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While important for many industrial applications, chemical reactions responsible for charging of solids in wa-
ter are often poorly understood. We theoretically investigate the charging kinetics of solid-liquid interfaces, and
find that the time-dependent equilibration of surface charge contains key information not only on the reaction
mechanism, but also on the valency of the reacting ions. We construct a non-linear differential equation describ-
ing surface charging by combining chemical Langmuir kinetics and electrostatic Poisson-Boltzmann theory.
Our results reveal a clear distinction between late-time (near-equilibrium) and short-time (far-from-equilibrium)
relaxation rates, the ratio of which contains information on the charge valency and ad- or desorption mechanism
of the charging process. Similarly, we find that single-ion reactions can be distinguished from two-ion reactions
as the latter show an inflection point during equilibration. Interestingly, such inflection points are character-
istic of autocatalytic reactions, and we conclude that the Coulombic ion-surface interaction is an autocatalytic
feedback mechanism.

Charged solid-liquid interfaces play a central role in a wide
variety of industries such as food and coating production [1–
3], mining [4–6], medicine [7–9], soil remediation [10–12]
and even carbon capture [13]. With the advent of nanoscale
fluidics one expects that charged surfaces become ever more
important [14, 15]. In water and other polar solvents chem-
ical reactions are a common mechanism by which surfaces
obtain their charge. For ionic solids the de- or adsorption
of a dissolved ionic compound is often preferred over the
sorption of its own counterion [16–18]; for covalent solids
such as polymers and metal oxides the acidic nature of sur-
face groups ensures that the surface (de)protonates in polar
solvents and hence becomes charged [17–21]. However, for
many processes of industrial and environmental importance
relatively little is known about the surface chemistry [17–19]
as the electrolytes in realistic applications contain a large vari-
ety of ions that can all undergo multiple reactions [17, 18, 22].
Due to experimental limitations the majority of studies inves-
tigating surface charging are performed at (quasi)-equilibrium
conditions [17, 18], with the notable exception of pressure-
jump experiments [23, 24]. Only recently, however, it has
been shown that the kinetics of chemical surface reactions
can strongly couple to electrokinetic fluid flows, thereby af-
fecting the physical surface properties on macroscopic scales
[18, 25–29]. Furthermore, with the recent advent of fast and
surface specific non-linear spectroscopy the dynamic mea-
surement of surface charge has become feasible [29–34]. In
this context it has been explicitly stated that there is an ur-
gent need for theoretical models to describe such experiments
[35]. Traditionally, sorption kinetics is typically described by
(pseudo)-first-order reactions [12, 36, 37] that exhibit single-
exponential relaxation towards equilibrium; the influence of
a time-dependent surface charge is usually neglected entirely
[35, 38, 39]. We are aware of one theoretical work [40] and
associated review [41] that considers a surface charge that af-
fects the rate constants of ion-association, which, however,
does not consider the (chemistry-specific) non-linear dynam-
ics induced by the electrostatic feedback as we do here.

In this Letter we present a theory for the charging dynamics
of solid surfaces. We include the Coulombic ion-surface

interactions and reveal an intricate dependence on the
reaction mechanism and the valency of the reactive ions
already present in a mean-field description. The Coulomb
interactions not only affect the time constant of the late-time
exponential decay of the surface charge towards equilibrium
after an ion concentration (or pH) shock, but they also
induce strongly nonlinear dynamics at early times far from
equilibrium. Combined with the present-day capability to
experimentally measure the time-dependent surface charge
density, our theory forms a first step to unveil the surface
chemistry of technologically important but ill-understood
materials [18, 35], such as silica [22, 42] and graphene [43],
and of processes such as the clean-up of radioactive and
heavy metals [10, 16, 44, 45].

Surfaces, for instance silica, in water commonly charge
either by desorption of ionic species from neutral surface
groups or by adsorption of ionic species onto neutral surfaces.
While the exact charging mechanism of the silica-water inter-
face is complex, there is support for charging by desorption
of protons at high pH and adsorption of protons at low pH
[22, 42, 46, 47],

SiOH(s)
kd−−⇀↽−−
kaρ

SiO−(s)+H+
(aq), (1a)

SiOH(s)+H+
(aq)

kaρ−−⇀↽−−
kd

SiOH2
+
(s), (1b)

where SiOH(s) is a neutral silanol group that is covalently
bound to the (solid) glass and where SiO−

(s) and SiOH2
+
(s) de-

note a silanol group with a proton desorbed or adsorbed in
Eqs. (1a) and (1b), respectively. Here ρ denotes the proton
density at the solid surface, and the dissociation and associ-
ation rate kd and ka will be discussed below for the charging
kinetics of a single desorptive and a single adsorptive reac-
tion, not only for monovalent reactive ions as in Eqs. (1a) and
(1b) but for general valency z. While adsorption isotherms of
real materials can rarely be described by just a single charging
reaction [16, 47], we show in Supplemental Material I (SM I
[48]) that charging by multiple reactions can actually be well-
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approximated by the single-reaction kinetics presented in this
Letter for a wide range of experimental conditions.

