symplectic manifold is not sufficient to reconstruct

its hyperkähler metric. It would be interesting to understand whether, and how, information on this metric

is encoded in the SCFT.
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Ideally, we would like to perform supersymmetric localization on S3 with respect to a

judiciously chosen supercharge such that the 3D theory localizes to a theory on the great

circle (this is how the description of the 1D Higgs branch theory was obtained in [13]).

Unfortunately, it is challenging to calculate functional determinants in the presence of an

arbitrary number of disorder operators inserted along the great circle. To circumvent this

problem, we develop another approach in which we cut the S3 into two hemispheres HS3

glued along an S2 that intersects the great circle at two points, and then calculate the

HS3 wavefunction. Because we can add a localizing term on S2, it is sufficient to evaluate

the HS3 wavefunction along a finite-dimensional locus in field space. For every insertion

within the hemisphere, we derive a corresponding operator acting on the HS3 wavefunction.

As we will explain, gluing two hemisphere wavefunctions allows us to compute arbitrary

correlators of the 1D theory.

We hope that the methods presented in this paper can be generalized and applied also

to non-abelian N = 4 theories. In these theories, both the Coulomb branch geometry and

mirror symmetry are less understood than in the abelian case. In particular, the mirror

duals of non-abelian theories are not always known, and the Coulomb branch metric can

no longer be simply computed due to nonperturbative effects that are absent in abelian

theories. A general picture for the Coulomb branch geometry was recently proposed in [28],

and it should be possible to verify it rigorously using correlators of CBOs (there have also

been a number of papers on Coulomb branches of 3D N = 4 theories in the mathematical

literature [29–33]). Furthermore, correlators of CBOs and HBOs could shed light on non-

abelian mirror symmetry, because this duality maps these two classes of operators to each

other. We hope to report on progress in answering these interesting questions in the

near future.

The remainder of this section contains a technical overview of our approach and a

summary of our results. The rest of the paper is organized as follows. In section 2, we

introduce in detail the theories that we study and their 1D topological sectors. In section 3,

we perform supersymmetric localization on S3 with monopole-antimonopole insertions at

opposite points on the sphere. In section 4, we perform supersymmetric localization on a

hemisphere and on its boundary and explain how to glue two hemisphere wavefunctions. In

section 5, we explain how to compute correlators in the 1D theory with multiple operator

insertions. In section 6, we discuss, as applications of our results, a derivation of the chiral

ring relations, and we provide several new tests of mirror symmetry. Several technical

details are relegated to the appendices.

1.1 Technical overview

Let us now describe the general logic behind our computation, which closely follows that

of [13]. Consider an N = 4 theory with gauge group G and a hypermultiplet transforming

in a (generally reducible) unitary representation R of G. The theory could also be deformed

by real masses and FI parameters, which, for simplicity, we set to zero until further notice.

The above information determines an N = 4 preserving Lagrangian LR3 on R3 and another

Lagrangian LS3 on an S3 with radius r, both of which coincide when r → ∞. Furthermore,

the theories on R3 and S3 have the same IR limit, and we will consider examples in which
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it is a nontrivial SCFT.4 From our point of view, the advantage of working on S3 is

that LS3 preserves certain supercharges QC and QH , which are only symmetries of the

flat space theory at the IR fixed point. The attractive property of QC (or QH) is that its

cohomology contains local operators which have nontrivial correlation functions, and which

form a subset of the full family of CBOs (or HBOs).5 It follows that the correlators of

these QC-closed (QH -closed) operators, which are known as twisted CBOs (HBOs), could

possibly be computed using supersymmetric localization of the path integral on S3 with

respect to QC (QH). Indeed, the problem of localizing with respect to QH was fully solved

in [13], thus making correlators of twisted HBOs calculable.

In this work, we are interested in correlators of twisted CBOs, which can be described

abstractly as follows. First, each CBO is a Lorentz scalar transforming in a spin-j irrep

of an SU(2) R-symmetry, such that in the IR SCFT, it is a superconformal primary of

dimension ∆ = j.6 Each twisted CBO is given by a certain position-dependent linear

combination of the SU(2) R-symmetry components of a CBO, and is restricted to lie on

the great circle fixed by the S3 isometry generated by QC . Furthermore, at each point on

this circle, the twisted CBOs are chiral with respect to a distinct N = 2 subalgebra. More

details will be given in section 2. Restricting our 3D theories to the cohomology of QC ,

therefore, results in some 1D field theory on a circle whose local operators can be identified

with cohomology classes of twisted CBOs, which, in turn, are in one-to-one correspondence

with Coulomb branch chiral ring operators.

The above 1D theory provides a significant simplification of the original 3D problem

of computing correlators of CBOs, due to the following properties. First, the IR two- and

three-point functions of twisted CBOs in the 1D theory are sufficient to fix the correspond-

ing correlators of CBOs in the full 3D SCFT, simply because a two- or three-point function

of Lorentz scalar primary operators is fixed by conformal invariance up to an overall con-

stant (see, e.g., section 6.4 of [13]). Moreover, it turns out that the 1D theory is topological

in the sense that its correlators are independent of the relative separation between inser-

tions, but can depend on their order on the circle. We will refer to this theory as the

Coulomb branch 1D topological quantum field theory (TQFT). The topological correlators

could in principle be functions of dimensionless parameters along the flow. Because we set

all the real masses and FI terms to zero, the only remaining dimensionless parameter is

g2YMr. However, the 1D theory is independent of gYM (and therefore of g2YMr) because, as

shown in [13], the Yang-Mills action is QC-exact. It follows that the correlators of twisted

CBOs are RG-invariant and can be identified, all along the flow, with those of the IR SCFT.

The same results also hold for twisted HBOs, whose associated 1D TQFT is obtained by

passing to the cohomology of QH . The above properties of the 1D TQFTs turn them into

a powerful framework to study correlators of half-BPS operators in N = 4 theories.

4The limit gYM, r → ∞ on S3 is identical to the flat space IR SCFT. Instead, taking gYM → ∞ at fixed

r leads to an SCFT on S3 whose correlators are equivalent to those of the IR SCFT on R
3, by a conformal

map from S3 to R
3. One subtlety in this procedure, first noted in [34], is that on S3, there can be mixing

between operators of different conformal dimensions, though this mixing can always be resolved.
5This cohomology is distinct from the chiral ring, as will be explained later.
6Strictly speaking, the RG flow on S3 only preserves a U(1) subgroup of the SU(2) R-symmetry men-

tioned above. Nevertheless, it is useful (and possible) to group CBOs into SU(2) irreps also along the flow,

even if it only becomes a true symmetry in the IR.
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The observation that some BPS operators in d-dimensional theories with eight super-

charges admit a lower-dimensional description was made for SCFTs in [35]. Earlier works

achieved an analogous suppression of non-compact spacetime directions in four dimensions

via the Omega-background: see [36–38] for the original discussion. In both approaches,

equivariance plays an important role, though the precise relation between them has not

yet been worked out. It is believed that in four dimensions, the SCFT approach of [35]

corresponds to a new type of Omega-deformation. In three dimensions, on the other hand,

the Omega-deformation and the associated quantizations of moduli spaces, first discussed

in [28, 39, 40], are most likely directly related to quantization in the SCFT picture.

Following the work of [35], the 1D TQFTs associated with 3D N = 4 SCFTs were

studied in detail in [11, 12]. It was shown in [11, 12] that conformal bootstrap arguments

can be used to fix the 1D TQFT in some simple examples, though doing this for general

3D N = 4 SCFTs proved to be difficult. Finally, the fact that the 1D TQFTs can also be

defined along N = 4 RG flows on S3, as we just reviewed, was discovered in [13]. This

fact allows for the use of supersymmetric localization to calculate correlators in the 1D

TQFTs for 3D N = 4 theories described in the UV by a Lagrangian. Moreover, it follows

that the 1D theory is also defined along relevant deformations of the theory on S3 by real

masses and FI parameters. The correlators of twisted CBOs are in general sensitive to

these deformations, providing nonperturbatively calculable examples of correlators along

RG flows.7

We develop three complementary approaches to computing correlators of twisted

CBOs. In section 3, we use localization on S3 in an SO(3)-symmetric background created

by a monopole-antimonopole pair to compute correlators involving two twisted monopole

CBOs and an arbitrary number of non-defect twisted CBOs. In sections 4 and 5, we explain

how to vastly generalize these results by localizing on a hemisphere HS3 with half-BPS

boundary conditions, which allows for insertions of twisted CBOs anywhere along a great

semicircle. These insertions are conveniently described by certain operators acting on the

HS3 wavefunction. Pairs of such wavefunctions can then be glued along their S2 boundary

to reproduce the S3 partition function with an arbitrary number of twisted CBOs. In

section 5, we further show how to interpret our results as a dimensional reduction of the

Schur index of 4D N = 2 theories enriched by BPS ’t Hooft-Wilson loops.

1.2 Summary of results

Let us now summarize our results and fix our notation. We consider N = 4 theories with

gauge group G = U(1)r and Nh ≥ r hypermultiplets of gauge charges ~qI = (q1I , . . . , q
r
I ) ∈ Zr

with I = 1, . . . , Nh. Viewing q as an Nh × r matrix, we demand that rank(q) = r to avoid

having U(1) subgroups of G with no charged matter. The theory has flavor symmetry

GH × GC where GH acts on the hypermultiplet, while GC generally emerges in the IR

and acts on the Coulomb branch. Only a maximal torus of GC is manifest in the UV as

a “topological symmetry” U(1)r acting on monopole operators and generated by currents

jT constructed from the field strength as jT ∼ ∗F .
7The topological invariance of the Coulomb (Higgs) branch 1D theory is lost upon turning on FI (real

mass) parameters. However, the resulting position dependence of correlators turns out to be very simple.
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Let the 1D theory live on a great circle parametrized by ϕ (see figure 1). The QC-closed

twisted CBOs are constructed from products of bare twisted monopole operators M~b(ϕ), la-

beled by their GC charge ~b ∈ Γm ⊂ Rr where Γm is the monopole charge lattice determined

by Dirac quantization, as well as twisted vector multiplet scalars ~Φ(ϕ) = (Φ1(ϕ), . . . ,Φr(ϕ))

corresponding to each U(1) factor of G. As we will see in section 2, ~Φ is a position-dependent

linear combination of the three real vector multiplet scalars, while M~b can be described as

a particular QC-invariant background for the vector multiplet fields, which inserts the ap-

propriate Dirac monopole singularity. These singular backgrounds are described in detail

in appendix C.

In section 5, we present a matrix model expression for a correlator with n insertions

of twisted CBOs O(k)(ϕk), where k = 1, . . . , n. To describe this expression, it is useful to

think of S3 as a union of two hemispheres HS3
± ∼= B3 joined along their S2 boundary, as

depicted in figure 1. The 1D TQFT circle intersects the boundary S2 at its North and

South poles labeled, respectively, by N and S in figure 1. Under this decomposition, the

path integral on S3 can be thought of as an inner product (more accurately, a bilinear form)

composing the wavefunctions of HS3
+ and HS3

−. Moreover, in this language, the insertions

of twisted CBOs can be represented as certain shift operators acting on the hemisphere

wavefunctions.

Explicitly, consider the case in which the O(k)(ϕk) are all inserted along the semicircle

inside the upper hemisphere HS3
+ (0 < ϕ < π) in the order 0 < ϕ1 < ϕ2 < · · · < ϕn < π.

There is no loss of generality in inserting all operators in HS3
+ because the 1D TQFT is

topological, so only the order of the insertions is important. Our analysis then implies that

this correlator can be computed in terms of an ordinary r-fold integral given by

〈O(1)(ϕ1) · · · O(n)(ϕn)〉S3 =
1

ZS3

∑

~B∈Γm

∫

Rr

[d~σ] ~B Ψ−(~σ, ~B)Ô(1)
N · · · Ô(n)

N Ψ+(~σ, ~B) . (1.1)

Let us now unpack the notation in (1.1):

• The Ψ±(~σ, ~B) represent wavefunctions defined by the path integral on the hemispheres

HS3
± ∼= B3 evaluated with certain half-BPS boundary conditions on ∂HS3

± ∼= S2. We

will show in section 4 that these boundary conditions are parametrized by constants

~σ ∈ Rr and by the monopole charge ~B ∈ Γm. In particular, the vacuum wavefunctions

Ψ±(~σ, ~B), which have zero monopole charge, are given by8

Ψ±(~σ, ~B) = δ ~B,~0

Nh∏

I=1

1√
2π

Γ

(
1

2
− i~qI · ~σ

)
. (1.2)

The variables ~σ arise from localization of scalars in the vector multiplet.

• In (1.1), each of the twisted CBOs O(k) is represented by a certain shift operator, denoted

by Ô(k)
N , acting on the HS3

+ wavefunction Ψ+(~σ, ~B). The label N on the Ô(k)
N implies

8In general, the above correlator can be written as (1/ZS3)
∑

~B

∫
[d~σ]~BΨ1(~σ, ~B)Ψ2(~σ, ~B), where Ψ1

and Ψ2 are hemisphere wavefunctions with arbitrary insertions. In (1.1), we represent insertions by shift

operators acting only on the (empty) upper hemisphere wavefunction, in which case the sum over ~B collapses

to the ~B = 0 term.
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that it represents an insertion of O(k) through the North pole of ∂HS3
± = S2, labeled

by N in figure 1. The order in which the shift operators Ô(k)
N act on Ψ+ represents

the order of insertions on the semicircle. There is a second set of shift operators Ô(k)
S

representing insertions through the South pole (labeled by S in figure 1), such that the

same correlator (1.1) is given by

〈O(1)(ϕ1) · · · O(n)(ϕn)〉S3 =
1

ZS3

∑

~B∈Γm

∫

Rr

[d~σ] ~B Ψ−(~σ, ~B)Ô(n)
S · · · Ô(1)

S Ψ+(~σ, ~B) . (1.3)

The order in which the S operators act on Ψ+ also represents the order of insertions on the

semicircle, but in the opposite direction. The shift operators corresponding to the bare

twisted monopoles M~b(ϕ) and the vector multiplet scalars ~Φ(ϕ) are written explicitly

in (5.20), (5.21), and (5.13), respectively. It is important that the shift operators do

not depend on the insertion point. This must be the case because the correlators are

topological and depend only on the order of the insertions, which is reflected in the

nontrivial commutation relations between the shift operators.

• The HS3
± wavefunctions can be glued into a partition function on S3 with the measure

as in (1.1), where [d~σ] ~B is given explicitly by

[d~σ] ~B = µ(~σ, ~B) drσ ,

µ(~σ, ~B) =

Nh∏

I=1

(−1)
|~qI ·~B|−~qI ·~B

2

Γ
(
1+|~qI · ~B|

2 + i~qI · ~σ
)

Γ
(
1+|~qI · ~B|

2 − i~qI · ~σ
) . (1.4)

This measure is simply the S2 partition function of Nh chiral multiplets in a 2D N =

(2, 2) theory, coupled to U(1)r vector multiplets with magnetic charge ~B [41]. We have

normalized the correlators (1.1) by the S3 partition function ZS3 , such that 〈1〉S3 = 1.

• The above expressions can be generalized straightforwardly to include deformations by

real masses and FI parameters. This will be described in section 5.1.2.

The above description of correlators of twisted CBOs in terms of hemispheres and shift

operators, while derived using localization in 3D, was inspired by computations of Schur

indices with line defects in 4D N = 2 theories [42–44].9 In fact, as we show in section 5,

these problems are closely related. The defect Schur index can be computed by a path in-

tegral on S3×S1 with ’t Hooft-Wilson loops wrapping the S1. To preserve supersymmetry,

the defects should be inserted at points along a great circle in S3. As we will show, upon

dimensional reduction of the 4D index along S1, the line defects become twisted CBOs

in the 3D dimensionally reduced theory. The above expressions for correlators of twisted

CBOs can all be derived from the 4D defect Schur index, providing a strong consistency

check of our results.

9In turn, the interpretation of loop operator insertions on S3×S1 as shift operators acting on half-indices

in [42–44] was inspired by earlier works [45–47], where loop operator insertions on S4 were also understood

as shift operators acting on the HS4 wavefunction, as derived via localization in [48].
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Figure 1. A schematic 2D representation of S3 given by X2

1
+X2

2
+X2

3
+X2

4
= r2. The 1D TQFT

lives on the S1 defined by X1 = X2 = 0 (red) and parametrized by the angle ϕ. The S3 can be

cut into two hemispheres HS3

±
∼= B3 whose boundary forms an S2 = ∂HS3

± (blue circle) defined

by X4 = 0. The 1D TQFT circle intersects this S2 at two points identified with its North (N) and

South (S) poles.

2 Preliminaries

In this section, we set the stage for the problems that we study in the rest of the paper.

We start by reviewing the construction of N = 4 supersymmetric Lagrangians using vector

multiplets and hypermultiplets on S3. We then describe a BPS sector of these theories

that is captured by a 1D theory, focusing on the case of the Coulomb branch. Finally, we

give a careful definition of BPS monopole operators, which are of primary interest in this

paper, and explain some of their properties.

In this section, we try to be maximally general and define everything for non-abelian

gauge theories. However, the actual localization computations in the rest of the paper will

be performed only for abelian theories.

2.1 N = 4 theories on S3

The theories that we analyze in this paper are Lagrangian 3D N = 4 gauge theories. We

start by giving a short review of their structure and summarizing our conventions, referring

the reader to [13] for more details.

2.1.1 Supersymmetry algebra

N = 4 supersymmetry on S3 is based on the superalgebra su(2|1)ℓ ⊕ su(2|1)r or a central

extension thereof. Its even subalgebra contains the su(2)ℓ⊕ su(2)r isometries of S3, whose

generators we denote by J
(ℓ)
αβ and J

(r)
αβ , as well as the R-symmetry subalgebra u(1)ℓ⊕ u(1)r

generated by Rℓ and Rr. The odd generators are denoted by Q(ℓ±)
α and Q(r±)

α .10 The

10Above, α, β, . . . = 1, 2 are spinor indices. They can be raised and lowered from the left with the anti-

symmetric symbols εαβ , ε
αβ , where ε21 = ε12 = 1. The same raising/lowering convention will also be used

for the fundamental indices of su(2) R-symmetries. See appendix A for a full list of our conventions.
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algebra obeyed by J
(ℓ)
αβ , Rℓ, Q

(ℓ±)
α is

[J
(ℓ)
i , J

(ℓ)
j ] = iǫijkJ

(ℓ)
k , [J

(ℓ)
αβ ,Q(ℓ±)

γ ] =
1

2

(
εαγQ(ℓ±)

β + εβγQ(ℓ±)
α

)
, (2.1)

[Rℓ,Q(ℓ±)
α ] = ±Q(ℓ±)

α , {Q(ℓ+)
α ,Q(ℓ−)

β } = −4i

r

(
J
(ℓ)
αβ +

1

2
εαβRℓ

)
, (2.2)

where we have set

J
(ℓ)
αβ ≡

(
−(J

(ℓ)
1 + iJ

(ℓ)
2 ) J

(ℓ)
3

J
(ℓ)
3 J

(ℓ)
1 − iJ

(ℓ)
2

)
. (2.3)

The generators of su(2|1)r obey the same relations with ℓ→ r.

The generators J ℓi and Jri act by Lie derivatives Lvℓi and Lvri with respect to the left-

and right-invariant vector fields vℓi and vri on S3. The generators J ℓ3 and Jr3 will often be

important to us, and their corresponding vector fields are given by

vℓ3 = − i

2
(∂τ + ∂ϕ) , vr3 = − i

2
(∂τ − ∂ϕ) . (2.4)

Above, we have used coordinates that exhibit S3 as a U(1) fibration over a disk D2 with

the fiber shrinking at the boundary, which will be useful in the remainder of the paper (see

appendix A.1 for details). Explicitly, let us embed S3 in R4 as

X2
1 +X2

2 +X2
3 +X2

4 = r2 (2.5)

and parametrize the Xi by

X1 + iX2 = r cos θeiτ , X3 + iX4 = r sin θeiϕ , (2.6)

where 0 ≤ θ ≤ π
2 and −π ≤ ϕ, τ ≤ π. In these coordinates, sin θeiϕ parametrizes the unit

disk, and eiτ the U(1) fiber. We also sometimes use the notation

Pτ = −(J ℓ3 + Jr3 ) , Pϕ = −J ℓ3 + Jr3 (2.7)

to denote the τ and ϕ rotation isometries of S3.

It is convenient to think of su(2|1)ℓ ⊕ su(2|1)r as a subalgebra of the 3D N = 4

superconformal algebra osp(4|4), whose R-symmetry subalgebra is so(4) ∼= su(2)H⊕su(2)C .

This embedding is parametrized by the choice of the u(1)ℓ ⊕ u(1)r subalgebra of su(2)H ⊕
su(2)C , which is specified by the Cartan elements

ha
b ∈ su(2)H , h

ȧ

ḃ ∈ su(2)C , (2.8)

where a, b, . . . = 1, 2 (ȧ, ḃ, . . . = 1, 2) label the fundamental irrep of su(2)H (su(2)C). Here,

ha
b and h

ȧ

ḃ are traceless Hermitian matrices satisfying ha
chc

b = δa
b and h̄ȧċh̄

ċ
ḃ = δȧḃ. They

determine a relation between the generators Rℓ, Rr of u(1)ℓ⊕u(1)r and the generators Ra
b,

R
ȧ

ḃ of su(2)H ⊕ su(2)C :

1

2
(Rℓ +Rr) =

1

2
ha

bRb
a ≡ RH ,

1

2
(Rℓ −Rr) =

1

2
h
ȧ

ḃR
ḃ
ȧ ≡ RC . (2.9)
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The superconformal symmetries of osp(4|4) are parametrized by conformal Killing spinors

ξαaȧ satisfying the conformal Killing spinor equations on S3:

∇µξaȧ = γµξ
′
aȧ , ∇µξ

′
aȧ = − 1

4r2
γµξaȧ , (2.10)

where γµ are curved-space gamma matrices and r is the radius of S3 (the first equation

implies the second via γµ∇µξ
′
aȧ = −1

8Rξaȧ where RS3 = 6/r2). Those that correspond to

supersymmetries within the subalgebra su(2|1)ℓ ⊕ su(2|1)r satisfy the additional condition

ξ′aȧ =
i

2r
ha

bξbḃh
ḃ
ȧ . (2.11)

To conform with previous works, we use the convention that

ha
b = −σ2, h

ȧ

ḃ = −σ3 . (2.12)

Different choices of h, h̄ are related by conjugation with SU(2)H × SU(2)C and, as will be

explained shortly, determine which components in the triplets of FI and mass parameters

can be present on the sphere: ζ = ha
b(ζflat)b

a and m = h̄ȧḃ(mflat)
ḃ
ȧ. In appendix G, we

describe how the su(2|1)ℓ ⊕ su(2|1)r algebra is obtained from the rigid limit of off-shell 3D

N = 4 conformal supergravity, following the philosophy of [49]. The latter point of view

elucidates the origin of the matrices h and h̄ as background values for scalar fields within

a certain 3D Kaluza-Klein supergravity multiplet.

2.1.2 Lagrangians

The supersymmetry algebra just described acts in Lagrangian theories constructed from a

vector multiplet V and a hypermultiplet H. The vector multiplet transforms in the adjoint

representation of the gauge group G and has components

V = (Aµ, λαaȧ,Φȧḃ, Dab) , (2.13)

consisting of the gauge field Aµ, gaugino λαaȧ, and scalars Φȧḃ = Φḃȧ and Dab = Dba, which

transform in the trivial, (2,2), (1,3), and (3,1) irreps of the su(2)H⊕su(2)C R-symmetry,

respectively. The hypermultiplet transforms in some unitary representation R of G and

has components

H = (qa, q̃a, ψαȧ, ψ̃αȧ) (2.14)

where qa, q̃a are scalars transforming as (2,1) under the R-symmetry and as R,R under G,

respectively, while ψαȧ, ψ̃αȧ are their fermionic superpartners and transform as (1,2) under

the R-symmetry. The SUSY transformations of V and H are collected in appendix A.2.

The action for H coupled to V is

Shyper[H,V] =
∫
d3x

√
g

[
Dµq̃aDµqa − iψ̃ȧ /Dψȧ +

3

4r2
q̃aqa + iq̃aDa

bqb (2.15)

− 1

2
q̃aΦȧḃΦȧḃqa − iψ̃ȧΦȧ

ḃψḃ + i
(
q̃aλa

ḃψḃ + ψ̃ȧλbȧqb

)]
,
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which actually preserves the full superconformal symmetry osp(4|4). The super Yang-Mills

action preserves only the su(2|1)ℓ ⊕ su(2|1)r subalgebra and is given by

SYM[V] = 1

g2YM

∫
d3x

√
gTr

(
FµνFµν−DµΦċḋDµΦċḋ+iλ

aȧ /Dλaȧ−DcdDcd−iλaȧ[λaḃ,Φȧḃ]

− 1

4
[Φȧḃ,Φ

ċ
ḋ][Φ

ḃ
ȧ,Φ

ḋ
ċ]−

1

2r
habh̄ȧḃλaȧλbḃ+

1

r
(ha

bDb
a)(h̄ȧḃΦ

ḃ
ȧ)−

1

r2
ΦċḋΦċḋ

)
.

(2.16)

The theory (2.15) has flavor symmetry group GH × GC , whose Cartan subalgebra we

denote by tH⊕ tC . The factor GH acts on the hypermultiplets, while GC ∼= U(1)#U(1)’s in G

contains the topological U(1) symmetries that act on monopole operators.11 It is possible

to couple the theory to a supersymmetric background twisted vector multiplet in tC , which

on S3 leads to a single FI parameter ζ for every U(1) factor of the gauge group (as opposed

to an su(2)H triplet on R3). The corresponding FI action is given by

SFI[V] = i

dim(tC)∑

I=1

ζI

∫
d3x

√
g

(
ha

b(D(I))b
a − 1

r
h̄ȧḃ(Φ

(I))ḃȧ

)
, (2.17)

where D
(I)
ab and Φ

(I)

ȧḃ
are the scalars in the vector multiplet gauging the Ith U(1) factor of G.

Similarly, one can introduce real masses for the hypermultiplets by turning on background

vector multiplets Vb.g. in tH . In order to preserve supersymmetry, all the components of

Vb.g. are set to zero except for

m̂ = −1

2
h̄ȧḃ(Φb.g.)

ḃ
ȧ =

r

2
ha

b(Db.g.)b
a . (2.18)

In particular, on S3, there is a single real mass parameter for every generator in tH (as

opposed to an su(2)C triplet on R3). In the presence of nonzero real mass and FI parameters,

the su(2|1)ℓ⊕su(2|1)r algebra is centrally extended by charges Zℓ and Zr for the respective

factors of the superalgebra. The central charges are related to the mass/FI parameters by

1

r
(Zℓ + Zr) = im̂ ∈ itH ,

1

r
(Zℓ − Zr) = iζ̂ ∈ itC . (2.19)

A more detailed description of the superalgebras can be found in [13].

Finally, let us specify the contour of integration in the path integral. Because we work

in Euclidean signature, the fermionic fields do not obey any reality conditions, while the

bosonic fields satisfy

q†a = q̃a, A†
µ = Aµ, Φ†

ȧḃ
= −Φȧḃ, D†

ab = −Dab, (2.20)

where the Hermitian conjugate is taken in the corresponding representation.

11GC may be enhanced to a non-abelian group in the IR.
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2.1.3 Abelian gauge theories

In the bulk of the paper, we will focus exclusively on abelian gauge theories. Specifically, we

will consider a G = U(1)r gauge theory coupled to Nh hypermultiplets with gauge charges

~qI = (q1I , . . . , q
r
I ) ∈ Zr, where I = 1, . . . , Nh. The maximal tori of the global symmetry

algebras in this case are given by tH ∼= U(1)Nh−r and tC ∼= U(1)r. The hypermultiplets

transform under GH with weights ~QI = (Q1
I , . . . , Q

Nh−r
I ) ∈ ZNh−r, while monopole op-

erators transform under the topological symmetry GC with charges ~b ∈ Γm ⊂ Rr. The

monopole charge lattice Γm ⊂ Rr is defined through Dirac quantization by the constraints

~q ·~b ∈ Z where ~q ranges over all gauge charges allowed in the theory. We assume throughout

this paper that charges have been normalized such that Γm = Zr.

2.2 Twisted operators and the 1D theory

Supersymmetric field theories with eight supercharges in various dimensions have subsec-

tors of operators which can be described by lower dimensional theories. Our 3D N = 4

theories are among those that have such sectors, which, moreover, turn out to furnish

certain 1D theories. This fact was originally noticed for SCFTs in [35], further developed

in [11, 12], and extended to non-conformal N = 4 theories on S3 in [13].

Following [13], we consider two pairs of supercharges within su(2|1)ℓ⊕su(2|1)r.12 Those

associated with the Higgs branch are

QH
1 = Q(ℓ+)

1 +Q(r−)
1 , QH

2 = Q(ℓ−)
2 +Q(r+)

2 , (2.21)

and those associated with the Coulomb branch are

QC
1 = Q(ℓ+)

1 +Q(r+)
1 , QC

2 = Q(ℓ−)
2 +Q(r−)

2 . (2.22)

Each of these four supercharges is nilpotent. There exists a 1D theory associated with

cohomology classes of QH
1,2 and another associated with those of QC

1,2. To see this, let us

focus on the (equivariant) cohomology of QH
β = QH

1 + βQH
2 or QC

β = QC
1 + βQC

2 acting on

local operators, for an arbitrary constant β 6= 0. Because of the relations

(QH
β )

2 =
4iβ

r
(Pτ +RC + irζ̂) , (2.23)

(QC
β )

2 =
4iβ

r
(Pτ +RH + irm̂) , (2.24)

local operators in the cohomology of QH
β or QC

β must be annihilated by the right-hand side

of (2.23) or (2.24), respectively. This implies that local operators can only be inserted at

the fixed points of the Pτ isometry, which form a great circle parametrized by ϕ at θ = π/2,

where the τ -circle shrinks (see (2.6)).13 In flat space, Pτ is the rotation that fixes the line

along which operators are inserted.

12The embedding of these supercharges inside osp(4|4) is given in appendix A.2.
13It also follows from (2.23) (or (2.24)) that the spins and R-charges of QH

β - (or QC
β -) closed operators

should be related. However, this constraint turns out to be trivial because all these operators turn out to

be Lorentz scalars transforming trivially under su(2)C (or su(2)H).
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Another important property emphasized in [13] is that

{QH
β , . . . } = Pϕ +RH + irm̂ , (2.25)

{QC
β , . . . } = Pϕ +RC + irζ̂ , (2.26)

which leads to the definitions of twisted translations:

P̂Hϕ = Pϕ +RH , (2.27)

P̂Cϕ = Pϕ +RC . (2.28)

The twisted translations P̂Hϕ (or P̂Cϕ ) are QH
β - (or QC

β -) closed, and can therefore be used

to translate cohomology classes along the great ϕ-circle. The cohomology classes of QH
β

and QC
β therefore form two distinct 1D theories. Furthermore, when m̂ = 0 (or ζ̂ = 0),

the twisted translation P̂Hϕ (or P̂Cϕ ) is exact under QH
β (or QC

β ). The twisted-translated

cohomology classes then become independent of the position ϕ along the circle. In such

a situation, the cohomology classes furnish a 1D TQFT, meaning that their OPE is inde-

pendent of the separation between operators, but can depend on their ordering along the

circle. This OPE therefore determines an associative but non-commutative product, which

can be thought of as a star product on some variety.

The operators in the cohomology are most easily classified at the superconformal point,

where the symmetry is enhanced to osp(4|4). In this case, one finds that for every fixed

insertion point ϕ, the operators in the cohomology of QH
β and QC

β are in the Higgs and

Coulomb branch chiral rings, respectively, with respect to some N = 2 superconformal

subalgebra of osp(4|4).14 Indeed, for SCFTs, we have the algebraic relations

{QH
1 ,QH†

1 } = {QH
2 ,QH†

2 } = 8(D −R1
1) , (2.29)

{QC
1 ,QC†

1 } = {QC
2 ,QC†

2 } = 8(D − 1
2(R̄1̇

2̇ + R̄2̇
1̇)) , (2.30)

where D is the generator of dilatations. The relation (2.29), together with the state-

operator map (which yields an inner product, hence a notion of adjoint in radial quan-

tization) and the standard Hodge theory reasoning (which exhibits a unique harmonic

representative of each cohomology class), implies that representatives of the cohomology

of QH
β , when inserted at the origin, satisfy

D = R1
1 . (2.31)

Such operators belong to the Higgs branch chiral ring. They are the su(2)H highest-weight

components of HBOs Ha1···an , which are half-BPS superconformal primaries transforming

in the spin-n2 irrep of su(2)H , and are Lorentz scalars of dimension ∆ = n
2 . Similarly, (2.30)

implies that the representatives of QC
β cohomology at the origin satisfy

D =
1

2
(R̄1̇

2̇ + R̄2̇
1̇) , (2.32)

14In particular, the star product in the 1D TQFT then yields a deformation quantization of the chiral

ring, which describes the Higgs or Coulomb branch of the moduli space of the theory as a complex variety;

this point of view was advocated in [11].
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which is the defining relation of Coulomb branch chiral ring operators for the appropriate

choice of u(1)C ⊂ su(2)C . They are the su(2)C highest-weight components of CBOs Cȧ1···ȧm ,
which have the same quantum numbers as HBOs with su(2)H interchanged with su(2)C .

To define the operators in the cohomology away from the origin, one simply applies the

appropriate twisted translation (2.27) or (2.28). For the HBOs Ha1···an , the corresponding

twisted-translated operator is given by

H(ϕ) = Ha1···anu
a1 · · ·uan , ua =

(
cos ϕ2
sin ϕ

2

)
. (2.33)

For the CBOs Cȧ1···ȧm , the corresponding twisted-translated operator is given by

C(ϕ) = Cȧ1···ȧnv
ȧ1 · · · vȧm , vȧ =

(
1√
2
eiϕ/2

1√
2
e−iϕ/2

)
. (2.34)

In (2.33) and (2.34), it is understood that the operators are restricted to the θ = π
2

circle. The reason that ua and vȧ are different in (2.33) and (2.34) is that in defining the

su(2|1)ℓ⊕ su(2|1)r algebra on S3, we chose different Cartan elements (2.12) for su(2)H and

for su(2)C . Because the translation in (2.27) (or (2.28)) is accompanied by an R-symmetry

rotation, the twisted operators (2.33), (2.34) at ϕ = 0 and ϕ 6= 0 are both in chiral rings,

but with respect to distinct Cartan elements of su(2)H (or su(2)C). This twist allows us

to go beyond the chiral ring data. In particular, cohomology classes at different points ϕ

are not mutually chiral, and may thus have nontrivial SCFT correlators.

Above, we have formally classified operators in the cohomology within SCFTs. In

practice, for what follows, we need a definition of such operators along RG flows on S3,

where only su(2|1)ℓ ⊕ su(2|1)r ⊂ osp(4|4) is preserved. Some of the properties mentioned

above for HBOs, CBOs, and their twisted analogs then become imprecise, and we would like

to clarify some possible confusions. In particular, along the flow, the su(2)H,C symmetries

are broken to their u(1)H,C Cartans. The operators Ha1···an and Cȧ1···ȧn are generally still

present, but their different ai, ȧi = 1, 2 components are no longer related by su(2)H,C ,

and their correlators therefore need not respect these symmetries away from the fixed

point. However, the twisted operators (2.33) and (2.34) are still in the cohomology, and

this notion is well-defined along the flow. For example, the components q1 and q2 of the

hypermultiplet scalars need not be related by su(2)H along the flow. Nevertheless, they

are still well-defined operators, and the twisted operator Q(ϕ) = cos ϕ2 q1(ϕ) + sin ϕ
2 q2(ϕ)

is still in QH
β -cohomology. Furthermore, we stress that H(ϕ) and C(ϕ) are not chiral with

respect to any N = 2 subalgebra of the su(2|1)ℓ ⊕ su(2|1)r symmetry preserved along the

flow; they become chiral with respect to certain such subalgebras of osp(4|4), which is only

realized at the fixed point. Nevertheless, it can be checked by inspection that they are

half-BPS under su(2|1)ℓ ⊕ su(2|1)r.15
15In particular, Q(ϕ = π/2) = (q1(π/2)+ q2(π/2))/

√
2 is invariant not only under the QH

1,2 in (2.21), but

also under Q(ℓ+)
2 − Q(r−)

2 and Q(ℓ−)
1 − Q(r+)

1 , as can be checked by using the explicit SUSY transforma-

tions (A.13). Similarly, the twisted CBOs C(ϕ = π/2) that will be constructed explicitly for our theories in

the following sections can be checked to be invariant under QC
1,2 as well as Q(ℓ−)

1 −Q(r−)
1 and Q(ℓ+)

2 −Q(r+)
2 .
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2.3 Coulomb branch operators

In [13], the Higgs branch case was studied in detail, and all twisted HBOs were constructed

from the hypermultiplet scalars. Our focus here is on the Coulomb branch, so let us first

understand what the corresponding observables are.

Twisted CBOs are observables in the cohomology of QC
β . If we try to construct them

from local fields, we find that there is only one such operator:

Φ(ϕ) = Φȧḃ(ϕ)v
ȧvḃ
∣∣∣∣
θ=π

2

. (2.35)

However, it is well-known that a complete picture of the Coulomb branch must also include

monopole operators. Let us first summarize the prescription for inserting these operators,

before providing a more detailed explanation. A twisted-translated monopole operator

inserted at the point p with coordinate ϕ along the great circle is defined via the follow-

ing prescription:

• Pick a monopole charge b. For G = U(1), b ∈ Z. For G = U(1)r, b belongs to a lattice

Γm ⊂ Rr of magnetic charges allowed by Dirac quantization. For non-abelian semisimple

G, it is a cocharacter b : U(1) → G, and we use the same letter b to denote the image of

1 at the level of maps of Lie algebras: R → g, 1 7→ b.

• Near the insertion point p, impose the singularities

∗ F ∼ b
yµdy

µ

|y|3 , Φ1̇1̇ = −(Φ2̇2̇)
† ∼ − b

2|y|e
−iϕ , Φ1̇2̇ ∼ 0 , (2.36)

where the notation “∼” means “= up to regular terms” and yµ, µ = 1, 2, 3, are local

Euclidean coordinates centered at p (i.e., Riemann normal coordinates).

• Further restrict the space of fields by requiring that all vector multiplet fields commute

with b at the insertion point, which we write formally as:16

[V, b]
∣∣
p
= 0. (2.37)

• Restrict gauge transformations at p to a subgroup Gb ⊂ G preserving b. In other words,

allow only gauge transformations by g(x) such that

g(p)bg(p)−1 = b . (2.38)

• The actions (2.15), (2.16), (2.17) must be modified by certain boundary terms near the

insertion at p. Namely, we cut out a ball Up(ǫ) of radius ǫ at p and modify the action as

S(mon.) = lim
ǫ→0

[∫

S3\Up(ǫ)
L −

∫

∂Up(ǫ)
Σ

]
, (2.39)

16Because [b, b] = 0, the regular part of the vector multiplet commutes with b at p by itself.
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where L is viewed as a top form and Σ will be referred to as the “monopole countert-

erm.” Without Σ, the action can diverge in the monopole background, and may also not

preserve the right amount of supersymmetry. While the boundary terms Σ do not seem

to leave any imprint on our calculations, it is important that there exists a choice of Σ

such that the modification S
(mon.)
YM of SYM in (2.16) is QC

β -exact, because we will use it

as a localizing term.

In the remainder of this section, we provide additional details regarding the above def-

inition, including discussions of the monopole counterterm and of subtleties in defining

the normalization of monopole operators via the path integral, which may be skipped

at first reading. In particular, the singular part of the twisted monopole operator back-

ground (2.36) will be derived from the results of [4] on half-BPS monopole operators. This

background can alternatively be viewed as a solution to the QC
β BPS equations, with a

Dirac monopole singularity ∗F ∼ b
yµdyµ

|y|3 . These solutions, which also involve fixing the

regular parts in (2.36), will be classified in section 3 and appendix C.

