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ABSTRACT

The problem of extracting the phase of the hadronic
proton-proton scéttering amplitude from its inter-
ference with the Coulombic amplitude near the forward
direction is re-examined using an eikonal model.
The results are in accord with the Feynman diagram-
matic calculation of West and Yennie, with some
small corrections. An especially compact form is
derived for the electromagnetic shift in the hadronic
amplitude's phase, which includes the effect of the
electromagnetic form factor. The largest medifica-
tion of the previous results comes from the effect
of the form factor on the phase of the electromag-

netic amplitude itself.
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1. - INTRODUCTION

Continuing advances in accelerator technology are providing the opportunity
to study pp and pp elastic scattering at ever higher centre-of-mass energies.
Of special interest are the total cross-sections, which are related by the op-
tical theorem to the imaginary parts of the forward scattering amplitudes, and
the ratios of the real to imaginary parts of the amplitudes, since there are bounds

1)

on combinations of these quantities which can be derived from basic principles™ .

The traditional technique for determining the forward amplitude utillizes
interference with the Coulomb amplitude. If we normalize the scattering ampli-
tudes so that

—
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at S P

do T |F}?

, - (1)

then the Coulomb amplitude is, for charges of like sign, essentially

= =z ) (2)

¥

where a is the centre-of-mass momentum transfer. We have assumed that the

F: c o S

momentum transfer is small, Throughout, we shall assume we are considering pp
or pp scattering (with its equal mass kinematics) at verj high energies:

s >> M;. We shall always consider particle-particle scattering first. The anti-
particle-particle result will be obtained by a judicious reversal of appropriate

signs.

The hadronic elastic amplitude may be conveniently parametrized in the

low momentum transfer domain as

B3
FN = Ae ‘B/?— > (3)

where B = 10 - 15 GeV™?. The optical theorem states that

A N zeo
G:FOT Rmﬁ \Qm F (CB- O) . (4}
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For very high energies the total pp cross-section is roughly 40 mb - so that

Im A = (4 GeV™%)s, The Coulomb and hadronic amplitudes for elastic scattering
are comparable then for a momentum transfer q2 = a/4 GeVZ, The hadronic elastic
amplitude is meostly, but ndt_entirely, imaginary. By observing the_interference
between the known.Coulomb amplitudé and the hadronic amplitude, it is pbssible

to determine the phase between the two.

This simple description, while suggestive, is really not adequate for
several reasons, The Coulomb amplitude Eg. (2), is really Just the Born am-
plitude. The actual Coulomb amplltude has a characterlstlc Coulomb phase and,
in fact, a pathology aqsoc1ated with the long-range nature of the Coulomb force.
Moreover, it is not really possible to describe the scattering amplitude as a
sum of a Coulombic and a hadronic amplitude. There is a single amplitude, domi~
nated by the Coulomb force at very low.momentum fransfer and by the hadronic
force at higher momentum transfer. Even in the hadronic regioh; the amplitude
mugt have the well-known problems associated with the exchange of soft virtual
photons, There is inevitably an electromagnetic influence on the hadronic’

amplitude,

The seminal treatment of this problem is that of‘Bethez).. His analysis used
a WKB approach in potential theory and was directed at the study of proton-nucleus
scattering. The result was that the full amplitude including the electromagnetic
and hadronic forces could be expressed as '

F‘T’DT‘ - FN . ei‘xé F

> (5)

where ¢ depended on the momentum transfer, g, and a parameter, a, character-

izing the size of the nucleus:

= 2 _Ln_(\.ob/%a) | S (8)
Bethe .

Coulomb-nuclear interference has been re-examined outside potential theory using

Feynman diagrams most definitively by West and Yennie3). They succeeded in finding

a general formula for ¢ in terms of the elastic hadronic amplitude:

P, = ol f _FPe

" ¢ 1§ 3’ FRg)
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For a hadronic amplitude with the conventional parametrization, FN « exp(-Bq?/2),

this yields
g, -Lm Bgr) s v O] e

West and Yennie treated several other aspects of the electromagnetic correc-
tions to hadronic amplitudes. They considered the emission of real photons,
which is important for mp: scatterlng but whlch we shall ignore for the case of
pp scattering. The diagrams they analyzed were' those with potentlal infra-red
divergences and they stressed the importance of rea1121ng that the diagrams
ignored would contribute to ¢ as well, A further point which has perhaps not
been heeded is the necessity of including vacuum polafization in the Coulomb

forceh). Thiz has the effect of making the electromagnetic coupllng q?

dependent:
L o v &)
x(g )= {1+ —'J’“-—’;) ' (9)

This results in an increase of about one-half a per cent in o for the q2

range of interest.