We consider a macroscopic surface with a density Γ of iden-
tical surface groups. A group can only be in either a neutral or
a charged state. The charging is assumed to take place either
by desorption (labeled by −) of a cation of charge ze, or by
adsorption (labeled by +) of a cation of charge ze, with z≥ 0
and e the proton charge. The surface densities of charged and
neutral groups are denoted by σ± > 0 and Γ−σ± > 0 respec-
tively, and the surface charge density is given by±zeσ±. Note
that the charging dynamics is invariant under the sign of the
reacting ions, and without loss of generality we can restrict at-
tention to reactive cations of (strictly positive) valency z. As-
suming the chargeable surface sites to be independent, we can
describe the reaction kinetics in terms of the time-dependent
surface density σ±(t) > 0 which satisfies Langmuir kinetics
described by [49, 50]

∂tσ− = kd(Γ−σ−)− kaσ−ρ(σ−) (2a)

for desorptive charging reaction (1a), and

∂tσ+ = ka(Γ−σ+)ρ(σ+)− kdσ+ (2b)

for adsorptive charging reaction (1b). Here kd and ka are the
rate constants of the dissociation and association of the re-
active ion and ρ(σ±) is the volumetric concentration of re-
active ions at the surface, which is defined at the position
where the rate-limiting step for the reaction occurs [50, 51].
We consider this surface to be impermeable to non-reacting
ions and therefore do not account for any Stern layer other
than the charged surface groups [27]. The equilibrium sur-
face charge follows from ∂tσ± = 0 and is given by σ±,eq =

Γ(1+(kaρeq/kd)
∓1)−1, which reduces to an explicit “Lang-

muir isotherm” in the case that the equilibrium concentration
of the reactive ions ρeq ≡ ρ(σ±,eq) is a constant independent
of σ±,eq. In general, however, this Langmuir isotherm is a
self-consistency equation for σ±,eq that requires an additional
“closure” relation ρ(σ±) for an explicit equilibrium solution
σ±,eq. Without (Coulombic) interactions between surface and
ions, the local concentration ρ(σ±) of reactive species in the
vicinity of the surface would be equal to the bulk concentra-
tion ρb of the reactive ions far from the surface (which is in-
dependent of σ± and hence also independent from the reac-
tion mechanism), such that Eqs. (2a)-(2b) would be linear dif-
ferential equations whose solution can be written as s±(t) =
1 + (s±(0)− 1)exp[−(kd + kaρb)t] with the dimensionless
charge s± = σ±/σ±,eq such that s±,eq = 1; here s±(0)− 1
is the integration constant and denotes the relative deviation
from equilibrium at the initial time t = 0. Note that the con-
dition that 0 ≤ σ±(t) ≤ Γ implies that 0 < s±(0) < Γ/σ±,eq,
where the lower bound corresponds to an initially neutral sur-
face whereas the upper bound can be as large as O(10−100),
since typical equilibrium conditions have a charge occupancy
of only a few percent of the total number of chargeable groups
[52]. Thus from measurements of σ±(t) at various concentra-
tions of reactive (dissolved) species both kd and ka could in
this non-interacting case be determined.

However, as the charged surface attracts or repels reactive
ions, Eqs. (2a) and (2b) are complicated by a nontrivial rela-
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FIG. 1. Time-dependent relative deviations s±(t)−1 from the equi-
librium charge density as follows from the kinetic Langmuir-Gouy-
Chapman equations (2a)-(3) in (a) and Eqs. (2b)-(3) in (b) and (c),
for equilibrium zeta potentials (kBT/e)|φeq| equal to 50 mV (cross)
and 100 mV (circle) for valencies z = 0,1,2,3 (colors), in (a) s−(t)
for desorptive reactions when σ−,eq� Γ, in (b) s+(t) for adsorptive
reactions when σ+,eq � Γ, and in (c) s+(t) for adsorptive reactions
when σ+,eq ' Γ. Insets denote semi-logarithmic representations of
|s±(t)− 1|. The case σ−,eq ' Γ (not shown) is trivial with single-
exponential decay for all z.

tion ρ(σ±), which causes a charge-dependent decay rate and
introduces deviations from purely single-exponential relax-
ation of σ±(t). In fact, an explicit function ρ(σ±) is needed
to investigate and solve the dynamics, which we will develop
here. We consider the planar and homogeneous chargeable
solid surface discussed above in contact with a bulk solvent
with permittivity ε and temperature T with a three-component
1 : 1 : z electrolyte of bulk concentrations ρs : (ρs− zρb) : ρb.
For convenience we assume trace amounts of reactive ions and
therefore set ρb � ρs, where ρs is the bulk salt concentra-
tion. We also assume the electrolyte volume to be macroscop-
ically large such that ρb and ρs do not change due to surface
charging. Furthermore, we assume the charging timescale τ±,
which remains to be derived, to be the slowest timescale of
the system. Given that the typical timescale for electric double
layer (EDL) equilibration is around 10−9−10−6 s and that the
(geometry and flow dependent) transport timescale for ions
in stirred reactors can be as short as 10−4 s [53], we find a
large window τ±� 10−4 s for reactions to be well-described
by our (reaction-limited) theory [54]: for example phosphate
desorption shows characteristic reaction timescales of hours
[55] and adsorption of transition metals can occur on mil-
lisecond timescales [23, 24]. The slow-reaction assumption
allows us to describe the EDL within an equilibrium theory,
for which we take the Gouy-Chapman solution of Poisson-
Boltzmann (PB) theory for simplicity [20, 56]. Although PB
theory is based on a mean-field assumption for a system of
point ions, it is known that for all but the highest salt concen-
trations this theory is quite accurate for 1 : 1 and even 1 : 2
aqueous electrolytes [57], and we expect a similar accuracy
for 1 : 1 : z electrolytes in the limit ρb � ρs of our inter-
est. Within these assumptions the concentration of reactive
ions at the surface is determined by a Boltzmann distribution
ρ(σ±) = ρb exp[−zφ(σ±)], where kBT φ(σ±)/e is the elec-
tric potential at the surface with a surface charge±zeσ±, with
kB the Boltzmann constant. For desorptive charging the sur-
face and ions have opposite charge and hence zφ(σ−) < 0,
while for adsorptive charging ions and surface have the same
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sign yielding zφ(σ+) > 0. With this observation the Gouy-
Chapman solution for a 1 : 1 electrolyte, which is relevant
here as ρs� ρb, gives φ(σ±) =±2sinh−1(zσ±/σ∗)[20, 56],
where σ∗ = (2πλBλD)