2.4 Remarks on monopoles

Monopoles introduce point-like sources of magnetic flux and are characterized, in the case

of U(1) gauge group, by a number b— their magnetic charge. They are analogs of ’t Hooft

lines in 4D theories, and in Kaluza-Klein (KK) reduction from 4D to 3D, monopole op-

erators correspond to ’t Hooft lines (worldlines of 4D magnetic monopoles) winding the

KK circle. At the location of the 3D monopole operator, the gauge field strength is pre-

scribed to have a singularity of the form (∗F )µ ∼ b
yµ
|y|3 . In the path integral formulation,

we are instructed to integrate over field configurations with such a fixed singularity. For

non-abelian gauge group G, we simply embed the U(1) monopole in G as a GNO monopole

whose charge is given by a cocharacter

b : U(1) → G. (2.40)

Note that the topological charge of a monopole (corresponding to the conserved topological

current) is labeled by π1(G), while its GNO charges are labeled by cocharacters of G,

modulo gauge and Weyl symmetries [50]. Unless G = U(1), in which case topological and

GNO charge coincide, each topological class contains infinitely many GNO monopoles. For

instance, when G = U(N), the topological charge is the sum of the GNO charges.

There exists a supersymmetric version of the monopole operator that is of particular

relevance to us. In [4], such observables were defined for theories with N = 2 supersymme-

try as well as in the N = 4 context. In the N = 2 case, they were constructed as half-BPS

operators sitting in the lowest component of the short multiplet, and therefore contributing

to the chiral ring. The half-BPS property requires that, in addition to the gauge field being

singular, the real scalar in the N = 2 vector multiplet diverge as b
2|y| near the monopole.17

More precisely, if the monopole charge is given by a cocharacter b : U(1) → G, then at

the level of Lie algebras, there is a map R → g, and we denote the image of 1 by the same

17This follows from the vanishing of the SUSY variation of the gaugino.
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letter b. Denoting the real scalar in the N = 2 vector multiplet by χ (we only need it in

this paragraph, so this notation is by all means temporary), the singularity is prescribed

to be:

∗ F = b
yµdy

µ

|y|3 + ∗F reg, χ = b
1

2|y| + χreg, (2.41)

while the rest of the fields are regular. Consistency also implies that the monopole operator

slightly breaks the gauge group: at the location of the monopole, the gauge transformations

are restricted to lie in Gb, where Gb ⊂ G is the centralizer of b. This also means that F reg

and χreg, as well as the gauginos (that is, all fields in the vector multiplet), commute with

b at the location of the monopole.

Extending this definition to the N = 4 case is straightforward, as long as we still impose

that the operator be an element of the chiral ring. Indeed, the definition of N = 4 Higgs

and Coulomb branch chiral rings involves picking an N = 2 subalgebra and considering

operators that are chiral with respect to this subalgebra. This choice is equivalent to

choosing a Cartan subalgebra in the su(2)H ⊕ su(2)C R-symmetry of the N = 4 theory.

In particular, the choice of U(1)C ⊂ SU(2)C is parametrized by SU(2)C/U(1)C = CP 1
C ,

which is discussed extensively in section 2.5.1. This same choice tells us which components

of the triplet of scalars Φȧḃ belong to the N = 2 chiral multiplet, and which component

is part of the N = 2 vector multiplet. Let us parametrize points of this CP 1 by α,ψ, and

pick a local section of the Hopf fibration as:

v =

(
cos α2 e

iψ/2

sin α
2 e

−iψ/2

)
. (2.42)

We refer to this vector v as the R-symmetry polarization. This v is acted on by SU(2)C
in the fundamental representation, and U(1)C simply multiplies it by a phase. This means

that it is the highest-weight vector with respect to the choice of U(1)C . For any operator in

the spin-n2 representation of SU(2)C written as a symmetric tensor with n indices Mȧ1...ȧn ,

the highest-weight component is then given (up to an arbitrary phase) by

M(v) =Mȧ1...ȧnv
ȧ1 . . . vȧn . (2.43)

This component has the maximal RC-charge n/2, as measured by the generator of U(1)C . It

is this component that contributes to the chiral ring if the multiplet is short. In particular,

for Φȧḃ, the component

Φ(v) = Φȧḃv
ȧvḃ (2.44)

is in the chiral ring: it is the complex scalar in the N = 2 chiral multiplet. This implies

that, according to the definition of the N = 2 half-BPS monopole operator, this component

should remain regular near the insertion point p of the monopole:

Φȧḃv
ȧvḃ
∣∣
p
∼ 0. (2.45)

Note that Φ(v) has U(1)C-charge (weight) +1. Acting with lowering operators of SU(2)C ,

one can obtain the component of weight zero (the N = 2 vector multiplet scalar) and the
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component of weight −1 (the antichiral conjugate of Φ(v)). Only the component of weight

zero is required to blow up like b
2|y| near the monopole. This translates into the following

boundary conditions defining the chiral component of the BPS N = 4 monopole:

∗F ∼ b
yµdy

µ

|y|3 , Φȧḃ ∼ Φ
(v)

ȧḃ
, (2.46)

where Φ
(v)

ȧḃ
denotes the v-dependent singular part of Φȧḃ, given by

Φ
(v)

1̇2̇
=

b

2|y| cosα , Φ
(v)

1̇1̇
= −

(
Φ
(v)

2̇2̇

)∗
= − b

2|y| sinα e
−iψ . (2.47)

Again, the regular parts of these fields should commute with b at y = 0: the gauge group

is broken to Gb at the location of the monopole.

The reason we have kept v general should be clear by now: we want to define twisted-

translated monopoles, and for that, we should know how to construct different R-symmetry

components. Comparing (2.34) with (2.42), we see that for twisted-translated operators,

the R-symmetry polarization vector has α = π/2 and ψ = ϕ. The resulting singular-

ity (2.47) is precisely as announced in (2.36).

To further determine the normalization of monopole operators requires careful study

of the path integral measure in the presence of monopole singularities. We will be able to

avoid this subtle issue by finding alternative ways to fix the normalization in sections 3

and 4.

An observation. Notice one curious feature. The monopole operator, written as a

symmetric tensor Mȧ1...ȧn , transforms in the spin-n2 representation of su(2)C . Acting on

its chiral component M(v) = Mȧ1...ȧnv
ȧ1 . . . vȧn with an R-symmetry transformation U ∈

SU(2)C , we obtain

UM(v)U−1 = (Uȧ1
ḃ1 . . . Uȧn

ḃnMḃ1...ḃn
)vȧ1 . . . vȧn =M(ṽ) (2.48)

where:

ṽȧ = Uḃ
ȧvḃ. (2.49)

In other words, the action of U on M(v) produces a different chiral component of M

characterized by the R-symmetry polarization ṽ. Notice that our definition of the monopole

is such that Φȧḃv
ȧvḃ remains regular. For the singular part of Φȧḃ called Φ

(v)

ȧḃ
, we simply

have Φ
(v)

ȧḃ
vȧvḃ = 0. To build the chiral component along the R-symmetry polarization

vector ṽ, we should also have Φ
(ṽ)

ȧḃ
ṽȧṽḃ = 0. Therefore, we claim that

Φ
(ṽ)

ȧḃ
= (U−1)ȧ

ċ(U−1)ḃ
ḋΦ

(v)

ċḋ
. (2.50)

What this observation illustrates is that acting with U on a monopole operator is equivalent

to acting with U−1 on the corresponding boundary condition. In fact, this is quite a general

observation about defect operators, whose detailed derivation is given in appendix B.1.

– 18 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

2.4.1 The monopole counterterm

The last ingredient needed to have a complete and well-defined notion of “monopole op-

erator” is the monopole counterterm. Already in the non-supersymmetric case, merely

imposing ∗F ∼ b
yµdyµ

|y|3 makes the Yang-Mills action infinite, with the divergent piece given

by 8πTr b2

ǫg2YM
. In this case, simply accompanying each monopole insertion by a factor of

exp
(
8πTr b2

ǫg2YM

)
suffices, as it cancels the divergence and makes the action at least näıvely

well-defined in the ǫ→ 0 limit.

The problem is slightly more complicated for BPS monopoles. One reason is that

the divergent part of the action receives another contribution from the singular boundary

condition for the scalar. Another reason is that, even if the supersymmetry equations

hold,18 the presence of the singularity might break too much SUSY in the following way.

Our prescription for evaluating the action involves cutting out balls of radius ǫ around the

monopole insertions (followed by subtracting divergent pieces and taking ǫ → 0). Since

the SUSY variation of the Lagrangian is actually a total derivative, not just zero, this can

generate boundary terms in the SUSY variation. These boundary terms might not vanish

in the ǫ→ 0 limit, thus breaking SUSY.

The resolution of this problem is to include a proper boundary counterterm which will

cancel not only divergences in the ǫ→ 0 limit, but also SUSY-breaking terms. The choice

of such a counterterm is not unique: we can always add a term which remains finite in the

ǫ→ 0 limit and whose SUSY variation vanishes in this limit.

A very natural and convenient boundary counterterm is constructed as follows. First

of all, we note that only the Yang-Mills action becomes divergent and requires a boundary

counterterm, while the hypermultiplet action and the FI term both remain finite and

supersymmetric in the presence of monopoles. We know from [13] that the Yang-Mills

action is QC
β -exact. For the Lagrangian, this means that

LYM = {QC
β ,Ψ}+ dΣ, (2.51)

where Ψ is some fermionic operator. We will simply use this Σ to construct the boundary

correction. Namely, every monopole insertion should be accompanied by a term

−
∫

∂U(ǫ)
Σ (2.52)

in the action, where U(ǫ) is a ball of radius ǫ around the monopole insertion point. With

such a choice, the Yang-Mills action plus boundary counterterms are written together as:

Sren.
YM =

∫

S3

{QC
β ,Ψ}, (2.53)

regardless of how many monopoles we have inserted.

The action (2.53) is now manifestly supersymmetric because, as it turns out, (QC
β )

2

annihilates Ψ. Moreover, it is finite in the presence of BPS monopole insertions simply

18The equations δSUSY(fermions) = 0 were used in [4] to argue that the vector multiplet scalar should

also be singular near the monopole.
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because
∫
S3{QC

β ,Ψ} vanishes on solutions to the BPS equations. This ensures the cancel-

lation of the leading 1
ǫ divergence. (If it were not canceled, it would be present even for the

action evaluated on the BPS solution.) A possible subleading log ǫ divergence is absent, as

can be checked by inspecting each term of the classical action — this is actually ensured

by the fact that B commutes with all the vector multiplet fields at the insertion point. So

what remains is a finite action, just as we wanted.19

The proper monopole counterterm Σ as defined above is explicitly constructed in ap-

pendix B.2.

2.5 Remarks on normalization

2.5.1 Phase ambiguity of chiral operators

Suppose we are given an HBO Ha1...an whose su(2)H R-charge equals its conformal dimen-

sion, or a CBO Cȧ1...ȧm with the analogous property. The highest weight component of

Ha1...an or Cȧ1...ȧm will then give an element of the corresponding chiral ring: it lives in the

bottom of the chiral multiplet in the N = 2 decomposition of the corresponding N = 4 mul-

tiplet. To define the highest weight vector, we need to pick maximal tori U(1)H ⊂ SU(2)H
and U(1)C ⊂ SU(2)C . These choices are parametrized by CP 1

H = SU(2)H/U(1)H and

CP 1
C = SU(2)C/U(1)C , the twistor spheres of the Higgs and Coulomb branches (which

are hyperkähler cones). However, a point of the twistor sphere only determines the chiral

operator up to a phase. In the following few paragraphs, we explain this freedom for the

Higgs branch case. The Coulomb branch case is completely analogous and can be obtained

by replacing the label H by C in what follows.

Suppose we are given a point of CP 1
H with homogeneous coordinates (x : y). We can

pick a point of the tautological bundle O(−1) that belongs to the fiber above (x : y), say

u = ( x y )T . Näıvely, the corresponding chiral operator is

H(u) = Ha1...anu
a1 . . . uan , (2.54)

since this object is the highest weight component of H. However, u is only defined up to

an overall C∗ scaling: thus this definition is not unique. In fact, H(u) gives a polynomial

function of degree n on the total space of O(−1) with values in operators, or equivalently,

an operator-valued holomorphic section of O(n) over CP 1
H .

20 Alternatively, we can pick u

to be normalized as u†u = 1. Then it parametrizes points of S3
Hopf , the total space of the

Hopf fibration. H(u) becomes an operator-valued function on S3
Hopf , i.e., for each point of

S3
Hopf , there is a unique and unambiguous choice for the chiral operator H(u).

This suggests that we cannot identify chiral operators for each point of CP 1
H globally:

to do that, one would have to pick a global section of the Hopf fibration and plug it into

H(u), but such a section simply does not exist. So at best, we can do so locally on CP 1
H ,

19The reader might be wondering how it is possible that in [4], supersymmetry implied a relation between

the singularities for Fµν and for Φȧḃ, while here, supersymmetry holds without additional conditions. The

answer is that even though the action (2.53) is manifestly supersymmetric, in order for it to stay finite, we

still need to impose the same relation between the singularities of Fµν and of Φȧḃ.
20This has been noted for the Coulomb branch chiral operators in, e.g., [4].
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say if we remove a point from it. Even in this case, for each point of CP 1
H , H(u) is only

defined up to a phase, since we still have to pick a local section of the Hopf fibration. So,

to emphasize, the definition of H(u) for a point of CP 1
H involves a phase ambiguity and

requires making an arbitrary choice. The Coulomb branch version of this story is exactly

the same.

This phase ambiguity is rather innocent in the Higgs branch case, since all Higgs

branch operators are constructed from fields in the Lagrangian. Then for each u, we have

a direct definition of the operator H(u), and there is no real need to talk about points of

CP 1
H . The Coulomb branch case is more involved, as we will leave the normalization of the

path integral measure undetermined, in addition to making a non-unique choice for the

monopole counterterm. Therefore, our path integral definition of the monopole operator

only encodes the point of CP 1
C , any possible additional data being ignored. Thus the phase

is not manifestly fixed, and we will have to use some other reasoning to pin down the

normalization of monopole operators.

2.5.2 Subtleties with antiperiodicity

In our analysis, we have not needed to directly confront the fact that H(u) or C(v) cannot

be written globally on CP 1
H or CP 1

C . Indeed, we are mostly interested in twisted-translated

operators, and such operators have u and v as in (2.33) and (2.34), which are only de-

fined on great circles of CP 1
H and CP 1

C . Clearly, we can trivialize the Hopf bundle if we

restrict it to a circle on the base. However, due to the definition of twisted translations, we

are forced to consider sections that are antiperiodic on this circle. Indeed, both u and v

from (2.33), (2.34) are antiperiodic under ϕ→ ϕ+ 2π. Therefore, the periodicity of H(u)

or C(v) depends on the sign of (−1)n or (−1)m: twisted translations give antiperiodic

operators on the circle for half-integral R-spins.21 The occurrence of antiperiodic observ-

ables on S1 is of course familiar from the study of twisted HBOs in [12, 13]. Here, we

have simply emphasized the similar origin of these antiperiodicities in both the Higgs and

Coulomb cases.

If we have some twisted-translated observable on a circle O(ϕ) that happens to be

antiperiodic, then we should take extra care in defining its sign. This is directly related to

the phase ambiguity of general chiral operators discussed in the previous subsection. Once

we pick u and v as in (2.33) and (2.34), we fix the phase ambiguity almost completely, except

for operators of half-integral R-charge, whose sign remains undefined. Such observables are

only single-valued on the double cover of S1. We deal with this ambiguity by inserting a

“branch point” somewhere on the circle. Then we choose to insert all observables away

from the branch point, and if we ever have to move an observable past the branch point, it

should pick up an extra sign of (−1)n in the Higgs branch case or of (−1)m in the Coulomb

branch case (here, n/2 is an su(2)H spin and m/2 is an su(2)C spin). In the presence of

such a branch point, all observables become single-valued.

For each observable, we pick its sign at ϕ = 0, and then apply twisted translations to

extend the definition to the rest of the circle (away from the branch point). This procedure

21In the language of [4], this sign arises due to the Berry phase: parallel transport in O(n) along the

great circle of CP 1 results in a holonomy (−1)n.
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is trivial in the Higgs branch case: because all Higgs branch operators are constructed from

the hypermultiplet scalars qa, and these are both single-valued and canonically normalized,

the sign choice is simply a choice for the value cosϕ/2
∣∣
ϕ=0

= 1 (as opposed to −1, which

would also be valid since cosϕ/2 is only defined up to a sign on the circle).22 The sign

choice is less trivial in the Coulomb branch case because, as we have already mentioned,

the disorder-type definition of a monopole does not come with any canonical normalization.

We will use a different consideration to fix the phase, and in particular, the sign.

In section 3, we will fix the sign by comparing with the two-point function in the

SCFT on R3. According to [11–13], twisted-translated operators are inserted along the x3-

axis, and we choose the normalization such that the two-point function of a monopole at

x3 > 0 and an antimonopole at x3 < 0 is positive. Identifying R3 with S3 via stereographic

projection such that ϕ = 0, θ = π/2 maps to the origin allows us to pin down the signs

as in (3.41). With such an identification, the x3-axis maps to the interval −π < ϕ < π of

the great circle, implying that the branch point is located at ϕ = ±π. Had we chosen to

perform stereographic projection with ϕ = ±π, θ = π/2 taken as the origin, but with the

same normalization in R3, we would have obtained a sign differing by (−1)B where B is the

monopole charge. The interval (0, 2π) would then have mapped to the x3-axis, resulting

in a branch point at ϕ = 0. So we see that the choice of branch point is correlated with

choice of the sign in (3.41). Our convention is to always put the branch point at ϕ = ±π.
From the point of view of the discussion in section 4, this sign will be slightly more

obscure. There, we cut the sphere into two equal halves and then glue the hemisphere

wavefunctions together. It turns out that the two hemispheres give precisely equal con-

tributions, so the sign should be contained entirely in what we refer to as the “gluing

measure” µ(σ,B). In accordance with the rest of the paper, we assume that the branch

point is at ϕ = ±π. Then, under stereographic projection, the upper hemisphere corre-

sponds to the upper half-space x3 > 0 while the lower hemisphere corresponds to x3 < 0.

Putting the branch point at ϕ = 0 instead (which is the only possibility other than ϕ = ±π
consistent with cutting and gluing, as other locations would break the symmetry between

the upper and lower hemispheres) would correspond to swapping these identifications, and

would need to be accompanied by a sign in the gluing measure for consistency. This can

be achieved by simply replacing µ(σ,B) → µ(σ,−B).

We can give one more argument to demonstrate that our method of fixing the signs is

correct. Suppose we have a monopole at ϕ = π/2, an antimonopole at ϕ = −π/2, and a

branch point at ϕ = ±π. Let us perform a twisted translation by +π while simultaneously

moving the branch point by +π. The two-point function will remain the same, simply

because the correlator can only depend on the distance between the observables, and no

operator crosses the branch point in this process. We end up with a monopole at −π/2, an
antimonopole at +π/2, and a branch point at 2π (or, equivalently, at 0). Next, we switch

the monopole with the antimonopole, so that we end up with the initial configuration

for the operator insertions, except that now the branch point is at ϕ = 0. This swap of

22The choice of this sign at ϕ = 0 does not affect physical answers due to R-symmetry: every nonvanishing

correlator has total R-charge zero, so flipping the signs of all observables of half-integer R-charge does not

change the answer.
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monopole with antimonopole produces exactly the sign difference explained in the previous

paragraphs, as we will see from our results.

3 Localization on S3

We now perform supersymmetric localization of abelian N = 4 theories on S3 with respect

to the superchargeQC
β . As described in the previous section, the cohomology of QC

β includes

twisted-translated monopole operators that can be inserted anywhere along a great circle

of S3. In what follows, we will derive a matrix model expression for correlators containing

such a monopole, a corresponding antimonopole, and arbitrary additional insertions of

twisted-translated operators constructed from the vector multiplet scalars.

3.1 BPS equations and their solutions

Let us start by describing the vector multiplet BPS equations δξCβ
λaḃ = 0, where the SUSY

transformation rule is given in (A.10) and ξCβ is the Killing spinor corresponding to QC
β .

23

The results are most simply expressed in terms of the fields

Φr ≡ Re(ReiϕΦ1̇1̇) , Φi ≡ Im(ReiϕΦ1̇1̇) , (3.2)

where R = sin θ ∈ [0, 1] and the coordinates (θ, ϕ, τ) were defined in (2.6). Note that Φ1̇1̇

is regular at R = 0, as there are no insertions there, implying that Φr,i in (3.2) satisfy

lim
R→0

Φr,i = 0 . (3.3)

In terms of (3.2), the BPS equations can be summarized as

D12 = Re(D11) = 0 , Im(D11) = −1
rΦ1̇2̇ , (3.4)

∂µΦ1̇2̇ = ∂τΦi = ∂τΦr = 0 , (3.5)

R∂RΦi + ∂ϕΦr = 0 , (3.6)

R(1−R2)∂RΦr − ∂ϕΦi = 0 , (3.7)

Fµν = εµνρ∂
ρΦr . (3.8)

Note that (3.5) implies that the vector multiplet scalars are independent of τ on the BPS

locus. Together with (3.4) and (3.8), it follows that all of the vector multiplet fields are

τ -independent. This is, of course, also an immediate consequence of (2.24). The BPS field

configurations can therefore be viewed as functions on the disk parametrized by (R,ϕ).

Clearly, the remaining content of the first two sets of equations (3.4), (3.5) is that Φ1̇2̇ is a

constant, in terms of which Dab is determined. In what follows, we will study the remaining

equations (3.6)–(3.8).

23In the stereographic frame, we have

(ξCβ )1aḃ =
eΩ/2

2r

(
c+ βd c− βd̄

i(c− βd) i(c+ βd̄)

)
, (ξCβ )2aḃ =

eΩ/2

2r

(
d+ βc̄ −d̄+ βc̄

i(d− βc̄) −i(d̄+ βc̄)

)
(3.1)

where eΩ = (1 + x2/4r2)−1, c = ix1 + x2, d = 2r − ix3, and xi are the standard stereographic coordinates

on S3 (see appendix A.1).
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3.1.1 Non-singular solutions

Let us first review the non-singular solutions to (3.6)–(3.8), which were already described

in [13] from a slightly different point of view. Equation (3.8) is the Bogomolny equation on

S3. Its only regular solutions have Aµ = 0 and Φr constant. Equations (3.6) and (3.7) then

imply that Φi is also a constant. As argued around (3.3), these constants must vanish to

avoid having a singularity at R = 0. Therefore, Φi,r = 0. To summarize, the non-singular

BPS locus is given by

Vloc = {Aloc
µ , λloc

aḃ
,Φloc

ȧḃ
, Dloc

ab } , (3.9)

where

Φloc
1̇2̇

= irDloc
11 = irDloc

22 =
1

r
σ , Aloc

µ = Dloc
12 = Φloc

1̇1̇
= Φloc

2̇2̇
= λloc

aḃ
= 0 , (3.10)

and for a U(1)r gauge group, σ ∈ Rr is a constant r-vector. Note that the non-singular QC
β

BPS locus (3.10) coincides with the saddle points of the N = 4 Yang-Mills action [51, 52].

Indeed, as shown in [13], the Yang-Mills action is QC
β -exact. It can therefore be used as a

localizing term, so that the path integral reduces to a sum over its saddles.

The cohomology of QC
β includes local operators constructed from the vector multiplet

scalars Φȧḃ. As shown in [13], and as we now review, these operators evaluate to polyno-

mials in σ on the BPS locus (3.10). According to the prescription (2.34), gauge-invariant

polynomials in

Φ(ϕ) = Φȧḃv
ȧvḃ
∣∣∣∣
R=1

= Φ1̇2̇ + iΦi

∣∣∣∣
R=1

(3.11)

are QC
β -closed. This fact can be readily checked using the SUSY variations given in (A.11).

Plugging in (3.10), we see that in the absence of defect operators, (3.11) localizes to

Φ(ϕ) → Φloc(ϕ) =
1

r
σ . (3.12)

As we will see later, insertions of monopole operators modify the r.h.s. of (3.12), since they

lead to a nontrivial background for Φi.

3.1.2 The two-monopole background

The BPS equations (3.6)–(3.8) also admit singular solutions describing insertions of twisted-

translated monopole operators. In appendix C, we explicitly construct these solutions for

any number of insertions of such operators at R = 1. As shown there, the solution is

uniquely determined by the values of Φi(R,ϕ) at the boundary of the disk (R = 1), where

it must be a piecewise constant periodic function of ϕ. In particular, for n insertions, it

takes the form

Φi(R = 1, ϕ) = − 1

2r

n∑

k=1

bk

[
sgn (ϕ− ϕk) +

ϕk
π

]
, (3.13)
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where bk ∈ Γm is the charge of the kth monopole, ϕk is its angular position at R = 1,

and
∑n

k=1 bk = 0 because the total charge on S3 must vanish.24 The solutions for general

configurations of monopole operators are given in terms of complicated expansions, such

as (C.5), which are difficult to use in explicit localization computations. Instead, we will

work with a simple background corresponding to the insertion of two monopole operators.

As we will see in section 5, this is sufficient to construct arbitrary correlators with n > 2

insertions of monopole operators.

Let us now describe the two-monopole background. Consider a monopole of charge b

at ϕ = π
2 and one of charge −b at ϕ = −π

2 . In this case,

Φi(R = 1, ϕ) =
b

2r
sgn cosϕ . (3.14)

The (unique) solution to (3.6)–(3.8) with boundary condition (3.14) is given by

Φr = − b

2r

R sinϕ√
1−R2 sin2 ϕ

, (3.15)

Φi =
b

2r

R cosϕ√
1−R2 sin2 ϕ

, (3.16)

A± =
b

2

(
R cosϕ√

1−R2 sin2 ϕ
± 1

)
dτ , (3.17)

where A− is defined only in the patch {0 ≤ R < 1} ∪ {R = 1,−π
2 < ϕ < π

2 }, while A+ is

defined in {0 ≤ R < 1} ∪ {R = 1,−π < ϕ < −π
2 ∪ π

2 < ϕ < π}.
The background (3.15)–(3.17) can be rewritten in a more familiar form by passing to

spherical coordinates η, ψ ∈ [0, π] and τ ∈ (−π, π], defined as

X1 = r sin η sinψ cos τ , X2 = r sin η sinψ sin τ ,

X3 = −r sin η cosψ , X4 = r cos η , (3.18)

and in which the metric is given by

ds2 = r2
(
dη2 + sin2 η ds2S2

)
, ds2S2 = dψ2 + sin2 ψ dτ2 . (3.19)

In the coordinates (3.18), the monopole is inserted at η = 0 and the antimonopole at η = π.

In particular, (3.15)–(3.17) become

Φ1̇1̇ = −(Φ2̇2̇)
∗ =

ib

2r sin η
, (3.20)

A± = − b
2
(cosψ ∓ 1) dτ . (3.21)

The background (3.20), (3.21) is stereographically projected to a half-BPS monopole op-

erator of charge b inserted at the origin of R3. Indeed, one can check that it preserves the

supercharges Q(ℓ±)
1 ±Q(r±)

1 and Q(ℓ±)
2 ∓Q(r±)

2 , a fact that will become useful in section 4. In

what follows, we will compute correlation functions with two twisted-translated monopole

operators by using the solution (3.20) and (3.21).

24The sign function in (3.13) is defined for ϕ ∈ (−π, π]. For other values of ϕ, it should be replaced by

sgn
(
cos ϕ

2
sin ϕ−ϕk

2

)
.
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3.2 Localization of correlators with monopoles

Let us now discuss some general aspects of our localization problem.25 We wish to calculate

correlators of QC
β -closed local operators. These operators include the monopole operators

described above as singular supersymmetric backgrounds, as well as polynomials in the

twisted-translated vector multiplet scalars Φ(ϕ) defined in (3.11). They are all inserted

along the great circle at R = 1, which is parametrized by the angle ϕ.26 The path integral

expressions of such correlators are given by

〈Mb1(ϕ1) · · ·Mbn(ϕn) · · · 〉 =
1

ZS3

∫
DHD Ṽ e−SYM[Vb.g.+Ṽ]−Shyper[H,Vb.g.+Ṽ](· · ·) , (3.22)

where the Mbk(ϕk) denote charge-bk twisted-translated monopole operators. On the r.h.s.

of (3.22), ZS3 is the S3 partition function, while Vb.g. denotes the monopole background

described in the previous subsection and in appendix C; the fluctuations around it are

denoted by Ṽ. The final ellipses (· · ·) in (3.22) represent arbitrary additional insertions of

Φ(ϕ) polynomials at different points on the great circle. The Yang-Mills and hypermultiplet

actions SYM and Shyper were defined in (2.16) and (2.15). We will assume that these actions

also contain appropriate boundary terms (the “monopole counterterms”) at the positions

of the defects, as discussed in section 2.4.1, though their explicit form will not be needed.

Localizing the path integral (3.22) over Ṽ for abelian theories is very simple. By

taking into account the counterterm required to define the insertions of twisted-translated

monopole operators, it was argued in section 2.4.1 that the Yang-Mills action is QC
β -exact

(and closed). It can therefore be used as a localizing term. Because the gauge group is

abelian, this action is quadratic, and in fact completely independent of the background

Vb.g.. The localization locus for Ṽ is therefore identical to the one written in (3.10), which

was derived assuming Vb.g. = 0. The Yang-Mills action vanishes on the localization locus.

Moreover, the one-loop determinant of fluctuations around it is known to be equal to 1

(see, [51, 52]).

We conclude that for a U(1)r gauge group, (3.22) localizes to

〈Mb1(ϕ1) · · ·Mbn(ϕn) · · · 〉 =
1

ZS3

∫ ( r∏

i=1

dσi

)
Z(σ, b1, . . . , bn)(· · ·) , (3.23)

Z(σ, b1, . . . , bn) ≡
∫

DH e−Shyper[H,Vb.g.+Ṽloc] . (3.24)

In (3.23) and (3.24), Ṽloc is the same as Vloc in (3.10), depending only on the r real constants

σi, and the (· · ·) denote additional insertions of localized Φ(ϕ) polynomials. Note that in

the presence of monopoles, insertions of Φ(ϕ) do not quite localize to σ as in (3.12). Instead,

using (3.11), we have:

Φ(ϕ) → Φloc(ϕ) =
1

r
σ + iΦi(R = 1, ϕ) , (3.25)

25For an introduction to supersymmetric localization, we refer the reader to [53] and references therein.
26The cohomology of QC

β also includes BPS vortex loops wrapping the R = 1 circle, as well as BPS Wilson

loops wrapping τ -circles. The former line operators were first described in the context of localization of 3D

N = 2 theories in [8, 9], and for N = 4 theories in [54]. We will not discuss them in this paper.

– 26 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

with Φi(R = 1, ϕ) given in (3.13). All that is left is to calculate Z(σ, b1, . . . , bn) in (3.24).

Note that in principle, it should be possible to evaluate the path integral in (3.24) explicitly,

even without localization, because Shyper is quadratic in H. We now carry out this step

for n = 2 insertions of twisted-translated monopole operators.

3.2.1 Two monopole insertions

To evaluate the localization formula for correlators of a twisted-translated monopole op-

erator Mb(ϕ), an antimonopole M−b(ϕ), and additional insertions of polynomials in the

twisted-translated vector multiplet scalars Φ(ϕ) requires calculating the hypermultiplet

path integral (3.24) around the singular background given in (3.20), (3.21), which corre-

sponds to inserting Mb(ϕ) at ϕ = π
2 and M−b(ϕ) at ϕ = −π

2 . Because correlators of

twisted-translated operators are topological, there is no loss of generality in fixing the in-

sertion points in this way. Note that by using (3.14), we find that in the two-monopole

configuration, Φ(ϕ) localizes to:

Φloc(ϕ) =
1

r

(
σ + i

b

2
sgn cosϕ

)
. (3.26)

Let us now describe the computation of Z(σ, b) ≡ Z(σ, b,−b). Because Shyper is quadratic,
the H path integral in (3.23) is given by the ratio of one-loop determinants

Z(σ, b) ≡
∫

DH e−Shyper[H,Vb.g.+Ṽloc] =
detΛ−1Df

detΛ−2Db
, (3.27)

where Db and Df are differential operators appearing in the bosonic and fermionic quadratic

pieces of Shyper, respectively. These differential operators depend explicitly on σ and on the

monopole background (3.20), (3.21). As we show in appendix D, they can be diagonalized

explicitly by expanding their eigenfunctions in monopole spherical harmonics on the S2

parametrized by ψ and τ . In (3.27), we have introduced an arbitrary scale Λ on dimensional

grounds. It should be thought of as a UV scale necessary for a proper definition of the

path integral, and will be removed at the end of the computation by a renormalization of

the monopole operators.

Let us first summarize the results of appendix D for SQED1, in which b ∈ Z. In this

case, the spectrum of Db is given by

λb±,n =
1

r2

(
n+

1 + |b|
2

± iσ

)(
n+

3 + |b|
2

∓ iσ

)
, n = 0, 1, . . . , (3.28)

with degeneracies db±,n = (n+ 1)(n+ |b|+ 1). The spectrum of Df is given by

λf±,n =
1

r

[
±
(
n+

3 + |b|
2

)
+ iσ

]
, n = 0, 1, . . . , (3.29)

λf,0±,n =
1

r

[
±
(
n+

1 + |b|
2

)
+ iσ

]
, n = 0, 1, . . . , (3.30)
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with corresponding degeneracies df±,n = 2(n + |b| + 2)(n + 1) and df,0±,n = |b|.27 Using the

above spectrum, and the fact that db±,n−1− df±,n−1+ d
b
±,n− df,0±,n = 1, we can write the real

part of the S3 free energy as

ReF =
∞∑

n=0

log

∣∣∣∣∣
n+ 1+|b|

2 + iσ

Λr

∣∣∣∣∣

2

. (3.31)

To evaluate this sum, let us define

f(s) =
∞∑

n=0


 (Λr)s(

n+ 1+|b|
2 + iσ

)s +
(Λr)s(

n+ 1+|b|
2 − iσ

)s


 . (3.32)

This function is related to ReF in (3.31) by

ReF =
df

ds

∣∣∣∣
s=0

. (3.33)

Moreover, the infinite sum defining f(s) in (3.32) is convergent for large enough s, and can

be analytically continued to small s using the Hurwitz zeta function ζ(s, q) =
∑∞

n=0
1

(n+q)s :

f(s) = −(Λr)s
[
ζ

(
s,

1 + |B|
2

+ iσ

)
+ ζ

(
s,

1 + |B|
2

− iσ

)]
. (3.34)

Plugging (3.34) into (3.33), and using ζ(0, q) = 1
2 − q and dζ(s,q)

ds

∣∣∣
s=0

= log Γ(q)√
2π
, results in

ReF = |b| log(Λr)− log

∣∣∣∣∣∣

Γ
(
1+|b|
2 + iσ

)

√
2π

∣∣∣∣∣∣

2

. (3.35)

We conclude that for SQED1, the absolute value of (3.27) is given by

|Z(σ, b)| = (Λr)−|b| 1
2π

Γ

(
1 + |b|

2
− iσ

)
Γ

(
1 + |b|

2
+ iσ

)
. (3.36)

As a check of (3.36), we find that

ZS3,σ ≡ |Z(σ, b = 0)| = 1

2 coshπσ
, (3.37)

which is the correct S3 partition function of a free hypermultiplet coupled to a real mass

m = σ. To complete the calculation, the overall phase of Z(σ, b) still needs to be deter-

mined. We have not been able to compute this phase rigorously, but we postulate that the

full answer takes the form

Z(σ, b) = (−1)
|b|−b

2
1

2π(Λr)|b|
Γ

(
1 + |b|

2
− iσ

)
Γ

(
1 + |b|

2
+ iσ

)
. (3.38)

The overall sign in (3.38) will be explained momentarily.

27In (3.29) and (3.30), we actually quote the spectrum of D̃f defined in (D.23). Its determinant is equal

to that of Df . The fermionic eigenvalues λf,0
±,n in (3.30) arise from zero modes of the Dirac operator on S2.
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First, we note that according to (3.23), integrating Z(σ, b) over σ gives us the twisted

monopole two-point function in SQED1. In particular,

〈Mb(π/2)M−b(−π/2)〉S3, SQED1
=

1

ZS3

∫ ∞

−∞
dσ Z(σ, b) = (−1)

|b|−b
2

(|b|)!
(2Λr)|b|

. (3.39)

The IR limit is obtained by renormalizing the monopole operators as Mb → Λ
|b|
2 Mb and

sending Λ → ∞, while keeping r fixed. From the power of r in (3.39), it follows that the

dimension of a charge-b monopole CBO in SQED1 is given by ∆Mb = |b|/2. This is a new

derivation of the dimensions of the half-BPS monopole operators of SQED1, which were

first obtained in [4].28 Note that while the classical dimensions of hypermultiplet fields are

the same as their dimensions in the IR SCFT, the dimensions and R-charges of monopole

operators are inherently quantum: they cannot be read off from the action, and they are

related to proper regularization of the path integral. Supersymmetry requires that the

dimensions of monopoles induced by quantum effects coincide with their IR R-charges.

The sign of (−1)
|b|−b

2 in (3.38) can now be understood as follows. As shown in [11–13],

the two-point function of a twisted operator O(ϕ) corresponding to a CBO of dimension

∆ has position dependence

〈O(ϕ1)O(ϕ2)〉S3 = c sgn(ϕ1 − ϕ2)
2∆ (3.40)

for some constant c. It follows that

〈Mb(ϕ1)M−b(ϕ2)〉S3, SQED1
= (sgn(b) sgn(ϕ1 − ϕ2))

|b|h(|b|)

= (−1)
|b|−b

2 (sgn(ϕ1 − ϕ2))
|b|h(|b|) (3.41)

where, crucially, the factor of sgn(b)|b| = (−1)
|b|−b

2 accounts for the permutation symmetry

ϕ1 ↔ ϕ2, b ↔ −b, and h depends only on |b|. In our calculation of the two-point func-

tion (3.41), we fixed ϕ1 = π/2 and ϕ2 = −π/2, but this still leaves us with the b-dependent

prefactor (−1)
|b|−b

2 .29 From the point of view of the determinant calculation of this section,

the origin of this sign is quite mysterious because the spectrum is symmetric under b↔ −b.
Nevertheless, the above argument strongly suggests that it should be included in the final

answer (see section 2.5 for further remarks). In section 4, we will provide an alternative

derivation of the (−1)
|b|−b

2 factor.

It is straightforward to generalize (3.38) to abelian theories with G = U(1)r and Nh

hypermultiplets, as defined in section 2.1.3. For these theories, we have

Z(~σ,~b) =

Nh∏

I=1

(−1)
|~qI ·~b|−~qI ·~b

2

2π(Λr)|~qI ·~b|
Γ

(
1 + |~qI ·~b|

2
− i~qI · ~σ

)
Γ

(
1 + |~qI ·~b|

2
+ i~qI · ~σ

)
(3.42)

28In particular, ∆Mb=1 = 1/2, so the IR limit of SQED1 is the theory of a free twisted hypermultiplet.
29Note that replacing (−1)(|b|−b)/2 → (−1)(|b|+b)/2 in (3.38) would also lead to an expression satisfying

the desired properties of twisted monopole two-point functions. We will see in section 4.3.2 that the choice

in (3.38) is the one consistent with our conventions.
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(recall that ~qI ∈ Zr is the vector of gauge charges of the Ith hypermultiplet). From (3.42),

one can read off the BPS monopole operator dimensions to be ∆~b
=
∑Nh

I=1
|~qI ·~b|
2 , which is

indeed the correct answer.