Below, we reconsider the issues involvéd'in_determining ¢ within the
context of an eikonal model. This provides a quité'physical picture for the
process and gives a slightly different perspective from the West-Yennie calcu-
lation. The results are in complete agreement with their work. In particular,

a formula essentlally equﬂvalent to Eq. (7) is obtained. The effect of electro-

magnetic form factors is con51dered in some: deta11 and a general expr9551on
obtained for ¢. This formula generallzes Eq. (7);and puts it in a rather ap-
pealing form, Finally, the effect of the form facﬁor on the Coulomb amplitude
itself is calculated using z Born series expansion of the eikonalized amplitude

This contributes a term to the relative phase ¢ ' of order " (gR)? log (gR)?

2. - THE EIKONAL MODEL AND INTERFERENCE WITH A° PURE COULOMB FIELD

The eikonal models} is useful in describing scattering at small angles
asince it is based on an approx1matlon 1n which the particles are treated as
if they travelled on a stralght path.. In tpaversing this path, they accumulate
a phase & which is a function of the impact parameter b as well as the

centre-of -mass energy. AL very high energies, § is given by



-idb
3(p) = . fd e 4 ]:Born(%!) 5 (10)

where we have suppressed the s dependence of the Born amplitude. The eikonal

amplitude is, again at large s,

E.-IL (%;) - fd b e‘%’ [ > S{D— l] (11}

We shall suppose there are two eikonal phases, GC and GN, which describe

Coulomb and nuclear scattering sc that the full amplitude is

,4,-' 2.i SCh)*'SNCR)
F' ey < S Sd'b e?f [e ( 1]. (12)

In the absence of nuclear forces, the Coulomb amplitude would be

o) 1 L le Cb}
F: (J%} ) - S}i |3 etci [; -1 5 (13)
4
while in the absence of Coulombic forces we would have the hadronic amplitude

F" () = jd b e-%' [ez.s"m_l] : (14)

4Tl'4.

The combined effect can be written conveniently as
NeC B 2i8°0) qr 2:8Mw
F (g™ = F(r&)i- Fn ) = gd‘be‘b [_ ][ -»I]

{15)

= Fc(tb‘)+ FN(%‘) + g F(c&") F ([-'-‘v
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Equation (15) summarizes the way the eikonal model interweaves two interactions.
To apply it tc the problem at hand we need the eikonal approximation to the
Coulomb amplitude. This is obtained from Egs. (2) and (10), with a fictitious
photon mass, A, inserted to tame the infra-red problem
- -
§(by = L gd‘b &3t (==
T

———————
?} 'S\

h

e of Ko(b).) - _ (16)

#t

« [ (4p3) + ¥+ &N ] -

The terms O(bA) can be ignored since the photon mass will finally be taken to

zero. Thus

2w

oa
‘ ‘ Y . Lie-
. Ae s .
Fihy= = g b Ttab) (-—-—) -1
LAPY ® > %G 2% (o) (17)
Using (and slightly.abusing) the formulas)
= 14
i g
fdx Ty = 2% ] (___.___T) , (18)
-
° T (58)
we have to lowest order in a,
Figmy = = (MYTWZM"' ['(1ed9)
Zi?‘ 2%’ | r' (_iﬂ)
(19)

. c .
S e"“l&‘ll‘%‘)

|

where

'11&(1:) = An (%t) , =



Because of the singularity in Fc(qz) at q? = 0, it is convenient to write
Eq. {(15) as

F:hb&C

Gy = Fg Fh “1?%[‘111" Flgny

(21)