−1 with λB = e2(4πεkBT )−1 the Bjer-
rum length of the solvent and λD = (8πλBρs)

− 1
2 the Debye

screening length. Substituting the Gouy-Chapman potential
in the Boltzmann factor yields

ρ(σ±) = ρb exp[−zφ(σ±)] = ρb

(
zσ±
σ∗

+

√
1+
( zσ±

σ∗
)2
)∓2z

,

(3)
where the exponent is positive for desorptive charging and
negative for adsorptive charging. Because Eq. (3) is reaction-
mechanism dependent, explicit information on the charging
mechanism can be deduced from the reaction kinetics as de-
scribed by combining Eq. (3) with Eqs. (2a)-(2b).

In order to investigate the influence of the Coulombic ion-
surface interactions on the charging dynamics, we numeri-
cally solve σ−(t) from the kinetic Langmuir-Gouy-Chapman
Eqs. (2a)-(3). The symbols in Fig.1(a) present the resulting
relative deviations from equilibrium, s−(t)− 1, for a desorp-
tive reaction in the experimentally common case of low equi-
librium saturation σ−,eq � Γ, both for s−(t = 0) = 2 and
0.01 corresponding to a surface with double the charge com-
pared to equilibrium and an initially almost uncharged sur-
face, respectively, for equilibrium surface potentials of 50
mV (|φeq| = 2, circles) and 100 mV (|φeq| = 4, crosses) and
for valencies z = 0,1,2,3 indicated by the different colours.
Fig.1(a) shows that a desorptive surface that is overcharged
(s− > 1) decays to equilibrium faster than one that is under-
charged (s− < 1), the more so for larger valencies z. Inter-
estingly, the sorption of uncharged species (z = 0, black sym-
bols) reveals perfect symmetry between the two cases as ex-
pected for first order kinetics, which is also manifest in the
semi-logarithmic representation of |s−(t)− 1| in the inset of
Fig.1(a) that shows a data collapse and a single-exponential
decay for z = 0. For z≥ 1 the inset reveals a non-exponential
time dependence with an initially slower decay for under-
charged surfaces and an initially faster decay for overcharged
surfaces, the difference becoming more pronounced for higher
valencies. Fig. 1(b) shows the deviation s+(t)−1 from equi-
librium for numerical solutions of Eqs. (2b)-(3) for an ad-
sorptive charging reaction and the same low equilibrium sur-
face density σ+,eq � Γ and the same surface potentials and
valencies as in (a). Interestingly, for this reaction the re-
laxation of an initially undercharged surface to equilibrium
is faster, rather than slower as we found for desorptive un-
dercharged surfaces in (a). Hence the two mechanisms can
be distinguished by inspecting a single time-trace of the sur-
face charge. We do not plot the dynamics of a desorptive
surface that is saturated in equilibrium σ−,eq ' Γ (in which
case kd � kaρeq) as the equilibration (dissociation) rate for
such a surface ∂ts ' −kd(s− 1) is linear and equilibration
occurs through trivial single-exponential decay. The lack of
non-linearity for such a surface stems from the fact that the
dissociation process is unaffected by the electrostatic surface-
ion interaction. However, as can be seen in Fig.1(c) the dy-
namics of an adsorptively charged surface with a saturated

charge density σ+,eq ' Γ is markedly non-linear. As was the
case in Fig.1(b) we see that an undercharged surface equili-
brates faster than a single-exponential. Clearly, these rather
distinctive features of the time-dependent surface charge con-
tain explicit information on not only the reaction mechanism
but also the valency of reacting ions. Interestingly, such de-
viations from single-exponential decay have historically been
observed in pressure-jump experiments [23, 24]. In SM II [48]
we show that these experiments are well described by our the-
ory, alleviating the need of introducing multiple reactions to
describe such experiments.