To summarize, we have shown that arbitrary correlators involving two twist-

ed-translated monopole operators can be calculated by solving the matrix model

〈M~b(π/2)M−~b(−π/2) · · · 〉 = 1

ZS3

∫ ( r∏

i=1

dσi

)
Z(~σ,~b)(· · ·) , (3.43)

where Z(~σ,~b) is given in (3.42) and the (· · ·) are some polynomials in Φ(ϕ), which in the

monopole background localizes to (3.26). We will discuss applications of the formula (3.43)

in section 6. Before doing so, we will show that the product over Γ
(1+|~qI ·~b|

2 −i~qI ·~σ
)
in (3.42)

can be viewed as the partition function on a hemisphere with ~b units of flux threading its

boundary S2. The full expression (3.42) can be viewed as the result of “gluing” two such

partition functions. This point of view will lead to a simple generalization of (3.43) to cor-

relators with an arbitrary number of insertions of twisted-translated monopole operators.

4 Localization on HS3 and ∂HS3

A very useful representation of correlators of twisted CBOs, powerful enough to facilitate

computations with an arbitrary number of monopole insertions, can be obtained by cutting

S3 into two hemispheres HS3 along the equatorial S2 that is orthogonal to the great circle

where the 1D theory lives. The path integral on HS3 then generates a state at the boundary

∂HS3 = S2, and insertions of twisted CBOs can be represented by certain differential

operators acting on this state. Gluing two hemispheres back together then allows one to

recover the full S3 answer.30 As we will see, the boundary states (with insertions) in our

case are QC
β -closed. It follows that the gluing of two such QC

β -closed states depends only

on their cohomology classes.31 We will not, in practice, describe these cohomology classes:

rather, we will utilize a slightly different philosophy, outlined in the next paragraph.

Our strategy for gluing can be summarized as follows. Gluing two hemispheres along

their common boundary is represented by a path integral on S2, which we refer to as the

“gluing theory.” This integral is taken over the space of boundary conditions corresponding

to a fixed polarization on the phase space of the bulk theory. As will be explained, for

our particular choice of supersymmetric polarization, the gluing theory itself preserves

2D N = (2, 2) supersymmetry on S2. Applying supersymmetric localization to the gluing

theory then reduces the infinite-dimensional functional integration at the boundary S2 to a

finite-dimensional integral over the space of half-BPS boundary conditions. In what follows,

we will describe this technique, derive the gluing formula (4.48) via boundary localization,

and derive the hemisphere partition function (or wavefunction) via localization on HS3.

30We thank Davide Gaiotto for sharing the idea to use this approach.
31In fact, we are going to compose a QC

β -closed vector |Ψ+〉 (QC
β |Ψ+〉 = 0) with a QC

β -(co)closed covector

〈Ψ−| (〈Ψ−|QC
β = 0). This composition indeed descends to a composition on cohomology.
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4.1 Cutting and gluing

The cutting and gluing axiom is one of the most fundamental properties of any local quan-

tum field theory. The essence of cutting is that under a decomposition of a spacetime

manifold into two components, the QFT dynamics as described by the path integral will

generate physical states at the boundaries. The two boundary components in this de-

composition have opposite orientations, so that one component supports a state living in

some Hilbert space H, whereas the other supports a state living in the dual H∨. The

gluing property refers to the opposite procedure: if we have two identical boundary com-

ponents of opposite orientation, they support states in H and H∨, respectively, and we can

glue the spacetime manifold along these boundary components simply by composing the

corresponding states.

In the context of supersymmetric boundary conditions and domain walls, the gluing

procedure has appeared in various forms throughout the literature, a few examples be-

ing [55–64]. In some of these works, concrete expressions for gluing are derived with the

aid of heuristic arguments — for example, in [62], where the need for a more illuminat-

ing derivation was emphasized. Here, we describe such a first-principles derivation for 3D

N = 4 theories, explaining the proper framework and relevant concepts along the way. A

more detailed exposition of the gluing procedure and related symplectic geometry will be

presented in [65].

In this problem, it is natural to start with a Hamiltonian formalism. Indeed, close to a

boundary component C ⊂ ∂M , the manifold looks like a cylinder C×R. In the Hamiltonian

description, R plays the role of time and the space of fields on C is the configuration space.

The bosonic fields and their time derivatives become, respectively, bosonic “positions” and

“momenta,” while half of the fermionic fields become fermionic “positions” and the other

half become fermionic “momenta.” There is a canonical Poisson bracket defined on the

fields. This describes the phase space of the model, which is of course infinite-dimensional,

unless we work with quantum mechanics (a 1D QFT).

To describe a boundary state, one has to choose what is called a “polarization” [66]:

roughly, to pick one half of the phase space coordinates that Poisson-commute with each

other and declare them to be “position coordinates.” States can then be defined as func-

tionals of these position coordinates. The simplest situation occurs in quantum mechanics,

where the phase space is R2n parametrized by pi, q
i, i = 1 . . . n, with the canonical Poisson

bracket. Then the standard choice is to define states as square-integrable functions of qi.

In the path integral formulation, the action corresponding to this choice of polarization is

written as

Sq =

∫ T

0
(piq̇

i −H)dt , (4.1)

with H being the Hamiltonian. The boundary conditions are allowed to fix qi at the

boundary, leading to the path integral formula for states in the “position representation.”

For example, one can write ψ(x) = 〈q = x|e−iHT |q = 0〉 using the path integral as

ψ(x) =

∫
q(T )=x ,
q(0)=0

DqDp ei
∫ T
0 (piq̇

i−H(p,q))dt . (4.2)
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In an alternative polarization, one could choose to fix the momenta pi at the boundary:

this is commonly referred to as the “momentum representation.” It is known that for these

boundary conditions to work, one has to write the action as:

Sp =

∫ T

0
(−qiṗi −H)dt = Sq − piq

i
∣∣
t=T

+ piq
i
∣∣
t=0

≡ Sq − piq
i
∣∣t=T
t=0

. (4.3)

This differs from the action Sq that was appropriate for the position picture by the boundary

terms −piqi
∣∣T
0
. We could also choose to fix coordinates for the first k degrees of freedom

and momenta for the remaining n−k degrees of freedom. Then the proper boundary terms

would be −∑n
i=k+1 piq

i
∣∣T
0
.

One of the reasons that the boundary terms show up is to make the variational problem

well-defined, i.e., to ensure that there are no boundary corrections to the equations of

motion.32 For example, the variation of the position picture action Sq is

δSq =

∫
dt
[
δpi(q̇

i − ∂H/∂pi)− δqi(ṗi + ∂H/∂qi)
]
+ piδq

i
∣∣T
0
. (4.4)

Generically, the Hamiltonian equations of motion follow from the above variation if δqi

vanish at the boundary, so that the positions qi take fixed values thereon. If this is not

the case and we are considering more general boundary conditions, then we are forced to

include boundary terms F1,2 such that piδq
i + δF1

∣∣
t=0

= 0 and piδq
i + δF2

∣∣
t=T

= 0. The

case of general boundary conditions given by Lagrangian submanifolds, and in particular

the question of how to construct boundary terms in that case, will be studied in [65].

In the upcoming subsections, we will use the fact that if the theory has a symmetry that

preserves the polarization, then this symmetry is induced in the gluing path integral [65].

For us, the relevant symmetry will be supersymmetry. What does it mean that a symmetry

preserves the polarization? If we choose to fix the positions qi at the boundary, it simply

means that the symmetry transforms a qi = const. submanifold into qi = c̃onst., where

c̃onst. are some other constants.

Let us illustrate this statement for the simplest example of a position-based polariza-

tion, in which the wavefunctions depend only on qi. Suppose that a theory has a symmetry

whose generating function is

Y =
∑

i

cipi + a(q) , (4.5)

where ci are constants. The corresponding Hamiltonian vector field, XY =
∑

i c
i ∂
∂qi

−
∂a(q)
∂qi

∂
∂pi

, obviously preserves the position-based polarization: every subspace qi = const. is

transformed into another subspace of the same type. Suppose that ψ1 and ψ2 are states

32Note: this is a different perspective from the one adopted in some literature on supersymmetric bound-

ary conditions, where boundary terms in the equations of motion are used to derive boundary conditions,

e.g., in [64]. From that perspective, one would start with the action (4.1) without any boundary conditions

and conclude that boundary equations of motion enforce p(0) = p(T ) = 0. This gives a single boundary

condition, as opposed to a family of boundary conditions parametrized by q. We need the latter perspective,

in which piδq
i
∣∣ vanishes because of δqi

∣∣ = 0, not because of pi
∣∣ = 0, to be able to describe boundary states.
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annihilated by the symmetry generated by Y , i.e.,

− i
∑

j

cj
∂

∂qj
ψ1,2 + a(q)ψ1,2 = 0 , (4.6)

or in infinitesimal form,

ψ1,2(q
i + ǫci) = e−iǫa(q)ψ1,2 . (4.7)

Then, clearly, the following holds:

ψ∗
1(q

i + ǫci)ψ2(q
i + ǫci) = ψ∗

1(q
i)ψ2(q

i) . (4.8)

The symmetry Y induces a transformation qi 7→ qi + ǫci on the positions, and the prod-

uct ψ∗
1(q)ψ2(q) is invariant with respect to it. This means that the integral performing

the gluing, ∫
dnq ψ∗

1(q)ψ2(q) , (4.9)

has a symmetry qi → qi + ǫci. We can say that |ψ2〉 ∈ H, whereupon ψ1 determines an

element of the dual space:

〈ψ1| ∈ H∨, 〈ψ1|ψ2〉 =
∫
dnq 〈ψ1|q〉〈q|ψ2〉, 〈ψ1|q〉 = ψ∗

1(q), 〈q|ψ2〉 = ψ2(q) . (4.10)

This formulation is very natural: two copies of the boundary, with opposite orientations,

support the Hilbert space H and its dual H∨, with 〈q|ψ2〉 and 〈ψ1|q〉 representing their

elements, respectively. The complex conjugation comes into play only if we use the Hilbert

space structure on H to relate it with H∨.
The above quantum mechanics example is a model of what is going to happen in our

3D theory: the symmetry Y will be replaced by supersymmetry and the boundary states

will be supersymmetric, as will the boundary path integral performing the gluing. This

will allow for the use of supersymmetric localization to simplify the gluing.

4.2 Supersymmetric cutting and gluing of hemispheres

Upon cutting S3 into two hemispheres along the equatorial S2, the isometry group SO(4) is

broken down to the isometry group SO(3) of S2. Correspondingly, the N = 4 superalgebra

su(2|1)ℓ⊕ su(2|1)r is broken as well. The maximal subalgebra that can remain unbroken is

su(2|1), which is the N = (2, 2) superalgebra on S2. As is well-known, the latter comes in

two versions, su(2|1)A and su(2|1)B, related by 2D mirror symmetry [67]. Correspondingly,

we can impose two types of boundary conditions on an empty hemisphere, preserving either

su(2|1)A or su(2|1)B.33 To see how this works in relation to 3D mirror symmetry, consider

an outer automorphism a of su(2|1)ℓ⊕ su(2|1)r that acts trivially on all generators, except:

a(Rr) = −Rr ,
a(Q(r±)

α ) = Q(r∓)
α . (4.11)

33In the language of [68], these two types of boundary conditions are both called “A-type,” while their

“B-type” preserves (0, 4) SUSY and has no counterpart in our story.
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This is the automorphism underlying 3D mirror symmetry: in particular, it switches RH
and RC . Up to conjugation, one can identify the su(2|1)A subalgebra as diag[su(2|1)ℓ⊕
su(2|1)r]. Then, up to conjugation, the su(2|1)B subalgebra is diag [su(2|1)ℓ ⊕ a(su(2|1)r)].
We observe that QC

α ∈ su(2|1)A and QH
α ∈ su(2|1)B. Furthermore, insertions of twisted

CBOs at the tip of the hemisphere preserve su(2|1)A, while similar insertions of twisted

HBOs preserve su(2|1)B (see Footnote 15). This implies that in this paper, we need

only preserve su(2|1)A at the boundary, as su(2|1)B would be relevant for the mirror

Higgs branch story. For this reason, we drop the subscript A in what follows and sim-

ply write su(2|1).
In our conventions, the diagonal subalgebra diag [su(2|1)ℓ ⊕ su(2|1)r] preserves the

great S2 located at ϕ = ±π/2. We choose to perform a cut along a different great S2

located at ϕ = 0 and ϕ = ±π. Correspondingly, we will denote by HS3
+ the hemisphere

with 0 < ϕ < π, and by HS3
− the one with −π < ϕ < 0. The su(2|1) preserved by this cut

is conjugate to diag [su(2|1)ℓ ⊕ su(2|1)r]. More explicitly, in terms of the su(2|1)ℓ⊕su(2|1)r
supercharges Q(ℓ±)

α and Q(r±)
α , the su(2|1) subalgebra preserved on our HS3 is generated by

Q+
1 ≡ Q(ℓ+)

1 +Q(r+)
1 , Q+

2 ≡ Q(ℓ+)
2 −Q(r+)

2 , (4.12)

Q−
1 ≡ Q(ℓ−)

1 −Q(r−)
1 , Q−

2 ≡ Q(ℓ−)
2 +Q(r−)

2 . (4.13)

Most importantly, our Coulomb branch supercharges (2.22) are part of this algebra, and

identified as QC
1 = Q+

1 and QC
2 = Q−

2 .

In the presence of real masses m̂, it is the central extension of su(2|1) that becomes

relevant. Indeed, by (2.19), the central charge entering diag [su(2|1)ℓ ⊕ su(2|1)r] is irm̂.

This fact is not changed by conjugation, so the central extension appearing in our su(2|1)
always corresponds to mass deformations. The central transformations generated by FI

terms, on the other hand, are not symmetries on HS3. Those transformations multiply

monopoles by a phase proportional to their charge, and because the total charge need not

vanish on HS3, they are not symmetries there. Note that the twisted translation (2.28) is

also not a symmetry on HS3, and only becomes one on the full S3.

In what follows, we will first discuss how to include insertions of twisted CBOs on HS3

in an su(2|1)-invariant way. We will then describe the phase space of our theories close

to the S2 boundary, and show that there is an su(2|1)-preserving polarization in the sense

described in the previous subsection.

4.2.1 Operator insertions and su(2|1)

The path integral on an empty HS3 generates a state at the boundary S2 which is invariant

under all supersymmetries, and in particular under su(2|1). Moreover, the tip of HS3 is

a fixed point of the SO(3) isometry, so the latter is not broken by insertions of scalar

local operators there. In fact, it turns out that the full su(2|1) symmetry is preserved by

insertions of twisted CBOs at the tip of HS3 (see Footnote 15 and the previous subsection).

On the other hand, insertions of twisted-translated operators along the great semicircle of

HS3 away from the tip generally break the su(2|1) symmetry. However, by performing a

simple step before cutting S3 into two halves, we can reduce calculations involving generic

insertions to those involving only su(2|1)-invariant insertions, without any loss of generality.
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Indeed, owing to (2.25)–(2.26) and (2.27)–(2.28), we know exactly how correlators

of twisted-translated operators on S3 depend on their insertion points along the great

circle. Specifically, suppose that O1(ϕ1), . . . ,On(ϕn) are twisted-translated operators in-

serted at points ϕ1 < · · · < ϕn, and suppose that they carry monopole charges b1, . . . , bn.

From (2.25)–(2.26) and (2.27)–(2.28) (which state that P̂Hϕ and P̂Cϕ are cohomologous to

−irm̂ and −irζ̂, respectively), we deduce that their correlation function on S3 has posi-

tion dependence

〈O1(ϕ1) . . .On(ϕn)〉 ∝ exp

(
−r

n∑

k=1

ζbkϕk

)
, (4.14)

where ζ is an FI parameter (if the gauge group contains multiple U(1) factors, then ζ and

bk are vectors, and they are dotted into each other in the expression above). In particular,

for vanishing FI parameters, the correlator has no position dependence at all, as long as

we keep the ordering of operators unchanged.

Now suppose that we cut S3 along the equator at ϕ = 0 and ±π. Some insertions (say,

O1, . . . ,Ok) will end up on the hemisphere HS3
−, while the others end up on HS3

+. Let us

move all operators to the tip of their corresponding hemisphere. Using the OPE, we define

lim
ϕi→π/2

ϕk+1<···<ϕn

Ok+1(ϕk+1)Ok+2(ϕk+2) . . . On(ϕn) = O+(π/2) + {QC , . . . } ,

lim
ϕi→−π/2
ϕ1<···<ϕk

O1(ϕ1)O2(ϕ2) . . . Ok(ϕk) = O−(−π/2) + {QC , . . . } , (4.15)

where O± are some twisted CBOs. Then the full correlation function on S3 is simply

〈O1(ϕ1) . . .On(ϕn)〉 = 〈O+(π/2)O−(−π/2)〉 × exp

(
−r

n∑

k=1

ζbkϕk

)
. (4.16)

Now we can safely cut S3 into two halves, with O± inserted at the tip of HS3
±. These

configurations generate su(2|1)-invariant states Ψ± at the boundaries of HS3
±. The use of

the OPE above is a bit formal, as we do not know it a priori. In section 5, we will see how

it can nevertheless be determined only from knowing how to glue HS3 wavefunctions with

insertions at their tips.

4.2.2 The phase space

To apply the canonical formalism, we start by describing the phase space for the theory

on S2 × R. Note that close to the equator, S3 looks like S2 × R. Hence there is no need

to separately study actions on S2 × R, as all relevant information can be read off from the

action on S3. In other words, the Hilbert space of states on S2 does not depend on which

three-manifold this S2 bounds: it could be HS3, a half-cylinder S2 ×R+, or anything else.

The role of the bulk is merely to prepare a certain state at the boundary.

Let ∂⊥ denote the derivative along the unit normal to S2. In the canonical formalism,

∂⊥ is thought of as the “time derivative.” On S2 ×R, we have ∂⊥ = ∂
∂x0

with x0 being the

coordinate on R. On HS3
+ (0 < ϕ < π), ∂⊥ is given by

∂⊥ = −sgn(cosϕ)

r sin θ

∂

∂ϕ
, (4.17)
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while on HS3
− (−π < ϕ < 0), it is given by

∂⊥ = +
sgn(cosϕ)

r sin θ

∂

∂ϕ
. (4.18)

With respect to ∂⊥, the momenta canonically conjugate to qa and q̃a are, respectively,

pa = D⊥q̃a and p̃a = D⊥qa. The corresponding Poisson brackets are34

{qa(x), ∂⊥q̃b(y)}P = δba 1RδS2(x− y) , {q̃a(x), ∂⊥qb(y)}P = δab 1RδS2(x− y) , (4.19)

where 1R is the identity matrix in the representation R, and δS2(x− y) is a delta-function

on S2. Similarly, the Poisson brackets for Φȧḃ are

{Φȧḃ(x), ∂⊥Φċḋ(y)}P = −g
2
YM

4

(
δċȧδ

ḋ
ḃ
+ δḋȧδ

ċ
ḃ

)
1AdjδS2(x− y) . (4.20)

The auxiliary fields Dab are eliminated in the canonical formalism because the action does

not include their derivatives. There are many equivalent ways to understand this. For

example, they could simply be integrated out before quantizing the theory. Alternatively,

recall that the phase space can be interpreted as the space of solutions to the classical

equations of motion modulo gauge equivalences. The classical equations for Dab are alge-

braic and can be used to express Dab in terms of the other fields. Finally, we could apply

Dirac’s procedure by introducing conjugate momenta Πab
D for Dab with the Poisson bracket

{Dab(x),Π
cd
D (y)}P =

1

2

(
δcaδ

d
b + δdaδ

c
b

)
1AdjδS2(x− y) , (4.21)

which satisfy the constraint Πab
D = 0. This induces a secondary constraint putting Dab

on shell:

DA
ab = − ig

2
YM

2
q̃(aT

Aqb) −
1

2r
hab(h̄

ȧ
ḃΦ

A,ḃ
ȧ)−

i

2
g2YMζ(T

A)hab, (4.22)

where TA (A = 1 . . . dimG) denote the generators of G in the representation R and ζ(TA)

denote possible FI terms that can only be present for those TA corresponding to U(1) factors

of G. Again, auxiliary fields are eliminated, the physical subspace being constructed as the

solutions to (4.22) and ΠabD = 0 (modded out by gauge symmetries). Note that because

of (4.22), DA
ab has nontrivial Poisson brackets with other fields on the physical subspace:

{DA
ab(x), ∂⊥q̃

c(y)}P = − ig
2
YM

2
δc(b q̃a)T

AδS2(x− y) ,

{DA
ab(x), ∂⊥q

c(y)}P =
ig2YM

2
δc(a T

Aqb)δS2(x− y) , (4.23)

{DA
ab(x), ∂⊥Φ

B,ȧḃ(y)}P = −g
2
YM

4r
habh̄

ȧḃδABδS2(x− y) ,

where we have left the representation label R on hypermultiplet scalars implicit.

As usual, it is useful to keep in mind all equivalent descriptions of the phase space at

once. In particular, we will often have Dab present in our equations, alluding to the latter

34Strictly speaking, ∂⊥q̃
a here is not really a derivative but merely a symbol standing for pa + iA⊥q̃

a,

and similarly for ∂⊥qa. This distinction will not be important anywhere in this paper.
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description. On the other hand, the definition of the phase space as the space of solutions

to the classical EOMs allows us to be cavalier about closing SUSY off shell: when we act

with SUSY in the phase space, we simply transform one classical solution into another, so

we are completely free to use the equations of motion.

Proceeding with our description of the phase space, the remaining bosonic fields are

gauge fields. We denote the component of Aµ along the R direction in S2×R by A0 and the

components along the S2 directions by Ai. The canonical formalism complements them by

conjugate momenta π0 and πi, as well as the constraints

A0 = π0 = 0 , DiAi = Diπ
i = 0 . (4.24)

The canonical Poisson bracket {Aµ(x), πν(y)}P = δνµδS2(x − y) induces a Poisson bracket

on the constraint subspace.35 On HS3, we will identify A⊥ with A0 where, as before, ⊥
denotes the direction normal to S2. In this situation, it will be convenient to interpret the

constraint A⊥ = 0 as a partial gauge-fixing on HS3.

Finally, let us turn to the fermions. In the canonical formalism, half of them become

“positions” and the other half their conjugate momenta. This is simply because the action

for fermions is of first order in derivatives. The Poisson brackets turn out to be36

{ψαȧ(x), ψ̃βḃ(y)}P = iδḃȧ (γ⊥)α
βδS2(x− y) ,

{λαaȧ(x), λβbḃ(y)}P = − i

2
εabεȧḃ (γ⊥)αβ δS2(x− y) , (4.25)

where γ⊥ is the component of γµ along the unit vector field normal to S2. In particular,

γ⊥ = − sgn(cosϕ)
r sin θ γϕ

∣∣
boundary

= −σ3.

4.2.3 The su(2|1)-invariant polarization

We would now like to describe a proper choice of splitting of the phase space variables of

our theory, such that half of them define an su(2|1)-invariant polarization. In other words,

we want to find field combinations that form su(2|1) multiplets, in addition to Poisson-

commuting with each other at the boundary.37 Fixing such field combinations on S2 will

provide us with the appropriate family of boundary conditions, inducing 2D N = (2, 2)

supersymmetry in the gluing theory and allowing for localization of the gluing path integral.

Our strategy is to start with the combinations of scalars (familiar from [13])

q± = q1 ± iq2 , q̃± = q̃1 ± iq̃2 . (4.26)

35Note that Ai can be interpreted as a gauge field on S2, and the constraint DiAi = 0 as a gauge-

fixing condition. If we choose a position-based polarization and describe wavefunctions as functionals of

Ai on a subspace determined by DiAi = 0, then we can alternatively relax this constraint and say that

wavefunctions for the gauge field are simply gauge-invariant functionals of Ai.
36A näıve application of the canonical formalism would not give a factor of 1/2 in the second equation

of (4.25): to obtain this coefficient, one must properly account for the second class constraints and construct

the Dirac bracket on the constraint surface.
37Poisson commutativity would hold everywhere if we were working on S2×R, but on HS3, it only needs

to hold at the boundary.
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Under su(2|1) SUSY transformations (restricted to the boundary), the combinations (4.26)

transform into the boundary fermions

χ = (ψ1̇ − σ3ψ2̇)
∣∣ , χ̃ = i(ψ̃1̇ + σ3ψ̃2̇)

∣∣ , (4.27)

ρ̃ = (ψ̃1̇ − σ3ψ̃2̇)
∣∣ , ρ = −i(ψ1̇ + σ3ψ2̇)

∣∣ , (4.28)

where the notation X
∣∣ denotes the restriction of X to the boundary S2. The only nonva-

nishing Poisson brackets between the fermions in (4.27) and (4.28) are given by

{χα(x), ρ̃β(y)}P = {χ̃α(x), ρβ(y)}P = 2iεαβδS2(x− y) , (4.29)

suggesting that, e.g., χ and χ̃ could be good candidates for the “positions” of the hypermul-

tiplet fermions (and indeed they are, as we will see momentarily). Further acting on χ and

χ̃ with supersymmetry generates entire 2D N = (2, 2) multiplets that Poisson-commute.

Let us summarize the results of this lengthy calculation. We identify a 2D N = (2, 2)

chiral multiplet Φ(2d) and a vector multiplet V (2d), whose components we denote by

Φ(2d) = (φ, φ̃, χα, χ̃α, f, f̃) , (4.30)

V (2d) = (a, λα, λ̃α, s1, s2, D
(2d)) . (4.31)

In (4.30), the scalars φ and φ̃ are complex conjugates, χα and χ̃α are their fermionic

superpartners defined in terms of the bulk fields in (4.27), and f and f̃ are the complex

conjugate auxiliary fields of the 2D chiral multiplet. In (4.31), a denotes the 2D gauge field

on S2, λ and λ̃ are the gauginos, s1,2 are real scalar fields, and D(2d) is the auxiliary scalar

in the 2D vector multiplet.

Apart from χ and χ̃, which are already written in (4.27), the other components of

Φ(2d) in (4.30) are identified with boundary values of bulk fields as

φ = q+
∣∣ , f =

(
−D⊥q− − Φ1̇1̇ − Φ2̇2̇

2
q−

) ∣∣∣∣ , (4.32)

where q+ was defined in (4.26) and the conjugate components φ̃ = φ∗ and f̃ = f∗ can be

found using the reality conditions (2.20) satisfied by the bulk fields.

The components of V (2d) can be written in terms of the bulk fields as

a = A||
∣∣ , (4.33)

λ = −1

2
(λ12̇ − iλ22̇ + σ3(λ11̇ − iλ21̇))

∣∣ , (4.34)

λ̃ = −1

2
(λ12̇ + iλ22̇ − σ3(λ11̇ + iλ21̇))

∣∣ , (4.35)

s1 =
Φ1̇1̇ +Φ2̇2̇

2i

∣∣∣∣ , s2 = −Φ1̇2̇

∣∣ , (4.36)

D2d =

[
−Φ1̇2̇

r
+
i

2

(
Don-shell

11 +Don-shell
22

)
+ iD⊥

(
Φ1̇1̇ − Φ2̇2̇

2

)] ∣∣∣∣ . (4.37)

In (4.33), we have defined A‖ ≡ Aθdθ + Aτdτ . The Don-shell
ab appearing in (4.37) denote

the on-shell values of the auxiliary fields given in (4.22). This traces back to the fact that
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in the description of the phase space, Dab takes its on-shell value.38 Finally, in addition

to (4.27), (4.32), and (4.33)–(4.37), which fix the 2D multiplets Φ(2d) and V (2d) at the

boundary, we impose the boundary condition

A⊥
∣∣ = 0 . (4.38)

The condition (4.38) should be interpreted as a partial gauge-fixing on HS3. The necessity

of imposing this condition follows from the description of the phase space for gauge fields

in (4.24).

It is trivial to verify that the field combinations defined in (4.27), (4.32), (4.33)–(4.37),

and (4.38) form a maximal subset of the phase space variables that all Poisson-commute

at the boundary S2.39 This means that fixing them on S2 is a consistent boundary con-

dition for the path integral on HS3. Moreover, one can check that under the su(2|1)
transformations restricted to S2, the combinations (4.27), (4.32), and (4.33)–(4.37) indeed

transform as 2D N = (2, 2) chiral and vector multiplets, respectively. These transforma-

tions, as well as further details on the boundary su(2|1) SUSY variations, are summarized

in appendix A.2.40

For completeness, let us also describe the boundary terms that one must add to the

action to guarantee that the variational problem is well-defined with the above boundary

conditions. To do so, we introduce another set of fermionic variables

ω =
1

2
(λ12̇ − iλ22̇ − σ3(λ11̇ − iλ21̇)) ,

ω̃ =
1

2
(λ12̇ + iλ22̇ + σ3(λ11̇ + iλ21̇)) . (4.39)

These are canonically conjugate to λ and λ̃, so the only nonzero Poisson brackets are

{λα(x), ω̃β(y)}P = {λ̃α(x), ωβ(y)}P =
1

2
εαβδS2(x− y) . (4.40)

The proper boundary term can then be written as follows:

S∂ =
i

2

∫

S2

d2x

(
q̃+(D⊥q− +

1

2
(Φ1̇1̇ − Φ2̇2̇)q−) + q−(D⊥q̃+ +

1

2
(Φ1̇1̇ − Φ2̇2̇)q̃+) + χ̃αρα

)

+
1

g2YM

∫

S2

d2x
(
(Φ1̇1̇ − Φ2̇2̇)D⊥(Φ1̇1̇ − Φ2̇2̇) + λαω̃α + λ̃αωα)

)
. (4.41)

The boundary term (4.41) can be constructed along the lines of the discussion in section 4.1.

Adding it to the action ensures that the path integral on the upper hemisphere HS3
+ pro-

duces a boundary state written in our polarization. While (4.41) is needed for consistency,

38Using (4.22), the equation for D2d can alternatively be written as DA
2d =

g2YM

8
(q̃+T

Aq− + q̃−T
Aq+) −

i
2
g2ζ(TA) + iD⊥

(
ΦA

1̇1̇
−ΦA

2̇2̇

2

) ∣∣∣.
39When checking this, one should keep in mind that Dab has nonzero Poisson brackets with some other

fields, as in (4.23).
40In particular, when applying the SUSY variations in our formalism, one should impose the equations of

motion because the 3D N = 4 algebra does not close off shell on the hypermultiplet. Furthermore, SUSY

breaks the gauge-fixing condition A⊥
∣∣ = 0, so this must be compensated for by a gauge transformation.
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we will see shortly that it vanishes on the localization locus of the HS3 path integral, and

being a term in the classical action, it does not contribute in the localization computation.

If we denote the boundary conditions collectively by

B = (Φ(2d), V (2d)) , (4.42)

then the state |Ψ+〉 generated by the HS3
+ path integral with these boundary conditions

(and the gauge fixing (4.38)) is represented by a functional of B:

Ψ+[B] = 〈B|Ψ+〉 . (4.43)

The dual state 〈Ψ−| generated by theHS3
− path integral with the same boundary conditions

can be written as

Ψ−[B] = 〈Ψ−|B〉 . (4.44)

Gluing these states is tantamount to computing the path integral

∫
DB 〈Ψ−|B〉〈B|Ψ+〉 , (4.45)

which has su(2|1) supersymmetry due to the su(2|1)-invariance of the polarization. The

computation of this path integral will be performed in the following subsection.

4.3 Boundary localization and the gluing formula

With the answer (4.45) in hand, all we must do is localize it. Localization of N = (2, 2)

theories on S2 was studied in [69–71] and reviewed in [41]. We will simply borrow these

results, mostly following [70]. Notice that the supercharge used in [70] for localization is

Q+
1 +Q−

2 = QC
1 +QC

2 , (4.46)

which is precisely our QC
β at β = 1. This fact implies that as long as we use our boundary

conditions, we do not really need the full su(2|1) symmetry to localize the gluing theory.

It is enough to have only QC
1,2 preserved, and this gives us the freedom to move twisted

CBOs along the great semicircle of HS3 as well as to include certain nonlocal observables.

For simplicity, we will not exploit this freedom in what follows: we will simply restrict our

attention to insertions of twisted CBOs at the tip of HS3.

The results of [70] come in two forms: those corresponding to Coulomb branch and to

Higgs branch localization. The one relevant to us is the former. On the localization locus,

all the 2D fermions vanish and the bosons take the following values:

a = ±B
2
(sin θ − 1) dτ , D2d = 0 , s1 =

B

2r
, s2 = −σ

r
= const. ,

φ = 0 , f = 0 . (4.47)

In (4.47), B ∈ t is the magnetic charge, where t is the Cartan of the gauge algebra g and

σ ∈ g is the Coulomb branch parameter (which can be further restricted to t at the cost
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of a Vandermonde determinant).41 The signs in the expression for the 2D gauge field a

correspond to its values on different patches of S2: in each of the two patches, θ takes

values in [0, π/2], with θ = π/2 corresponding to the North and South poles of S2 as in

figure 1 and θ = 0 being the equator of S2, along which the patches are sewed.

It now follows from supersymmetric localization on S2 that to compute (4.45), it

suffices to evaluate the functionals Ψ±[B] on the localization locus (4.47): we denote

this restriction by Ψ±(σ,B) ≡ Ψ±[B]
∣∣
(4.47)

. Furthermore, we must include the one-loop

determinant from the localization on S2.42 This one-loop determinant plays the role of a

“gluing measure,” which we denote by µ(σ,B). To summarize, the full S3 answer can be

written as
∑

B∈Γm

∫

t

dσ µ(σ,B)Ψ−(σ,B)Ψ+(σ,B) (4.48)

where Γm is the lattice of magnetic charges allowed by the Dirac quantization condition.

The gluing formula (4.48) holds in all 3D N = 4 gauge theories, including non-abelian ones.

In this paper, we are concerned only with the abelian theories described in section 2.1.3.

For those theories, the one-loop determinant µ(σ,B) appearing in (4.48) only receives

contributions from the 2D chiral multiplets, and is given by

µ(~σ, ~B) =

Nh∏

I=1

(−1)
|~qI ·~B|−~qI ·~B

2 (Λr)−2i~qI ·~σ
Γ
(
1+|~qI · ~B|

2 + i~qI · ~σ
)

Γ
(
1+|~qI · ~B|

2 − i~qI · ~σ
) . (4.49)

Note that the dependence of (4.49) on the UV cutoff Λ simply exhibits the one-loop exact

logarithmic running of the 2D FI term.43

With the localized boundary conditions (4.47), the boundary correction (4.41) simpli-

fies to:

S∂ = −
∫

S2

d2x

(
ζ(TA)(ΦA

1̇1̇
− ΦA

2̇2̇
) +

i

4
q̃+(Φ1̇1̇ − Φ2̇2̇)q−

)
. (4.50)

Aside from ensuring that the gluing procedure is consistent, this boundary action plays

another important role: its SUSY variation cancels the boundary terms (B.15) and (B.16)

generated by the SUSY variation of the bulk action. This follows from the general formalism

of section 4.1, as will be explained in more detail in [65], and can also be checked by an

explicit computation. Hence the total action, with (4.50) included, preserves the required

four supercharges on HS3 that form N = (2, 2) supersymmetry at the boundary.

41In (4.47), we took B to have the opposite sign as compared to [70]. The reason is that the boundary

conditions with B as in (4.47) correspond to a monopole of charge B inserted at the tip of HS3. This can

be checked by taking the background solution (3.17) and restricting it to ϕ = 0. Thus to account for the

orientation of S2, in borrowing any results from [70], one has to replace B → −B.
42Note that there is no contribution from a 2D classical action evaluated on the localization locus (4.47),

simply because the gluing theory does not have such an action.
43We have omitted an extra factor of (Λr)−1 in the formula for the gluing measure because it cancels

with factors of
√
Λr arising from the determinant of the vector multiplet on the hemisphere.
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4.3.1 The monopole HS3 wavefunction

The remaining pieces of our solution are the hemisphere wavefunctions Ψ±(~σ, ~B) entering

the gluing formula (4.48). They are both determined by a path integral on HS3 with the

boundary conditions (4.27), (4.32), (4.33)–(4.37), and (4.38), restricted to the localization

locus (4.47). We now compute Ψ+(~σ, ~B) for vanishing FI parameters and in the presence of

a charge-~b twisted monopole operator M~b(ϕ) at the tip of HS3
+; the result will be denoted

by Ψ+(~σ, ~B;M~b).

We can argue that the wavefunction Ψ+(~σ, ~B;M~b) will be equal to Ψ−(~σ, ~B;M−~b), i.e.,
the HS3

− wavefunction with an insertion of an oppositely charged twisted monopole M−~b

at its tip. We therefore need not compute Ψ+ and Ψ− separately. One way to understand

this fact is to consider the background (3.20), (3.21) of section 3, which represents the

insertion of M~b at the tip of HS3
+ and of M−~b at the tip of HS3

− (see also section 4.4).

This background is invariant under the coordinate change η → π− η, which exchanges the

upper and lower hemispheres. Therefore, the path integrals that generate Ψ+(~σ, ~B;M~b)

and Ψ−(~σ, ~B;M−~b) are the same, and these two wavefunctions are equal:

Ψ+(~σ, ~B;M~b) = Ψ−(~σ, ~B;M−~b) . (4.51)

Moreover, by evaluating (3.20), (3.21) on S2 (i.e., setting η = π
2 ), one sees that this

background is compatible with the 2D localization locus (4.47) of the gluing theory precisely

when ~B = ~b. In particular, this implies that Ψ±(~σ, ~B;M~b) = 0 if ~B 6= ~b:44

Ψ+(~σ, ~B;M~b) = δ ~B,~bZHS3(~σ,~b) (4.52)

where ZHS3 is theHS3 partition function in the twisted monopole background, with bound-

ary conditions specified in the previous subsection and ~B = ~b.

Since the boundary conditions determined in (4.47) are half-BPS, we can apply super-

symmetric localization on HS3 to compute ZHS3(~σ,~b). With such boundary conditions,

the BPS equations on HS3
± have the same solutions as on S3, described in section 3.1.2 (re-

stricted to the corresponding hemisphere). In particular, the boundary correction (4.50)

vanishes on the localization locus.45 Being part of the classical action, (4.50) therefore

leaves no imprint on the localization computation, in a similar manner to the mono-

pole counterterm.

The boundary conditions for fluctuations of the hypermultiplet fields around the BPS

locus simplify to

q+| = 0, ∂⊥q−| = 0, (ψ1̇ − σ3ψ2̇)| = 0, (ψ̃1̇ + σ3ψ̃2̇)| = 0 . (4.53)

As was the case on S3, the hypermultiplet path integral on HS3 is given by the ratio

of determinants (3.27). Now, however, the modes of the differential operators appearing

44The latter fact does not change if we have some dressed monopole O~b instead of M~b at the tip, because

insertions of order operators do not change the value of the background on S2.
45This is simply because (4.50) is proportional to Φ1̇1̇ − Φ2̇2̇, which is zero on S2 when evaluated on the

bulk localization locus.
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in (3.27) must be truncated according to (4.53). Recall that in abelian theories, the vector

multiplet contribution is trivial, so the partition function is fully accounted for by the

hypermultiplet one-loop determinant.