. , | | F
t e e | TED
T FY (N

In the last integral we may safely take X = O in the denominator. In féct,

we can write

FN{-CC%')e """(..g(%_) . ~¥ . E (@){ ~ia 'luh
Q Q

SACIESIEAE %(L;;])[%:zg-: e

We have indicated an upper limit of integration, Q, as a reminder that the two
integrals are separately divergent at large q2?. The sum of the two is finite
'as Q% » @, The sum of the first two terms in Eq. (22) is

. e

()

Altogether, then

2

G* (24)

-.,UwaQ/? - Yd [Fwi-" ,] :

FV (g")




where we have used

T
- Sﬂcld) R . ”21*.: {L._;’ | ‘ .=: | (25)
+2%%,COS¢ qr “%:._f‘%jq

The integrand in Eq. (24) is not 51ngular at q = ". Comparing Eq. (24) with
Eq. (5), we find the eikonal model value for the phase

- e )
= fom *u6“:15421 . 'Séhﬁz-' l4—-' 1F ﬁ% )

T - (26)
@*ree 5 |¢§.-<§ VEFNED

ek

which agrees with the result of West and Yennie obtained from Feynman diagrams.

3. - THE INCLUSION OF ELECTROMAGNETIC FORM FACTORS

A realistic treatment of the Coulomb interference problem must include the
electromagnetic form factor of the proton. The form factor will modify the
Coulomb amplitude first by changlng the Born term, by a factor _fz(q ) and second
by modifying the phase neik' In this section we conslder only the former and
thus take

o GG -

In the next section we shall consider the modification of the phase.

Using this modified Coulomb amplitude in Eq. (21} we have

""‘ld

F-m-‘l(%)(%) = ..°_:_5 &1(%:) s FN(?;) (%;Yiw

-

L

i T (I e .

& oy ) P [T ]




where terms of higher order in o have been dropped from the last term. The

next-to-the-last integral we evaluate as

o o (3 () s e fa zz;"‘rr“ g

---(3:.)'°’— oy (£

J*——)"" [£egn]’

v (29)
()7~ o () [ ]
= l-(%/’*‘) 4+ ief Sc\ei,"‘ .‘%%‘ [-F C‘F")] -

Here, the prime indicates differentiation with respect to q'?, Including this

in Eq. (28) we have

{(30)

+A.°f gd% h%’ [g(ll]]_!ﬂg‘zl ‘EEEI) FN(I%"%—])

¥ [ B -1}
% F“(%)

Now it is convenient to défine an angularly averaged hadronic amplitude

FL6) = B (dé FN(1qt+ 296 cosd +¢*1)/F(§) | (a1)
which thus has the property

EN(""F) = | (32)

It follows that

(g fqm [F ") -n] s d«;‘ g [F (454 - ;]
& FN(%) ( (33)

=T gd%f‘ S g [F‘"(og’,p y (g - ﬁ@‘ )]/




Using this, Eq. (30} becomes

"

N 1 i —as N .
£ cc%‘) ( ‘) =+ P |

A
%
+ae 4’

(34)

[&t 2 F f}s?,\]

Referring back to Eq. (5), we sece that

?5 fdg.z [.ﬁi%«;) F (3,%)] _ {35)

In fact, since q? is small compared to the scale set by the inverse size of the

proton, we can generally approximate
Flegngy 2 Fhgh JRM
% ,4) = F (o) (36)

to produce our final general expression for ¢:

fd%" %%i %ﬁt[f{f) FN(E}‘) /FN“)] o6

The standard parametrization of the hadronic amplitude at low to moderate

g? is given in Eg, (3). The conventicnal form factor parametrization 137)
YAY
_ a 2
-F( vy = (_..-—- AN =01 GeVN™ | (38)
% Q}-\r/\" )

An alternative, approximate form with the same low q? dependence is
i
— 24 /A"
?Lr&‘) = € _ (39)

Uging the létter, we find (y = 0.577... 1is Euler's constant)

b« -t () v - (legm)
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The dipole form factor, on the other hand, gives

broa(B) oy —g(%)

where

3

. e o 2

Bz

and where Ei(z) is the exponential integrala)

Do ‘ . )
= {dt -2t S e \
E.(2) f'{' = | ‘ (43)
1 -

These two Pesults carn be compared for a spec1f1c choice of B, the slope
parameter, For B = 13 GeV the exponential forg,factor gives ¢ = -2n(Bq?/2)
-y - 0.62, while the dipole form is ¢ = -Rn(Bg?/2) - vy - 0.60, Clearly, the

difference is unimportant.