In Figs.1(a)-(b) the dimensionless time on the horizontal
axes contains a factor (2z+ 1), which as we will show now,
is convenient as it leads to a data collapse in the asymptotic
nonlinear-screening regime |φeq| � 1 where s±(t) only de-
pends on the valency, the reaction mechanism, and the initial
charge state. To see why the near-equilibrium decay rate in-
cludes a factor (2z+1) in Figs.1(a) and (b) but not (c) we sim-
plify the Langmuir-Gouy-Chapman Eqs. (2a)-(2b) and (3)
in the important and common case of large equilibrium sur-
face potentials where zσ/σ∗ > 1, say beyond 50 mV where
|φeq| ≥ 2. In this limit Eqs. (2a)-(2b) can be rewritten as a
single polynomial (Chini [58]) differential equation

−∂ts± = kaρeq

(
s1∓2z
± − s−z∓z

±

)
+ kd

(
s±− s−z∓z

±

)
, (4)

for which a closed form solution can be obtained by sepa-
ration of variables only for an adsorptively charged surface
with kd � kaρeq in which case s2z+1

+ (t) = 1 + (s2z+1
+ (0)−

1)exp[−(2z+ 1)kdt]. Near-equilibrium, s± ' 1, Eq. (4) sim-
plifies to the linear differential equation ∂ts± '−(s±−1)/τ±
with the near-equilibrium decay rate for desorptive and ad-
sorptive charging given, respectively, by

τ−1
− = (2z+1)kaρeq + kd, (5a)

τ−1
+ = (2z+1)kd + kaρeq. (5b)

As announced, this timescale τ± shows that electrostatic at-
traction can alter the linear, near-equilibrium, decay rate by a
factor (2z+1) for z≥ 1 compared to the neutral case (z= 0) in
the experimentally common regime (kaρeq/kd)

∓1� 1 where
σ±,eq � Γ. As for the majority of surfaces the equilibrium
charge is much lower than saturation, σeq � Γ [52], we ex-
pect the correction by a factor (2z + 1) to be common and
we note in passing that the only other work focusing on the
influence of Coulombic ion-surface interactions on kinetics
[40, 41] does not mention this factor. As already observed in
Fig.1, our simple Eq. (4) shows that far-from-equilibrium the
dynamics becomes non-linear and importantly the ± sign of
the reaction mechanism breaks the near-equilibrium symme-
try of dynamics with regard to a charge excess or a charge
deficit. As can be seen from Eq. (3), desorptively charged
surfaces which are overcharged, s− > 1, will initially attract
an excess of reactive ions to the surface, thereby having an
increased reaction rate compared to uncharged equilibration.
Hence the equilibration for large overcharging is faster than
expected from uncharged Langmuir kinetics. Conversely, an
initially undercharged surface, s− < 1, will have a shortage
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FIG. 2. Time dependence of the relative deviation from the equilib-
rium charge density s(t)− 1 for the autocatalytic ion displacement
reaction Eq. (7a) and Eq. (7b) for 10 different initial conditions s(0)
in the experimentally common regime σeq� Γ. Symbols are numer-
ical solutions for the full Langmuir-Gouy-Chapman equation (SM
IV [48]) for φeq = 2 (open symbols) and φeq = 4 (crosses), for 5 ini-
tial conditions. Gray dashed line denotes the inflection point (top
s(t)−1' 0.6, bottom s(t)−1'−0.25).

of reactive ions and thus equilibration will be slower. For
adsorptively charged surfaces equilibration will be non-linear
regardless of σeq/Γ and here undercharging leads to a short-
age of reactive ions compared to equilibrium and hence faster
equilibration, as can be seen in Fig.1(b). The rate changing
during equilibration is reminiscent of autocatalytic reactions
where the equilibration rate changes because a catalyst speed-
ing up the reaction is produced simultaneously with a reaction
product [59–61], and in SM III [48] we demonstrate the sim-
ilarity between Eq. (4) and autocatalytic kinetics. A charac-
teristic feature of such autocatalytic reactions is an increasing
decay rate up to a maximum and a corresponding inflection
point in the time-dependent decay. Interestingly, for so-called
ion displacement reactions in which ions are involved in both
the forward- and the back-reaction, inflection points are eas-
ily realisable as there are now two ions attracted or repelled
from the charged surface such that the Coulombic feedback is
strengthened: inflection points are hence a smoking gun that
multiple ions are involved in a charging reaction. An exam-
ple of a two-ion reaction where all reacting ions are repelled
from the charged surface is the calcium charging of silica [42]
of Eq. (6a), while an example of a reaction where all the re-
acting ions are attracted to the charged surface is the fluoride
charging of the biomineral carbonato-apatite [62] of Eq. (6b),

SiOH(s)+Ca2+
(aq)

kfρCa−−−⇀↽−−−
kbρH

SiOCa+(s)+H+
(aq), (6a)

XCO3(s)+F−(aq)
kfρF−−−⇀↽−−−
kbρCO

XF+
(s)+CO3

2−
(aq), (6b)

where X = Ca10(PO4)6, kf is the forward (charging) reaction
rate, kb is the backward (decharging) rate and ρi is the concen-
tration of ion species i at the charged surface. In SM III [48]
we derive under the same Gouy-Chapman and large surface
potential conditions of the main text that the charge equilibra-
tion for Eq. (6a) and Eq. (6b) are respectively described by

−∂ts = kfρCa,eq(s−3− s−4)+ kbρH,eq(s−1− s−4), (7a)

−∂ts = kfρF,eq(s3− s2) + kbρCO,eq(s5− s2), (7b)

with the resulting near-equilibrium decay constant
τ = kfρi,eq + 3kbρ j,eq for both reactions. Comparing
Eqs. (7a)-(7b) to Eq. (4) we see that now the time evolution
is given by the difference of two polynomials of (non-zero)
unequal degree, ensuring that there is always a maximum
in the decay rate and hence an inflection point. We find
that reactions of the form (6b) have two physically realiz-
able inflection points located at s = 2/3 (if σeq ' Γ) and
s = (2/5)1/3 ' 0.75 (if σeq � Γ): the reaction (6a) has only
one accessible inflection point s = 41/3 ' 1.6 (if σeq � Γ),
while its second inflection point s = 4/3 is inaccessible for a
saturated surface with σeq ' Γ.