Let us summarize the results of the calculation of this determinant for SQED1, leaving

the details to appendix E. Assuming (4.53), the bosonic eigenvalues are

λ±B,N =
1

r2

(
N +

1 + |b|
2

± iσ

)(
N +

3 + |b|
2

∓ iσ

)
, N = 0, 1, . . . , (4.54)

and have degeneracies

d±B,N =
(N + 1)(N + 1∓ 1)

2
+

|b|
2

×
{
N + 1∓ 1 (N even) ,

N + 1 (N odd) .
(4.55)

The fermionic eigenvalues are

λ±F,N =
1

r

[
±
(
N +

1 + |b|
2

)
+ iσ

]
, N = 0, 1, . . . , (4.56)

and have degeneracies

d±F,N = N(N + 1) + |b| ×
{
N + 1/2± 1/2 (N even) ,

N + 1/2∓ 1/2 (N odd) .
(4.57)

The HS3 free energy can then be written as

FHS3 =
∞∑

N=0

[
(d+B,N + d−B,N−1 − d−F,N ) log

N + 1+|b|
2 + iσ

Λr

+ (d−B,N + d+B,N−1 − d+F,N ) log
N + 1+|b|

2 − iσ

Λr

]
. (4.58)

One can check that d+B,N + d−B,N−1 − d−F,N = 0 and d−B,N + d+B,N−1 − d+F,N = 1, whence

FHS3 =
∞∑

N=0

log
N + 1+|b|

2 − iσ

Λr
= − d

ds

[
(Λr)sζ

(
s,

1 + |b|
2

− iσ

)] ∣∣∣∣
s=0

, (4.59)

where we have used zeta function regularization to evaluate the divergent sum. From (4.59),

using ζ(0, q) = 1
2 − q and

dζ(s,q)
ds

∣∣∣
s=0

= log Γ(q)√
2π
, we then extract the regularized value of the

hemisphere partition function ZHS3 = e−FHS3 :

ZHS3 =
1

(Λr)
|b|
2
−iσ

Γ(1+|b|
2 − iσ)√
2π

. (4.60)

In a general abelian theory of the form described in section 2.1.3, the HS3 wavefunction

with a twisted monopole operator of charge ~b ∈ Γm at the tip generalizes to

ZHS3 =

Nh∏

I=1

1

(Λr)
|~qI ·~b|

2
−i~qI ·~σ

Γ
(
1+|~qI ·~b|

2 − i~qI · ~σ
)

√
2π

. (4.61)
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The cutoff dependence (Λr)i~qI ·~σ in (4.61) can be interpreted as the logarithmic running

of the FI term induced on the 2D boundary of HS3 by the Ith bulk hypermultiplet. The

dependence on (Λr)
~qI ·~b
2 arises because the monopole operator acquires conformal dimension∑

I

∣∣∣~qI ·~b
∣∣∣ /2. This power of Λ can be removed by formally renormalizing the monopole

operator itself.

4.3.2 Reproducing two-point function from gluing

Armed with the gluing measure (4.49) and the HS3 partition function (4.60) corresponding

to Ψ± through (4.52) and (4.51), we can now reproduce from gluing the two-point function

of M±~b on S3 computed in section 3. In particular, the S3 result Z(~σ,~b), prior to the ~σ

integration in (3.43), is written in (3.42). From the point of view of this section, Z(~σ,~b)

should be reproduced by the ~σ integrand of the gluing formula (4.48). Indeed,

Z(~σ,~b) =
∑

B∈Γm

µ(~σ, ~B)Ψ+(~σ, ~B;M~b)Ψ−(~σ, ~B;M−~b)

=

Nh∏

I=1

(−1)
|~qI ·~b|−~qI ·~b

2

2π(Λr)|~qI ·~b|
Γ

(
1 + |~qI ·~b|

2
− i~qI · ~σ

)
Γ

(
1 + |~qI ·~b|

2
+ i~qI · ~σ

)
(4.62)

precisely as in (3.42), including all numerical factors!

The match exhibited in (4.62) is a strong consistency check on the technical details of

the gluing procedure that we have developed. In particular, it is pleasing that the cutoff

dependence due to the logarithmic running of the 2D FI term, which appears in the gluing

measure µ(~σ, ~B) as well as in the wavefunctions Ψ±, precisely cancels in the gluing. Indeed,

no such running should arise on S3. Moreover, the~b-dependent sign that was conjectured in

section 3 based on general considerations is reproduced in the gluing computation, coming

entirely from the gluing measure.

4.4 Bilinear form and conjugation

So far, we have described the gluing procedure as the composition of a state vector |Ψ+〉
and a covector 〈Ψ−|. The wavefunctions appearing in the gluing formula can be thought

of as

Ψ−(σ,B) = 〈Ψ−|σ,B〉 ,
Ψ+(σ,B) = 〈σ,B|Ψ+〉 , (4.63)

where 〈σ,B| represents the boundary condition (4.47) imposed at the boundary of the

upper hemisphere HS3
+ and |σ,B〉 represents the same boundary condition applied to

the lower hemisphere HS3
−. We have assumed that the upper hemisphere path integral

prepares a vector, while that of the lower hemisphere prepares a covector. This formally

follows from the fact that gluing requires the boundaries of the two hemispheres to have

opposite orientations.

Can we “glue” two vectors? The answer is obviously yes, since the physical Hilbert

space is always equipped with a sesquilinear inner product that can be used to compose
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two states into a number. Here, however, we would like to define a different bilinear form

that is natural to our construction. To do so, we turn one of the state vectors into a

covector and then compose it with another state vector. There exists a natural operation,

a simple reflection across the equator, which flips the upper and lower hemispheres and

thereby turns a vector into a covector. In our fibration coordinates, it can be written as:

θ → θ, ϕ→ −ϕ, τ → τ. (4.64)

On one hand, this is simply a coordinate change that leaves boundary conditions unaf-

fected. Hence the wavefunction Ψ(σ,B) stays unchanged. On the other hand, it can be

thought of as a reflection of the hemisphere. Such an operation flips magnetic charges, so

it turns the upper hemisphere with a monopole insertion into the lower hemisphere with an

antimonopole insertion. If we also assign orientations properly, then we are in the situation

where the gluing procedure works and we can simply apply the gluing formula.

Thus if we are given two vectors |Ψ1〉, |Ψ2〉, then we can apply reflection to one of them,

say |Ψ1〉, thereby obtaining a covector 〈̃Ψ1| with the property that 〈̃Ψ1|σ,B〉 = 〈σ,B|Ψ1〉.
Using the gluing formula, we then arrive at the definition of a bilinear form on H:

(Ψ1,Ψ2) =
∑

~B

∫
d~σ µ(~σ, ~B)Ψ1(~σ, ~B)Ψ2(~σ, ~B), Ψ1,Ψ2 ∈ H. (4.65)

Notice that if we have a monopole inserted on HS3
+ close to the North pole of S2 =

∂HS3
+, then after applying the reflection, it turns into a monopole of the opposite charge

inserted close to the North pole of S2 but from the HS3
− side. We can move it slightly

upward without affecting the answer for the glued correlator, so that it crosses the boundary

and enters HS3
+. Now it is again inserted on HS3

+, except that its charge has flipped. If

we represent the insertion of a monopole of charge ~b on HS3
+ through the North pole of

the boundary S2 by an operator M~b
N , then this statement can be written as

(M~b
NΨ1,Ψ2) = (Ψ1,M−~b

N Ψ2), (4.66)

i.e., the following conjugation property should hold with respect to the bilinear form (4.65):

(M~b
N )

† = M−~b
N . (4.67)

To derive a similar statement for the analogous South pole operator, we would have to

move it through the South pole. Recall from section 2.5.2, however, that monopoles of

half-integral R-charge are antiperiodic on S1 and therefore defined with respect to a branch

point at the South pole of S2 (ϕ = ±π). For a monopole operator of charge~b, the periodicity

is determined by the sign
∏
I(−1)~qI ·

~b. As a consequence, the conjugation rule for South

pole operators is slightly different:

(M~b
S)

† = M−~b
S

Nh∏

I=1

(−1)~qI ·
~b. (4.68)

Later, when we derive explicit expressions for these operators, it will be instructive to check

that (4.67) and (4.68) hold.
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5 Correlators with multiple insertions

In this section, we derive a general expression for correlators of arbitrarily many twisted

CBOs inserted anywhere along the great circle in S3. In particular, we will represent these

insertions by certain shift operators acting on the HS3 partition function. As described in

section 4, two HS3 partition functions with insertions can then be glued to obtain correla-

tors on S3. Furthermore, we will show that our results can be reproduced by dimensional

reduction of the 4D N = 2 Schur index with line defects.

5.1 Shift operators

Let us first study the abelian theories defined in section 2.1.3 with m̂ = ζ̂ = 0, defer-

ring a discussion of nonzero mass and FI parameters to section 5.1.2. Consider a general

correlator of twisted CBOs in such a theory:

〈O~b1(ϕ1) · · · O~bn(ϕn)〉S3 , (5.1)

where the O~bi(ϕi) (i = 1, . . . , n) carry monopole charges ~bi ∈ Γm and are ordered on

the circle as −π < ϕ1 < · · · < ϕn ≤ π. When ζ̂ = 0, the twisted translation (2.28)

is QC
β -exact, so the correlator (5.1) only depends on the order of the insertions on the

circle. In particular, one can translate all the operators to the tip of HS3
+ (i.e., the point

(θ, ϕ) = (π/2, π/2)) while maintaining their order, without changing the value of (5.1).

Then, by using the OPE at the tip, the above correlator can be represented by a one-

point function

〈O~b1(ϕ1) · · · O~bn(ϕn)〉S3 = 〈O~b(π/2)〉S3 (5.2)

where O~b(π/2) is a twisted CBO of charge ~b =
∑n

i=1
~bi defined by

O~b(π/2) ≡ lim
ϕi→π/2
ϕ1<···<ϕn

O~b1(ϕ1) · · · O~bn(ϕn) (5.3)

(of course, the correlator (5.2) vanishes unless ~b = 0). In (5.3), the ϕi → π/2 limit is

taken in a way that maintains the order of the O~bi(ϕi) on the circle. The topological

property of the 1D theory then implies that O~b(π/2) is some position-independent linear

combination of twisted CBOs defined by the OPE, up to QC
β -exact terms that do not affect

our correlation functions.46 In section 4, it was shown how to obtain an S3 correlator

of twisted CBOs at the tips of HS3
± by gluing the HS3

± partition functions along their

∂HS3
± = S2 boundary. In what follows, without loss of generality, we will only consider

the representation (5.2) of twisted correlators, in which there is an insertion at the tip of

HS3
+ and none at HS3

−.

In this case, the properties of the HS3 partition functions and of the gluing formula

in section 4 are simple to describe. The HS3 wavefunctions with insertions at the tip only

46Upon passing to the cohomology of QC
β , the order-preserving OPE defined in (5.3) is simply the non-

commutative star product of [11].
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depend on a finite-dimensional set of boundary conditions. These boundary conditions

are parametrized by ~σ ∈ Rr and the topological charge ~B ∈ Γm measuring the number of

units of magnetic flux through the boundary S2. Due to this simplicity, the wavefunction

corresponding to an insertion of a twisted CBO O~b of charge ~b ∈ Γm and dimension ∆ at

the tip can be evaluated explicitly: it takes the form

Ψ(~σ, ~B;O~b) = δ ~B,~b
P (~σ,~b)

r∆

Nh∏

I=1

1√
2π

Γ

(
1 + |~qI ·~b|

2
− i~qI · ~σ

)
≡ δ ~B,~b ψ(~σ,

~b;O~b) , (5.4)

where P (~σ,~b) is some polynomial. In the final equality of (5.4), we have factored out the

trivial dependence of the wavefunction on ~B.

For example, the insertion of a bare twisted monopole operator M~b of charge ~b ∈ Γm
is represented by a wavefunction (5.4) with P = 1:

Ψ(~σ, ~B;M~b) = δ ~B,~b

Nh∏

I=1

1
√
2πr

|~qI ·~b|
2

Γ

(
1 + |~qI ·~b|

2
− i~qI · ~σ

)
. (5.5)

The “vacuum wavefunction” is defined by inserting the identity at the tip, and is given by

simply setting ~b = 0 in (5.5):

Ψ(~σ, ~B; 1) = δ ~B,~0

Nh∏

I=1

1√
2π

Γ

(
1

2
− i~qI · ~σ

)
≡ δ ~B,~0 ψ0(~σ) . (5.6)

Unlike in previous sections, we work with renormalized quantities in what follows, thus

removing the explicit dependence on the UV cutoff. This requires formally renormalizing

the monopole operators by powers of the cutoff. Moreover, in the HS3 partition func-

tion (4.61) and gluing measure (4.49), we set the renormalized 2D FI coupling to zero at

the scale at which we are working. This is done to avoid notational clutter, and will have

no effect on the final results. In particular, as we saw in (4.62), the running 2D FI terms

cancel anyway after gluing, as they must.47

The S3 correlator (5.2) is given by gluing the appropriate wavefunction (5.4) to the

vacuum (5.6) using the gluing formula (4.48), resulting in

〈O~b1(ϕ1) · · · O~bn(ϕn)〉S3 = 〈O~b(π/2)〉S3 =
1

ZS3

∑

B∈Γm

∫
drσ µ(~σ, ~B)Ψ(~σ, ~B; 1)Ψ(~σ, ~B;O~b)

=
δ~b,~0
ZS3

∫
drσ (ψ0(~σ))

∗ψ(~σ,~b;O~b) . (5.7)

In (5.7), ZS3 is the S3 partition function, and in the last line, we have evaluated the sum

over ~B while noting that µ(~σ, ~B), defined in (4.49), satisfies µ(~σ, 0)ψ0(~σ) = (ψ0(~σ))
∗. The

47In other words, we define our shift operators without the factors of (Λr)i~qI ·~σ in (4.61), which are

independent of the monopole charges, by absorbing them into the factors of (Λr)−2i~qI ·~σ in (4.49). This

definition is consistent because FI parameters, whether in 3D or 2D, should not affect the definition of

twisted CBOs (or the shift operators that create them) in an essential way: see (2.24).
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normalization in (5.7) is such that 〈1̂〉 = 1. Indeed, assuming that 〈1̂〉 = 1 and substituting

the explicit form (5.6) of the vacuum wavefunction into (5.7), we find that

ZS3 = ZS3〈1̂〉 =
∫
drσ

Nh∏

I=1

1

2 cosh(π~qI · ~σ)
, (5.8)

which is the correct S3 partition function of our theory.

5.1.1 Twisted CBOs as shift operators

Let us now argue that insertions of twisted CBOs at the tip of HS3
+ can be realized

by differential operators acting on the wavefunctions (5.4). The operation of inserting a

twisted CBO along the R = 1 semicircle of HS3
+ and moving it to the tip can be viewed

as the action of an operator on the Hilbert space of the 3D theory on S2. In particular,

such operators act on the subspace of the Hilbert space containing states whose HS3
+

wavefunctions are (5.4). On such states, these operators are represented by differential

operators in ~σ and ~B acting on (5.4): they turn out to be simple shift operators.48 The

goal of this section is to construct these shift operators for the CBOs corresponding to the

generators of the Coulomb branch chiral ring.

In fact, in our case, there are two isomorphic sets of such shift operators. We define

ON as the shift operator implementing the insertion of the twisted CBO O(ϕ) near the

North pole (R,ϕ) = (1, 0) of ∂HS3
+ = S2 and translating it to the tip, while OS(ϕ) is

defined by the same operation but starting from the South pole (R,ϕ) = (1,±π) (when

the insertion through the South pole is in the upper hemisphere, we should take ϕ = π− ǫ,
and when this insertion is in the lower hemisphere, we should take ϕ = −π+ǫ, with ǫ > 0).

The wavefunctions ONΨ(~σ, ~B;O′) and OSΨ(~σ, ~B;O′) are generally distinct, because it is

not possible to move O(ϕ) from the North pole to the South pole along the semicircle of

HS3
+ without crossing O′(π2 ) at the tip. Therefore, these two wavefunctions lie in different

QC
β -cohomology classes, corresponding to taking the OPE of O(ϕ) and O′(ϕ) at the tip

in different orders on the semicircle. It follows that in general, the operators ON and OS

should also be different.

A wavefunction corresponding to multiple insertions of twisted CBOs can be repre-

sented in several equivalent ways by acting on the vacuum wavefunction with the ON,S

in different orders. For example, consider an HS3
+ wavefunction Ψ(~σ, ~B;O~b) representing

the insertion of two twisted CBOs O~b1(ϕ1) and O~b2(ϕ2), which are translated to the tip

while keeping ϕ1 < ϕ2 and fused into O~b(π/2) with ~b = ~b1 +~b2. This wavefunction can be

obtained in three different ways by acting on the vacuum wavefunction (5.6) as

Ψ(~σ, ~B;O~b) = O~b2NO~b1NΨ(~σ, ~B; 1) = O~b1S O~b2S Ψ(~σ, ~B; 1) = O~b2NO~b1S Ψ(~σ, ~B; 1) . (5.9)

48Order operators are usually represented by finite-order differential operators. For instance, we will

see that insertions of ~Φ(ϕ) are represented by differential operators of order zero — that is, simply by

multiplication by a function. On the other hand, disorder operators such as monopoles are represented by

differential operators of infinite order. Operators of this type, such as ea∂x , will be called shift operators

because, e.g., ea∂xf(x) = f(x + a). We will employ terminology in which we refer to all of the operators

that we use as shift operators.
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An important consequence of the definition of these differential operators is that for any

two twisted CBOs O(ϕ) and O′(ϕ), we have

[ON ,O′
S ] = 0 . (5.10)

The commutativity (5.10) expresses the fact that in bringing two operators to the tip from

opposite sides, they never intersect, regardless of which operator is brought to the tip first.

This is also related to associativity of the operator algebra: it does not matter whether we

first fuse ON with whatever was already at the tip and then fuse the result with O′
S , or

whether we first fuse O′
S with the operator at the tip and then fuse the result with ON .

The shift operators ON,S corresponding to insertions of twisted monopole operators

and vector multiplet scalars can be uniquely fixed from the explicit computations we have

done so far. Let us start by determining those corresponding to the twisted CBOs ~Φ(ϕ)

defined in (3.11), which are constructed from the vector multiplet scalars. As shown in

section 3, for any configuration of twisted monopole operators, ~Φ(ϕ) localizes to ~Φloc(ϕ) as

defined in (3.25) and (3.13). In particular, in the presence of a twisted operator O~b with
topological charge ~b ∈ Γm at the tip of HS3

+, we find:

~Φloc(ϕ) =
1

r

[
~σ +

i

2
~b sgn (cosϕ)

]
. (5.11)

The action of the operators ~ΦN and ~ΦS on the wavefunction Ψ(~σ, ~B;O~b), defined in (5.5),

is obtained by evaluating (5.11) either in the segment 0 < ϕ < π
2 connecting the tip to the

North pole or in the segment π
2 < ϕ < π connecting the tip to the South pole. The result is

~ΦNΨ(~σ, ~B;O~b) = 1

r

(
~σ +

i

2
~b

)
Ψ(~σ, ~B;O~b) ,

~ΦSΨ(~σ, ~B;O~b) = 1

r

(
~σ − i

2
~b

)
Ψ(~σ, ~B;O~b) . (5.12)

From their action (5.12) on the HS3
+ wavefunctions (5.4), ΦN,S can easily be re-expressed

as operators in the variables ~σ and ~B. In particular, from the factorized form Ψ(~σ, ~B;O~b) =
δ ~B,~bψ(~σ,

~b;O~b) of the wavefunctions (5.4), one can reproduce the action (5.12) by setting

~ΦN =
1

r

(
~σ +

i

2
~B

)
, ~ΦS =

1

r

(
~σ − i

2
~B

)
. (5.13)

The construction of the shift operators M~b
N,S corresponding to a twisted bare monopole

operator M~b(ϕ) of charge ~b ∈ Γm requires slightly more elaborate reasoning. Clearly, by

acting with M~b
N,S on any wavefunction Ψ(~σ, ~B;O~b′) of topological charge ~b′, one obtains

a new wavefunction of the form (5.4) of topological charge ~b+~b′. This fact, together with
the δ ~B,~b-dependence of the wavefunctions (5.4) mentioned above, implies that

M~b
N,S = v

~b
N,S(~σ,

~B)e−
~b·∂~B (5.14)
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where v
~b
N,S(~σ,

~B) are some differential operators in ~σ with only polynomial dependence on

~B. The operators v
~b
N,S(~σ,

~B) can be constrained by using the commutativity property (5.10)

of North and South operators. In particular, demanding

[M~b
N , P (ΦS)] = [M~b

S , P (ΦN )] = 0 (5.15)

for any polynomial P (x) and using the definitions (5.13), (5.14) implies that

v
~b
N (~σ,

~B) = wN (~σ, ~B)e−
i
2
~b·∂~σ , v

~b
S(~σ,

~B) = wS(~σ, ~B)e
i
2
~b·∂~σ , (5.16)

where wN,S(~σ, ~B) are simply polynomials in ~σ and ~B. Moreover, imposing [M~b
N ,M

~b′
S ] = 0

and using (5.14), (5.16) further restricts the dependence of wN,S(~σ, ~B) on ~σ and ~B to be

wN (~σ, ~B) = wN

(
~σ +

i

2
~B

)
= wN (rΦ̂N ) ,

wS(~σ, ~B) = wS

(
~σ − i

2
~B

)
= wS(rΦ̂S) . (5.17)

In summary, M~b
N,S must take the form

M~b
N = wN (r~ΦN )e

~b·(− i
2
∂~σ−∂~B) , M~b

S = wS(r~ΦS)e
−~b·(− i

2
∂~σ+∂~B) , (5.18)

for some polynomials wN,S(x). To determine these polynomials, we demand that when

the operators M~b
N,S act on the vacuum wavefunction (5.6), they give rise to the wavefunc-

tion (5.5) with M~b(ϕ) inserted at the tip, i.e.,

M~b
N,SΨ(~σ, ~B; 1) = Ψ(~σ, ~B;M~b) . (5.19)

The above equation uniquely determines the polynomials wN,S(x), giving the final results

M~b
N =

[
Nh∏

I=1

(−1)(~qI ·
~b)+

r
|~qI ·~b|

2

(
1

2
+ ir~qI · ~ΦN

)

(~qI ·~b)+

]
e−
~b·( i

2
∂~σ+∂~B) , (5.20)

M~b
S =

[
Nh∏

I=1

(−1)(−~qI ·
~b)+

r
|~qI ·~b|

2

(
1

2
+ ir~qI · ~ΦS

)

(−~qI ·~b)+

]
e
~b·( i

2
∂~σ−∂~B) , (5.21)

where (x)+ ≡ max(x, 0), r~ΦN = ~σ+ i
2
~B, and r~ΦS = ~σ− i

2
~B. Note that Dirac quantization

implies that (±~qI · ~b)+ is a non-negative integer, and therefore that the Pochhammer

symbols49 in (5.20) and (5.21) are polynomials in ~ΦN,S . The twisted CBOs ~Φ(ϕ) and

M~b(ϕ) correspond to the Coulomb branch chiral operators of lowest dimension within

their respective topological classes (defined by their magnetic charges). In particular, all

other twisted CBOs/chiral operators are generated from their products.50 It follows that

all the corresponding shift operators are generated from the products of the fundamental

49We use (x)n = Γ(x+ n)/Γ(x), which equals x(x+ 1)(x+ 2) . . . (x+ n− 1) if n is a positive integer.
50The generators ~Φ and M~b for any ~b ∈ Γm are, of course, not all independent.
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ones (5.13), (5.20), and (5.21) that we have already found. We conclude that any correlator

of twisted CBOs can be obtained by acting on the vacuum wavefunction (5.6) with the shift

operators (5.13), (5.20), and (5.21) in the right order and gluing the result using (5.7).51

Note that while the N and S operators clearly commute with each other, the algebras

of “all N” or “all S” operators are complicated by the fact that different U(1) factors of

the gauge group can be coupled through mutually charged hypers. In particular, the shift

operators associated to individual U(1) factors do not, in general, commute with each other.

Finally, we stress that above, we have only determined the shift operators implement-

ing insertions of twisted CBOs on the upper hemisphere HS3
+. One could equivalently

determine the corresponding operators representing insertions at the tip of the lower hemi-

sphere HS3
−. These operators can be obtained by taking the adjoints of the HS3

+ operators

written above with respect to the ( , ) bilinear form (4.65) that implements the gluing. Us-

ing the explicit expression for the North and South operators, it can be verified that their

conjugates are as predicted in (4.67) and (4.68).52

5.1.2 Including mass and FI parameters

The above results can be generalized to account for real mass m̂ = ~m · ~tH ∈ tH and FI

ζ̂ = ~ζ ·~tC ∈ tC deformations where the tH,C are Cartan generators, ~m ∈ RNh−r, and ~ζ ∈ Rr.

We begin by describing the modification from turning on nonzero real masses. The real

mass that couples to the Ith hypermultiplet of GH -weight ~QI ∈ ZNh−r is given by ~QI · ~m.

To include it, one should simply shift ~qI · ~σ → ~qI · ~σ + r ~QI · ~m in all of the appropriate

formulas, except in the expressions (5.13) for ΦN,S , which remain unchanged. In particular,

the vacuum wavefunction (5.6) becomes

Ψm̂(~σ, ~B; 1) = δ ~B,~0

Nh∏

I=1

1√
2π

Γ

(
1

2
− i~qI · ~σ − ir ~QI · ~m

)
≡ δ ~B,~0ψ

m̂
0 (~σ) , (5.23)

and the monopole shift operators (5.20) and (5.21) become

M~b
N =

[
Nh∏

I=1

(−1)(~qI ·
~b)+

r
|~qI ·b|

2

(
1

2
+ ir~qI · ~ΦN + ir ~QI · ~m

)

(~qI ·~b)+

]
e−
~b·( i

2
∂~σ+∂~B) , (5.24)

M~b
S =

[
Nh∏

I=1

(−1)(−~qI ·
~b)+

r
|~qI ·~b|

2

(
1

2
+ ir~qI · ~ΦS + ir ~QI · ~m

)

(−~qI ·~b)+

]
e
~b·( i

2
∂~σ−∂~B) . (5.25)

51A subtlety in defining higher-dimensional CBOs as products of the generators is the phenomenon of

operator mixing for CFTs on S3. In particular, on S3, operators can mix with lower-dimensional ones,

as described in [13, 34]. In our case, this mixing can always be resolved by diagonalizing the matrix of

two-point functions of twisted CBOs.
52In verifying these facts, it is helpful to use the property

µ(~σ ± i~b/2, ~B +~b) = µ(~σ, ~B)

Nh∏

I=1




|~qI ·~b|−1∏

ℓI=0

(sgn(~qI ·~b)(1/2 + ℓI) + ~qI · ~B/2∓ i~qI · ~σ)




∓ sgn(~qI ·~b)

(5.22)

of the gluing measure (4.49). Note that conjugation with respect to the bilinear form (4.65) does not involve

complex conjugation.

– 51 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

Including FI parameters is slightly more subtle because when they are nonzero, the twisted

translation P̂Cϕ in (2.28) is no longer QC-exact. In particular, correlators of twisted CBOs

acquire position dependence. Nevertheless, because P̂Cϕ +irζ̂ isQC-exact, it is a simple mat-

ter to infer the position dependence of correlators with ζ̂ 6= 0 from the known topological

correlators with ζ̂ = 0. Explicitly, if we modify all twisted CBOs as O~b(ϕ) → er(
~ζ·~b)ϕO~b(ϕ),

then these new operators have topological correlators. Another modification arises because

the FI action (2.17) localizes to SFI[V] → 8π2ir~ζ · ~σ, which can be thought of as a part

of gluing measure (5.7).53 A general correlator of n twisted CBOs O~bi(ϕi) of topological

charge ~bi ∈ Γm (i = 1, . . . , n) can then be written in the matrix model as

〈O~b1(ϕ1) · · · O~bn(ϕn)〉m̂,ζ̂S3

= δ∑n
k=1

~bk,~0

e−r
∑n

k=1(
~ζ·~bk)ϕk

Zm̂,ζ̂
S3

∫
drσ e−8π2ir~ζ·~σ(ψm̂0 (~σ))∗O~b1N · · · O~bnN ψm̂0 (~σ) , (5.26)

where we have assumed that −π < ϕ1 < ϕ2 < · · · < ϕn < π and the vacuum wavefunction

ψm̂0 and shift operators Ô~biN are modified according to (5.23) and (5.24), respectively. A

similar statement holds for the S operators, but with −π < ϕn < ϕn−1 < · · · < ϕ1 < π (see

figure 1). As before, the correlator (5.26) can be represented in different ways by replacing

some or all of the North operators with South operators O~biS , modified according to (5.25)

to accommodate the real mass deformations. Finally, note that the S3 partition function

Zm̂,ζ̂
S3 which appears in the normalization of our correlators (5.26) is given by

Zm̂,ζ̂
S3 =

∫
drσ e−8π2ir~ζ·~σ

Nh∏

I=1

1

2 cosh(π(~qI · ~σ + r ~QI · ~m))
, (5.27)

so that 〈1〉m̂,ζ̂
S3 = 1.

5.2 Reduction of Schur index

Local monopole operators in 3D field theories are related to ’t Hooft loops wrapping S1 in

4D through a dimensional reduction of the 4D theory on S1. In this section, we present

a related correspondence between twisted CBOs in our 3D N = 4 theories and certain

line operators in 4D N = 2 theories. More specifically, we consider the Schur limit of

the superconformal index of 4D N = 2 theories, which can be realized through a path

integral on S3 × S1. As described in [42, 44], the Schur index can be decorated by certain

’t Hooft-Wilson loops wrapping S1, which, to preserve supersymmetry, can only be inserted

at points along a great circle of S3.54 We will argue that upon dimensional reduction on

S1, the Schur index with such line defects reduces to a correlator of twisted CBOs on S3.

53Here, for notational convenience, we are making a choice to regard the factor of e−8π2ir~ζ·~σ as part of

the gluing measure rather than dressing each wavefunction by a factor of e−4π2ir~ζ·~σ. If taking the latter

approach, one would also need to modify the shift operators as O → e−4π2ir~ζ·~σOe4π
2ir~ζ·~σ. Note also that

the shift operators behave differently under conjugation with respect to the FI-deformed gluing measure,

so it is important that in (5.26), all of the shift operators act on a single hemisphere.
54See [43] for a localization computation of the index with line operators.
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5.2.1 The line defect Schur index

Let us start with a brief review of the Schur index of 4D N = 2 abelian gauge theories and

its refinements by line defects. The reader is referred to [42, 44, 72] for more details. The

Schur index can be defined as a trace over the Hilbert space HS3 of the 4D N = 2 theory

on S3, which is given by

I(S)(p, u1, . . . , urf ) ≡ TrHS3

[
(−1)F pE−R

rf∏

a=1

ufaa

]
. (5.28)

In (5.28), F is the fermion number, E is the energy, R is the su(2)R spin, and fa (a =

1, . . . , rf ) are the Cartan generators of the rank-rf flavor symmetry algebra. In our con-

ventions, (−1)F = e2πi(j1+j2) where j1,2 are the spins of the su(2)1⊕ su(2)2 isometry of S3.

The Schur index only receives contributions from states satisfying E = 2R + j1 + j2 and

j2 − j1 − r = 0, where r is the U(1)r R-symmetry charge.

For example, the index of a hypermultiplet coupled to a background U(1) vector mul-

tiplet with corresponding holonomy u is given by

I(S)
hyper(p, u) =

∞∏

n=0

1

(1− upn+
1
2 )(1− u−1pn+

1
2 )

=
1

(
√
pu; p)(

√
pu−1; p)

, (5.29)

where we introduced the q-Pochhammer symbol (z; q) ≡∏∞
k=0(1− zqk). In order to gauge

the U(1) symmetry, one has to project out gauge non-invariant states, which is achieved by

integrating (5.29) as
∮
|u|=1

du
2πiuI

(S)
hyper(p, u). The index of an arbitrary abelian gauge theory

can be constructed simply by taking products of free hypermultiplet indices and gauging

flavor symmetries, as described above.

The Schur index can be reconstructed by gluing two copies of the “half-index” on

HS3 × S1 along their S2 × S1 boundary. This is the 4D analog of the 3D setup that have

we considered throughout this paper, and which was discussed in [42, 44]. It is instructive

to go through the details of this gluing procedure for the free hypermultiplet. In that case,

there are two boundary conditions on S2 × S1 which preserve 3D N = 2 supersymmetry,

resulting in half-indices Π±(p, u) on HS3 × S1 given by

Π±(p, u) =
1

(
√
pu∓1; p)

. (5.30)

In (5.30), the half-indices Π± correspond to fixing a 3D N = 2 chiral multiplet of U(1)

flavor charge ±1 at the S2×S1 boundary. The corresponding gluing measure is then simply

the S2 ×S1 superconformal index I3D
± (see [73–76]) of a 3D N = 2 chiral multiplet of unit

R-charge and flavor charge ±1, given by

I3D
± (p, u) =

(u∓1√p; p)
(u±1√p; p) . (5.31)

Indeed, one finds that (5.29) is recovered from gluing two copies of (5.30) with the corre-

sponding measure (5.31):

I(S)
hyper(p, u) = I3D

± (p, u)(Π±(p, u))2 . (5.32)
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Let us now describe the refinement of the index by line defects in abelian theories. As

explained in [42], in the presence of a (gauge) U(1) BPS ’t Hooft loop of charge b ∈ Z

wrapping S1 and inserted at the tip of HS3, the hypermultiplet Schur half-indices (5.30)

are modified to

Π±
B(p, u; b) = δB,b

1

(p
1+|b|

2 u∓1; p)
. (5.33)

The gluing measure is now given by the generalized N = 2 superconformal index [76] (see

also [42, 77, 78]), with b units of flux through S2, of a chiral multiplet as described above:

I3D
± (p, u;B) = u−

B
2
(p

1+B
2 u∓1; p)

(p
1+B
2 u±1; p)

= (−1)
|B|−B

2 u−
|B|
2
(p

1+|B|
2 u∓1; p)

(p
1+|B|

2 u±1; p)
. (5.34)

The full Schur index of the hypermultiplet with ’t Hooft loops of charge ±b inserted at

antipodal points on S3 is then given by composing two copies of (5.33) with the gluing

measure (5.34), resulting in

I(S)
hyper(p, u; b) =

∑

B∈Z

∫
du

2πiu
I3D
± (p, u;B)(Π±

B(p, u; b))
2

= (−1)
|b|−b

2

∫
du

2πiu
u−

|b|
2

1

(p
1+|b|

2 u; p)(p
1+|b|

2 u−1; p)
. (5.35)

One could also consider ’t Hooft loops in flavor symmetries, in which case the δB,b in (5.33)

should be omitted and there is neither a sum over B nor an integration over u in (5.35),

with the measure (5.34) simply evaluated at B = b.

More general insertions of multiple ’t Hooft loops on the great (semi)circle of (H)S3

can be realized by acting with certain difference operators on the half-indices, again in

perfect analogy with our 3D construction. One can also insert BPS Wilson loops in the

index. According to [42, 44], inserting a Wilson loop of minimal charge corresponds to

multiplying the hemisphere indices by

x̂N ≡ p
B
2 u , x̂S ≡ p−

B
2 u . (5.36)

As in our 3D setup, x̂N (x̂S) corresponds to inserting the loop through the North (South)

pole of ∂HS3
+
∼= S2 and translating it to the tip along the semicircle.

5.2.2 Supercharges of line defects and twisted CBOs

Let us now show that the line defect Schur index preserves supercharges that can be

identified with QC
1 and QC

2 , given in (2.22). This implies that line defect Schur indices

in some 4D N = 2 theory reduce on S1 to correlators on S3 of local operators in the

cohomology of QC
1,2. These are precisely the correlators of twisted CBOs in the 3D N = 4

theory, which is the dimensional reduction of the original 4D theory.

The line defect Schur index preserves certain supercharges within the 4D N = 2 super-

conformal algebra sl(4|2) of the theory on S3×R. We follow the conventions of [35, 44] for
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sl(4|2), with {QAα, Q̃Aα̇, SAα, S̃Aα̇} denoting its odd generators. The A,B, . . . = 1, 2 in-

dices label the fundamental irrep of the su(2)R ⊂ sl(4|2) R-symmetry, while α, β, . . . = +,−
and α̇, β̇, . . . = +̇, −̇, label the fundamental irreps of su(2)1 and su(2)2, respectively, which

combine into the isometry algebra so(4) ∼= su(2)1 ⊕ su(2)2 ⊂ sl(2|4) of S3. In addition,

Mαβ ,Mα̇β̇ , and R
A
B denote the generators of su(2)1, su(2)2, and su(2)R, respectively, while

D is the generator of dilatations. As shown in [44], the line defect Schur index preserves

two supercharges, which, in the above notation, are given by

G1
− = Q1

− + Q̃2−̇ , H1
− = S1

− + S̃2−̇ . (5.37)

The su(2|1)ℓ⊕ su(2|1)r symmetry algebra of our 3D N = 4 theories on S3 can be identified

as a subalgebra of the sl(4|2) algebra of the 4D theory on S3 × R. Indeed, the su(2|1)ℓ
generators {Q(ℓ−)

α , Q
(ℓ+)
α , J

(ℓ)
αβ , Rℓ} can be identified with {Q1

α, S1α,Mαβ , D−2R1
1}, and the

generators {Q(r−)
α , Q

(r+)
α , J

(r)
αβ , Rr} of su(2|1)r with {Q̃2α̇, S̃

2
α̇,Mα̇β̇ , D + 2R2

2}. Using the

explicit form of the sl(4|2) algebra given in [44], it is easy to check that the su(2|1)ℓ⊕su(2|1)r
generators with the above identifications indeed satisfy (2.2). Furthermore, we find that

the supercharges (5.37) preserved by the index lie within su(2|1)ℓ ⊕ su(2|1)r, and can be

written as

G1
− = Q(ℓ−)

2 +Q(r−)
2 = QC

2 , H1
− = Q(ℓ+)

1 +Q(r+)
1 = −QC

1 , (5.38)

where we used the definitions (2.22) in the final equality of (5.38). The identification (5.38)

is what we wanted to prove. Note that the analysis leading to (5.38) is completely general

and applies to all 4D N = 2 / 3D N = 4 theories. In particular, it applies to theories with

non-abelian gauge groups.

5.2.3 Reduction on S1

In this subsection, we explicitly construct the map between the line defects in the 4D

Schur index and our twisted CBOs on S3 in abelian gauge theories. For simplicity, we will

focus on the 4D/3D theory of a single hypermultiplet coupled to a U(1) vector multiplet.

Restricting to this theory is sufficient to make our point, because all other abelian theories

can be constructed by taking products of the free hypermultiplet theory and gauging flavor

symmetries. Furthermore, taking products and gauging are simple operations at the level

of the index as well as in the matrix model for correlators of twisted CBOs.

To reduce the index on S1, we closely follow [77]. We set

p = e−β , u = piσ (5.39)

where β = 2πr1/r3, with r1 and r3 being the radii of S1 and S3, respectively. The reduction

is obtained by taking the β → 0 (p→ 1) limit. To determine this limit, note that the HS3

indices (5.33) can be written as

Π±
B(p, u; b) = Π±

B(p, p
iσ; b) = δB,b

Γp

(
1+|b|
2 ∓ iσ

)

(1− p)
1−|b|

2
±iσ(p; p)

, (5.40)

where Γq(x) is the q-Gamma function satisfying Γq(x) → Γ(x) as q → 1.
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In taking the β → 0 (p→ 1) limit in (5.40), one encounters divergences from the den-

ominator, which we now analyze. First, it is useful to introduce the Dedekind η-function:

(p; p) = p−
πiτ
12 η(τ) , p ≡ e2πiτ = e−β . (5.41)

Using its S-transformation

η(τ) =
1√
−iτ η

(
−1

τ

)
=

√
2π

β
e
−π2

6β

∞∏

n=1

(
1− e

− 4π2n
β

)
, (5.42)

a short calculation gives

1

(1− p)
1−|b|

2
±iσ(p; p)∞

=
1

(1− e−β)
1−|b|

2
±iσe

β
24

√
2π
β e

−π2

6β
∏∞
n=1

(
1− e

− 4π2n
β

)

β→0−−−→ 1√
2π
β

|b|
2
∓iσe

π2

6β (1 +O(β)) . (5.43)

We conclude that

lim
p→1

Π±
B(p, u; b) = δB,be

π2

6β β
|b|
2
∓iσ 1√

2π
Γ

(
1 + |b|

2
∓ iσ

)
= e

π2

6β Ψ(±σ,B;Mb)

∣∣∣∣
β=(Λr)−1

,

(5.44)

where we have set the arbitrary scale β to (Λr)−1 in order to match our 3D conventions.

