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Coulomb coupling between spatially separated quasi-two-dimensional electron and hole gases is

studied as a function of temperature and/or electron (hole) gas density. Because of the exclusion

principle mainly electrons and holes of antiparatlet spin screen the electron-hole interaction at low

densities. The coupling is described by a generalized random-phase approximation which takes into

account exchange processes to all orders of the Hartree-Fock potential. The temperature dependence

of the transimpedance agrees very well with experiment for relatively high densities; its density

dependence agrees well for high densities and reasonably well for low and intermediate densities.

PACS numbers: 73.20.Dx

Coulomb coupling between two spatially separated

electron gases, when a current is driven through only

one of them, has been predicted [1] and observed [2, 3] to
inHuence the transport properties of the individual gases.

Recently, transport measurements have been reported [4]

in a system composed of a two-dimensional (2D) electron

gas (2DEG) and a 2D hole gas (2DHG). This system

was proposed in Ref. [5] and its properties in a mag-

netic field are of strong current interest [6]. The gases

are spatially separated by a barrier of width d = 200

A. . The barrier is high and thick enough to prevent tun-

neling and recombination but thin enough to allow for

sizable Coulomb interaction between carriers in different

gases. Current is allowed to How in the electron gas and a

drag voltage is developed and measured in the hole gas.
The calculated [4] random-phase approximation (RPA)
results for the temperature and density dependence of
the coupling were a factor of 5 to an order of magnitude

smaller than the experimental results for temperatures

(T) between 9 K and 50 K. A similar discrepancy be-

tween theory and experiment [3] in an electron-electron

system, for T & 7 K, has been explained, within BPA, by

a phonon-mediated Coulomb coupling important only at
these very low temperatures [7] and most pronounced for

equal electron densities. This mechanism cannot explain

the results of the electron-hole system since the temper-

atures of the experiment are high. Another mechanism

would be electron-hole binding but this was estimated [4]
to be very weak. So far there exists, to our knowledge,

no explanation of these results. In this Letter, we show

that at densities as low as 5 x 10 o/cm it is mainly elec-

trons and holes of antiparatlel spin that participate in the

screening of the Coulomb interaction since a portion [8,9]
of them with parallel spins do not screen the Coulomb in-

teraction due to the exclusion principle. Thus, the RPA
treatment of the Coulomb scattering [4, 7] overestimates

the screening and renders the coupling weaker. Using

a generalized RPA (GRPA) approach, which takes into

account exchange to all orders of the Hartree-Fock po-

tential, we obtain a very good agreement with the ex-

periment for the T dependence of the transimpedance, a
reasonable agreement for its density dependence at low

densities, and a good one at high densities.

We model the electron-hole system with two in'. nitely

deep quantum wells, of width 6, with their centers and

their closest edges separated by a distance a and d, re-

spectively. The many-body Hamiltonian describing this

system is

H(t) = H&(t) + H, (t) + H&, (t) + H, (t) + H, (t) . (&)

Here, H, is the Hamiltonian of the electrons in the drive

well and contains electron-electron, electron-impurity,

and electron-phonon interactions; the same holds for the

Hamiltonian of the holes in the drag well, Hh. Hp„ is the

Coulomb interaction between holes and electrons in the

two wells, H„ is the phonon Harniltonian, and H, the im-

purity Hamiltonian. For the densities of interest, only the

lowest subband is occupied in either well. Equation (1)
and the corresponding thermodynamic Green's function

lead [7] to the coupled momentum-balance equations:

fA OJ g

e Bt
VD jh

enh —. +

+ en, E = F'"+F',

h ~h Fh + Fh
e Of

Here, V~ is the measured drag voltage, L the length of

the specimen, nh (n, ) the 2D hole density (electron den-

sity) of the drag (drive) well, j& (j,) the 2D current den-

sity, m,
*

(m&) the electron (hole) efFective mass, E the

electric field applied only in the drive well, and F' (F")
the frictional force due to phonon and impurity scatter-

ing with the electron (hole) gas. The term proportional

to VD develops when the current is not allowed to How
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in the hole well; if it is allowed to flow, this term van-

ishes identically. Ignoring the vertex corrections of the
three-point vertex function [see Eq. (149) of Ref. [10]],
the self-energy of the holes is related to the nonequi-

librium screened interaction eh, and the nonequitibrium

hole Green's function as illustrated in Fig. 1(a). The

total force acting on the holes is

Vhe

gh

gh I gh
\(

'6

Vhe

Il

gh II
I/

//

//

r r

Fhe +Fh d(3) [II"V' 8, —II"V 8h, ],
(a) (b)

(4)

where II" =— II" (1;3) (II') is the nonequitibrium hole

(electron) polarizability, and 8h, = vh, (1;3) is the

nonequitibrium screened interaction between holes in

the drag well and the medium (electrons in the drive

well, phonons, and impurities included). The arguments

in II"(1;2) and vh, (1;2) represent the correlation be-

tween the space-time coordinates (xr, tr ) and (xq, t2) and

f,
'

d(3) is a shorthand for f dxs f,
'

dts. The coupling

force due to Coulomb scattering F"' is given within RPA

by

I
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FIG. 1. (a) Self-energy diagram of holes in RPA; (b) ad-

ditional self-energy diagram of holes due to the exchange pro-

cess; (c) self-consistent screened potential in GRPA.