We plot the dynamics resulting from the Eqs. (7a)-(7b) for
a variety of starting conditions s(0) in Fig.2 in the experi-
mentally common limit σeq� Γ. In Fig.2(a) excellent agree-
ment between the asymptotic Eq. (7a) and full numerical re-
sults can be seen, while in Fig.2(b) for large undercharging
s(0) < 0.2 a discrepancy between Eq. (7b) and the full nu-
meric solution is found. However in general Eqs. (7a)-(7b)
predict the location of the inflection point accurately for a
range of common surface potentials (kBT/e)|φ0| ∈ [50,100]
mV. For ion-displacement reactions of the form (6a) and (6b)
involving ions with higher valencies but monovalent surface
charge the inflection point will lie even closer to equilibrium.
Thus surfaces that are initially undercharged by only ' 25%
or overcharged by' 60% will generally equilibrate along sig-
moidal curves, which is a distinguishing feature that cannot
be observed for the single-ion reactions Eqs. (1a)-(1b). Fi-
nally we note that ion-displacement reactions offer a simple
explanation for the recently observed sigmoidal equilibration
of the surface charge at an aqueous silica interface [61] using
only a single charging-reaction of the form Eq. (6a) rather than
the proposed autocatalytic dissolution cycle involving multi-
ple steps.

To summarize, in this Letter we present a model for
the non-linear dynamics of reaction-limited surface charg-
ing, combining Langmuir dynamics with Poisson-Boltzmann
theory. The model captures how the screened electrostatic
surface-ion interaction affects the reaction rate near and far
from equilibrium in terms of a non-linear differential equa-
tion, where the electrostatic interaction is described by only
using the charge valency of the reactive ion. The Coulom-
bic ion-surface interaction leads to a charge-dependent de-
cay rate, which can be used to gain information on the va-
lency of reacting ions, initial charge, and reaction rate. De-
and adsorptive reactions can be distinguished by inspecting
whether far-from-equilibrium decay is slower or faster than
near-equilibrium decay, while an inflection point is character-
istic for two-ion reactions. Interestingly, we note that inflec-
tion points are a characteristic feature of autocatalytic reac-
tions and that the electrostatic ion-surface interaction can be
seen as a catalytic feedback loop. Hence electrostatics offers
a straightforward explanation for the recently measured auto-
catalytic charging of silica [61].
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I. WHEN CAN MULTIPLE REACTIONS BE DESCRIBED
BY SINGLE-REACTION KINETICS?

The single-reaction (one-pKa) charging reaction presented
in this Letter is a simplified representation for many real
liquid-solid interfaces, which often require multiple surface
charging reactions for the reproduction of measured equilib-
rium Langmuir isotherms[1–4]. In this Supplemental Material
we show that for a wide range of conditions a two-reaction
model is well approximated by the single-reaction model pre-
sented in this Letter. For simplicity we will consider a two-
reaction (two-pKa) system with two distinct surface-sites la-
beled (SiOH)1 and (SiOH)2, charged by similar desorptive
surface reactions but with different ad- and desorption rates

(SiOH)1
kd1−−⇀↽−−
ka1ρ

(SiO−)1 +H+
(aq), (S1a)

(SiOH)2
kd2−−⇀↽−−
ka2ρ

(SiO−)2 +H+
(aq), (S1b)

and hence the sites have different equilibrium areal densities
σeq,1 6= σeq,2 if the site densities Γi or equilibrium constants
Ki = ka,iρ/kd,i are unequal. The Langmuir equation describ-
ing their charging kinetics is

∂tσ1 = kd1(Γ1−σ1)− ka1ρ(σe)σ1, (S2a)
∂tσ2 = kd2(Γ2−σ2)− ka2ρ(σe)σ2, (S2b)

with the resulting areal charge density σe = σ1 +σ2 coupling
the two reactions. As both reactions have the same reac-
tive ion (H+) a concentration change ∆ρ at the surface would
cause the equilibrium to shift for both reactions, and the equi-
libration kinetics resulting after this concentration shift would
in principle need to be described by the two coupled non-
linear differential equations (S2a) and (S2b) as they are cou-
pled by the Gouy-Chapman “closure”, given by Eq. (3) in the
Letter. However, here we show that if the two reactions have
dissimilar equilibrium constants Ki or site densities Γi one of
the two differential equations can almost always be neglected,
as when the equilibrium constants differ so does the shift in
equilibrium charge density ∆σi = σeq,i(ρ +∆ρ)−σeq,i(ρ) for
a given concentration shock ∆ρ . When the difference in equi-
librium charge densities of the two sites is very unequal (either
∆σ1� ∆σ2 or ∆σ1� ∆σ2) the change in surface charge can
be described using a single reaction model (as ∂tσe ' ∂tσ1
or ∂tσe ' ∂tσ2). Solving for the coupled-Langmuir kinet-
ics Eq. (??) in steady-state, ∂tσi = 0, we find for σi,eq � Γi
that the relative change in the equilibrium surface charge
∆σ1/∆σ2 ∝ (Γ1K1)/(Γ2K2) while for nearly saturated sur-
faces with σeq ≈ Γ the relative shift scales as ∆σ1/∆σ2 ∝
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FIG. 1. Replotting of Fig.1(a) showing charge relaxation for ion va-
lencies z = 0,1,2,3 (respectively black, blue, red, green) calculated
with curves not originating from Eq. (4) in the main Letter but instead
plotted using Eq. (S5) with dimensionless static background-charge
x ∈ [0,1]. The outermost curves with x = 0 revert exactly to those
described by Eq. (4) in the main Letter, while curves with x = 1 lie
significantly closer to the black curve showing single-exponential re-
laxation, with intermediate x lying in the shaded region. Note that
the near-equilibrium decay rate has changed from (2z+ 1)kaρeq to
(z+1+ x)(1+ x)2z−1kaρeq which for z = 3 and x = 1 yields a factor
32 difference in the near-equilibrium decay rate. In general however
for small x the charging kinetics is well described by the single reac-
tion of Eq. (4) in the main Letter.