After matching those scales, and up to the prefactor e
π2

6β , (5.44) shows that Π+
B dimension-

ally reduces to the hemisphere wavefunction (4.61) with an insertion of a charge-b twisted

monopole operator at the tip.55 The exponential prefactor precisely matches the Cardy

behavior discussed in [79], and should simply be removed in extracting the HS3 partition

function from the reduced index. A similar calculation shows that the 3D index (5.34)

reduces to the S2 partition function in (4.49) (for Nh = 1),

lim
p→1

I3D
± (p, piσ;B) = (−1)

|B|−B
2 β±2iσΓ(

1+|B|
2 ± iσ)

Γ(1+|B|
2 ∓ iσ)

, (5.45)

after the same matching of scales. The integral over the compact gauged holonomies

decompactifies as β → 0, becoming an integral
∫∞
−∞ dσ, which is the expected integration

measure in the S3 matrix model. Finally, recall that inserting a Wilson loop can be achieved

by acting with x̂N,S in (5.36), which, upon substituting (5.39), become

x̂N ≡ p
B
2 u = e−iβ(σ−i

B
2
) , x̂S ≡ p−

B
2 u = e−iβ(σ+i

B
2
) . (5.46)

Note that the exponents σ±iB2 in the above equation coincide with ΦN,S , defined in (5.13).

To obtain ΦN,S in the reduced theory, we act on the HS3 half-index with

(
i
x̂N,S − (x̂N,S)

−1

2β

)
β→0−−−→

(
σ ∓ i

B

2

)
= ΦN,S . (5.47)

55In this subsection, we retain the explicit dependence on the cutoff Λ, as in (4.49) and (4.61).
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We have therefore found a one-to-one correspondence between BPS Wilson loops in the

Schur index and the twisted CBO Φ(ϕ).

To conclude, we have essentially recovered the ingredients that are used to calculate

correlators of twisted CBOs on S3 in abelianN = 4 gauge theories from the reduction of the

defect Schur index of 4D N = 2 theories. While we have presented the results for a single

hypermultiplet, the generalization to an arbitrary abelian theory is straightforward. It

would be interesting to apply this logic to non-abelian gauge theories, where the “monopole

bubbling” phenomenon [80] plays an important role. We hope to return to this problem in

future work.

6 Applications

We have seen in the previous section how shift operators can be used to compute arbi-

trary correlators of twisted CBOs in general abelian theories and how these calculations

are modified in the presence of mass and FI parameters. In this section, we give explicit

examples of such calculations, and we match the results obtained to those of the corre-

sponding calculations in the 1D Higgs branch sector of the mirror dual theories. These

matches yield more refined tests of 3D mirror symmetry [1] than have been described in

the literature.

In the following, we work with renormalized monopole operators and the corresponding

renormalized shift operators (5.20) and (5.21), which we quote here for convenience:

M~b
N =

[
Nh∏

I=1

(−1)(
~b·~qI)+

r
|~b·~qI |

2

(
1

2
+ ir~ΦN · ~qI

)

(~b·~qI)+

]
e
~b·(− i

2
∂~σ−∂~B) ,

M~b
S =

[
Nh∏

I=1

(−1)(−
~b·~qI)+

r
|~b·~qI |

2

(
1

2
+ ir~ΦS · ~qI

)

(−~b·~qI)+

]
e−
~b·(− i

2
∂~σ+∂~B) ,

(6.1)

where r~ΦN = ~σ + i ~B/2 and r~ΦS = ~σ − i ~B/2 as in (5.13).

6.1 Chiral ring relations

We first explain how our formalism reproduces the chiral ring relations obeyed by Coulomb

branch operators. As mentioned already, the moduli space of vacua of the theories that

we are considering (N = 4 gauge theories with matter) contains a Coulomb branch, which

receives quantum corrections and which is a hyperkähler cone.56 Functions on the Coulomb

branch are in one-to-one correspondence with the Coulomb branch operators of these the-

ories. For instance, the operators Cȧ1...ȧ2jC , which form a spin-jC multiplet of SU(2)C ,

correspond to an SU(2)C multiplet of functions which we may denote as C̃ȧ1...ȧ2jC . With

respect to a particular complex structure parametrized by an SU(2)C polarization vȧ, one

can identify the holomorphic component C̃ = va1 · · · va2jC C̃ȧ1...ȧ2jC of the multiplet of func-

tions. Correspondingly, one can regard the operator C = va1 · · · va2jCCȧ1...ȧ2jC as chiral.

56In this section, we assume that mass and FI parameters have been set to zero. For an application of

our formalism to non-conformal QFTs, see section F.1.
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It follows that the algebra of twisted Coulomb branch operators C(0) defined in (2.34),

inserted at ϕ = 0, is isomorphic to the algebra A of holomorphic functions C̃ or to the

algebra of chiral operators, i.e., the chiral ring. This algebra carries a commutative prod-

uct structure inherited from the ordinary product of holomorphic functions, as well as a

Poisson bracket.

This information (and more) is captured by our 1D topological theory and can be

read off from the rules for computing correlation functions presented thus far. In fact,

the algebra A admits a non-commutative star product ⋆ : A × A → A with a parameter

identified as 1/r that measures the degree of non-commutativity. When 1/r is taken to

zero, the star product reduces to the ordinary product of holomorphic functions, while the

terms of order 1/r in the star product correspond to the Poisson bracket of these functions

(terms of higher order in 1/r, fixed by deformation quantization, are necessary to ensure

associativity). This star product, which in general takes the form

Oi ⋆Oj =
∑

k

ckijOk (6.2)

for some coefficients ckij , is simply a shorthand for the OPE

Oi(0)Oj(ϕ) ≈
∑

k

ckijOk(0) , as ϕ→ 0 with ϕ > 0 . (6.3)

One can thus extract the OPE coefficients from (6.3) to determine (6.2).

In general, the chiral ring is not freely generated due to the existence of chiral ring

relations. The chiral ring relations are simply relations obeyed by the regular multipli-

cation of functions and can thus be read off from the r-independent term in (6.2). For

operators represented by fields, they are sometimes trivial to see: for instance, products

of polynomials in ~Φ can be trivially related to higher-degree polynomials.57 What will be

nontrivial for us are the chiral ring relations involving monopole operators, for which we

will need to use our definitions for the corresponding shift operators.

To derive the chiral ring relations obeyed by the monopole operators, let us work with

the North shift operators for convenience. We notice that to leading order in 1/r,

M~b
N =



Nh∏

I=1

(−ir~ΦN · ~qI)
~b·~qI+|~b·~qI |

2

r
|~b·~qI |

2


 e−~b·( i

2
∂~σ+∂~B) + · · · , (6.4)

which implies that

M~a
NM

~b
N =

[
Nh∏

I=1

(−i~ΦN · ~qI)
|~a·~qI |+|~b·~qI |−|(~a+~b)·~qI |

2

]
M~a+~b

N + · · · . (6.5)

From (6.5), one can extract the leading term in the OPE of M~a and M~b, which (by (6.2)

and (6.3)) fixes the leading term in the star product:

M~a ⋆M~b =

[
Nh∏

I=1

(−i~Φ · ~qI)
|~a·~qI |+|~b·~qI |−|(~a+~b)·~qI |

2

]
M~a+~b +O(1/r) . (6.6)

57As we will see, in the 1D Higgs branch theory, the chiral ring relations are sometimes less obvious

because one must use the D-term relations.
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After taking the limit r → ∞, this equation can be interpreted as a chiral ring relation.

This is precisely the chiral ring relation obtained in [28].

Interestingly, in the chiral ring, the product of two monopole operators of charges ~a

and ~b is equal to a monopole operator of charge ~a + ~b that is in general dressed by the

vector multiplet scalars. No dressing is required precisely when sgn(~a ·~qI) sgn(~b ·~qI) ≥ 0 for

all I. Another interesting case is when ~b = −~a, where we see that the chiral ring product

between a monopole of charge ~a and its antimonopole can be expressed solely in terms

of Φ:

M~a ⋆M−~a =

[
Nh∏

I=1

(−i~Φ · ~qI)|~a·~qI |
]
+O(1/r) . (6.7)

Since the operator ~Φ has scaling dimension 1, this expression provides another derivation

of the fact that the monopole operator M~a has scaling dimension
∑Nh

I=1 |~a · ~qI | /2.

6.2 Mirror symmetry: SQEDN and N-node necklace quiver

As a second application, let us show how our results are consistent with 3D mirror sym-

metry. The mirror dual of a 3D N = 4 abelian gauge theory built from vector multiplets

and hypermultiplets is a theory of the same type (here, we are not being careful to distin-

guish a theory containing only ordinary multiplets from a theory containing only twisted

multiplets). At a formal level, the duality was proven in [15], and a concrete map between

the operators of a given such theory and its mirror dual can be found, for instance, in [28].

Our construction allows us to go beyond the operator map and show that the correlation

functions, or equivalently the star product, match precisely across the mirror duality. We

will do so in a few simple examples.58

One of the simplest examples of mirror symmetry [1] is the duality between SQEDN (a

U(1) gauge theory with N hypermultiplets of unit charge) and the necklace quiver gauge

theory with gauge group U(1)N/U(1) depicted in figure 2. In the necklace quiver, there are

N U(1) gauge groups and N bifundamental hypermultiplets, the jth of which has charges

1 and −1 under the (j − 1)st and jth gauge groups, respectively. Nothing is charged under

the diagonal U(1), so we may regard the gauge group as U(1)N/U(1). Each of these two

theories has a Higgs branch that is mapped under the mirror duality to the Coulomb branch

of the other theory.

6.2.1 Higgs branch topological sector

Before we demonstrate how the mirror map works in detail at the level of the corresponding

1D topological sectors, let us briefly review the description given in [13] for the Higgs branch

topological sector. For a theory with gauge group G and a hypermultiplet whose scalar

fields transform in the representation R⊕R of G, the associated 1D theory that allows for

the calculation of n-point functions of twisted Higgs branch operators is

Z =
1

|W|

∫

t

dσ det ′adj(2 sinh(πσ))Zσ (6.8)

58For an outline of a strategy for matching all twisted HBO/CBO correlators in arbitrary abelian mirror

pairs, see appendix F.
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QN Q1

Q2

Q3

Q̃1

Q̃2

Q̃3

Q̃N

Figure 2. The U(1)N/U(1) gauge theory that is mirror dual to SQEDN .

where |W| is the order of the Weyl group of G, t is a fixed Cartan subalgebra of g, and

Zσ ≡
∫

DQDQ̃ exp

[
4πr

∫
dϕ Q̃(∂ϕ + σ)Q

]
. (6.9)

Here, the 1D fields Q and Q̃ transform in the representation R and its dual R, respectively.

The Q and Q̃ obey antiperiodic boundary conditions on the circle, while the Cartan element

σ is ϕ-independent. The reality condition on bosons selects a certain middle-dimensional

integration cycle in (Q, Q̃)-space, which is implicit in (6.9). The operators in the 1D theory

are gauge-invariant products of Q and Q̃. Correlation functions of these operators can be

computed in two steps. First, one writes the n-point function 〈O1(ϕ1) . . .On(ϕn)〉 as

〈O1(ϕ1) . . .On(ϕn)〉 =
1

Z
· 1

|W|

∫

t

dµ(σ) 〈O1(ϕ1) . . .On(ϕn)〉σ , (6.10)

where

dµ(σ) ≡ dσ det ′adj(2 sinh(πσ))Zσ = dσ
det ′adj(2 sinh(πσ))

detR(2 cosh(πσ))
(6.11)

and 〈O1(ϕ1) . . .On(ϕn)〉σ is a correlation function at fixed σ. Second, one computes this

correlation function at fixed σ by performing Wick contractions using the propagator

〈Q(ϕ1)Q̃(ϕ2)〉σ ≡ Gσ(ϕ12) ≡ −sgnϕ12 + tanh(πσ)

8πr
e−σϕ12 , ϕ12 ≡ ϕ1 − ϕ2 , (6.12)

which can be derived from the Gaussian theory (6.9).59

59One might wonder how to define sgnϕ12 for circle-valued variables. Taking all ϕi to lie in (ϕ0, ϕ0 +2π]

for some ϕ0, one can show that correlation functions are independent of the fiducial ϕ0. We use ϕ0 = −π.
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When dealing with composite operators, one might also need to perform Wick con-

tractions between elementary operators at coincident points. Such Wick contractions suffer

from operator ordering ambiguities. We make the choice that when ϕ1 = ϕ2 = ϕ, (6.12)

should be interpreted as

〈Q(ϕ)Q̃(ϕ)〉σ ≡ Gσ(0) ≡ −tanh(πσ)

8πr
. (6.13)

Let us now use this formalism to see precisely how the Higgs (Coulomb) branch of SQEDN

is mapped to the Coulomb (Higgs) branch of the necklace quiver gauge theory in figure 2.

6.2.2 Matching of partition functions

Before explaining the precise map of operators between the two 1D theories, we point out

that the partition functions of the two theories agree. Indeed, for SQEDN , we have

Z =

∫
dσ

1

[2 cosh(πσ)]N
=

Γ
(
N
2

)

2N
√
πΓ
(
N+1
2

) . (6.14)

On the necklace quiver side, we have

Z =

∫
dµ(σ) =

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj




N∏

j=1

1

2 cosh(πσj−1,j)
, (6.15)

where σj−1,1 ≡ σj−1−σj and σ0 ≡ σN . To evaluate this integral, we appeal to the following

trick, which we will also use extensively in the matching of correlation functions. If Fj(σ)

are arbitrary functions whose Fourier transforms F̃j(τ) are defined by

Fj(σ) =

∫
dτ e−2πiστ F̃j(τ) , F̃j(τ) =

∫
dσ e2πiστFj(σ) , (6.16)

then the following cyclic convolution identity holds:

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj




N∏

j=1

Fj(σj−1,j) =

∫
dτ

N∏

j=1

F̃j(τ) . (6.17)

Using (6.17) with

Fj(σ) =
1

2 cosh(πσ)
, F̃j(τ) =

1

2 cosh(πτ)
(6.18)

for all j shows that (6.15) is precisely equal to (6.14).

6.3 HBOs in N-node quiver and CBOs in SQEDN

On one side of the mirror duality, we have the Higgs branch of the N -node quiver theory.

It is convenient to represent the (N − 1)-dimensional integration in (6.8) and (6.10) as an

integration over N variables σj with a delta function constraint. In particular, let us take

the integration measure in (6.10) to be

dµ(σj) =




N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj


Zσ , (6.19)
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where

Zσ =

∫ 


N∏

j=1

DQ̃j DQj


 exp


4πr

∫
dϕ

N∑

j=1

Q̃j(∂ϕ + σj−1,j)Qj


 =

N∏

j=1

1

2 cosh(πσj−1,j)
.

(6.20)

The Higgs branch chiral ring is C2/ZN . Its generators are

X = Q1Q2 · · ·QN , Y = Q̃1Q̃1 · · · Q̃N , Z = Q̃1Q1 = . . . = Q̃NQN , (6.21)

which obey the chiral ring relation X ⋆Y = ZN+O(1/r) (the equalities in the last equation

of (6.21) are enforced by the D-term relations). All other gauge-invariant operators in the

1D theory are products of X , Y, and Z.

On the other side of the mirror duality is the Coulomb branch of SQEDN . The gauge

group is U(1), so after boundary localization, the hemisphere wavefunction is just a function

of two variables, Ψ(σ,B), with σ ∈ R and B ∈ Z. The operators in the 1D topological

theory are products of the twisted vector multiplet scalar Φ and the monopole operators of

charge b ∈ Z. Their insertions through the North pole are represented by the shift operators

ΦN =
σ

r
+ i

B

2r
, Mb

N =
(−1)N(b)+

r
N|b|
2

[(
iσ +

1−B

2

)

b+

]N
e−b(

i
2
∂σ+∂B) (6.22)

acting on Ψ(σ,B). The hemisphere wavefunction with no insertions is

Ψ0(σ,B) = δB,0

[
1√
2π

Γ

(
1

2
− iσ

)]N
. (6.23)

The Coulomb branch chiral ring is also isomorphic to C2/ZN and is generated by

X =
1

(4π)N/2
M−1 , Y =

1

(4π)N/2
M1 , Z = − i

4π
Φ , (6.24)

which, as per (6.7), obey the relation X ⋆Y = ZN +O(1/r). We have used the same letters

X , Y, Z to denote the operators of the two mirror theories to emphasize that, as we will

show, their correlation functions in the two theories are identical.

6.3.1 The mirror map

To begin mapping the operators between the two sides, let us first explain why the mapping

works as stated above for the basic operators X , Y, Z. In the Coulomb branch of SQEDN ,

we calculate that for 0 < ϕ1 < ϕ2 < π,

〈Z(ϕ1)Z(ϕ2)〉 =
1

Z

∫
dσ

(
− iσ

4πr

)2

[2 cosh(πσ)]N
,

〈X (ϕ1)Y(ϕ2)〉 =
1

Z

∑

B

∫
dσΨ0(σ,B)∗M−1

N M1
NΨ0(σ,B) =

1

Z

∫
dσ

(
−iσ + 1

2

)N

[8πr cosh(πσ)]N
.

(6.25)
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In the Higgs branch of the necklace theory, using the definition Z = Q̃1Q1 gives

〈Z(ϕ1)Z(ϕ2)〉 =
1

Z

∫
dµ(σ)

[
Gσ12(ϕ12)Gσ12(−ϕ12) +Gσ12(0)

2
]
=

1

Z

∫
dτ

(
− iτ

4πr

)2

[2 cosh(πτ)]N
,

〈X (ϕ1)Y(ϕ2)〉 =
1

Z

∫
dµ(σ)

N∏

j=1

Gσj−1,j (ϕ12) =
1

Z

∫
dτ

(
−iτ + 1

2

)N

[8πr cosh(πτ)]N
, (6.26)

which agrees precisely with (6.25). In deriving the last equality in the first line of (6.26),

we used (6.17) with F1(σ) =
[
Gσ(ϕ12)Gσ(−ϕ12) +Gσ(0)

2
]
/(2 cosh(πσ)), whose Fourier

transform is F̃1(τ) =
(
− iτ

4πr

)2
/(2 cosh(πτ)), and with Fj , F̃j as in (6.18) for j ≥ 2.

In deriving the last equality in the second line of (6.26), we used (6.17) with Fj(σ) =

Gσ(ϕ12)/(2 cosh(πσ)) and F̃j(τ) = (−iτ + 1/2)/(8πr cosh(πτ)).

Having mapped the chiral ring generators between the two theories, we can construct

the mapping of composite operators using the OPE. In general, we can define composite

operators by point splitting:

(O1O2)⋆(0) ≡ (O1 ⋆O2)(0) = lim
ǫ→0+

O1(0)O2(ǫ) . (6.27)

We can use this definition on both sides of the duality to find concrete expressions for

composite operators in the two theories. After doing so, one should still perform two

nontrivial checks of the mirror symmetry duality: (1) the one-point functions of the com-

posite operators should match, and (2) the star products of any pair of operators should

match. The matching of the one-point functions then guarantees the matching of higher-

point functions, because the one-point functions and the OPE determine all correlation

functions.60

Whenever we define composite operators by point splitting as in (6.27), we use a

subscript ⋆ to indicate that all multiplications in the corresponding expressions are replaced

by star products. For the 1D topological Higgs branch theory reviewed above, we will also

define composite operators by simply multiplying the fields Qj and Q̃j .

6.3.2 Star product and composite operators

Let us demonstrate how this procedure works in detail for a few operators. The simplest

composite operator is (Z2)⋆ ≡ Z ⋆Z. On the Coulomb branch side, each Z is represented

by −iΦ/(4π), and we can easily see from the North pole representation of Φ in (6.22) that

(Z2)⋆ is represented by

(Z2)⋆ = − 1

(4π)2
Φ2 . (6.28)

On the Higgs branch side, the calculation is slightly more complicated. If we represent

each factor of Z in the product by Q̃1Q1, then

(Z2)⋆ = Q̃1Q1 ⋆ Q̃1Q1 = Q̃2
1Q

2
1 −

1

64π2r2
. (6.29)

60Note that we are not working in a basis of operators whose two-point functions are diagonal, so the

coefficients in (6.3) are not what one usually thinks of as OPE coefficients. Nonetheless, matching star

products and one-point functions in this basis will also guarantee a match after, e.g., Gram-Schmidt or-

thogonalization.
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This equality follows from observing that while all self-contractions in Q̃2
1Q

2
1 are performed

with (6.13), the self-contractions in Q̃1Q1 ⋆ Q̃1Q1 between fields on different sides of the

star product are performed with the ϕ12 → 0 limit of (6.12). Thus the difference Q̃1Q1 ⋆

Q̃1Q1 − Q̃2
1Q

2
1 evaluates to

Q̃1Q1 ⋆ Q̃1Q1 − Q̃2
1Q

2
1 = Q̃1Q1(0) (δG+ + δG−) + δG+δG− , (6.30)

where we have defined

δG± ≡ lim
ǫ→0+

(Gσ(±ǫ)−Gσ(0)) = ∓ 1

8πr
(6.31)

and used (6.12) and (6.13). Substituting (6.31) into (6.30) gives −1/(64π2r2).

Note that we can represent (Z2)⋆ in a number of equivalent ways coming from the fact

that Z itself can be represented as Q̃jQj for any j (no summation). Thus, if we represented

the first Z factor by Q̃1Q1 and the second factor by Q̃2Q2, then we would have

(Z2)⋆ = Q̃1Q1 ⋆ Q̃2Q2 = Q̃1Q1Q̃2Q2 . (6.32)

The expressions (6.29) and (6.32) must be equivalent, and one can indeed check that they

give identical correlation functions.

More generally, we have that (Zp)⋆ is represented in the Coulomb branch theory by

(Zp)⋆ =

(
− i

4π

)p
Φp . (6.33)

In the Higgs branch theory, the expression for Zp is more complicated. When p ≤ N , we

can represent the jth factor in the product by Q̃jQj , and since all factors are distinct, we

simply have

(Zp)⋆ = Q̃1Q1 ⋆ · · · ⋆ Q̃pQp =
p∏

j=1

Q̃jQj , 1 ≤ p ≤ N . (6.34)

When N < p ≤ 2N , we can write (Zp)⋆ =
[
(Z2)p−NZ2N−p]

⋆
. We can represent the jth

(Z2)⋆ factor by Q̃
2
jQ

2
j − 1

64π2r2
(see (6.29)) and the kth Z factor by Q̃p−N+kQp−N+k, giving

(Zp)⋆ =

p−N∏

j=1

(
Q̃2
jQ

2
j −

1

64π2r2

) N∏

j=p−N+1

QjQj , N < p ≤ 2N . (6.35)

Similar expressions can be constructed for p > 2N .

As a test of mirror symmetry, let us calculate the expectation value of 〈(Zp)⋆〉 on both

sides. On the Coulomb branch side, we have

〈(Zp)⋆〉 =
1

Z

(
− i

4πr

)p ∫
dσ

σp

[2 cosh(πσ)]N
. (6.36)

On the Higgs branch side, when p ≤ N , we have

〈(Zp)⋆〉 =
1

Z

∫
dµ(σ)

p∏

j=1

Gσj−1,j (0) =
1

Z

(
− i

4πr

)p ∫
dτ

τp

[2 cosh(πτ)]N
, (6.37)
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in agreement with (6.36). In deriving the last equality in (6.37), we used (6.17) with

Fj(σ) = Gσ(0)/(2 cosh(πσ)) and F̃j(τ) = (−iτ)/(8πr cosh(πτ)) for j ≤ p and with (6.18)

for j > p. When N < p ≤ 2N , we can use (6.35) and a similar calculation to show that

the same result (6.37) holds. We expect a similar result to hold for p > 2N .

With these definitions for the composite operators (Zp)⋆, we can make another con-

sistency check. Let us compare the star product X ⋆ Y in both theories. In SQEDN , we

use the definitions (6.24) and (6.22) in terms of North shift operators to deduce that

X ⋆ Y =

[(
Z +

1

8πr

)N]

⋆

. (6.38)

In the necklace quiver theory, we use the definitions (6.21) to write

X ⋆ Y =
N∏

j=1

Qj ⋆
N∏

j=1

Q̃j =
N∏

j=1

(
Q̃jQj +

1

8πr

)
=

[(
Z +

1

8πr

)N]

⋆

, (6.39)

which agrees precisely with (6.38) derived in SQEDN .

Other composite operators that we can define are powers of X and Y. In SQEDN , we

can use again (6.24) to represent

(X p)⋆ =
1

(4π)Np/2
[
(M−1)p

]
⋆
, (Yp)⋆ =

1

(4π)Np/2
[
(M1)p

]
⋆
. (6.40)

The star product
[
(M−1)p

]
⋆
is easy to compute using the North shift operators (6.22) due

to the simple form of Mb
N for b < 0, namely Mb

N = 1
r−bN/2 e

−b( i
2
∂σ+∂B). This gives

(X p)⋆ =
1

(4π)Np/2
M−p . (6.41)

The star product
[
(M1)p

]
⋆
is easier to compute using the South shift operators, for which

Mb
S = 1

rbN/2 e
−b(− i

2
∂σ+∂B) when b > 0. This gives

(Yp)⋆ =
1

(4π)Np/2
Mp . (6.42)

The same expression can, of course, be obtained using North shift operators. In the necklace

quiver, there are no ordering ambiguities in raising X and Y from (6.21) to the power of

p, so we can simply define

(X p)⋆ = Qp1 · · ·QpN , (Yp)⋆ = Q̃p1 · · · Q̃pN . (6.43)

We can now perform another check of the mirror symmetry duality by computing (X 2)⋆ ⋆

(Y2)⋆ on both sides. In SQEDN , from (6.24) and (6.22), we see that

(X 2)⋆ ⋆ (Y2)⋆ =
1

(4πr)2N

[(
iσ − B

2
− 1

2

)

2

]N
=

[(
Z +

1

8πr

)N (
Z +

3

8πr

)N]

⋆

. (6.44)
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To compute (X 2)⋆ ⋆ (Y2)⋆ in the necklace quiver, first note that

Q2
1 ⋆ Q̃

2
1 = Q2

1Q̃
2
1 +

1

2πr
Q1Q̃1 +

1

32π2r2
=

[(
Z +

1

8πr

)(
Z +

3

8πr

)]

⋆

, (6.45)

by the definition of Z = Q̃1Q1 and the definition of (Z2)⋆ in (6.29). Then we see that

(X 2)⋆ ⋆ (Y2)⋆ =
N∏

j=1

Q2
j ⋆

N∏

j=1

Q̃2
j =

[(
Z +

1

8πr

)N (
Z +

3

8πr

)N]

⋆

, (6.46)

in agreement with (6.44). Similar checks can be performed by computing (X p)⋆ ⋆ (Yp)⋆.

6.4 HBOs in SQEDN and CBOs in N-node quiver

Let us now turn our attention to the mirror duality between the Higgs branch of SQEDN

and the Coulomb branch of the necklace quiver gauge theory in figure 2. On the SQEDN

side, the 1D Higgs branch theory is described as follows. Since the gauge group is abelian,

we have only one integration variable σ and N pairs of 1D fields (QJ , Q̃
J). The integration

measure in (6.10) is simply dµ(σ) = dσ Zσ, with

Zσ =

∫ 


N∏

j=1

DQ̃J DQJ


 exp


4πr

∫
dϕ

N∑

j=1

Q̃J(∂ϕ + σ)QJ


 =

1

[2 cosh(πσ)]N
. (6.47)

The 1D theory has an SU(N) flavor symmetry under which the QJ transform as a fun-

damental vector and the Q̃J transform in the antifundamental representation. The Higgs

branch is a minimal nilpotent orbit of the complexified Lie algebra su(N). The Higgs

branch chiral ring is generated by the quadratic operators

JIJ = QIQ̃
J , (6.48)

which are traceless (
∑N

I=1 JI I =
∑N

I=1QIQ̃
I = 0) due to the D-term relations. These

operators are also subject to the nilpotency constraint JIJ ⋆ JJK = O(1/r), which holds

because to leading order in 1/r, we can treat multiplication of operators as regular multi-

plication of functions, and we can use the D-term relations (below, we will present the full

expression for JIJ ⋆ JJK). The operators JIJ transform in the adjoint representation of

SU(N). All other operators in the 1D theory can be obtained from products of the JIJ and

transform in irreducible representations of SU(N). Due to the nilpotency of JIJ , the only

irreps of SU(N) that appear are those with Dynkin labels [n0 · · · 0n] for positive integer n.

The description of the Coulomb branch of the necklace quiver gauge theory is more

subtle because the SU(N) symmetry acting on it is not manifest. It is an emergent sym-

metry, with only its maximal torus U(1)N−1 being visible in the UV. Since the gauge

group of the 3D theory is U(1)N/U(1), the hemisphere partition function after boundary

localization must be a function of N − 1 continuous “σ” variables and N − 1 discrete “B”

variables. As in the previous subsection, it is convenient to represent the N − 1 vector

multiplets as N vector multiplets VI obeying the constraint
∑N

I=1 VI = 0. Thus both ~σ
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and ~B are N -dimensional vectors obeying the constraints
∑N

I=1 σI = 0 and
∑N

I=1BI = 0.

These constraints are implemented by supplementing the gluing measure by a factor of

δ

(
1

N

N∑

I=1

σI

)
δ0,

∑N
I=1BI

. (6.49)

The lattice in which ~B is valued is determined by the Dirac quantization condition, which

implies that ~qI · ~B = BI−1 − BI ∈ Z for all I. Here, ~qI = (0, . . . , 0, 1,−1, 0, . . . , 0) are

the hypermultiplet gauge charges (the Ith hypermultiplet has charge +1 under VI−1 and

charge −1 under VI).
The operators in the 1D Coulomb branch theory are products of the twisted vector

multiplet scalars ΦI (obeying
∑N

I=1ΦI = 0) as well as monopole operators of charge ~b.

Their insertions through the North pole are represented by the operators

ΦIN =
σI
r
+i
BI
2r

, M~b
N =

N∏

I=1

(−1)(
bI−1,I)+

r
|bI−1,I |

2

(
iσI−1,I+

1−BI−1,I

2

)

(bI−1,I)+

e−
~b·( i

2
∂~σ+∂~B) ,

(6.50)

where σI−1,I ≡ σI−1 − σI as in the previous subsection and bI−1,I ≡ bI−1 − bI . The

operators (6.50) act on the wavefunction Ψ(~σ, ~B), which takes the form

Ψ0(~σ, ~B) = δ ~B,0

N∏

I=1

[
1√
2π

Γ

(
1

2
− iσI−1,I

)]
(6.51)

in the absence of insertions.

6.4.1 The mirror map

Identifying which operators in the necklace quiver gauge theory correspond to the gen-

erators JIJ of the Higgs branch chiral ring of SQEDN is aided by symmetries. The

necklace quiver has a U(1)N−1 topological symmetry generated by the currents jµI =
1
4π ǫ

µνρ(FI−1,νρ − FI,νρ) that should be identified with the Cartan of SU(N). The twisted

vector multiplet scalars ΦI−1,I = ΦI−1 − ΦI should thus be identified with the Cartan

elements JI I . We take

JI I =
iΦI−1,I

4π
(no summation over I) . (6.52)

We have
∑N

I=1 JI I = 0, just as for the corresponding operators (6.48) in SQEDN . The

off-diagonal JIJ , with I 6= J , are monopole operators because they carry charges +1 and

−1 under jµI and jµJ , respectively, and are uncharged under all other jµK with K 6= I, J .

They are thus given by

JIJ =−M~bI
J

4π
, ~bI

J ≡ (0, . . . ,0︸ ︷︷ ︸
I−1

,1, . . . ,1︸ ︷︷ ︸
J−I

,0, . . . ,0︸ ︷︷ ︸
N−J+1

)−J−I
N

(1,1, . . . ,1) ,

JJ I =−M~bJ
I

4π
, ~bJ

I ≡ (1, . . . ,1︸ ︷︷ ︸
I−1

,0, . . . ,0︸ ︷︷ ︸
J−I

,1, . . . ,1︸ ︷︷ ︸
N−J+1

)−N+I−J
N

(1,1, . . . ,1) ,

(6.53)
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where J > I. The expressions for ~bI
J can be determined from the conditions that ~bI

J ·~qI =
−~bIJ · ~qJ = 1, ~bI

J · ~qK = 0 if K 6= I, J , and
∑N

K=1(bI
J)K = 0. The overall factors in the

expressions for JIJ are found empirically by matching the two- and three-point functions of

these operators across the mirror symmetry duality. We see that there are 2
(
N
2

)
= N(N−1)

independent monopoles with charges ~bI
J and ~bJ

I = −~bIJ .
The mapping (6.52)–(6.53), which relies on a description of the mirror theory to

SQEDN as a circular quiver, should be compared to that in [81]. An alternate but equiv-

alent presentation of the mirror map, which represents the mirror to SQEDN as a linear

quiver, is given in [28]. In particular, note that our description of the necklace quiver as

a U(1)N/U(1) gauge theory involves fractional monopole charges. This is only because we

find it convenient to embed the ZN−1 charge lattice in RN .

A consistency check of the identification (6.52)–(6.53) comes from the chiral ring.

Indeed, given (6.6), we have

JIJ ⋆ JJ I = −ΦI−1,IΦJ−1,J +O(1/r) ,

JIJ ⋆ JJK = iΦJ−1,JJIK +O(1/r) ,
(6.54)

with no summation over I, J , K. These equations hold even if J = I or J = K. Then it

is easy to see that since
∑N

J=1ΦJ−1,J = 0, we have

N∑

J=1

JIJ ⋆ JJK = O(1/r) (6.55)

for any I,K. This nilpotency constraint matches the constraint obeyed by JIJ in SQEDN .

6.4.2 Star product and composite operators

Let us provide more evidence for our proposed correspondence between the chiral ring

generators, and provide a construction of more complicated operators that are dual on

both sides. We first point out that computing correlators in the Higgs branch topological

sector of SQEDN can be done without evaluating any integrals over σ, for the following

reasons. First, one can compute star products of various operators at fixed σ, as we did

in the previous section for the Higgs branch of the necklace quiver theory. Second, if we

are careful to work with operators transforming in irreps of SU(N), then all such operators

have zero expectation value unless they are singlets of SU(N). The only singlet is the

identity operator.

Explicitly, let us compute JIJ ⋆ JKL = QIQ̃
J ⋆ QKQ̃

L:

QIQ̃
J ⋆ QKQ̃

L = QIQKQ̃
JQ̃L + δG−δ

L
I QKQ̃

J + δG+δ
J
KQIQ̃

L + δLI δ
J
KδG+δG− , (6.56)

with δG± = ∓ 1
8πr (defined in (6.31)) being the difference between the coincident limit

of the propagator and the value assigned to the propagator at coincident points. The

operator QIQKQ̃
JQ̃L does not transform in an irreducible representation of SU(N): it is

a linear combination of a singlet and an operator transforming in the [20 · · · 02] irrep. The
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latter is a traceless symmetric tensor JIKJL = QIQKQ̃
JQ̃L− (traces) that can be written

explicitly as

JIKJL = QIQKQ̃
JQ̃L − 4QM Q̃

M

N + 2
δ
(J
(I QK)Q̃

L) +
2(QM Q̃

M )2

(N + 1)(N + 2)
δ
(J
(I δ

L)
K) . (6.57)

This expression can be simplified using the D-term relation QKQ̃
K = 0, which implies that

QIQ̃
J ⋆ QKQ̃

K = 0. Then from (6.56), we conclude that

QIQ̃
JQKQ̃

K =
1

64π2r2
δJI . (6.58)

Combining (6.56)–(6.58) and doing a bit of algebra gives

JIJ ⋆JKL=JIKJL−
1

8πr

(
δJKJIL−δLI JKJ

)
− N

64π2r2(N+1)

(
δLI δ

J
K− 1

N
δJI δ

L
K

)
. (6.59)

Since 〈JIKJL〉 = 〈JIJ〉 = 0, we immediately have that

〈JIJ(ϕ1)JKL(ϕ2)〉 = − N

64π2r2(N + 1)

(
δLI δ

J
K − 1

N
δJI δ

L
K

)
. (6.60)

Seeing as 〈JIJKL ⋆ JMN 〉 = 0 (because this product does not contain an SU(N) sin-

glet), (6.59) also implies the three-point function (for ϕ1 < ϕ2 < ϕ3)

〈JIJ(ϕ1)JKL(ϕ2)JMN (ϕ3)〉 =
N

(8πr)3(N + 1)

(
δJKδ

N
I δ

L
M − δLI δ

N
Kδ

J
M

)
. (6.61)

We can now write the nilpotency condition mentioned above more precisely: setting K = J

in (6.59) and summing over J , we have

JIJ ⋆ JJL = − N

8πr
JIL − N − 1

64π2r2
δLI . (6.62)

This expression is O(1/r), as mentioned above.

Let us now reproduce these formulas from the Coulomb branch 1D sector of the neck-

lace quiver gauge theory. First, based on the definitions (6.52)–(6.53), we represent JIJ
by the North shift operators

(JI I)N =
1

4πr

(
iσI−1,I −

BI−1,I

2

)
,

(JIJ)N =
1

4πr

(
iσI−1,I +

1−BI−1,I

2

)
e−
~bI

J ·( i
2
∂~σ+∂~B) ,

(6.63)

where I 6= J (no summation over I). Using (6.63) and (6.51), we can then show that the

two-point functions of JI I agree with (6.60):

〈JI I(ϕ1)JI I(ϕ2)〉 =
1

Z

∫
dµ(σ)

(
iσI−1,I

4πr

)2

=
1

Z

∫
dτ

Gτ (ϕ12)Gτ (−ϕ12) +Gτ (0)
2

[2 cosh(πτ)]N

= − N − 1

64π2r2(N + 1)
, (6.64)
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where in the second equality, we used (6.17) with FI(σ) =
(
iσ
4πr

)2
/(2 cosh(πσ)) and F̃I(τ) =[

Gτ (ϕ12)Gτ (−ϕ12) +Gτ (0)
2
]
/(2 cosh(πτ)) and Fj , F̃j given in (6.18) for j 6= I. We can

also show that the two-point functions of the off-diagonal JIJ agree with (6.60). For

ϕ1 < ϕ2,

〈JIJ(ϕ1)JJ I(ϕ2)〉 =
1

Z

∫
dµ(σ)

(
iσI−1,I +

1
2

) (
iσJ−1,J − 1

2

)

16π2r2

=
1

Z

∫
dτ

Gτ (ϕ12)Gτ (−ϕ12)

[2 cosh(πτ)]N
= − N

64π2r2(N + 1)
, (6.65)

where in the second equality, we used (6.17) with FI(σ) =
iσ+ 1

2
8πr cosh(πσ) , FJ(σ) =

iσ− 1
2

8πr cosh(πσ) ,

F̃I(τ) = [1− tanh(πτ)] /(16πr cosh(πτ)), F̃J(τ) = [−1− tanh(πτ)] /(16πr cosh(πτ)), and

Fj , F̃j given in (6.18) for j 6= I and j 6= J . One can similarly check that all other two-point

functions of the JIJ vanish, thus reproducing (6.60).

Lastly, we check that the three-point functions agree with (6.61). For instance, we

have (with no summation over distinct I, J , K, and ϕ1 < ϕ2 < ϕ3)

〈JIJ(ϕ1)JJK(ϕ2)JKI(ϕ3)〉 =
1

Z

∫
dµ(σ)

(
iσI−1,I +

1
2

) (
iσJ−1,J − 1

2

) (
iσK−1,K − 1

2

)

64π3r3

=
N

(8πr)3(N + 1)
(6.66)

and

〈JI I(ϕ1)JIJ(ϕ2)JJ I(ϕ3)〉 =
1

Z

∫
dµ(σ)

(iσI−1,I)
(
iσI−1,I +

1
2

) (
iσJ−1,J − 1

2

)

64π3r3

=
N

(8πr)3(N + 1)
, (6.67)

in agreement with (6.61).

We have thus matched all two- and three-point functions of the operators JIJ , which
are neatly summarized in the star product (6.59), across the duality. Note that in SQEDN ,

we can take derivatives with respect to mass parameters to compute correlation functions

of the diagonal JI I , so equality of the partition functions of SQEDN and the N -node

necklace quiver theory enriched with mass/FI parameters already guarantees matching of

correlation functions of JI I and ΦI−1,I . Hence our nontrivial check is of the correspondence

between the off-diagonal JIJ and monopole operators.