4s a further check of the iﬁsensitivity of the resulﬁ td various parametri-
zations, consider the Wu-Yangg) model in which the elastic pp differential
cross-section is proporticnal to the fourth power of the electromagnetic form
factor. In this medel, B and A% are related by BA® = 8. For the exponential
parametrization we find ¢ = -4n(Bg?/2) - XY - Rn 2 1r, 1nstead the dipole para-
metrization is. used ‘(both for the form factor and the hadronlc amplitude}, the
result is ¢ = -in(Bg2/2) - Y+ (y+4n 4 - 363/140) The final term in parentheses
is -0.63 which is quite close to -fn 2 =:=0.69. -0f course, the Wu-Yang model
cannot be considered accurate, even for our purposes, since B is = dependent
unlike A2,

Since the difference between Egs. {40) and (41) 1s slight, the former, which
is simpler, prov1des a convenlent and rellable representatlon of the’ contributions

te ¢ calculated in this section.

4. - THE PEASE OF THE MODIFIED COULOMB AMPLITUDE

The inclusion of a form factor modifieé ﬁhé Borm amplitude for Coulomb scat-
tering by fz(qz). In addition, it modifies the phase of the amplitude. No
longer do we expect iterations to modify the Born term simply by a phase as is
the case for the pure Coulomb amplitude. That is, the corrections to the expres-
sion in Eq. (27) will not 51mp1y be a phase. Nevertheless, the first corrections

in an expansion in 'a' can be 80 regarded, as we show below.

R SRS IR L A B BN IIE RS IR SIS R RAL B S0 RN L PRiRE 8 (0 190 e i DI RS 108 e oottt v+ e
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To determine the corrections to Eq. (27), we return to the eikonal model,

Eqs. (10) and {11}, and expand in an eikonal-Born series:

Sen ' - ;'..g ‘Z;Sﬁ_ﬂ (44)
Feir (§) = _%i [dzb %’ [_jC_ Tl a]

-
s (g F
4L

T}

[2:505) 28>+ ]
- 4 (5)

B v & (R Fa;,.(tﬁgs))

+ ..
As an example of the use of this formula, consider the pure Coulomb situa-
tion: o
— oS
Ty (47)

._F‘Born. ch.‘ = '

The second Borm term is

A (ws)!

S. 2.1 | }
dg —— «_
TS Y céi,‘ Rt (_%.'__.-‘_;0_\ 'l:-_; »1

I
= 4 (os)”
.;,r*'sgd_“gd“- q) : . (48)
(g 233 <xg'+»"]

¥ ('.‘{é) @) Sun %l/x;

Thus to this order, we have fof-tbe eikonal amplitude;'

n

P 4 ":% ( |+ ).ouen.\z/%:.)

(49)

it Lo g2

"

-

9+ ©

in agreement with Eg. (20).
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Next we consider the Coulomb field with a form factor., For simpliciﬁy
we shall take

. N - ‘-_f_fi L:. | )
F;"""‘ (4 G nt ( L4t/ D (50)

which will give the correct low q® behaviour if we choose L2 = A%/4, The
second Born term in the eikonal model can be evaluated using the standard Feynamn

trick, albeit in two space dimensions:

Fe\g (%’)_ : (0(3\-.) g‘d%. ["-*)“J[.i +L][C‘}‘1) "X‘][_(%"% )I*L‘l]

-2 l-y-3

= _(QSL) ydtjdvfd,‘(d éf(l-x-y-ﬂ(%l"-ut) (51)

+ x(?"".. ) &7[ (g—%’_')“#)“] +2 B‘%‘% )-t"'l.‘]z

Taking E = a' - (y+z)3, completing the square and doing the E integraticn,

we find
) Lo
e-t(‘t’) z‘n (-rsL)Tl' dz |dy |dx
o e
: ‘ 2 -3 (52)
zf%z[tm) ey |+ N0 2) eAY )
The x integral is straightforward:
-2
o 1 f fo & yevep]”
n @1 2 o0 (i foy L fepeut-crot®) oy sty
{53)