(Γ1K2)/(Γ2K1). As long as ∆σ1/∆σ2 deviates significantly
from unity, the shift in one of the two equilibrium-densities
can be neglected for the shift in the total charge density. To
find an explicit maximum bound for which this approxima-
tion is valid we calculate the maximum concentration shock
∆ρm ∈ ρ[−1,∞] for which this approximation holds by solv-
ing for ∆σ1/∆σ2 = 1. This has a trivial solution ∆ρ = 0 when
Γ1 = Γ2 and K1 = K2 and a non-trivial solution

∆ρm

ρ
=

1
K1K2ρ2

Γ1K1ρ−Γ2K2ρ
Γ2(1+K1ρ)−Γ1(1+K2ρ)

−

Γ1(2+K2ρ)−Γ2(2+K1ρ)
Γ1(1+K2ρ)−Γ2(1+K2ρ)

,

(S3)

which simplifies to ∆ρm/ρ = (K1K2ρ2)−1 − 1 in the case
that Γ1 ' Γ2. In general, the range of validity of Eq. (S3)
is large when K1 and K2 are very unequal, except close
to a concentration where ρ2K1K2 = 1 where ∆ρm tends to
zero. Interestingly, in this case the charge density is exactly
half-occupied σe = (Γ1 + Γ2)/2, which is rare for most
experimental conditions. For all other concentrations ρ a
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very large range ∆ρm/ρ of concentration shocks remains over
which a two-reaction system essentially equilibrates through
a single charging reaction. However, while the dynamics
will be governed by a single reaction, there will be a static
background charge due to which σ1 6= σe such that the single
reaction is still not exactly equal to the single-reaction kinet-
ics in the Letter. That the deviation from the single-reaction
kinetics in the Letter due to this static background charge is
minor will be shown in the next paragraph.

As the total surface charge density (in units of the elemen-
tary charge) is given by σe = σ1 + σ2, the Gouy-Chapman
relation (Eq. (3) in the Letter) between the surface occupancy
σ1 and concentration ρ for two reactions now reads

ρ(σ1) =

(
z(σ1 +σ2)

σ∗
+

√
1+
(

z(σ1 +σ2)

σ∗

)2)2z

. (S4)

As discussed in the previous section we will now assume that
∆ρ � ∆ρm and without loss of generality we identify σeq,2 as
the static-charge density (∆σ1/∆σ2� 1) from which follows
σ2 ' σeq,2(ρ) ' σeq,2(ρ +∆ρ) = cnst. The non-dimensional
change in total surface charge will then be ∂tse = ∂tσe/σeq,e '
∂tσ1/σeq,e and when σeq,e� σ∗ by combining Eq. (S2a) and
Eq. (S4) we find

−∂tse = kd1(se−1)+ ka1ρeq
(
se(se + x)2z− (1+ x)2z), (S5)

where the dimensionless static surface charge density
x = σeq,2/σeq,e ∈ [0,1] is the ratio of static charge
σeq,2(ρ + ∆ρ) after the concentration shock. Interest-
ingly, the near-equilibrium decay rate τ− is altered from
(2z + 1)kaρeq to (2z + 1 + x)(1 + x)2z−1kaρeq and hence
the deviation from uncharged Langmuir kinetics becomes
even larger if the background surface charge is included.
Clearly both the timescale and dynamics revert back to
the single-reaction kinetics of Eq. (4) in the Letter when
x � 1. To check how much the dynamics is affected at
intermediate x we replot Fig.1(a) in the Letter but now with
Eq. (S5) with z = 0,1,2,3 (black, blue, red, green) and s = 1
and s = −0.99 instead of Eq. (4). The resulting shaded
regions in Fig.1 represent curves with different x ∈ [0,1]. We
observe that for increasing x the dynamics moves closer to
single-exponential decay (black line), with this shift being
more pronounced for increasing z. However, even for x = 1
there is no over-dramatic difference from the single-reaction
kinetics explored in the Letter and in many cases a two-
reaction system is well approximated by the single-reaction
model in the Letter. However one should be cautious when
extracting the ion valency from dynamics around x ' 1 as
here the dynamics closely resembles that of a single ion with
z− 1. We expect this may occur in processes such as the
adsorption of heavy metal ions from ground water which
occurs on pre-charged substrates [3]. Under these condi-
tions surface charging can be readily described using Eq. (S5).