Fhe d(5) d(4) d(3) [8 (1;3)II' (3;4) V' 8 (4;5)II"(5;1) —II" (1;5)V 8+(1;3) II'(4;3)v (4;5)],

(5)

with 8h, + = 8&,+(1;3) the retarded (advanced) screened Coulomb interaction between holes in the drag well and the
electrons in the drive well, V~ standing for Vq operating to the leR. The Fourier component of the screened Coulomb
interaction can be written as v+(qll ~) = F(qll)v(qll )/s+(qil'~) where v(qll'&) = 2~e e q'~/qll with ( =

qllb and

F(qll) the form factor [7]. The retarded (advanced) dielectric function e+( ) is given by

) =
[

—
(qll o) F«II) "+"'«ll &)l[' —

"(qll

—
/v(qll, a) F(qll)/ II" (qll, u)II' (qll, cu),

where II"(o) (II'(o)) is the equilibrium hole (electron) polarizability.

For weak electric fields, we may write j, h = n, hpev&' with v~& (v&) the drift velocities, p = 1 for electrons,

and p = —1 for holes. Then the forces can be linearized over v& and v& giving F" = (Ah, + Ah„)mhv& and
F"' = Ah, mh(v& —v&). Here Qh„Ah„, and Ah, are the relaxation frequencies per unit area due to the Coulomb

coupling, phonon scattering, and impurity scattering, respectively. In the steady state and in the absence of the drag

current (jh = 0), Eq. (5) gives the transimpedance RT = VD/I, = mhAh, /e nhn, and the frequency

Oh, = —2h
d~ ~- IF(qll) v(qll &)I' 2 ~n(~')

I [Hh(0) I [H (0)

I e+ (qll ~ ~)
~

2 II cI~'
&ll

(7)

with II+( = II+ )(qll, a). For T ) 10 K, Ah, behaves

approximately linearly with T as shown by the dashed

curve in Fig. 4. As is demonstrated in Figs. 2, 3, and 4,
and also in Ref. [4], there is a marked difference between

the RPA calculations and the experimental results. This

difference tends to be larger at lower densities as illus-

trated in Figs. 2 and 3. This is mainly due to the fact
that RPA is good [8, 9] only for very high densities. An

extra term [10],as shown in Fig. 1(b), should be included

in the self-energy for lower densities. This term takes into

account the exchange process of holes and electrons. It

can be ignored for high densities but not for low densities

as shown by Abrikosov, Gorkov, and Dzyaloshinski [11].
With this extra term, the screened Coulomb interaction

v(l; 2) is no longer a two-point but a three-point interac-

tion 8(1,2; 3) as expressed diagramatically in Fig. 1(c).
The diagrams in Fig. 1(c) represent the right-hand side

(RHS) of an equation whose left-hand side is equal to
the shaded triangle that represents 6. Thus 8 obeys an

integral equation. Within RPA the last diagram in Fig.

1(c) is absent. Solving this equation is equivalent to solv-

ing the equation of motion for the density operator to all
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FIG. 2. Transimpedance R~ per square vs electron den-

sity n, for three temperatures, with fixed hole density nh, =
5 x 10 /cm . The solid and dashed curves are the GRPA and

RPA results, respectively. The solid dots are the experimental

results of Ref. [4].

FIG. 3. Rz- per square vs hole density for three temper-

atures with fixed electron density n, = 5 x 10' /cm2. All

curves are marked as in Fig, 2.

orders in the Hartree-Fock potential as done by Nozieres

and Pines [8]. However, we need to know the nonequi-

librium polarizabilities. To simplify the problem, we do

an iteration in the coupling force F"' by letting F"' + 0

(the polarizabilities depend on this force) and find out

the relationship between the nonequilibrium H" and II'.
Then we use this relation to solve for 6. This procedure

is good only for the steady state and when phonon and

impurity scatterings are weak. This becomes obvious if

we let the current How in the hole system. Once the

system reaches a steady state, the momentum transfer

from the electrons should be balanced by phonon and

impurity scattering. If both phonon and impurity scat-

terings are weak, F"' 0. With this condition, Eq.