[% ([y&] [y+e]) £ A 1-2) + ] ¥

B T e . W B e nm P
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Thus if we define

i I1-&
-2
I( AT g : dyi{[{yﬂ)— (yrn‘] v Ny + L‘(i-y\} , (50
o o .
then
(z) - z 2y 2 o 2,2
Fo ) = .i.(us\.‘) [I(;,\,L\ | 1'(13,:_,;)] , -

In Eq. (54), we set t =y + z. Then

¢ o 2
I(%‘,x‘. £*) = abgdy {1, [t-¢] +Xy +L“'(t-~1)i

~
- g,,p. f[% (1-ey+ 217 ¢
-[gu- _)exerr0-0]" {
Defining
Flga) = glou: (gl 00" o

we have the relations

I(f.‘*‘.?—q = T >.\LY_T( N L3 3‘%:‘- L)] | (58)

and

Fu:)(q?‘) 2 = (HsL\
eiw (> x‘) (59)

* [Tc%‘, V) s T la) - T3 -T .
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It is easy to evaluate J{(q2,A2,L%). The result is

L.; (@R eg 1o @y

I(%‘.!a):lnl—t) = -—_-_t}-—t_-: (60}
S(‘}lx A ) [S("’.)ﬁl}) _%':]‘1_ (Lz—)\t):'
where
S(%S‘)‘z; L-; ) - V(%}__Lt_'_ )\‘)?'4-41}%1
(61)

= S (1¢l Lf; xz-)

In particular, J(q*,A%,L%) = J(q?,L2,A%}, Always A << L, so

Y s ‘
SG&X,L):;  gL k(zﬂﬁ) ; (62)

14_L1)7-
T t) ¥ g, &
R A R (63)

On the other hand,

T ) = =2 g0 (| gvag «q)
- - ' t 9 (64)

§9%5 Ay

o

T (g 3\ % %'L«QM-

(65)
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We shall be interested in the phase of the modified Coulomb amplitude only
for very small q? compared to L2. Thus we have the approximations
L 3 kN T
J-(%,)\ll.,)g jh-%/)\l JM.-- ) (66}

1}+L} 'i}

T (g, = LL , (67)
: 2
Tls )= 2t |
$ ¥ A | (68)

We find
23( L) = TN - T (g5
~ -2l [ %/ ‘_Gr:,ewl-: -_}_z,] (69)
g (Y +@3 o "y 2l

Using Eq. (59) and adding the Born term we have the eikonal approximation through

second order in o

i U )

In addition to the usual Coulomb phase of Eq. (20), there appears a phase, WV,

which vanishes in the limit of a point charge:

% = %
v = Tl
L T 2L (71)

5. - DISCUSSION

The full result for the phase is

Pror =~ (Y*’%&z v ol 5/\‘)) (72)
S N &
A* ‘fﬁ,‘ A
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obtained from Eqs, (40) and (71), using the correspondence L? = A2/4. The phase
as a function of q? is shown in Fig. 1. ' The most important shift from the
. West-Yennie result, Egs. (40) and (41), is the shift of the Coulomb amplitude
itself due to the form factor! s 1nfluence on the phase, Eq.. (71). - The contribu-

tion of v to the phase is shown in Fig, 2.

From a rather different perspective we have rederived the basic result of
West and Yennie, Egs, (7) and {26). While the approaches are technically quite
different, it is clear they are similar in spirit andwighore soﬁe of the same
contributions which would be included in a more éomplete treatment. In parti-
cular, it would be more satisfactory if some diffractive dissociation of the
nucleon were considered, rather than just“éiastié scattériﬂg. As a. result, we
cannot disagree with the conclusion of West and Yennie that there are significant
theoretical uncertainties in the result. It is reassuring, however, to see that
some of these, like the phase of the Coulomb amplitude with a form factor, are

not large.