To summarize, here we have shown that the one-pKa charg-
ing reaction is a valid approximation for more complex sys-
tems, involving multiple charging reactions, when (i) the ratio

of the equilibrium constant K1/K2 is not close to unity and (ii)
the concentration shock ∆ρ is constrained within a range ∆ρm
which we show to be generally large.

II. SURFACE CHARGING KINETICS FROM
PRESSURE-JUMP EXPERIMENTS

While experimental investigations of surface charging
kinetics are rare, several kinetic studies employing a pressure-
jump technique exist [5, 6]. In such an experiment a mixture
of colloidal particles and aqueous electrolytes is slowly
pressurized to more than 1 MPa, thereby shifting the surface
reactions at the colloidal surface to a high-pressure equilib-
rium. When this pressure is suddenly released, the solution
pressure converges to atmospheric pressure in ' 0.1 ms.
After this jump, the colloidal surface charge must revert from
its high-pressure equilibrium to its atmospheric equilibrium.
The change in surface charge is measured indirectly, by using
the solution conductance as a proxy for the surface charge.
While it is unclear what the exact relation between charge
and conductance is, a linear relation is often assumed [6].

Of particular interest is a set of experiments where the ad-
sorption of divalent transition metals such as Cu2+, Pb2+,
Mn2+, and Co2+ onto γ-alumina (Al2O3) particles is studied.
Here the authors reject simplest adsorption mechanism, for
Cu2+ given by

AlOH(s)+Cu2+
(aq)

kaρ−−⇀↽−−
kd

AlOHCu2+
(s) , (S5)

because this single-step reaction does not show single-
exponential decay [5]. Their theoretical model used for anal-
ysis fixes the surface (zeta) potential, and hence they find that
multiple reactions are needed to explain the observed charge
equilibration [5–7]. While their analysis is valid for fixed
surface potential, for a potential varying with surface charge
we actually expect deviations from single-exponential decay,
as shown by Eq. (4) in our Letter. The Langmuir-Gouy-
Chapman dynamics of reaction (S5) with z = 2 for surface
potentials larger than 50 mV is given by

−∂ts+ = kaρeq

(
s−3
+ − s−4

+

)
+ kd

(
s+− s−4

+

)
. (S6)

To test whether the non-linear dynamics observed in the
pressure-jump experiment are explained by Eq. (S6), we ex-
tract the experimental data from the relevant pressure-jump
experiment for copper adsorption (Fig.1 in Ref. [5]). In this
experiment it is found that the conductivity after the pres-
sure jump decreases and reaches a constant value within 200
ms. In Fig.2 we compare the experimental data (symbols)
with equilibration expected from Eq. (S6) (black line), where
we assume the experimentally common case where σeq � Γ
and extract the reaction time τ+ = (5kd)

−1 ' 27 ms from
the single-exponential, late time, relaxation (green line). As
the final equilibrium charge density is not measured in a
pressure-jump experiment we use the degree of undercharg-
ing s(0)− 1 ' −0.6 as a fit parameter, where we note that
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FIG. 2. Comparison between experimental data from Fig.1 of
Ref. [5] (symbols), single exponential decay (green) and non-linear
dynamics (black, Eq. (S6) with initial degree of undercharging
s(0)− 1 = −0.6. The reaction time τ+ ' 27 ms is fitted from the
late time decay, yielding k−1

d ' 135 ms. Inset shows the same data
in a semi-logarithmic representation.

an undercharged surface naturally explains why conductivity
decreases: during equilibration mobile copper ions are taken
out of solution. It can be seen that the difference between the
single exponential decay (green) and experimental data (sym-
bols) is large, but that Eq. (S6) (black) can naturally explain
a large part of the deviation from single-exponential decay,
without needing to introduce a second reaction with a differ-
ent timescale.

While further analysis is required to reinstate reaction
mechanism (S5), our analysis shows the importance of taking
Coulombic surface-ion interactions into account when consid-
ering kinetics. Not only do we show that non-linear decay is
readily captured by our model, also the desorption time k−1

d
is five times slower than the late-time decay τ+, in this diva-
lent case. Furthermore, we have demonstrated that chemical
information can easily be extracted from a single equilibra-
tion curve, even when the initial degree of undercharging is
unknown.

III. SIMILARITY BETWEEN SURFACE CHARGING AND
AUTOCATALYTIC KINETICS

Here we we will show the similarity between classical auto-
catalytic kinetics and surface charging as described by Eq. (4)
in the Letter. First we derive an approximate solution for this
Chini differential Eq. (4) in the main text, by expanding it up
to second order around s = 1 obtaining a Bernoulli differen-
tial equation (Supplementary Ref.[8]). Solving this equation

by standard methods we obtain

s±(t)−1 =

(s±(0)−1)e−t/τ±

1∓ z
(
1− e−t/τ±

)(
s±(0)−1± s±(0)−1

(2z+1)(kd/kaρeq)±1 +1

) ,

(S7)

where τ± is given by Eq. (5) in the Letter. Our Eq. (S7)
reverts to single exponential decay when (s±(0)− 1)z� 1,
and is valid only as long as ∓z(s±(0)− 1)�−1. For most
practical purposes Eq. (S7) is not of much use, however it is
interesting to note that a similar solution exists for autocat-
alytic equations thereby substantiating the claim that surface
charging is autocatalytic. To make this comparison explicit we
consider the simplest possible autocatalytic reaction (Eq. (1a’)
from Ref.[9]),