(5) gives II" II'. Further, to reduce the numerical

work, we assume, though the temperature is not too low,

that the main scattering occurs near the electron and

hole Fermi levels so that v(1, 2; 3) 8(l; 3)b(1; 2). With

these approximations, we solve the equation for 8 and

obtain 8+(q~~', u) = v(q;a)/e++(q~~', tu), where the GRPA

dielectric function e+( ) is

with

(q~~,
.

) = [1 — "
(q~~, 0)II" (q~~, )][1 —

HF (q„; O) 11',"'
(q((, )]

—
vHF (q//,

.a)vHp (q//, a) e II (q[/, cd) II' (q//, cv),

h, e
vH'F(q(i' , a) = 27t e gh, e

+(qll+ "~ )4 k~'+
q((

(9)

The second term on the RHS of Eq. (9) is the exchange

term and occurs only for electrons (or holes) of parallel [8]

spin. As a result, only electrons (or holes) of antiparatlel

spin and a portion of electrons (or holes) of parallel spin

will participate, statistically speaking, in the screening

for
qI~ && k~, i.e. , for low densities. Physically, this means

that a portion [depending on
q~~

in Eq. (9)] of electrons

(or holes) of the same spin will be kept apart by the
Pauli exclusion principle. For very low densities, they
can be so far apart that they have almost no e8'ect on
the screening at all. If carriers in both wells are of the
same type, we will have a factor of 1/2 in the exchange

[8] term instead of 1/4. This happens because there is no

exchange process between an electron and a hole. With
the obtained 8, Ah, takes the form of Eq. (7) with ey ( )
replaced by e+( ).

The calculated GRPA and RPA results for the trans-

impedance BT are shown in Figs. 2—4 by the solid and

dashed curves, respectively. In Fig. 2 BT is shown as

a function of electron density n, for fixed hole density

ng and in Fig. 3 as a function of nh for fixed n, . The
solid symbols are the experimental results of Ref. [4]. We

have used mh
——6.7m,* and the parameters of the exper-

iment. Noticing the logarithmic scale in Figs. 2 and 3 it
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FIG. 4. RT per square vs temperature for fixed densities.

Curves e-h: n, = 2 x 10 /cm; nh = 5 x 10 /cm . Curves

e-e: in both wells n = 1.5 x 10 /cm . All curves are marked

as ln Flg. 2.

is seen that the density dependence of the GRPA RT is

(i) significantly better than the RPA result, (ii) reason-

ably good at low densities, (iii) very good at relatively

high electron densities, and (iv) reasonably good for high

hole densities. For intermediate densities the GRPA re-

sult is smaller than the experimental one. The better

agreement at high densities is due to the approximation

6(l, 2, 3) = 8(l; 3)h'(I, 2) that becomes increasingly bet-

ter as the density increases and the gases become more

degenerate. On the other hand, the temperature depen-

dence of the GRPA RT (solid e-h curves), at relatively

high densities, shown in Fig. 4, is in very good agreement

with the experimental result. For contrast we also show

BT for the same structure with electrons in both wells

(e-e curves) and equal densities n, = 1.5 x 10ii/cm2.

The difFerence between the GRPA and RPA results is

less pronounced than in the electron-hole system at low

temperatures mainly because both electron densities are

rather high since, as we have verified, the efFective-mass

dependence of BT is very weak.

At low to moderate densities our GRPA results show

a stronger T dependence than the experimental ones. A

possible explanation is that at the high temperatures of
the experiment the particle wave function spreads due

to the increase in the kinetic energy which acts against

the confining potential or electric field E~, Lt = e, h. This

corresponds to efFectively temperature dependent well

widths. Equating the pressure exerted by the gases [12]

Pt ——n& k~ro, ~
with that by the field Et we obtain

di = dio + nik~T/eEi, where die is the T = 0 width.

In GRPA at = 1 —(3/72)erron& +B(ni ) and B( ) is

a positive function that vanishes at high densities. Thus

ni and di increase at low densities and so does the mean

separation a between electrons and holes. This leads to
a decrease in RT approximately compensated by the in-

crease shown in Figs. 2, 3, and 4.
In all cases the RPA results are significantly below the

experimental or GRPA results since RPA overestimates

screening. Also, they differ from those of the experiment

by a factor of 2 rather than a factor of 5 as reported by

Sivan, Solomon, and Shtrikman [4]. This is because the

quantum wells have finite thickness [F(q~~) ( 1] in our

case and zero [F(qI~) = 1] in theirs.

In summary, we have shown that the reported [4] de-

viations of density and temperature dependences of the

Coulomb coupling between an electron gas and a hole

gas, spatially separated from each other, from the RPA

results are mostly due to an overestimation of the screen-

ing when treated within RPA. Most of the results, espe-

cially the temperature dependence, can be explained by

employing a GRPA which takes into account exchange

processes, absent from RPA, in the two wells to all or-

ders of the Hartree-Fock potential.
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