Having matched the chiral ring generators JIJ between the two sides of the mirror

symmetry duality, one can construct composite operators by taking star products of JIJ .
For example, for fixed I and J (no summation), we can consider on the SQEDN side

JI I ⋆ JJJ = JIJ IJ − N

64π2r2(N + 1)

(
δJI − 1

N

)
. (6.68)

On the necklace side, we have

JI I ⋆ JJJ = −ΦI−1,IΦJ−1,J

16π2
. (6.69)
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The two expressions must match, so we conclude that

JIJ IJ = −ΦI−1,IΦJ−1,J

16π2
+

N

64π2r2(N + 1)

(
δJI − 1

N

)
. (6.70)

As another example, let I > J > K > L. Then on the SQEDN side, we have JIJ ⋆JKL =

JIJKL. On the necklace side, we have

JIJKL =
M~bI

JM~bK
L

16π2
=

M~bI
J+~bK

L

16π2
. (6.71)

One can construct other composite operators along the same lines. Note that because

all twisted HBOs in SQEDN can be obtained by taking traceless, symmetric products of

the JIJ , we expect to be able to construct all bare monopoles in the necklace quiver as

polynomials in the basic monopoles (6.53) and twisted scalars (unlike in generic abelian

theories [28]).

7 Discussion

Twisted Higgs and Coulomb branch operators comprise protected 1D topological sectors of

3D N = 4 theories. Their OPE algebras can be viewed as noncommutative deformations

of the Higgs and Coulomb branch chiral rings, and their correlation functions can be

calculated exactly. In this paper, we have studied correlation functions of twisted CBOs

using supersymmetric localization. An arbitrary number of such operators can be inserted

anywhere along a great circle of S3 while preserving a common supercharge, with the

resulting correlators depending only on their ordering along the circle. These correlators

determine the Coulomb branch chiral ring of our theories, and moreover, completely fix

the two- and three-point functions of all CBOs at the IR fixed point. In combination with

the results of [13], where similar results were obtained for the Higgs branch, we now have

a complete story for two- and three-point functions of half-BPS operators in 3D N = 4

abelian gauge theories. We have leveraged our results to perform new tests of abelian 3D

mirror symmetry, amounting to a proof at the level of two- and three-point functions of

half-BPS local operators.

Unlike in the Higgs branch case, a challenging aspect of dealing with twisted CBOs

is that they include defect monopole operators. As a result, while the Higgs branch 1D

TQFTs admit very explicit 1D Lagrangians [13], constructing such Lagrangians for the

Coulomb branch proved to be difficult. Instead, we have devised an alternative approach,

in which insertions of twisted CBOs are represented by certain shift operators acting on

hemisphere wavefunctions, which in turn can be glued into the desired correlators on S3.

The same approach was also used in the context of the line defect Schur index in 4D

N = 2 theories [42–44], which we have shown to be related to our 3D computations by

dimensional reduction.

The natural next step is to extend this work to non-abelian theories, where the

Coulomb branch chiral ring and mirror symmetry are less understood. In those theo-

ries, the BPS equations in the presence of monopole operators have “monopole bubbling”
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solutions in which the GNO charge of a singular monopole is screened away from the

insertion point [80]. These solutions have to be summed over, which considerably com-

plicates the analysis. Fortunately, this problem has been addressed in some examples in

4D N = 2 theories (see, e.g., [43, 48, 82]). Therefore, the 4D/3D relation we have uncov-

ered could prove to be useful in incorporating the monopole bubbling effect into our 3D

localization framework.

So far, in both the Higgs and Coulomb branch cases, only theories with hypermultiplets

and vector multiplets have been studied. It would be interesting to generalize our local-

ization computations to other theories that also include twisted multiplets. One class of

examples where the generalization is rather trivial is that of abelian gauge theories with BF

couplings [14];61 some aspects of these theories are discussed in appendix F. There are also

theories with Chern-Simons terms for which application of our results is less trivial, such

as those of Gaiotto-Witten [25], ABJ(M) [83, 84], and generalizations thereof [85, 86].62 A

technical obstruction to applying our formalism to those theories is that only an N = 3

subalgebra of the N = 4 SUSY algebra is realized off shell on their vector multiplet. The

supercharge that we wish to use for localization, however, does not reside in this N = 3

subalgebra, and therefore does not close off shell (as required for localization). Neverthe-

less, it is plausible that this technical difficulty could be overcome by closing off shell only

the particular supercharge in which we are interested.

An interesting offshoot of our analysis is the careful treatment of the gluing of hemi-

sphere partition functions into the S3 partition function (with insertions). In particular, in

our approach, gluing is performed through supersymmetric localization of the path integral

over boundary conditions. It could be interesting to apply this approach to other supersym-

metric theories on manifolds with boundaries as studied in, e.g., [57, 58, 60, 62, 63, 88–91].

Finally, another open question, of a somewhat academic nature, is whether the 3D

gluing bilinear form has a 1D Hilbert space interpretation. For example, it would be

interesting to understand whether the hemisphere wavefunctions can really be thought of

as representing states in the 1D TQFT. In particular, in passing to cohomology, one is

tempted to view a state in the Hilbert space of the 3D theory on S2 as a state in the

product HN ⊗ HS , where H is the Hilbert space of the 1D theory and the two copies

correspond to the North and South boundary points of the semicircle. The North and

South shift operators that we have constructed are then simply interpreted as operators

acting on HN and HS , respectively. One fantasy is that the answers to these questions

could provide an interpretation of the S3 partition function of 3D N = 4 theories as some

trace over the Hilbert space of the 1D TQFTs. We hope to address some of the questions

raised here in future work.

61These couplings are simply FI actions that couple background twisted vector multiplets to dynamical

vector multiplets. Introducing twisted hypermultiplets coupled to the background twisted vector multiplets,

and gauging the latter, produces BF-type theories.
62For recent progress on combining supersymmetric localization results with the conformal bootstrap in

the maximally supersymmetric case, see [87].
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We thank Ofer Aharony, Clay Córdova, Tudor Dimofte, Bruno Le Floch, Davide Gaiotto,

Sergei Gukov, Masazumi Honda, Mikhail Isachenkov, Anton Kapustin, Victor Mikhaylov,

Shlomo S. Razamat, Shu-Heng Shao, Genis Torrents, Gustavo J. Turiaci, and Itamar

Yaakov for useful discussions. We especially thank Davide Gaiotto for sharing unpub-

lished notes and for a fruitful discussion. While preparing this work, we have benefited

from multiple meetings of the Simons Collaboration on the Nonperturbative Bootstrap.

The work of MD was supported by the Walter Burke Institute for Theoretical Physics and

the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under

Award No. DE-SC0011632, as well as the Sherman Fairchild Foundation. YF gratefully

acknowledges support from the NSF GRFP under Grant No. DGE-1656466 and from the

Graduate School at Princeton University. The work of SSP was supported in part by the

Simons Foundation Grant No. 488651. The work of RY was supported in part by a grant

from the Israel Science Foundation Center for Excellence, by the Minerva Foundation with

funding from the Federal German Ministry for Education and Research, and by the ISF

within the ISF-UGC joint research program framework (grant no. 1200/14).

A Conventions

Our conventions largely follow those of [13]. In particular, spacetime indices are denoted by

µ, ν, . . ., frame indices are denoted by i, j, . . ., and fundamental indices of SU(2)H , SU(2)C ,

and SU(2)rot are denoted by a, b, . . . = 1, 2; ȧ, ḃ, . . . = 1, 2; and α, β, . . . = 1, 2, respec-

tively. SU(2)H,C, rot indices are all raised and lowered from the left with the antisymmetric

tensor, which satisfies ǫ12 = ǫ21 = 1. SU(2)H,C indices are typically explicit while spinor

(SU(2)rot) and gauge (color) indices are typically suppressed; spinor contractions are de-

fined by ψχ ≡ ψαχα. The spinor parameter ξ is always taken to be commuting, so that δξ
is anticommuting. For any given SU(2) index, we have the Fierz identity

xαy
βzβ + xβyαz

β + xβyβzα = 0, (A.1)

which holds regardless of whether the objects x, y, z are Grassmann-even or Grassmann-

odd, or c-numbers or q-numbers.

Unless otherwise stated, the gamma matrices in any local frame are the Pauli matrices,

which satisfy γiγj = δij + iǫijkγk. Recall that ∇µ = ∂µ +
i
4ωµijǫ

ijkγk on spinors.

A.1 Coordinates

Let us summarize the various coordinate systems on round S3 of radius r used throughout

the text. It is useful to relate all of them to embedding coordinates (X1, X2, X3, X4) ∈ R4.

• In the usual fibration coordinates θ, τ, ϕ with θ ∈ [0, π/2] and τ, ϕ ∈ [−π, π], we have

(X1, X2, X3, X4) = r(cos θ cos τ, cos θ sin τ, sin θ cosϕ, sin θ sinϕ). (A.2)

The metric takes the form

ds2 = r2 cos2 θ dτ2 + ds2D2 , ds2D2 = r2(dθ2 + sin2 θ dϕ2). (A.3)
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Operator insertions lie along the θ = π/2 circle parametrized by ϕ:

S1 : {(X1 + iX2, X3 + iX4) = (0, reiϕ)}.

We cut the S3 along an S2 parametrized by θ, τ (= τ circle fibered over a line segment)

orthogonal to this S1 that meets this S1 at ϕ = 0,±π:

S2 :
⋃

±
{(X1 + iX2, X3 + iX4) = (r cos θeiτ ,±r sin θ)}.

The hemispheres HS3
± bounded by this S2 correspond to ϕ > 0 and ϕ < 0, respectively.

• In stereographic coordinates x1,2,3, we have

xi=1,2 =
2Xi

1 +X3/r
, x3 =

2X4

1 +X3/r
, x2 ≡ x21 + x22 + x23. (A.4)

The metric takes the simple form

ds2 = e2Ω(dx21 + dx22 + dx23), eΩ =
1

1 + x2/4r2
=

1 +X3/r

2
. (A.5)

Stereographic projection maps the insertion circle to the line (x1, x2, x3) = (0, 0, 2r tan ϕ
2 )

and the boundary S2 to the (1, 2)-plane

⋃

±

{
(x1, x2, x3) =

(
2r cos θ cos τ

1± sin θ
,
2r cos θ sin τ

1± sin θ
, 0

)}
,

here written as the union of the interior/exterior of a circle.

• In spherical coordinates η, ψ, τ adapted to our two-monopole background (so that the

monopole and antimonopole insertions at η = 0, π correspond to ϕ = ±π/2), we have

(X1, X2, X3, X4) = r(sin η sinψ cos τ, sin η sinψ sin τ,− sin η cosψ, cos η) (A.6)

where τ ∈ [−π, π] and η, ψ ∈ [0, π] (τ is the same as in fibration coordinates). The metric

takes the form

ds2 = r2(dη2 + sin2 η ds2S2), ds2S2 = dψ2 + sin2 ψ dτ2. (A.7)

The boundary S2 corresponds to setting η = π/2:

(X1,X2,X3,X4)= r(cosθ cosτ,cosθ sinτ,±sinθ,0)︸ ︷︷ ︸
fibration

= r(sinψ cosτ,sinψ sinτ,−cosψ,0)︸ ︷︷ ︸
spherical

.

The ± in ± sin θ can be suppressed by assuming that on the boundary, θ ∈ [−π, π].
For fermions, we work mainly in the stereographic or the spherical frame. The stereo-

graphic frame is defined as (est)
i
µ = eΩδiµ while the spherical frame is defined as

(esph)
1 = dη, (esph)

2 = sin η dψ, (esph)
3 = sin η sinψ dτ, (A.8)

in their respective coordinates.
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A.2 Supersymmetry transformations

The supersymmetry transformations used in the main text are as follows.

A.2.1 3D N = 4

These transformations are parametrized by the conformal Killing spinors (2.10) on S3. The

transformations of the vector multiplet V in (2.13) are given by

δξAµ =
i

2
ξaḃγµλaḃ , (A.9)

δξλaḃ = − i

2
εµνργρξaḃFµν −Da

cξcḃ − iγµξa
ċDµΦċḃ + 2iΦḃ

ċξ′aċ +
i

2
ξaḋ[Φḃ

ċ,Φċ
ḋ] , (A.10)

δξΦȧḃ = ξc(ȧλ|c|ḃ) , (A.11)

δξDab = −iDµ(ξ(a
ċγµλb)ċ)− 2iξ′(a

ċλb)ċ + i[ξ(a
ċλb)

ḋ,Φċḋ] . (A.12)

The transformations of the hypermultiplet H in (2.14) are given by

δξq
a = ξaḃψḃ , δξψȧ = iγµξaȧDµq

a + iξ′aȧq
a − iξaċΦ

ċ
ȧq
a , (A.13)

δξ q̃
a = ξaḃψ̃ḃ , δξψ̃ȧ = iγµξaȧDµq̃

a + iq̃aξ′aȧ + iξaċq̃
aΦċȧ . (A.14)

In terms of Poincaré and conformal supercharges of osp(4|4), the supercharges of primary

interest for us are

QH
1 =Q112̇−

1

2r
S122̇,

QH
2 =Q211̇+

1

2r
S221̇,

QC
1 =

1

2

(
Q112̇+iQ122̇+Q111̇+iQ121̇+

i

2r
S112̇−

1

2r
S122̇−

i

2r
S111̇+

1

2r
S121̇

)
,

QC
2 =

1

2

(
Q211̇−iQ221̇+Q212̇−iQ222̇+

i

2r
S211̇+

1

2r
S221̇−

i

2r
S212̇−

1

2r
S222̇

)
, (A.15)

from which QH
β and QC

β follow. To derive the corresponding Killing spinors ξHβ and ξCβ , we

use that in R3, the action of supersymmetries is

ξaȧ = ǫaȧ + xiγiηaȧ, ξ
′
aȧ = ηaȧ =⇒ δξO =

i

2
[ǫαaȧQαaȧ + ηαaȧSαaȧ,O] (A.16)

(for the explicit action of the generators of osp(4|4) on fields, see appendix C of [13]).

Expressions for (ξHβ )αaȧ and (ξCβ )αaȧ are given in (5.5) of [13] and (3.1), respectively.

A.2.2 2D N = (2, 2)

These transformations are parametrized by a pair of Killing spinors ǫ and ǭ on S2 satisfying

∇µǫ = − i

2r
γµǫ , ∇µǭ =

i

2r
γµǭ , (A.17)

where µ = θ, τ is restricted to the directions along S2. We define the 2D gamma matrices

Γθ = iσ3γθ , Γτ = iσ3γτ , (A.18)
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in terms of which the 2D Killing spinor equations (A.17) become

∇µǫ =
1

2r
Γµσ3ǫ , ∇µǭ = − 1

2r
Γµσ3ǭ , (A.19)

precisely matching those of [70].

The spinors parametrizing the N = (2, 2) supercharges (4.12) and (4.13) are given by

Q+
1 : ǭα = 0, ǫα =

(
− e−iτ cos θ√

2+2 sin θ

− i
√
1+sin θ√

2

)
,

Q+
2 : ǭα = 0, ǫα =

(
− i

√
1+sin θ√

2

− eiτ cos θ√
2+2 sin θ

)
,

Q−
1 : ǫα = 0, ǭα =

(
− e−iτ cos θ√

2+2 sin θ
i
√
1+sin θ√

2

)
,

Q−
2 : ǫα = 0, ǭα =

(
− i

√
1+sin θ√

2
eiτ cos θ√
2+2 sin θ

)
. (A.20)

These can be derived by demanding that the corresponding Killing vectors contain no ∂ϕ
terms on the boundary S2 (see appendix A of [13]).

The SUSY transformations of the 2D N = (2, 2) chiral multiplets Φ(2d) in (4.30) are

δφ = ǭχ ,

δφ̃ = ǫχ̃ ,

δχ = i(ΓµDµφ+ s1φ− is2φσ3 +
1
2rφσ3)ǫ+ f ǭ ,

δχ̃ = i(ΓµDµφ̃+ s1φ̃+ is2φ̃σ3 − 1
2r φ̃σ3)ǭ+ f̃ ǫ ,

δf = i(DµχΓ
µ + s1χ− is2χσ3 + φλ+ 1

2rχσ3)ǫ ,

δf̃ = i(Dµχ̃Γ
µ + s1χ̃+ is2χ̃σ3 − φ̃λ̄− 1

2r χ̃σ3)ǭ . (A.21)

The SUSY transformations of the vector multiplets V (2d) in (4.31) are

δaµ = − i
2(ǭΓµλ+ ǫΓµλ̃) ,

δs1 =
1
2(ǭλ− ǫλ̃) ,

δs2 = − i
2(ǭσ3λ− ǫσ3λ̃) ,

δλ = (iV µΓµ + iV 3σ3 −D2d)ǫ ,

δλ̃ = (iV̄ µΓµ + iV̄ iσ3 +D2d)ǭ ,

δD2d = − i
2 ǭ(Γ

µDµλ+ [s1, λ]− i[s2, σ3λ]) +
i
2ǫ(Γ

µDµλ̃− [s1, λ̃]− i[s2, σ3λ̃]) . (A.22)

In the SUSY variations of λ and λ̃, we have used the following combinations:

V µ = εµνDνs2 +Dµs1 , V 3 =
1

2
εµνFµν + i[s1, s2] +

1

r
s1 ,

V̄ µ = εµνDνs2 −Dµs1 , V̄ 3 =
1

2
εµνFµν − i[s1, s2] +

1

r
s1 , (A.23)
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where the 2D ε-symbol is induced from the 3D orientation:

εθτ = − 1

r2 cos θ
. (A.24)

These results are in complete agreement with the SUSY variations from [70], up to a minor

change of notation.63

Finally, we comment on two issues regarding how these transformations are verified

when Φ(2d) and V (2d) are identified with the boundary values of the 3D N = 4 fields

according to (4.27), (4.32), and (4.33)–(4.37). First, to obtain the variations of f and

f̃ , one must use the equations of motion of the hypermultiplet fermions ρ and ρ̃ defined

in (4.28). This is related to the fact that the 3D N = 4 algebra, and consequently, its

su(2|1) subalgebra that we are using, are not closed off shell.64 A similar subtlety does not

arise in the computation of δD2d, which is related to the 3D N = 4 vector multiplet being

closed off shell.

The second issue is related to the partial gauge-fixing condition A⊥
∣∣ = 0 in (4.38).

The SUSY variation breaks this gauge, so to fix this, we must supplement it by some gauge

transformation with parameter κ. A convenient way to do this, which does not affect any of

the other boundary conditions, is to find a κ that vanishes at the boundary, and such that

(A⊥+∂⊥κ)
∣∣ = 0. Because κ

∣∣ = 0, it does not affect the boundary values of any fields except

for A⊥, whose gauge transformation at the boundary becomes A⊥
∣∣ → A⊥

∣∣ + ∂⊥κ
∣∣ = 0.

Note that this is true even in non-abelian theories, simply because κ
∣∣ = 0 ⇒ [A⊥, κ]

∣∣ = 0.

B More on monopoles

B.1 Global symmetries and defects

A local order operator O[φ] in quantum field theory is constructed as a functional of local

fields φ, and a symmetry transformation acts on it by transforming the argument:

UO[φ]U−1 = O[UφU−1]. (B.1)

On the other hand, given a local disorder operatorM [b] defined by imposing some boundary

condition b close to its insertion point, the action of a symmetry transformation can formally

be written as

UM [b]U−1 ≈M [U−1b], (B.2)

where the notation “≈” means “up to normalization” and accounts for the fact that the

normalization of the defect operator M [b] might not be fixed by the boundary condition

b alone (as is the case for monopoles). In other words, to act with a global symmetry U

on a defect operator, one must act with U−1 on the boundary condition that was used to

define it, and extra care should be taken to determine normalization.

63There is only a sign difference in the variations of the auxiliary fields f and f̃ , as compared to [70].

The reason is that our SUSY parameters ξ in 3D, and consequently the ǫ in 2D, are commuting, whereas

their ǫ are anticommuting.
64While the 3D N = 4 algebra cannot be completely closed off shell, it can be done for the su(2|1) sub-

algebra by introducing auxiliary fields. For our purposes, there is no need to perform this exercise explicitly.
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Let us prove this statement by deriving the Ward identities in the path integral for-

mulation separately for order and disorder operators. The results will differ by a sign.

Consider a symmetry transformation which also acts on boundary conditions:

φ′ = φ+ δφ , b′ = b+ δb . (B.3)

Here, φ stands for all fields in the theory, and the transformation of a boundary condition

is simply given by restricting the transformation of φ to the boundary. The fact that it is

a symmetry means that

Dφ′ e−S[φ
′] = Dφ e−S[φ]. (B.4)

This transformation takes O[φ] to O[φ′] and M [b] to M̃ [b′], where the tilde represents the

fact that the normalization (e.g., the phase) of the defect M [b] might change in a way not

fixed by b. Let us define

δO[φ] ≡ O[φ′]−O[φ] , δM [b] ≡ M̃ [b′]−M [b] . (B.5)

Now consider the change of variables

φ′ = φ+ ρ(x)δφ, (B.6)

where ρ(x) is a smooth function supported in a small neighborhood U(x0) of the insertion

point x0 of the operator of interest and equal to 1 in a compact V (x0) ⊂ U(x0). Since ρ is

non-constant, this transformation is no longer a symmetry: instead,

Dφ′ e−S[φ
′] = Dφ e−S[φ]

(
1−

∫
dnx ∂µρ(x)j

µ(x)

)
(B.7)

where jµ is the conserved current.

First suppose that the local operator inserted at x0 is of type O[φ]. The trivial identity

∫
Dφ′ e−S[φ

′]O[φ′](· · ·) =
∫

Dφ e−S[φ]O[φ](· · ·), (B.8)

where (· · ·) represents insertions outside of U(x0), implies that:

〈(
δO[φ(x0)]−

∫
dnx ∂µρ(x)j

µ(x)O[φ(x0)]

)
(· · ·)

〉
= 0. (B.9)

Now suppose that the operator inserted at x0 is a defect. In this case, we should proceed

slightly differently: instead of (B.8), we start with 〈δM [b](· · ·)〉 = 〈M̃ [b′](· · ·)〉−〈M [b](· · ·)〉,
which is equivalent to

〈δM [b](· · ·)〉 =
∫

b′
Dφ′ e−S[φ

′](· · ·)−
∫

b
Dφ e−S[φ](· · ·), (B.10)

where the notation
∫
b means that we compute the path integral with boundary conditions b.

We also assume that the path integral with boundary conditions b′ is properly normalized

so as to precisely represent the defect operator M̃ [b′]. Let us perform the coordinate

change (B.6) in the first integral. Close to the point x0, we have ρ(x) = 1, so the coordinate
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change is simply φ′ = φ+ δφ there; it transforms the boundary condition b′ into b and the

operator M̃ [b′] into M [b]. As a result, we obtain

〈δM [b](· · ·)〉 =
∫

b
Dφ e−S[φ]

(
1−

∫
dnx ∂µρ(x)j

µ(x)

)
(· · ·)−

∫

b
Dφ e−S[φ](· · ·)

= −
∫

b
Dφ e−S[φ]

∫
dnx ∂µρ(x)j

µ(x)(· · ·), (B.11)

or simply: 〈(
δM [b] +

∫
dnx ∂µρ(x)j

µ(x)M [b]

)
(· · ·)

〉
= 0. (B.12)

Notice that (B.9) and (B.12) differ by the sign, which is what we wanted to show.

In the situation where the boundary condition b determinesM [b] only up to normaliza-

tion, there exist symmetries of the theory that act nontrivially in the bulk without changing

b. Such symmetries multiply M [b] by a number.65 Therefore, we could choose to consider

a different bulk symmetry,

φ̃′ = φ+ δ̃φ , (B.13)

which restricts to the same transformation of the defect singularity b′ = b+ δb. Following

the steps above, we obtain the same equation (B.12), except that the current jµ(x) is

replaced by the current j̃µ(x) for the symmetry (B.13). The difference between jµ(x) and

j̃µ(x) is a symmetry that multipliesM [b] by a number. This is why the finite transformation

of the defect operator in (B.2) is written only up to normalization.

To have a precise equality, one must also determine whether U changes the normaliza-

tion ofM [b]. However, it might be impossible to pick a consistent normalization of M [b] for

all possible b. An example of this kind was explained in the main text: it is impossible to

pick a normalization of the monopole operator for all possible singular boundary conditions,

as it would require choosing a global section of the Hopf fibration. It is possible, neverthe-

less, to pick a normalization of M [b] for some subset B of possible boundary conditions. In

this situation, one can write M [b] only for b ∈ B, and the transformation becomes

UM [b]U−1 = λ(U)M [U−1b], λ(U) ∈ C
∗, (B.14)

where λ(U) encodes the change of normalization. Moreover, we are only allowed to consider

those U for which U−1b ∈ B.

B.2 Boundary terms and monopole counterterms

Writing (2.15) as Shyper[H,V] =
∫
d3x

√
gLhyper[H,V], the boundary term in the SUSY

variation of the gauged hypermultiplet Lagrangian for ξ ∈ osp(4|4) is

δξLhyper[H,V] = Dµ

(
(ξaȧψ̃

ȧ)Dµqa + q̃a(Dµξaȧψ
ȧ) + iǫµνρq̃aDν(ξaȧγρψ

ȧ)

+ q̃aΦȧḃ(ξaḃγ
µψȧ) +

1

2
q̃a(ξa

ḃγµλcḃ)qc +
1

2
q̃a(ξcḃγµλaḃ)qc

)
. (B.15)

65For example, in the case of half-BPS monopole operators in 3D N = 4 theories, b represents a monopole

singularity, and it remains invariant under U(1)C ⊂ SU(2)C transformations preserved by this singularity.

However, such transformations act nontrivially on M [b]: they multiply it by a phase.
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Writing (2.16) as SYM[V] = g−2
YM

∫
d3x

√
gLYM[V], the boundary term in the SUSY varia-

tion of the Yang-Mills Lagrangian for ξ ∈ su(2|1)ℓ ⊕ su(2|1)r is

δξLYM[V] =DµTr

(
iξaȧγνλaȧF

µν− 1

2
ǫµνρξaȧλaȧFνρ+iDa

cξcȧγ
µλaȧ+

1

2
ξa
ċγµλaȧ[Φȧ

ḃ,Φḃċ]

−ξaḃλaȧDµΦȧ
ḃ−iǫµνρξaȧγρλaḃDνΦȧḃ−2ξ′

aḃ
γµλaȧΦȧ

ḃ− i

r
habh̄ȧḃξa

ċγµλbċΦȧḃ

)
. (B.16)

For the monopole counterterm, it suffices to consider the abelian case, for which the

SUSY transformations are obtained by omitting the terms involving commutators in (A.10)

and (A.12). We need not include fermionic terms in the monopole counterterm because

fermions are set to zero in BPS configurations. Letting

V = habh̄ȧḃ
(
1

2
λaȧλbḃ −DabΦȧḃ

)
, (B.17)

we compute that for arbitrary Killing spinors ξ, ξ̃ in su(2|1)ℓ ⊕ su(2|1)r,

δξδξ̃V |bos=habh̄ȧḃ
(
1

2
ξ̃aȧξbḃFµνF

µν− 1

2
ξ̃aȧξbḃD

cdDcd−
1

2
ξ̃aȧξbḃ∂

µΦċḋ∂µΦċḋ (B.18)

−ξ̃′aȧξ′bḃΦ
ċḋΦċḋ−

3

4r2
ξ̃aȧξbḃΦ

ċḋΦċḋ−2i(ξ̃bȧξ
′
cċ+ξ̃

′
bȧξcċ)Da

cΦḃ
ċ

)
+∇µΣ

µ

where

Σµ = habh̄ȧḃ
(
ξ̃a
ċξb

ḋΦȧḃ∂
µΦċḋ + iǫµνρξ̃a

ċγρξb
ḋΦȧċ∂νΦḃḋ + 2ξ̃a

ċγµξ′b
ḋΦȧċΦḃḋ (B.19)

+
1

2
ǫµνρ(ξ̃aȧξb

ċ + ξ̃b
ċξaȧ)FνρΦċḃ − iξ̃a

ċγνξbċF
µνΦȧḃ − iξ̃a

ċγµξcċDb
cΦȧḃ

)
.

Specializing to ξ = ξCβ , ξ̃ = ξC−β , ha
b = −(σ2)a

b, h̄ȧḃ = −(σ3)ȧḃ, we have

habh̄ȧḃξ̃aȧξbḃ = 8iβ, habh̄ȧḃξ̃′aȧξ
′
bḃ
= −2iβ

r2
, habh̄ȧḃ(ξ̃bȧξ

′
cċ + ξ̃′bȧξcċ) = −2β

r
hc
ah̄ċ

ḃ (B.20)

(the explicit form of ξCβ is given in (3.1)), and substituting these results gives

δξδξ̃V = δξδξ̃V |bos + δξδξ̃V |fer = 4iβLMaxwell +∇µ(Σ
µ +Σµf ) (B.21)

where

LMaxwell = FµνFµν − ∂µΦċḋ∂µΦċḋ + iλaȧ /∇λaȧ −DcdDcd

− 1

2r
habh̄ȧḃλaȧλbḃ +

1

r
(ha

bDb
a)(h̄ȧḃΦ

ḃ
ȧ)−

1

r2
ΦċḋΦċḋ

(B.22)

and Σµf are fermionic terms that are irrelevant for our purposes. The monopole counterterm

Σµ can likewise be simplified using the explicit forms of ξ, ξ̃, ha
b, h̄ȧḃ. In stereographic

coordinates, we obtain

Σµ = 8iβ(∂µ(Φ1̇1̇ +Φ2̇2̇ − 2Φ1̇2̇)− eΩ(2 + ix3/r)∂
µΦ1̇1̇ − eΩ(2− ix3/r)∂

µΦ2̇2̇)Φ1̇2̇

+ 4iβǫµνρFνρ(Φ1̇1̇ − Φ2̇2̇ − eΩ(2 + ix3/r)Φ1̇1̇ + eΩ(2− ix3/r)Φ2̇2̇)

+ 4ǫµνρUν(Φ1̇1̇∂ρΦ2̇2̇ − Φ2̇2̇∂ρΦ1̇1̇) + 16UνF
µνΦ1̇2̇ + V µ (B.23)
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where Uµ = βe2Ω(δ1µx2 − δ2µx1)/r and

V i=1,2 =
4iβe2Ωxi

r2

[(
2 +

ix3
r

)
Φ1̇1̇ +

(
2− ix3

r

)
Φ2̇2̇

]
Φ1̇2̇,

V 3 =
2βe2Ω

r

[
x21 + x22
r2

(Φ1̇1̇ − Φ2̇2̇) +

(
2 +

ix3
r

)2

Φ1̇1̇ −
(
2− ix3

r

)2

Φ2̇2̇

]
Φ1̇2̇.

Strictly speaking, our Σ = Σµdx
µ is actually the Hodge dual of the Σ defined in (2.52).

C General BPS monopole backgrounds

C.1 Singular solutions to BPS equations

In this section, we construct the singular solutions to (3.6)–(3.8) that describe insertions

of multiple twisted-translated monopole operators anywhere on the R = 1 great circle of

S3. Consider n such operator insertions at angles −π < ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕn ≤ π. Let

the monopole at ϕ = ϕk have charge bk ∈ Γm (k = 1, . . . , n). Because S3 is compact, the

charges must satisfy
∑n

k=1 bk = 0. Our task is to solve (3.6)–(3.8) on S3 with punctures at

(R,ϕ) = (1, ϕk) such that the fields near the kth puncture approach a charge-bk monopole

singularity, as prescribed in (2.36).

To define the gauge bundle on the punctured S3, we cover it with patches D(i) given by

D(i) = {0 ≤ R < 1} ∪ {R = 1 , ϕi < ϕ < ϕi+1} , (C.1)

where it is understood that D(n) ⊃ {R = 1 , ϕn < ϕ ≤ π} ∪ {R = 1 ,−π < ϕ < ϕ1}.
On each patch D(i), the gauge connection A(i) is a well-defined one-form, and A(i) − A(j)

is a valid gauge transformation. In abelian gauge theories, the other fields in the vector

multiplet are neutral, so they must be globally defined functions on the punctured S3.

An important consequence of (3.6)–(3.8) is that the gauge field is related to Φi. Indeed,

by combining (3.8) with (3.6) and (3.7), it is straightforward to see that66

A(i) = (rΦi + c(i))dτ , (C.2)

where the c(i) are constants. For A to be well-defined, c(i)−c(j) must be integrally quantized

for all 1 ≤ i, j ≤ n, and moreover,

c(i) = −rΦi
∣∣∣∣
R=1

(C.3)

because the τ -circle shrinks at the boundary of the disk. We conclude that Φi must be a

piecewise constant function on the R = 1 circle.

Let us now show that Φi is uniquely determined by its value at R = 1. First, combin-

ing (3.6) and (3.7), we find that Φi must satisfy the second-order differential equation

(R(1−R2)∂R(R∂R) + ∂2ϕ)Φi(R,ϕ) = 0 . (C.4)

66First, the equation FRϕ = 0 implies that we can set AR = Aϕ = 0, since there are no nontrivial flat

connections on the disk with punctures at its boundary. The other equations for Aτ can be written in each

patch as ∂ϕ(A
(i)
τ − rΦi) = ∂R(A

(i)
τ − rΦi) = 0, which can be integrated to (C.2).
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The general solution to (C.4), which is smooth in the interior of the disk, can be found

using separation of variables:

Φi =
∞∑

n=−∞
an

Γ(|n|/2 + 1)2

Γ(|n|+ 1)
einϕR|n|

2F1

( |n|
2
,
|n|
2
, |n|+ 1, R2

)
. (C.5)

In particular, at R = 1, we find

Φi(R = 1, ϕ) =

∞∑

n=−∞
ane

inϕ , (C.6)

from which the coefficients an are uniquely determined. As argued around (3.3), the field

Φi must vanish at R = 0, which implies that a0 = 0. We show below that Φi(R = 1, ϕ) is

completely fixed by this requirement and the boundary conditions at the punctures.

Once Φi is fixed, Φr can be obtained simply by integrating the BPS equations (3.6)

and (3.7). In particular, integrating (C.5) term-by-term, we find that

Φr = i
∑

n 6=0

sgn(n)ane
inϕR|n|

2F1

( |n|
2
,
|n|+ 2

2
, |n|+ 1, R2

)
, (C.7)

where the constant mode has been set to zero, as before. Note that (C.7) is an expansion

of Φr in τ -independent solutions of the Laplace equation on S3. That ∇2Φr = 0 is satisfied

follows directly from the Bogomolny equation (3.8), and also by combining (3.6) and (3.7)

into a second-order equation for Φr. The linear equations (3.6), (3.7) provide the relation

between the mode expansions of Φi and Φr, as shown explicitly in (C.5) and (C.7).

To summarize, the solutions of the BPS equations (3.6)–(3.8) on the punctured S3 are

uniquely determined by Φi(R = 1, ϕ), which, according to (C.3), must be a piecewise con-

stant periodic function of ϕ. Furthermore, Φi(R = 1, ϕ) must not have a zero mode, i.e.,∫ π
−π dϕΦi(R = 1, ϕ) = 0. Let us finally spell out the connection between the above con-

struction and monopole operators. In appendix C.2, we show that the singular monopole

boundary conditions fix Φi(R = 1, ϕ) up to an overall constant:

Φi(R = 1, ϕ) = − 1

2r

n∑

k=1

bk sgn

(
cos

ϕ

2
sin

ϕ− ϕk
2

)
+ constant . (C.8)

The undetermined constant in (C.8) is fixed by imposing that Φi(R = 1, ϕ) have no zero

mode, resulting in the final expression67

Φi(R = 1, ϕ) = − 1

2r

n∑

k=1

bk

[
sgn

(
cos

ϕ

2
sin

ϕ− ϕk
2

)
+
ϕk
π

]
. (C.9)

This concludes our description of the solution for the background corresponding to n

twisted-translated monopole operators.

67If we restrict to the range ϕ ∈ (−π, π], then sgn(cos ϕ
2
sin ϕ−ϕk

2
) can be replaced by sgn(ϕ− ϕk).

– 82 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

C.2 Relation to monopole singularities

Let us now derive (C.8) by showing how the piecewise constant function Φi(R = 1, ϕ)

is determined by the monopole singularities (2.36). In stereographic coordinates xµ, the

insertions lie along the line x1 = x2 = 0, and the monopole background is given by

∗F ∼
(
1 +

x2

4r2

) n∑

k=1

bk
xµ − ykµ
|~x− ~yk|3 , (C.10)

where ~yk = (0, 0, 2r tan ϕk
2 ). The ∼ sign in (C.10) implies equality up to non-singular

terms. We will use this notation throughout this section.

Because BPS configurations are functions on the (R,ϕ) disk, it will be more convenient

to use the (R,ϕ, τ) coordinates. In these coordinates, the insertions are located at angles

ϕk on the R = 1 boundary of the disk, and (C.10) takes a more complicated form:

∗F ∼ −1

r

n∑

k=1

bk

(
cosϕ+ tan ϕk

2 sinϕ

(1−R2 + tan2 ϕk
2 (R(sinϕ− cosϕ)− 1)2)

3
2

dR

+
cos2 ϕk

2

(
R sin ϕk

2 − sin
(
ϕ− ϕk

2

))

((1 +R cosϕ)(1−R cos(ϕ− ϕk)))
3
2

Rdϕ

)
. (C.11)

The gauge connection that reproduces the magnetic field (C.11) is given by

A(i) ∼ −1

2

(
n∑

k=1

bk
R sin

(
ϕ− ϕk

2

)
− sin ϕk

2√
(1 +R cosϕ)(1−R cos(ϕ− ϕk))

−
i∑

k=1

bk +
n∑

k=i+1

bk

)
dτ , (C.12)

where A(i) is defined in the patch D(i) defined in (C.1). The constant terms in (C.12)

are chosen such that A(i) vanishes at R = 1, making it a well-defined one-form on D(i).

Moreover, in D(i) ∩D(j), we have that A(i) −A(j) is a well-defined gauge transformation.

Up to regular terms, the scalars Φr,i are determined by (3.7) and (3.8) to be

Φr ∼
1

4r

n∑

k=1

bk

cos
(
ϕ− ϕk

2

)
[
cosϕ−(1+2Rcosϕ)cos(ϕ−ϕk)√
(1+Rcosϕ)(1−Rcos(ϕ−ϕk))

+cos(ϕ−ϕk)−cosϕ

]
, (C.13)

Φi∼− 1

2r

n∑

k=1

bk

[
R sin

(
ϕ− ϕk

2

)
−sin ϕk

2√
(1+Rcosϕ)(1−Rcos(ϕ−ϕk))

+sin
ϕk
2

]
. (C.14)

At R = 1, the singular part of Φi, given in (C.14), becomes a piecewise constant function:

lim
R→1

Φi(R,ϕ)

∣∣∣∣
singular

= − 1

2r

n∑

k=1

bk

[
sgn

(
sin

ϕ− ϕk
2

)
+ sin

ϕk
2

]
. (C.15)

Any contribution to Φi at R = 1 from the terms suppressed in (C.14) must be a regular

periodic function f(ϕ). However, as argued around (C.3), on the BPS locus, Φi must

be piecewise constant at R = 1. We conclude that regular terms can only contribute

f(ϕ) = constant, so that the expression for Φi(R = 1, ϕ) is as in (C.8).
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D Hypermultiplet one-loop determinant on S3

In this section, we calculate the hypermultiplet determinant (3.27) on S3 in the two-

monopole background (3.20), (3.21). For simplicity, we consider a U(1) gauge theory with

a single hypermultiplet of unit charge. Moreover, to simplify notation slightly, we define

q = b/2 and set r = 1 throughout this section.