The treatment of the electromagnetic form”factor presented here is more
convincing than that of West and Yennie. It .led also to an espec1a11y concise
result, Eq. (35): Nevertheless, the modification of the prev1ous result is very

i

small.

The eikonal model is a very physical and very convenient basis for analyzing
the Coulomb-nuclear interference. It might well provide an appropriate starting
point for analyzing those effects which have not been included in the present

treatment or in the treatment of West and Yennie,
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APPENDIX

The evaluation of the phase ¢ for a dipole form factor, Eg. (38) and a
Caussian hadronic amplitude, proceeds as follows, In accordance;with Eq. (36),

we first consider the approximation

— It 1 -'B ‘1/2.
FN(¢59) 7 e LA R (8.1)

Using Eq. (35) and defining the dimensionless variable o = q?/0%, B = BAZ/2,

and z = q'?/A%, we can write

o0 . : : ) B _
4,‘, = - gd%'%z/,( 4 [e-ﬂ* (|+z)"“] (A.2)
J S ’

If we differentiate with respect fto B, the result can be integratéd by parts

to give

‘:in - -ef Belp) | (4.3)
where'?? " |

E ) = fc& Q:;:_ e (A.4)

Now as R + @

[ . ‘
qg — —-u[ﬁcli JhmiQQ :£ faﬂﬁgi“
(A.5)

==Y - Inos

where <y is the Euler constant, v = 0.577... MNow ¢ is determined by finding

the indefinite integral

¢ : .
- ‘ng e’ que). . . (4.6)
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and adjusting the B independent constant to agree with Eq. (4.5),

definition Eq. (A.4) it is easy to derive the relations

ii"‘ = -E,,(2) n>1
d[Ere?] r 4
d% = E,C‘t)e Y )

= -~ (e)]
Ent®) - A=) [e' 2 _E"“_ )

Using Egs. (A.7) and (A.8), we find

¢

Repeated application of Eq., (A.9) yields

11)

¢
- fda; et Ey(r) =- [I-ps + 07 - (53/,, ] eﬂ Ei(p)

b

Using the large argument asymptotic expansi
- 2!
e J SRR

the right-hand side of Eg. {A.ll) becomes

-}u/s + Cle) _%,,w _%0 . ..

_ﬂl-

Thus in accordance with Eq. (4.5),

Cley = - l"'Jhxlv'

12)

on

3l
Srs

gF

n

"L - %7” "’,do&ﬁ fatle)

From

- fd% et Eq&) = - ep [E‘! (r!) +E3 (fﬂ * E"(FM’ EIA(F)]-J*\F + C(w) .

the

(8.7}

{A.8)

(A.9)

{(A.10})

(A,11)

(A.12}

{£.13)
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so altogether

3
¢ Y o [1/5"'—;_-%]& E\(,s).
{&4.14)
. 2. :
+L 22 . 8
e 3 s V.
This result can be compared to that obtained with an exponeﬁtial:pgrametrization

of the form factor, Egq. (40), by expanding. The dipcle form gives:

5{;_:—(7,.“%@}1+%\‘_%‘%q+...) (A.15)

while the exponential yields

A..)Do T 32—. .

In fact, these expansicns are not very good for the values of interest since

BA% = 10.

The next term in the expansion of ?N(q'z,qz), Eqs. (36) and (37), gives

a contribution which is easier to evaluate:

8 -
6 = fin ot 4 laeemcard
o ¥ (A.17)

: f:a ax et (142)7"
o
- px e By (p) (#0
Using the standard values for B and A%, this becomes
S#x.%gfw(QMJ) (A.19)

a negligible correction.
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FIGURE CAPTIONS

Fig, 1 : The phase

¢TOT’ in radians, calculated from Eq. (72) as a function
of g? in GeV?, The velues B = 13 GeV 2> and A% = 0.71 GeV? are
used, The solid line represents the full result. The dashed line
represents the result without the effect of the form factor on the
phase of the Cculombic amplitude, that is, without the contribution

of Egq. (71}.

Fig. 2 : The contribution wvw(g?), in radians, to the total phase brop =

= ¢ + v. The function v(g?) arises from the influence of the form

factor on the phase of electromagnetic scattering.
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