A(aq)+Y(aq)
kfρAρY−−−−⇀↽−−−−

kbρq
Y

q Y(aq) (S8)

where the aqueous reactant Y(aq) together with reactant A(aq)
produces q copies of itself. The reaction is autocatalytic when
the autocatalytic order q ≥ 2. When the concentration ρA is
constant the production rate of Y(aq) is given by the Chini dif-
ferential equation

−∂ty = kfρA(yq− y), (S9)

with y= ρY/ρY,eq, which already shows similarities to Eq. (4)
in the Letter. To obtain a solvable Bernoulli equation we ex-
pand Eq. (S9) up to second order around x = 1, which has the
solution

y(t)−1 =
(y(0)−1)e−t/τy

1− q
2
(y(0)−1)(1− e−t/τy)

, (S10)

with τy = (q− 1)kfρA. While Eq. (S10) is already very sim-
ilar to Eq. (S7), the similarity becomes even more apparent
when comparing the autocatalytic dynamics to the dynam-
ics of an adsorptively charged surface with σ+,eq� Γ (where
kd� kaρeq) in which case Eq. (S7) simplifies to

s+(t)−1 =
(s+(0)−1)e−t/τ+

1− z(s+(0)−1)(1− e−t/τ+)
. (S11)

Comparing Eq. (S10) with Eq. (S11) we find the only dif-
ference is the definition of the timescale τi and that the ion-
valency z replaces the autocatalytic order q/2. This corre-
spondence between the ion valency z and autocatalytic order
q supports the interpretation that the Coulombic ion-surface
interactions acts autocatalytically.

IV. CHARGING DYNAMICS OF ION DISPLACEMENT
REACTIONS

Here we will generalize the derivation of Eq. (4) in the main
text from single-ion reactions to two-ion reaction also known
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as ion-displacement reactions, yielding Eq. (7) in the main
text. We will consider a general form for the single-step ion-
displacement reaction where an aqueous ion A–ZA

(aq) displaces

from the (uncharged) surface group SB(s) the ion B–ZB
(aq), leav-

ing a charged surface site SA–ZA−–ZB
(s) combining into the reaction

SB(s)+A–ZA
(aq)

kfρA−−−⇀↽−−−
kbρB

S–ZA−–ZB
(s) +B–ZB

(aq), (S12)

where –ZA and –ZB are the valencies of ad- and desorbing ions A
and B respectively , which contrary to the ion-valency zi in the
main text is here not considered to be strictly positive as the
total charge difference between A and B is important. The re-
sulting charge of the surface groups is given by –ZS = –ZA−–ZB,
such that the surface charge is eσ–ZS. As in the main text, the
charging dynamics will be described by Langmuir kinetics,
which assumes identical and independent surface sites such
that

∂tσ = kAρA(σ)(Γ−σ)− kBρB(σ)σ . (S13)

Note that now both terms contain the non-trivial ρ(σ) depen-
dence, which allows for sigmoidal equilibration as discussed

in the Letter. For ρ(σ) we use the Gouy-Chapman expression

ρi(σ) = ρb,i

(
zSσ
σ∗

+

√
1+(

zSσ
σ∗

)2

)±2zi

, (S14)

where zi = |–Zi|. The exponent for ρi is positive when –Zi–ZS < 0
and negative when –Zi–ZS > 0. When –Zi–ZS = 0 the dynamics
revert to the single-ion charging reaction in the main text. In
the high charge limit |φeq|> 2 (when zSσeq/σ∗ > 1) we find

−∂ts = kAρA,eq(s1±2zA − s±2zA)+ kBρB,eq
(
s1±2zB − s±2zA

)
,

(S15)
where the ± sign in front of zi is negative when –Zi–ZS > 0 and
positive when –Zi–ZS < 0. Substituting –ZA = +2 and –ZB = +1
(hence –ZS = +1) we find Eq. (7a) in the main text, while
substituting –ZA = −1 and –ZB = −2 (hence –ZS = +1) yields
Eq. (7b). Furthermore, for –ZA = 0 this equation reverts to des-
orptive charging and for –ZB = 0 this equation reverts to ad-
sorptive charging as described in the Letter. The presented
derivation can be naturally extended to single-step reactions
involving an arbitrary number of charged species.

[1] W. Van Riemsdijk, J. De Wit, L. Koopal, and G. Bolt, Journal of
colloid and interface science 116, 511 (1987).

[2] T. Hiemstra, W. H. Van Riemsdijk, and G. Bolt, Journal of col-
loid and interface science 133, 91 (1989).

[3] M. Kosmulski, Chemical properties of material surfaces, Vol.
102 (CRC press, 2001).

[4] M. Borkovec, B. Jönsson, and G. J. Koper, in Surface and colloid
science (Springer, 2001) pp. 99–339.

[5] K. Hachiya, M. Sasaki, T. Ikeda, N. Mikami, and T. Yasunaga,
The Journal of Physical Chemistry 88, 27 (1984).

[6] D. L. Sparks, Kinetics of soil chemical processes (Academic
Press, 2013).

[7] C. Bernasconi, Relaxation Kinetics (Academic Press San Diego,
1976).

[8] G. Teschl, Ordinary differential equations and dynamical sys-
tems, Vol. 140 (American Mathematical Soc., 2012).

[9] P. Schuster, Monatshefte für Chemie-Chemical Monthly 150,
763 (2019).