D.1 Bosonic spectrum

The eigenvalue problem for the bosonic part
∫
d3x

√
gq̃a(DB)a

bqb of the action (2.15) is

DB · ~f ≡
[
δa
b

(
−DµDµ +

3

4
− 1

2
ΦȧḃΦȧḃ

)
+ iDa

b

]
fb = λBfa . (D.1)

Diagonalizing the 2-by-2 R-symmetry matrix DB and using the solution to the BPS equa-

tions leads to the equation

[
−D2 +

3

4
+ σ2 − Φ1̇1̇Φ2̇2̇ ± i(σ + iReD11)− λ±B

]
f± = 0 . (D.2)

For the specific configuration of (anti-)monopole at η = 0 (η = π), ReD11 = 0 and we

can write
[
−D2 +

q2

sin2 η
− λ̃±B

]
f± =

[
−∂2η − 2 cot η∂η −

1

sin2 η
D2
S2 ,q +

q2

sin2 η
− λ̃±B

]
f± = 0 , (D.3)

where D2
S2 ,q is the gauge-covariant Laplacian on S2 with metric ds2 = dψ2 + sin2 ψdτ2 in

the charge-q monopole background and we have defined

λ̃±B ≡ λ±B −
(
3

4
+ σ2 ± iσ

)
. (D.4)

The eigenfunctions can be expanded in monopole spherical harmonics,

f± = h±(η)Yq;ℓm(ψ, τ) , (D.5)

which satisfy

D2
S2 ,qYq;ℓm = −

(
ℓ(ℓ+ 1)− q2

)
Yq;ℓm (D.6)

with ℓ = |q|, |q|+1, . . . and m = −ℓ,−ℓ+1, . . . , ℓ. We are left with an ordinary differential

equation

[
−∂2η − 2 cot η∂η +

ℓ(ℓ+ 1)

sin2 η
− λ̃±B

]
h± = 0 , (D.7)

whose solutions are given by

h±(η) =
1

(1− x2)1/4

[
c1P

ℓ+1/2√
λ̃±B+1−1/2

(x) + c2Q
ℓ+1/2√
λ̃±B+1−1/2

(x)

]
(D.8)
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where x = cos η and P,Q are associated Legendre functions. The solutions are singular at

x = ±1 unless68

√
λ̃±B + 1 = ℓ+ 1, ℓ+ 2, . . . . (D.9)

Hence the bosonic spectrum on S3 is

λ±B = (ℓ+ n)2 − 1

4
± iσ + σ2, n = 1, 2, . . . , ℓ = |q|, |q|+ 1, . . . , (D.10)

with degeneracy 2ℓ+ 1 for each sign. Equivalently, set N + |q|+ 1 = ℓ+ n; then

λ±B = (N + |q|)(N + |q|+ 2) +
3

4
± iσ + σ2, N = 0, 1, . . . (D.11)

with (ℓ, n) = (|q|, N + 1), (|q|+ 1, N), . . . , (N + |q|, 1) and therefore degeneracy

N+|q|∑

ℓ=|q|
(2ℓ+ 1) = (N + 1)2 + 2|q|(N + 1) (D.12)

for each sign, as in (3.28).

D.2 Fermionic spectrum

On S3, we work in the frame

e1 = dη , e2 = sin η dψ , e3 = sin η sinψ dτ , (D.13)

in which the nonvanishing components of the spin connection are given by

ω21
ψ = −ω12

ψ = cos η , ω31
τ = −ω13

τ = cos η sinψ , ω32
τ = −ω23

τ = cosψ . (D.14)

On S2, we work in the frame

ẽ1 = dψ , ẽ2 = sinψ dτ , (D.15)

and choose the associated 2D gamma matrices to be γ̃1 = σ1 and γ̃2 = σ2.
69 The nonvan-

ishing components of the spin connection on S2 are then

ω̃21
τ = −ω̃12

τ = cosψ . (D.16)

Using the above conventions, we can decompose the S3 and S2 covariant Dirac operators

in the monopole background as

/DS3,q = σ3dη +
1

sin η
/DS2,q, /DS2,q = σ1

(
Dψ +

1

2
cotψ

)
+ σ2

1

sinψ
Dτ , (D.17)

68Pm
L (x) is regular on [−1, 1] only if L,m are integers with 0 ≤ m ≤ L, and a similar statement holds

for Qm
L (x) when L,m are half-integers. If q is an integer, then ℓ is an integer and we keep the Q solution;

otherwise, we keep the P solution.
69We have chosen these conventions in light of (4.53), to make the fermionic analysis on HS3 more natural.

– 85 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

where dη ≡ ∂η+cot η. The latter is diagonalized by monopole spinor harmonics, which are

two-component spinors that satisfy

i /DS2,qY
±
q,ℓm = ∆±

q,ℓY
±
q,ℓm, ∆±

q,ℓ = ±
√

(ℓ+ 1/2)2 − q2 (D.18)

for ℓ = |q| + 1/2, |q| + 3/2, . . . and m = −ℓ,−ℓ + 1, . . . , ℓ. For q 6= 0, there also exist zero

modes

i /DS2,qY
0
q,ℓm = 0 (D.19)

with ℓ = |q| − 1/2. We will make use of the properties

σ3Y
±
q,ℓm = Y ∓

q,ℓm , σ3Y
0
q,ℓm = sgn(q)Y 0

q,ℓm . (D.20)

D.2.1 Eigenvalue problem

The eigenvalue problem for the fermionic part −
∫
d3x

√
gψ̃ȧ(DF )ȧ

ḃψḃ of the action (2.15) is

−i /Dψȧ − iΦȧ
ḃψḃ = λFψȧ . (D.21)

Substituting the background Φ1̇
1̇ = −Φ2̇

2̇ = σ and Φ1̇
2̇ = −Φ2̇

1̇ = −iq/ sin η for the scalar

fields, the operator that we wish to diagonalize can be written as

DF =

(
i /D + iσ q

sin η12

− q
sin η12 i /D − iσ

)
. (D.22)

Let us start by making some manipulations to eliminate σ from the problem. Since we are

only interested in the determinant of DF , we can instead solve the eigenvalue problem for

D̃F ≡ DF (σ3 ⊗ 12) =

(
i /D + iσ − q

sin η12

− q
sin η12 −i /D + iσ

)
. (D.23)

We can now absorb σ into the eigenvalues, i.e., instead of D̃F , we will diagonalize

D̂F ≡
(

i /D − q
sin η12

− q
sin η12 −i /D

)
, (D.24)

whose eigenvalues are related to those of D̃F by λ̃ = λ̂+ iσ. Using the spherical symmetry

of the background, the eigenspinors Ψ = (ψ1, ψ2)
T of D̂F can be decomposed into monopole

spinor harmonics. To do so, we consider separately the cases ℓ ≥ |q|+ 1
2 and ℓ = |q| − 1

2 .

D.2.2 ℓ ≥ |q| + 1

2

In this case, we write

ψ1 = f1+(η)Y
+
q,ℓm + f1−(η)Y

−
q,ℓm , (D.25)

ψ2 = f2+(η)Y
+
q,ℓm + f2−(η)Y

−
q,ℓm . (D.26)
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In terms of the above decomposition, we have

D̂FΨ =

(
iσ3dη +

1
sin η i /DS2,q − q

sin η12

− q
sin η12 −iσ3dη − 1

sin η i /DS2,q

)(
f1+(η)Y

+
q,ℓm + f1−(η)Y

−
q,ℓm

f2+(η)Y
+
q,ℓm + f2−(η)Y

−
q,ℓm

)
= λ̂Ψ .

(D.27)

Using the property σ3Y
±
q,ℓm = Y ∓

q,ℓm and linear independence of Y ±, this is equivalent to

M · ~f ≡


iσ1dη +

∆+
q,ℓ

sin ησ3 − q
sin η12

− q
sin η12 −iσ1dη −

∆+
q,ℓ

sin ησ3







f1+(η)

f1−(η)
f2+(η)

f2−(η)


 = λ̂




f1+(η)

f1−(η)
f2+(η)

f2−(η)


 . (D.28)

This system of four coupled equations can be decoupled into a pair of two coupled equations

by making a unitary transformation: in terms of

MU = U−1MU, ~fU = U−1 ~f, U = eiθ(σ2⊗σ3), tan(2θ) =
q

∆+
q,ℓ

, (D.29)

it becomes MU · ~fU = λ̂ ~fU where

MU =

(
M̃U 0

0 −M̃U

)
, M̃U ≡ iσ1(∂η + cot η) +

ℓ+ 1
2

sin η
σ3. (D.30)

Now let us make a further rotation on (D.30) and consider the eigenvalue problem

(
iσ3(∂η+cotη)− ℓ+ 1

2

sinη
σ1

)
·~h=


i(∂η+cotη) − ℓ+ 1

2
sinη

− ℓ+ 1
2

sinη −i(∂η+cotη)



(
h1
h2

)
= λ̂

(
h1
h2

)
. (D.31)

The solutions are given by

h1 = c1(x
2)

1−λ̂
2 (1− x2)ℓ−1/2

2F1

(
ℓ+

1

2
, 1 + ℓ− λ̂,

1

2
− λ̂, x2

)

+ c2(x
2)

2+λ̂
2 (1− x2)ℓ−1/2

2F1

(
ℓ+

3

2
, 1 + ℓ+ λ̂,

3

2
+ λ̂, x2

)
, (D.32)

h2 = ic1

(
2ℓ+ 1

2λ̂− 1

)
(x2)

2−λ̂
2 (1− x2)ℓ−1/2

2F1

(
ℓ+

3

2
, 1 + ℓ− λ̂,

3

2
− λ̂, x2

)

− ic2

(
2λ̂+ 1

2ℓ+ 1

)
(x2)

1+λ̂
2 (1− x2)ℓ−1/2

2F1

(
ℓ+

1

2
, 1 + ℓ+ λ̂,

1

2
+ λ̂, x2

)
, (D.33)

where x = eiη. The hypergeometric function 2F1(a, b, c; z) is regular on the unit circle if

c = 0, 1, . . . and Re(c − a − b) > 0, or if either a or b are non-positive integers (in which

case the hypergeometric series terminates). The first condition is always violated in the

above solution, so we conclude that there exists a regular solution if

λ̂ = ±(n+ ℓ+ 1) , n = 0, 1, . . . , ℓ = |q|+ 1

2
, |q|+ 3

2
, . . . . (D.34)

The degeneracy of each eigenvalue above, considered as an eigenvalue of MU (rather than

of M̃U ) in (D.30) and hence of D̂F , is 2(2ℓ+ 1).

– 87 –



J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

D.2.3 ℓ = |q| − 1

2

In this case, we work directly with (D.24) and expand Ψ = (ψ1, ψ2)
T in zero modes as

ψ1 = h1(η)Y
0
q,ℓm , ψ2 = h2(η)Y

0
q,ℓm . (D.35)

Using the property σ3Y
0
q,ℓm = sgn(q)Y 0

q,ℓm, the eigenvalue problem D̂FΨ = λ̂Ψ becomes

(
i(∂η + cot η) − |q|

sin η

− |q|
sin η −i(∂η + cot η)

)(
h1
h2

)
= sgn(q)λ̂

(
h1
h2

)
, (D.36)

where it is understood that ℓ = |q| − 1
2 . This is precisely (D.31), with λ̂ → sgn(q)λ̂.

The corresponding solutions (D.32) and (D.33) are regular when 1 + ℓ ± sgn(q)λ̂ ≤ 0, so

regardless of sgn(q), the eigenvalues are the same as for the non-zero modes. However, the

degeneracies are halved relative to that case. Namely, the eigenvalues are given by

λ̂ = ± sgn(q)

(
n+ |q|+ 1

2

)
, n = 0, 1, . . . , (D.37)

with degeneracy 2|q|.

D.2.4 Summary

The eigenvalues of D̃F in (D.23) are

± (n+ ℓ+ 1) + iσ, n = 0, 1, . . . , ℓ = |q|+ 1/2, |q|+ 3/2, . . . (D.38)

with degeneracy 2(2ℓ+ 1) for each sign and

± (n+ ℓ+ 1) + iσ, n = 0, 1, . . . , ℓ = |q| − 1/2 (D.39)

with degeneracy 2ℓ+1 for each sign. Equivalently, set N + |q| = n+ ℓ+1/2 (N = 0, 1, . . .);

then the eigenvalues are ±(N + |q|+ 1/2) + iσ with degeneracy

2|q|+
N+|q|−1/2∑

ℓ=|q|+1/2

2(2ℓ+ 1) = 2N(N + 1) + 2|q|(2N + 1) (D.40)

for each sign, as in (3.29) and (3.30).

E Hypermultiplet one-loop determinant on HS3

In this section, we perform the HS3 counterpart of the calculation in the previous section,

using the same conventions throughout. To implement the boundary conditions (4.53), it

will be necessary to keep careful track of the relevant eigenvectors and eigenspinors.
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E.1 Bosonic spectrum

Recall that the bosonic R-symmetry matrix and its eigenvectors are

(DB)a
b =

(
−D2 + 3

4 + σ2 + q2

sin2 η
−σ

σ −D2 + 3
4 + σ2 + q2

sin2 η

)
,

(
q1
q2

)
=

(
f±

∓if±

)
(E.1)

with corresponding eigenvalues λ±B, where f± can be written in terms of monopole spherical

harmonics as in (D.5) and (D.8).

On HS3, we have two cases:

1. The eigenvectors with eigenvalues λ+B have q+ = 2f+ and q− = 0, so the boundary

conditions reduce to

q+| = 0 ⇐⇒ f+| = 0.

By linear independence of the Yq;ℓm, this is equivalent to h+(π/2) = 0. Both PmL (0) = 0

and QmL (0) = 0 when L −m is an odd integer, so allowed eigenfunctions have n even.

This means that we sum over only those ℓ with N + |q| − ℓ odd (i.e., those ℓ′ = ℓ− |q|
with N − ℓ′ odd). Hence the degeneracies are modified to

N(N + 1)

2
+ |q|N (N even),

N(N + 1)

2
+ |q|(N + 1) (N odd) (E.2)

for the “+” sign.

2. The eigenvectors with eigenvalues λ−B have q+ = 0 and q− = 2f−, so the boundary

conditions reduce to

∂⊥q−| = 0 ⇐⇒ ∂ηf−| = 0 ⇐⇒ ∂ηh−(π/2) = 0.

If q is an integer, then we keep only the Q solution in h and

∂ηh−(π/2) ∝
(√

λ̃−B + 1− ℓ

)
Q
ℓ+1/2√
λ̃−B+1+1/2

(0),

which vanishes when (λ̃−B + 1)1/2 − ℓ is an odd integer (it is never zero). Similarly, if q

is a half-integer, then we keep only the P solution in h and

∂ηh−(π/2) ∝
(√

λ̃−B + 1− ℓ

)
P
ℓ+1/2√
λ̃−B+1+1/2

(0),

which again vanishes when (λ̃−B + 1)1/2 − ℓ is an odd integer. Hence in either case, the

degeneracies are modified to

(N + 1)(N + 2)

2
+ |q|(N +2) (N even),

(N + 1)(N + 2)

2
+ |q|(N +1) (N odd) (E.3)

for the “−” sign.

Note that in (E.2) and (E.3), |q| is always multiplied by an even integer. Combining these

results gives (4.55).
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E.2 Fermionic spectrum

Let DF denote the fermionic R-symmetry matrix (D.22), let D̃F = DF (σ3⊗12) as in (D.23),

and let λF denote the eigenvalues of D̃F (not of DF ). Our basic approach to evaluating

the fermionic functional determinant is as follows. The space of four-component spinors

splits as V = X⊕Y where spinors in X satisfy the ψ boundary condition and spinors in Y

satisfy the ψ̃ boundary condition. Left multiplication by σ3 (in the sense of R-symmetry

indices) takes the subspaces X and Y to each other: that is, χ = (σ3 ⊗ 12)ψ and ψ̃ satisfy

the same boundary conditions. Thus the path integral with action ψ̃DFψ computes the

determinant of D̃F , restricted to the subspace Y . As we will see, however, Y is not an

invariant subspace of D̃F . Hence one cannot simply diagonalize D̃F in Y . Rather, for a

linear operator M and a subspace S, we define the determinant of M “restricted to S” as

detSM = exp(trS logM), regardless of whether the operator M |S makes sense.

To begin, we know that the eigenvalue problem

(
iσ1(∂η + cot η) +

ℓ+ 1/2

sin η
σ3

)(
h+(η)

h−(η)

)
= λ

(
h+(η)

h−(η)

)
(E.4)

has the following solutions for the eigenvalues:

λ = ±(n+ ℓ+ 1), n = 0, 1, . . . (E.5)

with degeneracy 2ℓ+ 1 for each sign.70 The corresponding eigenspinors are given by

h+(η) =
1√
2
(h1(η)− h2(η)), h−(η) =

1√
2
(h1(η) + h2(η)) (E.6)

where for λ = +(n+ ℓ+ 1), we substitute

(
h1
h2

)
=

(
F

(1)
n,ℓ (x)

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x)

)
(E.7)

and for λ = −(n+ ℓ+ 1), we substitute

(
h1
h2

)
=

(
F

(2)
n,ℓ (x)

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x)

)
, (E.8)

with

F
(1)
n,ℓ (x) ≡ x−n−ℓ(1− x2)ℓ−1/2

2F1(ℓ+ 1/2,−n,−n− ℓ− 1/2, x2), (E.9)

F
(2)
n,ℓ (x) ≡ x1−n−ℓ(1− x2)ℓ−1/2

2F1(ℓ+ 3/2,−n, 1/2− n− ℓ, x2), (E.10)

and x = eiη.

70Use g = 1√
2

(
1 1
−1 1

)
∈ SU(2) =⇒ g(σ1, σ2, σ3)g

−1 = (σ3, σ2,−σ1) to change basis to (D.31).
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From the previous paragraph and the manipulations of the previous section, we deduce

that the eigenspinors χ of D̃F are as follows. First consider the non-zero (±) modes, with

ℓ ≥ |q|+ 1/2. Define

sq,nℓm+(θ)≡ 1√
2
(cosθ(F

(1)
n,ℓ (x)−

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x))+sinθ(F

(2)
n,ℓ (x)−

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x)))Y

+
q,ℓm

+ 1√
2
(cosθ(F

(1)
n,ℓ (x)+

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x))−sinθ(F

(2)
n,ℓ (x)+

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x)))Y

−
q,ℓm,

sq,nℓm−(θ)≡ 1√
2
(cosθ(F

(2)
n,ℓ (x)−

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x))+sinθ(F

(1)
n,ℓ (x)−

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x)))Y

+
q,ℓm

+ 1√
2
(cosθ(F

(2)
n,ℓ (x)+

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x))−sinθ(F

(1)
n,ℓ (x)+

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x)))Y

−
q,ℓm.

For λF = +(n+ ℓ+ 1) + iσ, we have

χ1̇ =
∑

m

amsq,nℓm+(θ), χ2̇ =
∑

m

a′msq,nℓm−(−θ). (E.11)

For λF = −(n+ ℓ+ 1) + iσ, we have

χ1̇ =
∑

m

bmsq,nℓm−(θ), χ2̇ =
∑

m

b′msq,nℓm+(−θ). (E.12)

Now consider the zero modes, with ℓ = |q| − 1/2. For λF = sgn(q)(n+ ℓ+1)+ iσ, we have
(
χ1̇

χ2̇

)
=
∑

m

am

(
F

(1)
n,ℓ (x)Y

0
q,ℓm

i(2ℓ+1)
2(n+ℓ)+1F

(2)
n,ℓ (x)Y

0
q,ℓm

)
. (E.13)

For λF = − sgn(q)(n+ ℓ+ 1) + iσ, we have
(
χ1̇

χ2̇

)
=
∑

m

bm

(
F

(2)
n,ℓ (x)Y

0
q,ℓm

i(2(n+ℓ)+1)
2ℓ+1 F

(1)
n,ℓ (x)Y

0
q,ℓm

)
. (E.14)

The coefficients a, b, a′, b′ parametrize linear combinations of degenerate eigenspinors.

Specializing to the hemisphere with boundary S2 at η = π/2 means restricting to those

spinors χ satisfying χ|1̇ = −σ3χ|2̇. Clearly, among non-zero modes, the allowed spinors

reduce at the boundary to linear combinations of
(

Y +
q,ℓm

−Y −
q,ℓm

)
,

(
Y −
q,ℓm

−Y +
q,ℓm

)
, (E.15)

which span a 2(2ℓ+1)-dimensional subspace of the 4(2ℓ+1)-dimensional subspace of spinors

with fixed n, ℓ. Using the property

2F1(ℓ+1/2,−n,−n−ℓ−1/2,−1)

2F1(ℓ+3/2,−n,1/2−n−ℓ,−1)
=

(−1)n(2ℓ+1)

2(n+ℓ)+1
⇐⇒

F
(1)
n,ℓ (i)

F
(2)
n,ℓ (i)

=
(−1)n(2ℓ+1)

i(2(n+ℓ)+1)
(E.16)

allows us to write Y ± as linear combinations of s±|: namely, for fixed n, ℓ, we have up to

an m-independent constant that

Y +
q,ℓm ∝ c++(θ)sq,nℓm+(θ)|+ c+−(θ)sq,nℓm−(θ)|, (E.17)

Y −
q,ℓm ∝ c−+(θ)sq,nℓm+(θ)|+ c−−(θ)sq,nℓm−(θ)|, (E.18)
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where

c++(θ) = i(1 + (−1)n)(2(n+ ℓ) + 1) cos θ + (1− (−1)n)(2ℓ+ 1) sin θ, (E.19)

c+−(θ) = (1− (−1)n)(2ℓ+ 1) cos θ + i(1 + (−1)n)(2(n+ ℓ) + 1) sin θ, (E.20)

c−+(θ) = −i(1− (−1)n)(2(n+ ℓ) + 1) cos θ − (1 + (−1)n)(2ℓ+ 1) sin θ, (E.21)

c−−(θ) = (1 + (−1)n)(2ℓ+ 1) cos θ + i(1− (−1)n)(2(n+ ℓ) + 1) sin θ. (E.22)

We see that none of the eigenspinors of D̃F survive the boundary conditions, and moreover,

that D̃F does not act in a simple way on the subspace of spinors that do (it is neither an

invariant subspace nor mapped to its orthogonal complement). Therefore, to compute

the desired determinant of D̃F , we exponentiate the trace of log D̃F in the subspace Y of

allowed spinors. In view of (E.15), (E.17), (E.18), an orthonormal basis for this subspace

is given by

s1,m ≡ 1√
N

(
c++(θ)sq,nℓm+(θ) + c+−(θ)sq,nℓm−(θ)

−c−+(−θ)sq,nℓm+(−θ)− c−−(−θ)sq,nℓm−(−θ)

)
,

s2,m ≡ 1√
N

(
c−+(θ)sq,nℓm+(θ) + c−−(θ)sq,nℓm−(θ)

−c++(−θ)sq,nℓm+(−θ)− c+−(−θ)sq,nℓm−(−θ)

)
,

where the normalization constant is N = 4((2(n+ℓ)+1)2+(2ℓ+1)2) under the assumption

that s†q,nℓmǫ · sq,nℓmǫ′ = δǫǫ′ for some suitably defined inner product.71 We compute that

s†1,m(log D̃F )s1,m =
∑

±

1± (−1)n cos 2θ

2
log(±(n+ ℓ+ 1) + iσ),

s†2,m(log D̃F )s2,m =
∑

±

1∓ (−1)n cos 2θ

2
log(±(n+ ℓ+ 1) + iσ),

whereupon

trY log D̃F =
∑

i,m

s†i,m(log D̃F )si,m = (2ℓ+ 1)
∑

±
log(±(n+ ℓ+ 1) + iσ). (E.23)

Hence the degeneracies of the ± eigenmodes are halved on the hemisphere. We now turn

to the zero modes with ℓ = |q| − 1/2:

• For λF = sgn(q)(n+ ℓ+ 1) + iσ, we have
(
χ|1̇
χ|2̇

)
= F

(1)
n,ℓ (i)

∑

m

am

(
Y 0
q,ℓm

(−1)n+1Y 0
q,ℓm

)
, (E.24)

so the boundary condition reduces to 1 = (−1)n sgn(q).

• For λF = − sgn(q)(n+ ℓ+ 1) + iσ, we have
(
χ|1̇
χ|2̇

)
= F

(2)
n,ℓ (i)

∑

m

bm

(
Y 0
q,ℓm

(−1)nY 0
q,ℓm

)
, (E.25)

so the boundary condition reduces to 1 = (−1)n+1 sgn(q).

71This assumption is justified because D̃F − iσ14 is Hermitian.
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In other words, regardless of sgn(q), we must have n even for λF = +(n + ℓ + 1) + iσ

and n odd for λF = −(n + ℓ + 1) + iσ when ℓ = |q| − 1/2. Hence on the hemisphere, the

eigenvalues +(N + |q|+ 1/2) + iσ (resp. −(N + |q|+ 1/2) + iσ) have degeneracies

2|q|+
N+|q|−1/2∑

ℓ=|q|+1/2

(2ℓ+ 1) = N(N + 1) + 2|q|(N + 1) (N even, resp. odd), (E.26)

N+|q|−1/2∑

ℓ=|q|+1/2

(2ℓ+ 1) = N(N + 1) + 2|q|N (N odd, resp. even). (E.27)

This completes the derivation of (4.57).

E.3 Monopole spinor harmonics

The explicit forms of the Y ±,0
q,ℓm, while not needed here due to our judicious conventions,

can be obtained from [26]. Set y = cosψ. Matching to our conventions, let

Ω±
q,ℓm = Nq,ℓm(τ)

(
∓e∓iπ/4ω↑

q,ℓm(y)

±e±iπ/4ω↓
q,ℓm(y)

)
(E.28)

where

Nq,ℓm(τ)=
(−1)ℓ−m(i/2)ℓ+1/2(ℓ+1/2)√
Γ(ℓ+3/2−q)Γ(ℓ+3/2+q)

√
(ℓ−m)!

(ℓ+m)!

ei(m+q)τ

√
2π

, (E.29)

ω↑
q,ℓm(y)= (1−y)(m−1/2+q)/2(1+y)(m+1/2−q)/2 dℓ+m

dyℓ+m ((1−y)ℓ+1/2−q(1+y)ℓ−1/2+q), (E.30)

ω↓
q,ℓm(y)= (1−y)(m+1/2+q)/2(1+y)(m−1/2−q)/2 dℓ+m

dyℓ+m ((1−y)ℓ−1/2−q(1+y)ℓ+1/2+q), (E.31)

and then set

Y +
q,ℓm =

√
1 + rq,ℓ

2
e−iπ/4Ω+

q,ℓm + sgn(q)

√
1− rq,ℓ

2
eiπ/4Ω−

q,ℓm, (E.32)

Y −
q,ℓm = sgn(q)

√
1− rq,ℓ

2
e−iπ/4Ω+

q,ℓm +

√
1 + rq,ℓ

2
eiπ/4Ω−

q,ℓm (E.33)

where rq,ℓ =
√

1− q2/(ℓ+ 1/2)2. Note that

cos θ =

√
1 + rq,ℓ

2
, sin θ = sgn(q)

√
1− rq,ℓ

2
, (E.34)

with θ defined in (D.29). Further define, for ℓ = |q| − 1/2,

Y 0
q,ℓm =

1√
2
(Y +
q,ℓm + sgn(q)Y −

q,ℓm). (E.35)

The desired properties σ3Y
±
q,ℓm = Y ∓

q,ℓm and σ3Y
0
q,ℓm = sgn(q)Y 0

q,ℓm are satisfied by virtue

of σ3Ω
±
q,ℓm = ±iΩ∓

q,ℓm. The Y
±
q,ℓm and Y 0

q,ℓm are eigenmodes of i /DS2,q where

/DS2,q = σ1

(
Dψ +

1

2
cotψ

)
+σ2

1

sinψ
Dτ = σ1

(
∂ψ +

1

2
cotψ

)
+σ2

1

sinψ
(∂τ−iAτ ) (E.36)

and the gauge field is defined in the coordinate patches 0 < ψ < π/2 and π/2 < ψ < π as

A±
τ = −q(cosψ∓1), respectively. The formulas above are suited to the patch 0 < ψ < π/2.
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F More on matching

In this appendix, we elaborate on several aspects of the matching of twisted correlators

across mirror symmetry. Throughout this section, for notational convenience, we leave all

correlators unnormalized (i.e., we omit an overall factor of 1/Z) and set r = 1.

The mirror dual of any 3D N = 4 abelian gauge theory consisting of only ordinary

or twisted multiplets is known: therefore, the 1D topological theory for twisted HBOs in

such a theory gives a completely general prescription for computing correlators of twisted

CBOs in its mirror dual. On the other hand, shift operators provide a completely general

prescription for computing correlators of twisted CBOs in any such theory directly. To show

that these two prescriptions give identical results for all correlators consists of two steps:

1. Prove this statement for the fundamental abelian mirror symmetry: namely, an arbitrary

twisted HBO correlator in the free massive hyper is equal to the corresponding twisted

CBO correlator in SQED1 with matching FI parameter.

2. Show how to obtain twisted CBO correlators in a general abelian theory from those of

the free hyper/SQED1, namely as sums of products of two-point functions, integrated

over appropriate subsets of mass/FI parameters.

We carry out the first step in appendix F.2 by proving that all twisted correlators match

across the basic duality between a free hyper with mass m and SQED1 with FI parameter

m. We then illustrate the second step in appendix F.3 by proving that all twisted CBO

correlators in SQEDN match the corresponding twisted HBO correlators in the N -node

abelian necklace quiver. In this case, the map between CBOs and HBOs is very simple, and

we derive explicit formulas for all correlators. In principle, our arguments can be extended

to match correlators of twisted HBOs and CBOs in arbitrary abelian mirror pairs using

the general mirror map between chiral ring generators presented in [28].

F.1 Mass and FI parameters

Before embarking on this program, we first review how the shift operator prescription

works in the presence of nonzero mass and FI parameters. As explained in section 5.1.2,

real masses modify the vacuum wavefunctions, the gluing measure, and the multiplicative

factors in the monopole shift operators via σ → σ+m. On the other hand, FI parameters

modify the gluing measure by a factor of e−8π2iζσ for each U(1) factor in the gauge group.

Moreover, in the non-conformal case, correlators take the form of topological correlators

dressed with simple position-dependent factors. The latter are fixed by symmetry, and the

shift operator prescription allows us to compute the topological parts, which we denote

by 〈〉top. In particular, mass (FI) parameters leave the topological nature of CBO (HBO)

correlators unchanged while making HBO (CBO) correlators non-topological. For an n-

point function of twisted Higgs/Coulomb branch operators, each global (flavor/topological)

U(1) symmetry contributes a factor of e−ζ
∑n

i=1 qiϕi where qi is the charge of the i
th operator

in the correlation function and ζ is the associated mass/FI parameter.72

72Strictly speaking, our conventions require an extra factor in the map between mass and FI parameters:

m ↔ −4πζ.
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Let us demonstrate how these rules work in practice in the case of the SQEDN/abelian

necklace quiver duality by matching the three-point function of a monopole X q, anti-

monopole Yq, and (composite) product of twisted scalars (Zp)⋆. This correlator will be a

useful base case in the arguments to follow.

Masses in SQEDN/FI parameters in N-node quiver. FI parameters in the abelian

necklace quiver correspond to real masses for the Cartan of the SU(N) flavor symmetry in

SQEDN . For massive SQEDN , we use

µ(σ, 0) =
N∏

I=1

Γ(1/2 + i(σ +mI))

Γ(1/2− i(σ +mI))
, Ψ0(σ,B) = δB,0

N∏

I=1

Γ(1/2− i(σ +mI))√
2π

, (F.1)

with the mass parameters mI satisfying
∑N

I=1mI = 0. Using a slightly more natural

convention for the Coulomb branch chiral ring generators than in the main text, namely

X =
1

(−4π)N/2
M1, Y =

1

(−4π)N/2
M−1, Z =

i

4π
Φ, (F.2)

the corresponding North shift operators (appropriately modified by mI) are

M1
N =

[
N∏

I=1

(
B − 1

2
− i(σ +mI)

)]
e−

i
2
∂σ−∂B , M−1

N = e
i
2
∂σ+∂B , ΦN = σ+

iB

2
. (F.3)

Using (F.2) and (F.3), we compute that for ϕ1 > ϕ2 > ϕ3,

〈(Zp)⋆(ϕ1)X q(ϕ2)Yq(ϕ3)〉 =
∫

dσ (iσ)p

(4π)qN+p

N∏

I=1

[∏q
ℓ=1(i(σ +mI)− ℓ+ 1/2)

2 cosh(π(σ +mI))

]
(F.4)

in SQEDN . On the necklace quiver side, we write the N FI parameters (of which N − 1

are independent) as ζj = ωj−1 − ωj subject to the condition
∑

j ωj = 0. We now define

X = Q1 · · ·QN , Y = Q̃1 · · · Q̃N , (Zp)⋆ =

p∏

j=1

(Q̃jQj + iωj), (F.5)

assuming for simplicity that p ≤ N . The definition of (Zp)⋆ is the natural one from the

point of view of the D-term relations (the parameters ωj resolve the geometry of the Higgs

branch). The integration measure (6.19) is modified as

Zσ =

N∏

j=1

e8π
2iωjσj,j+1

2 cosh(πσj,j+1)
, (F.6)

while the 1D propagator (6.12) (which is sensitive to mass parameters) remains unchanged.

Counting Wick contractions carefully yields the basic three-point function

〈(Zp)⋆(ϕ1)X q(ϕ2)Yq(ϕ3)〉 = (q!)N
∫
dµ(σj)

N∏

j=p+1

Gσj,j+1(ϕ23)
q

×
p∏

a=1

(Gσa,a+1(0)Gσa,a+1(ϕ23) + qGσa,a+1(ϕ21)Gσa,a+1(ϕ13))Gσa,a+1(ϕ23)
q−1. (F.7)
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Assuming that ϕ1 > ϕ2 > ϕ3, we may use (6.17), the identity

(sgnϕ12 + tanh(πσ))m

2 cosh(πσ)
=

1

m!



m∏

j=1

(
(2j − 1) sgnϕ12 −

1

π

d

dσ

)
 1

2 cosh(πσ)
, (F.8)

integration by parts, and 1
2 cosh(πσ) =

∫
dτ e2πiστ

2 cosh(πτ) to simplify (F.7) to

〈(Zp)⋆(ϕ1)X q(ϕ2)Yq(ϕ3)〉 =
∫

dτ (iτ)p

(4π)qN+p

N∏

I=1

[∏q
j=1(i(τ − 4πωI)− j + 1/2)

2 cosh(π(τ − 4πωI))

]
. (F.9)

This matches the SQEDN result if we identify mI ↔ −4πωI .

FI parameters in SQEDN/masses in N-node quiver. Mass parameters in the

abelian necklace quiver correspond to FI parameters in SQEDN . Consider adding a real

mass associated to the U(1) flavor symmetry of the necklace quiver under which Qi, Q̃i carry

charge ±1/N . In practice, this means replacing all instances of σj,j+1 by σj,j+1 +m/N in

the 1D theory computations. Using the identity

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj




N∏

j=1

Fj(σj,j+1 +m/N) =

∫
dτ e2πimτ

N∏

j=1

F̃j(τ), (F.10)

which is the appropriate modification of (6.17), we obtain (with ϕ1 > ϕ2 > ϕ3)

〈(Zp)⋆(ϕ1)X q(ϕ2)Yq(ϕ3)〉top =

∫
dτ e2πimτ

(4π)qN+p

(iτ)p

(2 cosh(πτ))N

q∏

j=1

(iτ − j + 1/2)N . (F.11)

This matches the expression

〈(Zp)⋆(ϕ1)X q(ϕ2)Yq(ϕ3)〉top=
∫

(−i)p dσe2πimσ

(−4π)qN+p µ(σ,0)Ψ0(σ,0)[M−q
N Mq

NΦ
p
NΨ0(σ,B)]|B=0

(F.12)

on the SQEDN side.

F.2 Proof: basic mirror duality

With this warmup complete, we now match all twisted correlators in SQED1 with FI

parameter ζ and a free hyper of mass m = −4πζ. In the free hyper theory, correlation

functions of X = Q, Y = Q̃, Z = QQ̃ are computed using the measure

dµ(σ) =
dσ δ(σ)

2 cosh(πm)
, (F.13)

and Wick contractions are performed using the σ-independent Green’s function

G(ϕ12) = 〈Q(ϕ1)Q̃(ϕ2)〉 = −sgnϕ12 + tanh(πm)

8π
e−mϕ12 . (F.14)

Correlators are no longer topological due to the factor of e−mϕ12 .
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In matching all correlators, let us focus only on the topological parts (as the position-

dependent parts match trivially). We wish to show that

〈S〉top, SQED1

!
= 〈S〉top, free hyper (F.15)

where S is some operator string in X ,Y,Z and operators appearing in correlation functions

are understood to be in descending order by insertion point (i.e., ϕ1 > · · · > ϕn).
73 Shift

operators in SQED1 with FI parameter ζ give

〈Op1
1 · · · Opn

n 〉top =

∫
dσ e−8π2iζσµ(σ, 0)Ψ0(σ, 0)[(On)

pn
N · · · (O1)

p1
NΨ0(σ,B)]|B=0 (F.16)

where Oi ∈ {X ,Y,Z} and

XN =

(
B − 1

2
− iσ

)
e−

i
2
∂σ−∂B

(−4π)1/2
, YN =

e
i
2
∂σ+∂B

(−4π)1/2
, ZN =

i

4π

(
σ +

iB

2

)
. (F.17)

Here, the notation Zp is understood to mean p adjacent insertions of Z at separated points,

which is equivalent to a single insertion of the composite operator (Zp)⋆. On the other

hand, the 1D theory for the free hyper with mass m gives

〈Op1
1 · · · Opn

n 〉top =

∫
dτ e2πimτ

∫
dσ

e−2πiτσ

2 cosh(πσ)
w(Op1

1 · · · Opn
n ) (F.18)

where w(s) denotes the sum of all full Wick contractions of the operator string s and Wick

contractions are performed using the “topological” propagators

G± = −±1 + tanh(πσ)

8π
, G0 = −tanh(πσ)

8π
. (F.19)

We proceed by induction. In the previous subsection, we established the base case

〈ZpX qYq〉top, SQED1 = 〈ZpX qYq〉top, free hyper. (F.20)

Now fix some S and suppose we have established that 〈S〉top, SQED1 = 〈S〉top, free hyper,

as well as a similar statement for all operator strings containing fewer operators than S.
Consider swapping two adjacent operators in S to form a new operator string S ′. Starting
from the basic string ZpX qYq, one can obtain any other string by performing three types

of swaps (below, let SL,R denote substrings of S):

1. Let S ≡ SLXYSR, S ′ ≡ SLYXSR, and S0 ≡ SLSR.

2. Let S ≡ SLZXSR, S ′ ≡ SLXZSR, and S0 ≡ SLXSR.

3. Let S ≡ SLZYSR, S ′ ≡ SLYZSR, and S0 ≡ SLYSR.
73In SQEDN , when restricting our attention to the operators X and Y, it suffices to consider correlators

of the form 〈X a1Yb1X a2Yb2 · · · X anYbn〉 for ai, bi ∈ Z>0 for two reasons. First, if X pj (ϕj)X pj+1(ϕj+1)

appears somewhere in the operator string, then we may replace it by X pj+pj+1 , and similarly for Y: this is

obvious from composition of shift operators, and also from the mirror 1D theory because Wick contractions

depend only on the ordering between X and Y. Second, correlators on the circle simply change by signs

under cyclic permutations of the insertions: for example, 〈XmYm+nXn〉 = (−1)Nn〈Xm+nYm+n〉; this

property is clear from moving shift operators past the branch point but harder to see from the 1D theory.
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In all three cases, the Wick contractions of the strings so defined are related in a simple way,

implying relations between the corresponding correlators (F.18) in the free hyper theory:

1. w(S ′)=w(S)+(G−−G+)w(S0)=w(S)+ 1
4πw(S0) =⇒ 〈S ′〉top= 〈S〉top+ 1

4π 〈S0〉top.

2. w(S ′)=w(S)+(G+−G−)w(S0)=w(S)− 1
4πw(S0) =⇒ 〈S ′〉top= 〈S〉top− 1

4π 〈S0〉top.

3. Same as in case (1).

On the other hand, the shift operators (F.17) for SQED1 satisfy the commutation

relations

[XN ,YN ] =
1

4π
, [XN ,ZN ] =

1

4π
XN , [YN ,ZN ] = − 1

4π
YN , (F.21)

implying that the correlators (F.16) in SQED1 satisfy identical relations in the three cases:

1. 〈S ′〉top = 〈S〉top + 1
4π 〈S0〉top.

2. 〈S ′〉top = 〈S〉top − 1
4π 〈S0〉top.

3. Same as in case (1).

By the induction hypothesis, 〈S〉top and 〈S0〉top both match in SQED1 and the free hyper,

which immediately implies that 〈S ′〉top, SQED1 = 〈S ′〉top, free hyper, as desired.

F.3 Proof: HBOs in N-node quiver and CBOs in SQEDN

All correlation functions of twisted CBOs in SQEDN can be written very explicitly with

the aid of the shift operators

XN =

(
B − 1

2
− iσ

)N e−
i
2
∂σ−∂B

(−4π)N/2
, YN =

e
i
2
∂σ+∂B

(−4π)N/2
, ZN =

i

4π

(
σ +

iB

2

)
, (F.22)

which are the appropriate generalizations of (F.17). Namely, consider a correlator with n

operators, drawn from X ,Y,Z, having positive integer powers p1, . . . , pn and labeled by

signs ǫ1, . . . , ǫn ∈ {0,±1} indicating whether the operator is X (ǫ = +1), Y (ǫ = −1), or

Z (ǫ = 0). We assume that the charges sum to zero, so that the correlator is nontrivial:∑n
i=1 ǫipi = 0. For arbitrary f(σ,B), we have that

X p
Nf(σ,B) =

(−1)pN

(−4π)pN/2

p∏

ℓ=1

(
ℓ− 1

2
− B

2
+ iσ

)N
f(σ − ip/2, B − p) (F.23)

while YpNf(σ,B) = (−4π)−pN/2f(σ + ip/2, B + p). Hence we obtain, using (F.22),

〈Op1
1 · · ·Opn

n 〉= (−1)N
∑

j pjǫ
2
j/2

(−4π)N
∑

j pjǫ
2
j/2+

∑
j pj(1−ǫ2j )

∫
dσ

(2cosh(πσ))N
(F.24)

×
n∏

j=1

[(
j∑

k=1

ǫkpk−iσ
)pj(1−ǫj) pj∏

ℓ=1

(
ℓ− 1

2
+iσ−

j∑

k=1

ǫkpk

)Nǫj/2](1+ǫj)
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where the insertion points of the Opi
i satisfy ϕ1 > · · · > ϕn. Note that

∑
j pjǫ

2
j/2 is

always an integer, by the (mod 2)-version of the zero-charge condition
∑n

i=1 ǫipi = 0.

The formula (F.24) encodes all possible correlators of twisted CBOs in SQEDN . One can

check that (F.24) includes (F.4) (without mass parameters) as a special case. The shift

operator approach to twisted CBOs in SQEDN is significantly simpler than the mirror

approach to twisted HBOs in the necklace quiver using the Higgs branch topological theory:

reproducing (F.24) in full generality using the latter approach is so laborious as to be

intractable. Nonetheless, we now present a proof that all twisted HBO/CBO correlators

match across this duality.74

Let us use the result of the previous subsection to match all shift operator results for

SQEDN to the mirror correlators computed using the 1D theory in the necklace quiver.

Our argument relies on the procedure of building mirror pairs from (copies of) the basic

mirror duality and gauging subsets of mass/FI parameters. The basic ingredients are as

follows. The 1D theories for the free hyper with mass parameter m associated to the U(1)

flavor symmetry under which Q, Q̃ have charge ±1 and for SQED1 with FI parameter ζ are

Zfree(m) =

∫
DQ̃DQe4π

∫
dϕ Q̃(∂ϕ+m)Q, (F.25)

ZSQED1(ζ) =

∫
dσ e−8π2iζσ

∫
DQ̃DQe4π

∫
dϕ Q̃(∂ϕ+σ)Q. (F.26)

The basic examples of gauging/ungauging are
∫
dmZfree(m) = ZSQED1 ,

∫
dζ ZSQED1(−ζ/4π) = Zfree, (F.27)

where Z ≡ Z(0) (compare these operations to the S-transformation in [92]).

In our case, the 1D theory for SQEDN is obtained by taking N copies of Zfree and

gauging the diagonal U(1) subgroup:

ZSQEDN
=

∫
dσ

∫ 


N∏

j=1

DQ̃j DQj


 e4π

∫
dϕ

∑N
j=1 Q̃j(∂ϕ+σ)Qj =

∫
dζ Zfree(ζ)

N . (F.28)

The 1D theory for the necklace quiver is obtained by writing

ZU(1)N/U(1) =

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj




N∏

j=1

Zfree(σj,j+1) =

∫
dτ Z̃free(τ)

N , (F.29)

where we have used (6.17). Any correlator of the form 〈Op1
1 (ϕ1) · · · Opn

n (ϕn)〉 in the necklace

quiver where Oi ∈ {X ,Y} (X ≡ Q1 · · ·QN and Y ≡ Q̃1 · · · Q̃N ) can be written as

〈Op1
1 (ϕ1) · · · Opn

n (ϕn)〉 =
∫
dτ

(∫
dζ e−2πiτζZfree(ζ)[o

p1
1 (ϕ1) · · · opnn (ϕn)]

)N
, (F.30)

Zfree(ζ)[o
p1
1 (ϕ1) · · · opnn (ϕn)] ≡

∫
DQ̃DQe4π

∫
dϕ Q̃(∂ϕ+ζ)Qop11 (ϕ1) · · · opnn (ϕn), (F.31)

74Mirror symmetry seems to entail a principle of “conservation of effort”: for twisted CBO correlators in

the necklace quiver, using the mirror 1D theory is simpler in practice than using shift operators (unlike for

twisted CBO correlators in SQEDN ).
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with oi ∈ {Q, Q̃}. There remains a correspondence between operator insertions in

ZU(1)N/U(1) and operator insertions in Zfree(ζ) when the operators include Z: letting Oi ∈
{X ,Y,Z} be specified by signs ǫi, we have in the necklace quiver that 〈Op1

1 (ϕ1) · · · Opn
n (ϕn)〉

is given by

ZU(1)N/U(1)[Op1
1 (ϕ1) · · · Opn

n (ϕn)] =

∫ 


N∏

j=1

dσj


 δ


 1

N

N∑

j=1

σj




N∏

j=1

Zfree(σj,j+1)[Πj ],

Πj ≡
n∏

k=1

(Q(ϕk)
ǫk(1+ǫk)/2Q̃(ϕk)

−ǫk(1−ǫk)/2)pkQQ̃(ϕk)
θ(pk−j)(1−ǫk)(1+ǫk), (F.32)

where the Heaviside step function θ is defined so that θ(0) = 1; here, we have assumed

that if ǫi = 0, then the corresponding pi ≤ N . By (6.17), this can be written as

ZU(1)N/U(1)[Op1
1 (ϕ1) · · · Opn

n (ϕn)] =

∫
dτ




N∏

j=1

∫
dσj e

−2πiτσjZfree(σj)[Πj ]top


 (F.33)

where

Zfree(σj)[Πj ] = e−σj
∑n

k=1 pkǫkϕkZfree(σj)[Πj ]top (F.34)

and we have shifted the τ contour to replace Zfree(σj)[Πj ] by Zfree(σj)[Πj ]top in (F.33).

Using the shift operator formula

〈Op1
1 · · ·Opn

n 〉top=
(−1)

∑
j pjǫ

2
j/2

(−4π)
∑

j pjǫ
2
j/2+

∑
j pj(1−ǫ2j )

∫
dτ

e2πiζτ

2cosh(πτ)
(F.35)

×
n∏

j=1

[(
j∑

k=1

ǫkpk−iτ
)pj(1−ǫj)(1+ǫj) pj∏

ℓ=1

(
ℓ− 1

2
+iτ−

j∑

k=1

ǫkpk

)ǫj(1+ǫj)/2]

for SQED1 with FI parameter −ζ/4π (the N = 1 case of (F.24), with an extra insertion

of e2πiζσ) and the result of the previous subsection, we have in the free hyper theory that

Zfree(σj)[Πj ]top =
(−1)

∑
k pkǫ

2
k/2

(−4π)
∑

k pkǫ
2
k/2+

∑
k θ(pk−j)(1−ǫ2k)

∫
dτj

e2πiσjτj

2 cosh(πτj)
(F.36)

×
n∏

k=1

[(
k∑

ℓ=1

ǫℓpℓ − iτj

)θ(pk−j)(1−ǫk)(1+ǫk) pk∏

m=1

(
m− 1

2
+ iτj −

k∑

ℓ=1

ǫℓpℓ

)ǫk(1+ǫk)/2 ]
.

Substituting (F.36) into (F.33) and simplifying shows that

ZU(1)N/U(1)[Op1
1 (ϕ1) · · · Opn

n (ϕn)] = 〈Op1
1 (ϕ1) · · · Opn

n (ϕn)〉 (F.37)

where the right-hand side is given precisely by the shift operator formula (F.24) for SQEDN .

This completes our proof of matching for the SQEDN/necklace quiver duality.
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F.4 BF theories: an appetizer

In some cases, it is possible to test mirror symmetry at the level of 1D topological sectors by

working purely on the Higgs branch. This observation dovetails with another application

of our formalism, namely to BF theories.

So far, the 1D formalism for HBOs has been applied to theories containing only ordi-

nary or only twisted N = 4 multiplets. There are some situations in which it can describe

theories containing both ordinary and twisted multiplets. Namely, one can couple ordi-

nary and twisted abelian vector multiplets through a BF (mixed Chern-Simons) term that

preserves N = 4 supersymmetry [15]. In addition, one can couple the vector multiplet

to hypermultiplets and the twisted vector multiplet to twisted hypermultiplets. Call such

abelian N = 4 CSM theories, which have only mixed ordinary-twisted BF terms, “of

BF type”.

As an example, consider the N = 4 CSM theories of Jafferis-Yin [93]. These are

special cases of their model II(Nf )k, which is defined (in N = 3 notation) as a U(1)k ×
U(1)−k theory with Nf −1 hypermultiplets (Xi, X̃i) of charge ((+1,+1), (−1,−1)) and one

hypermultiplet (Y, Ỹ ) of charge ((+1,−1), (−1,+1)) where Xi, X̃i, Y, Ỹ are N = 2 chiral

multiplets. The II(Nf )k theory is of BF type: in N = 4 language, it consists of one

vector coupled to Nf − 1 hypers (Xi, X̃i), one twisted vector coupled to one twisted hyper

(Y, Ỹ ), and (after a simple change of variables) a mixed BF term at level k. The classical

moduli space has two Higgs branches MX and MY , of complex dimension 2(Nf − 1)

and 2, respectively. These are parametrized by Xi, X̃i and Y, Ỹ (modulo constant gauge

transformations), respectively. An important feature of N = 4 CSM theories is that

their Higgs branches can receive quantum corrections [94]. Assuming that k is even, the

quantum-corrected Higgs branches are

MX = C
2Nf ///U(1), MY = C

2/Zk/2+Nf−1 (F.38)

where, in the first case, the action of U(1) on the coordinates (Xi, X̃i, X
′, X̃ ′) of C2Nf is

Xi → e2iθ/kXi, X̃i → e−2iθ/kX̃i, X ′ → eiθX ′, X̃ ′ → e−iθX̃ ′ (F.39)

(we have introduced extra variables X ′, X̃ ′, whose charges we have swapped relative to

those of [93]). Concretely, MX can be described by the equations

Nf−1∑

i=1

(|Xi|2 − |X̃i|2) +
k

2
(|X ′|2 − |X̃ ′|2) = 0,

Nf−1∑

i=1

XiX̃i +
k

2
X ′X̃ ′ = 0 (F.40)

modulo the action (F.39). The theory II(Nf )k=2 is argued to describe the same IR fixed

point as N = 4 SQEDNf
. Indeed, SQEDNf

has Coulomb branch C2/ZNf
and Higgs branch

equal to the hyperkähler quotient (F.40) with k = 2.

Let us write down, and qualitatively discuss, the 1D theory for the Jafferis-Yin theory

II(Nf )k. Let σ and τ denote the scalar components of the ordinary and twisted abelian

vector multiplets, respectively; let Qi, Q̃i denote the twisted scalars of the Nf − 1 hyper-

multiplets (Xi, X̃i), and let R, R̃ denote the twisted scalars of the twisted hypermultiplet
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(Y, Ỹ ) (hopefully, confusion will not arise between the two senses of “twisted”). Motivated

by the identification with SQEDNf
, let us interpret SU(2)L as SU(2)H (acting on the Higgs

branch) and SU(2)R as SU(2)C (acting on the would-be Coulomb branch). The N = 4

Yang-Mills term is both QH
β - and QC

β -exact, so we may use it to localize with respect to

either supercharge. If we localize with respect to QH
β , then we obtain a 1D theory for

Qi, Q̃i with a determinant contribution from the twisted part:

Z =

∫
dσ dτ

e−ikπστ

2 cosh(πτ)

∫
DQ̃i DQi e

4π
∫
dϕ Q̃i(∂ϕ+σ)Qi . (F.41)

If we localize with respect to QC
β , then we obtain a 1D theory for R, R̃ with a determinant

contribution from the untwisted part:

Z =

∫
dσ dτ

e−ikπστ

(2 cosh(πσ))Nf−1

∫
DR̃DRe4π

∫
dϕ R̃(∂ϕ+τ)R. (F.42)

These two representations are equivalent, and they can be summarized by writing a 1D

theory for both ordinary and twisted fields as follows:

Z =

∫
dσ dτ e−ikπστ

∫
DQ̃i DQi DR̃DRe4π

∫
dϕ (Q̃i(∂ϕ+σ)Qi+R̃(∂ϕ+τ)R). (F.43)

Integrating out R, R̃ in (F.43) reproduces (F.41), and integrating out Qi, Q̃i in (F.43) repro-

duces (F.42). Operators in the cohomology of QH
β are Qi, Q̃i and monopoles for the twisted

U(1). Operators in the cohomology of QC
β are R, R̃ and monopoles for the untwisted U(1).

The Coulomb branch chiral ring of this theory is simple to describe (again, by “Coulomb

branch,” we mean the Higgs branch MY that would be interpreted as the Coulomb branch

of SQEDNf
when k = 2). Let M,M denote the basic monopole/antimonopole of the

untwisted U(1). Due to the mixed Chern-Simons term, M and M are charged under

the twisted U(1) (the hypermultiplets do not contribute to the monopole charges). Given

the explicit description of MY as the hyperkähler cone C2/Zk/2+Nf−1, we expect that the

Coulomb branch chiral ring is generated by three gauge-invariant twisted CBOs X,Y, Z,

modulo the relation XY = Zk/2+Nf−1. The natural candidates for these operators are

X ∼ Rk/2M, Y ∼ R̃k/2M, Z ∼ RR̃. (F.44)

In particular, when k = 2, we may identify the dressed monopoles RM, R̃M of the CSM

theory with the (gauge-neutral) bare monopoles of SQEDNf
, which satisfy the chiral ring

relation (RM)(R̃M) = ZNf . The Higgs branch chiral ring (i.e., that of MX) is more

complicated. If, in addition to Qi, Q̃i, one introduces twisted scalars Q′, Q̃′ for the (X ′, X̃ ′)
in (F.39) and (F.40), then one can construct the generators from the gauge-invariant com-

binations

Q
k/2
i Q̃′, Q̃

k/2
i Q′. (F.45)

Let us simply observe, using the basic Fourier transform identity for (2 cosh(πσ))−1, that

the Higgs branch representation of the 1D theory (F.41) can be written as follows:

Z =

∫
dσ

2 cosh(kπσ/2)

∫
DQ̃i DQi e

4π
∫
dϕ Q̃i(∂ϕ+σ)Qi (F.46)

=

∫
dσ

∫
DQ̃i DQi DQ̃

′
DQ′ e4π

∫
dϕ (Q̃i∂ϕQi+Q̃

′∂ϕQ′+σ(QiQ̃i+
k
2
Q′Q̃′)). (F.47)
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Hence σ can be interpreted as a Lagrange multiplier enforcing the constraint

Nf−1∑

i=1

QiQ̃i +
k

2
Q′Q̃′ = 0, (F.48)

which corresponds to the second of the defining conditions (F.40) for the Higgs branch.

When k = 2, we obtain the usual D-term relation in SQEDNf
. This is a consistency check

of the CSM description of SQEDNf
from the point of view of the 1D theory.75

G Supergravity background

In this section, we briefly show how to obtain our non-conformal rigid N = 4 supersymme-

try algebra on S3, namely su(2|1)ℓ ⊕ su(2|1)r, from a supergravity background (analogous

constructions are known in the 2D N = (2, 2) context, which is similar to 3D N = 4 in

terms of how mirror symmetry acts on R-symmetries; see, e.g., [95]).

We use the off-shell formulation of 3D N = 4 conformal supergravity presented in [96],

which dimensionally reduces off-shell 4D N = 2 SUGRA to off-shell 3D N = 4 SUGRA.

In the process, the 4D R-symmetry group (SU(2) × U(1))/Z2 is enhanced to the 3D R-

symmetry group (SU(2) × SU(2))/Z2
∼= SO(4). The 4D Weyl multiplet decomposes into

a 3D Weyl multiplet and a 3D Kaluza-Klein vector multiplet. In 4D and 3D, matter

multiplets are defined in a superconformal background of 4D or 3D Weyl multiplet fields,

according to the superconformal method for constructing matter-coupled Poincaré super-

gravity. There is a direct correspondence between 4D and 3D matter multiplets, namely

vector multiplets, tensor multiplets, and hypermultiplets (i.e., these multiplets are irre-

ducible under reduction).

A note on conventions: [96] uses indices i, j (our a, b) for the fundamental of SU(2)H
and p, q (our ȧ, ḃ) for the fundamental of SU(2)C . The spinor parameters of Q- and S-

supersymmetry are ǫip and ηip, which have Weyl weights −1/2 and 1/2, respectively (the

former should not be confused with the Levi-Civita symbol, for which ǫ12 = 1). Below,

spinor indices are suppressed.

The 3D background multiplets are as follows:

• The 3DWeyl multiplet consists of fields eµ
a, ψµ

ip, bµ,Vµij ,Aµ
p
q, C, χ

ip, D (vielbein, grav-

itino, dilatation gauge field, SU(2)H R-symmetry gauge field, SU(2)C R-symmetry gauge

field, and auxiliary fields) with Weyl weights −1,−1/2, 0, 0, 0, 1, 3/2, 2, respectively. Its

transformation rules are given by (3.1) of [96]. The BPS conditions require that

δψµ
ip = 2Dµǫ

ip − γµη
ip = 0, (G.1)

δχip = 2 /DCǫip +Dǫip +
1

2
R(A)ab

p
qγ
abǫiq − 1

2
R(V)abijγabǫjp + 2Cηip = 0. (G.2)

• The 3D Kaluza-Klein (compensator) vector multiplet consists of a scalar triplet (L0)pq
(antihermitian), a spinor ψip, a gauge field Bµ, and an auxiliary scalar triplet (Y 0)ij

75Note that in going from (F.41) to (F.47), we are really using the equivalence of SQED1 to a free hyper.

Thus the new fields Q′ and Q̃′ correspond to the monopole operators for τ in the theory (F.41).
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(Hermitian), with Weyl weights 1, 0, 3/2, 2, respectively. Its transformation rules are

given by (2.40) and (2.41) of [96]. The BPS conditions require that

δψip = /D(L0)pqǫ
iq − 1

2
F (B)abγ

abǫip + C(L0)pqǫ
iq + (Y 0)ijǫ

jp + (L0)pqη
iq = 0. (G.3)

In the above, the derivative Dµ is covariant with respect to Lorentz, dilatation, and R-

symmetry transformations, while the derivative Dµ is covariant with respect to all su-

perconformal symmetries and includes fermionic terms. The 3D matter multiplets are

as follows:

• The 3D vector multiplet, like the KK vector multiplet, consists of fields Lpq,Wµ,Ω
ip, Y i

j

with Weyl weights 1, 0, 3/2, 2, respectively. Its transformation rules are given by (4.6)

of [96]. Setting the background fermions to zero, these are:

δWµ = ǭipγµΩ
ip, (G.4)

δΩip = /DLpqǫ
iq − 1

2
F (W )abγ

abǫip + Y i
jǫ
jp + CLpqǫ

iq + Lpqη
iq, (G.5)

δLpq = 2ǭiqΩ
ip − δpq ǭirΩ

ir, (G.6)

δY i
j = 2ǭjp /DΩip − 2CǭjpΩ

ip − η̄jpΩ
ip − (trace). (G.7)

The transformation rules for the 3D tensor (twisted vector) multiplet are given by (4.17)

of [96]; these are similar.

• The 3D hypermultiplet consists of fields (Aα)i, ζ
α with Weyl weights 1/2, 1, respectively.

Its transformation rules are given by (4.22) of [96]:

δ(Aα)i = 2ǭip(ζ
α)p, (G.8)

δ(ζα)p = /D(Aα)iǫ
ip − 1

2
C(Aα)iǫ

ip +
1

2
(Aα)iη

ip. (G.9)

Here, α can be thought of as a flavor index (superconformal invariance requires that the

hypermultiplet target space be a hyperkähler cone, so that α takes an even number of

values). The transformation rules for the 3D twisted hypermultiplet, which cannot be

obtained by dimensional reduction, are given by (4.23) of [96]; these are similar.

The desired BPS configuration of the background fields is as follows. We set

bµ,Vµij ,Aµ
p
q, C,D = 0, Bµ = 0 (G.10)

in the 3D Weyl and KK vector multiplets, thus reducing the BPS conditions (G.1), (G.2),

(G.3) to

0 = 2∇µǫ
ip − γµη

ip, (G.11)

0 = /∂(L0)pqǫ
iq + (Y 0)ijǫ

jp + (L0)pqη
iq. (G.12)

Keeping in mind the Weyl weights and hermiticity properties of L0 and Y 0, if we take

ǫaȧ = ξaȧ, ηaȧ = 2ξ′aȧ, (L0)ȧḃ = ih̄ȧḃ, (Y 0)a
b =

1

r
ha

b (G.13)
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where h and h̄ are constant su(2)H,C matrices, then the conditions (G.11), (G.12) become

∇µǫaȧ =
1

2
γµηaȧ ⇐⇒ ∇µξaȧ = γµξ

′
aȧ, (G.14)

(L0)ḃȧη
aȧ = −(Y 0)abǫ

bḃ ⇐⇒ ξ′aȧ =
i

2r
ha

bξbḃh̄
ḃ
ȧ, (G.15)

which are precisely the Killing spinor equations (2.10) and (2.11).

We now substitute the background values into the transformation rules for the mat-

ter multiplets. In doing so, we recover only the transformations for abelian vector mul-

tiplets and ungauged hypermultiplets rather than the full supersymmetry transforma-

tions (A.9), (A.10), (A.11), (A.12) for the vector multiplet and (A.13), (A.14) for the

hypermultiplet. This is because [96] considers only abelian 3D vector multiplets and

3D hypermultiplets that are not coupled to vector multiplets (although one can gauge-

covariantize the SUSY transformations of the latter by hand). From (G.10), we have for

the vector multiplet that

δWµ = ǭipγµΩip, (G.16)

δΩip = − i

2
F (W )abǫ

abcγcǫip − Yi
jǫjp + γµǫi

q∂µLqp − Lp
qηiq, (G.17)

δLpq = −(ǭipΩiq + ǭiqΩip), (G.18)

δYij = ǭip /∇Ωj
p + ǭjp /∇Ωi

p − 1

2
(η̄ipΩj

p + η̄jpΩi
p). (G.19)

If we now assume that the Dirac conjugates satisfy ǭ = i
2ǫ = i

2ξ and η̄ = i
2η = iξ′

and identify

(Wµ,Ωaḃ, Lȧḃ, Yab) = (Aµ, λaḃ,−iΦȧḃ, Dab), (G.20)

then we reproduce the abelian vector multiplet transformations

δξAµ =
i

2
ξaḃγµλaḃ, (G.21)

δξλaḃ = − i

2
ǫµνργρξaḃFµν −Da

cξcḃ − iγµξa
ċ∂µΦċḃ + 2iΦḃ

ċξ′aċ, (G.22)

δξΦȧḃ =
1

2
(ξcȧλcḃ + ξcḃλcȧ), (G.23)

δξDab = − i

2
(ξa

ċγµ∇µλbċ + ξb
ċγµ∇µλaċ) +

i

2
(ξ′a

ċλbċ + ξ′b
ċλaċ). (G.24)

From (G.10), we have for the hypermultiplet that

δ(Aα)a = −2ǭaḃ(ζα)ḃ, (G.25)

δ(ζα)ȧ = −/∂(Aα)aǫaȧ −
1

2
(Aα)aηaȧ, (G.26)

so that if we take α = 1, 2 and identify

((A1)i, (ζ
1)p) ∝ (qa, iψȧ), ((A2)i, (ζ

2)p) ∝ (q̃a, iψ̃ȧ), (G.27)

then we reproduce the ungauged hypermultiplet transformations

δξq
a = ξaḃψḃ, δξψȧ = iγµξaȧ∂µq

a + iξ′aȧq
a, (G.28)

δξ q̃
a = ξaḃψ̃ḃ, δξψ̃ȧ = iγµξaȧ∂µq̃

a + iq̃aξ′aȧ. (G.29)
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[44] C. Córdova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur Indices,

JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].

[45] L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators

in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113

[arXiv:0909.0945] [INSPIRE].

[46] N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and

Liouville Theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

[47] J. Gomis and B. Le Floch, ’t Hooft Operators in Gauge Theory from Toda CFT, JHEP 11

(2011) 114 [arXiv:1008.4139] [INSPIRE].

[48] J. Gomis, T. Okuda and V. Pestun, Exact Results for ’t Hooft Loops in Gauge Theories on

S4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].

[49] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP

06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[50] P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B

125 (1977) 1 [INSPIRE].

[51] A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal

Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[52] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP

03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[53] V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)

440301 [arXiv:1608.02952] [INSPIRE].

[54] B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP 11 (2015) 055

[arXiv:1506.01718] [INSPIRE].

[55] N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D

CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

[56] D. Gaiotto, Boundary F-maximization, arXiv:1403.8052 [INSPIRE].

– 108 –

https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
https://arxiv.org/abs/0908.4052
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4052
https://doi.org/10.1007/JHEP09(2010)092
https://arxiv.org/abs/1002.0888
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0888
https://doi.org/10.1007/JHEP08(2014)112
https://arxiv.org/abs/1405.6714
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.6714
https://arxiv.org/abs/1609.04406
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.04406
https://doi.org/10.1088/1751-8121/aa77bb
https://doi.org/10.1088/1751-8121/aa77bb
https://arxiv.org/abs/1608.02955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02955
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://doi.org/10.4310/ATMP.2013.v17.n5.a3
https://arxiv.org/abs/1112.5179
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5179
https://doi.org/10.1007/JHEP05(2012)007
https://arxiv.org/abs/1201.5539
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5539
https://doi.org/10.1007/JHEP11(2016)106
https://arxiv.org/abs/1606.08429
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08429
https://doi.org/10.1007/JHEP01(2010)113
https://arxiv.org/abs/0909.0945
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0945
https://doi.org/10.1007/JHEP02(2010)057
https://arxiv.org/abs/0909.1105
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.1105
https://doi.org/10.1007/JHEP11(2011)114
https://doi.org/10.1007/JHEP11(2011)114
https://arxiv.org/abs/1008.4139
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4139
https://doi.org/10.1007/JHEP05(2012)141
https://arxiv.org/abs/1105.2568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2568
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
https://doi.org/10.1016/0550-3213(77)90221-8
https://doi.org/10.1016/0550-3213(77)90221-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B125,1%22
https://doi.org/10.1007/JHEP03(2010)089
https://arxiv.org/abs/0909.4559
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
https://doi.org/10.1007/JHEP03(2011)127
https://doi.org/10.1007/JHEP03(2011)127
https://arxiv.org/abs/1012.3512
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02952
https://doi.org/10.1007/JHEP11(2015)055
https://arxiv.org/abs/1506.01718
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01718
https://doi.org/10.1007/JHEP06(2011)025
https://arxiv.org/abs/1003.1112
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1112
https://arxiv.org/abs/1403.8052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.8052


J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

[57] C. Beem, T. Dimofte and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 12

(2014) 177 [arXiv:1211.1986] [INSPIRE].

[58] S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys. A 50 (2017)

443016 [arXiv:1608.02968] [INSPIRE].

[59] M. Bullimore, M. Fluder, L. Hollands and P. Richmond, The superconformal index and an

elliptic algebra of surface defects, JHEP 10 (2014) 062 [arXiv:1401.3379] [INSPIRE].

[60] K. Hori and M. Romo, Exact Results In Two-Dimensional (2,2) Supersymmetric Gauge

Theories With Boundary, arXiv:1308.2438 [INSPIRE].

[61] A. Cabo-Bizet, Factorising the 3D Topologically Twisted Index, JHEP 04 (2017) 115

[arXiv:1606.06341] [INSPIRE].

[62] E. Gava, K.S. Narain, M.N. Muteeb and V.I. Giraldo-Rivera, N = 2 gauge theories on the

hemisphere HS4, Nucl. Phys. B 920 (2017) 256 [arXiv:1611.04804] [INSPIRE].

[63] B. Le Floch and G.J. Turiaci, AGT/Z2, JHEP 12 (2017) 099 [arXiv:1708.04631] [INSPIRE].

[64] T. Dimofte, D. Gaiotto and N.M. Paquette, Dual Boundary Conditions in 3d SCFT’s,

arXiv:1712.07654 [INSPIRE].

[65] M. Dedushenko, Gluing and symmetries, to appear.

[66] N.M.J. Woodhouse, Geometric quantization, Clarendon Press, Oxford, U.K., (1992).

[67] N. Doroud and J. Gomis, Gauge theory dynamics and Kähler potential for Calabi-Yau

complex moduli, JHEP 12 (2013) 099 [arXiv:1309.2305] [INSPIRE].

[68] H.-J. Chung and T. Okazaki, (2,2) and (0,4) supersymmetric boundary conditions in 3d

N = 4 theories and type IIB branes, Phys. Rev. D 96 (2017) 086005 [arXiv:1608.05363]

[INSPIRE].

[69] F. Benini and S. Cremonesi, Partition Functions of N = (2, 2) Gauge Theories on S2 and

Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

[70] N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric

Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].

[71] J. Gomis and S. Lee, Exact Kähler Potential from Gauge Theory and Mirror Symmetry,

JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].

[72] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald

Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

[73] J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal

Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

[74] S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B

821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].

[75] Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with

general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

[76] A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field

Theories, arXiv:1106.2484 [INSPIRE].

[77] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP

07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[78] O. Aharony, S.S. Razamat and B. Willett, From 3d duality to 2d duality, JHEP 11 (2017)

090 [arXiv:1710.00926] [INSPIRE].

– 109 –

https://doi.org/10.1007/JHEP12(2014)177
https://doi.org/10.1007/JHEP12(2014)177
https://arxiv.org/abs/1211.1986
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1986
https://doi.org/10.1088/1751-8121/aa60fe
https://doi.org/10.1088/1751-8121/aa60fe
https://arxiv.org/abs/1608.02968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02968
https://doi.org/10.1007/JHEP10(2014)062
https://arxiv.org/abs/1401.3379
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3379
https://arxiv.org/abs/1308.2438
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2438
https://doi.org/10.1007/JHEP04(2017)115
https://arxiv.org/abs/1606.06341
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06341
https://doi.org/10.1016/j.nuclphysb.2017.04.007
https://arxiv.org/abs/1611.04804
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04804
https://doi.org/10.1007/JHEP12(2017)099
https://arxiv.org/abs/1708.04631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04631
https://arxiv.org/abs/1712.07654
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07654
https://doi.org/10.1007/JHEP12(2013)099
https://arxiv.org/abs/1309.2305
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2305
https://doi.org/10.1103/PhysRevD.96.086005
https://arxiv.org/abs/1608.05363
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05363
https://doi.org/10.1007/s00220-014-2112-z
https://arxiv.org/abs/1206.2356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2356
https://doi.org/10.1007/JHEP05(2013)093
https://arxiv.org/abs/1206.2606
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2606
https://doi.org/10.1007/JHEP04(2013)019
https://arxiv.org/abs/1210.6022
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6022
https://doi.org/10.1007/s00220-012-1607-8
https://arxiv.org/abs/1110.3740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3740
https://doi.org/10.1088/1126-6708/2008/02/064
https://arxiv.org/abs/0801.1435
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1435
https://doi.org/10.1016/j.nuclphysb.2012.07.015
https://doi.org/10.1016/j.nuclphysb.2012.07.015
https://arxiv.org/abs/0903.4172
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4172
https://doi.org/10.1007/JHEP04(2011)007
https://arxiv.org/abs/1101.0557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0557
https://arxiv.org/abs/1106.2484
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2484
https://doi.org/10.1007/JHEP07(2013)149
https://doi.org/10.1007/JHEP07(2013)149
https://arxiv.org/abs/1305.3924
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
https://doi.org/10.1007/JHEP11(2017)090
https://doi.org/10.1007/JHEP11(2017)090
https://arxiv.org/abs/1710.00926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00926


J
H
E
P
0
4
(
2
0
1
8
)
0
3
7

[79] L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6,

JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE].

[80] A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands

Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

[81] B. Assel, Ring Relations and Mirror Map from Branes, JHEP 03 (2017) 152

[arXiv:1701.08766] [INSPIRE].

[82] Y. Ito, T. Okuda and M. Taki, Line operators on S1 ×R3 and quantization of the Hitchin

moduli space, JHEP 04 (2012) 010 [Erratum ibid. 03 (2016) 085] [arXiv:1111.4221]

[INSPIRE].

[83] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[84] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [INSPIRE].

[85] Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets,

JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].

[86] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 Superconformal Chern-Simons

Theories with Hyper and Twisted Hyper Multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662]

[INSPIRE].

[87] N.B. Agmon, S.M. Chester and S.S. Pufu, Solving M-theory with the Conformal Bootstrap,

arXiv:1711.07343 [INSPIRE].

[88] S. Sugishita and S. Terashima, Exact Results in Supersymmetric Field Theories on Manifolds

with Boundaries, JHEP 11 (2013) 021 [arXiv:1308.1973] [INSPIRE].

[89] D. Honda and T. Okuda, Exact results for boundaries and domain walls in 2d

supersymmetric theories, JHEP 09 (2015) 140 [arXiv:1308.2217] [INSPIRE].

[90] Y. Yoshida and K. Sugiyama, Localization of 3d N = 2 Supersymmetric Theories on

S1 ×D2, arXiv:1409.6713 [INSPIRE].

[91] A. Bawane, S. Benvenuti, G. Bonelli, N. Muteeb and A. Tanzini, N = 2 gauge theories on

unoriented/open four-manifolds and their AGT counterparts, arXiv:1710.06283 [INSPIRE].

[92] E. Witten, SL(2,Z) action on three-dimensional conformal field theories with Abelian

symmetry, hep-th/0307041 [INSPIRE].

[93] D.L. Jafferis and X. Yin, Chern-Simons-Matter Theory and Mirror Symmetry,

arXiv:0810.1243 [INSPIRE].

[94] D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08

(2007) 056 [arXiv:0704.3740] [INSPIRE].

[95] C. Closset and S. Cremonesi, Comments on N = (2, 2) supersymmetry on two-manifolds,

JHEP 07 (2014) 075 [arXiv:1404.2636] [INSPIRE].

[96] N. Banerjee, B. de Wit and S. Katmadas, The off-shell c-map, JHEP 01 (2016) 156

[arXiv:1512.06686] [INSPIRE].

– 110 –

https://doi.org/10.1007/JHEP12(2014)031
https://arxiv.org/abs/1407.6061
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6061
https://doi.org/10.4310/CNTP.2007.v1.n1.a1
https://arxiv.org/abs/hep-th/0604151
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604151
https://doi.org/10.1007/JHEP03(2017)152
https://arxiv.org/abs/1701.08766
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08766
https://doi.org/10.1007/JHEP04(2012)010
https://arxiv.org/abs/1111.4221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4221
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
https://doi.org/10.1088/1126-6708/2008/10/040
https://arxiv.org/abs/0807.2144
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2144
https://doi.org/10.1088/1126-6708/2008/07/091
https://arxiv.org/abs/0805.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3662
https://arxiv.org/abs/1711.07343
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.07343
https://doi.org/10.1007/JHEP11(2013)021
https://arxiv.org/abs/1308.1973
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1973
https://doi.org/10.1007/JHEP09(2015)140
https://arxiv.org/abs/1308.2217
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2217
https://arxiv.org/abs/1409.6713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.6713
https://arxiv.org/abs/1710.06283
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.06283
https://arxiv.org/abs/hep-th/0307041
https://inspirehep.net/search?p=find+EPRINT+hep-th/0307041
https://arxiv.org/abs/0810.1243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1243
https://doi.org/10.1088/1126-6708/2007/08/056
https://doi.org/10.1088/1126-6708/2007/08/056
https://arxiv.org/abs/0704.3740
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3740
https://doi.org/10.1007/JHEP07(2014)075
https://arxiv.org/abs/1404.2636
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2636
https://doi.org/10.1007/JHEP01(2016)156
https://arxiv.org/abs/1512.06686
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06686

	Introduction
	Technical overview
	Summary of results

	Preliminaries
	N = 4 theories on S**(3)
	Supersymmetry algebra
	Lagrangians
	Abelian gauge theories

	Twisted operators and the 1D theory
	Coulomb branch operators
	Remarks on monopoles
	The monopole counterterm

	Remarks on normalization
	Phase ambiguity of chiral operators
	Subtleties with antiperiodicity


	Localization on S**(3)
	BPS equations and their solutions
	Non-singular solutions
	The two-monopole background

	Localization of correlators with monopoles
	Two monopole insertions


	Localization on HS**(3) and partial HS**(3)
	Cutting and gluing
	Supersymmetric cutting and gluing of hemispheres
	Operator insertions and su(2|1)
	The phase space
	The su(2|1)-invariant polarization

	Boundary localization and the gluing formula
	The monopole HS**(3) wavefunction
	Reproducing two-point function from gluing

	Bilinear form and conjugation

	Correlators with multiple insertions
	Shift operators
	Twisted CBOs as shift operators
	Including mass and FI parameters

	Reduction of Schur index
	The line defect Schur index
	Supercharges of line defects and twisted CBOs
	Reduction on S**(1)


	Applications
	Chiral ring relations
	Mirror symmetry: SQED(N) and N-node necklace quiver
	Higgs branch topological sector
	Matching of partition functions

	HBOs in N-node quiver and CBOs in SQED(N)
	The mirror map
	Star product and composite operators

	HBOs in SQED(N) and CBOs in N-node quiver
	The mirror map
	Star product and composite operators


	Discussion
	Conventions
	Coordinates
	Supersymmetry transformations
	3D N = 4
	2D N = (2,2)


	More on monopoles
	Global symmetries and defects
	Boundary terms and monopole counterterms

	General BPS monopole backgrounds
	Singular solutions to BPS equations
	Relation to monopole singularities

	Hypermultiplet one-loop determinant on S**(3)
	Bosonic spectrum
	Fermionic spectrum
	Eigenvalue problem
	l > = |q| + 1/2
	l = |q| - 1/2
	Summary


	Hypermultiplet one-loop determinant on HS**(3)
	Bosonic spectrum
	Fermionic spectrum
	Monopole spinor harmonics

	More on matching
	Mass and FI parameters
	Proof: basic mirror duality
	Proof: HBOs in N-node quiver and CBOs in SQED(N)
	BF theories: an appetizer

	Supergravity background

